EP0233330B1 - Burner-boiler unit - Google Patents

Burner-boiler unit Download PDF

Info

Publication number
EP0233330B1
EP0233330B1 EP86115977A EP86115977A EP0233330B1 EP 0233330 B1 EP0233330 B1 EP 0233330B1 EP 86115977 A EP86115977 A EP 86115977A EP 86115977 A EP86115977 A EP 86115977A EP 0233330 B1 EP0233330 B1 EP 0233330B1
Authority
EP
European Patent Office
Prior art keywords
burner
mixing device
air
combustion chamber
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86115977A
Other languages
German (de)
French (fr)
Other versions
EP0233330A1 (en
Inventor
Elmar Goller
Heinrich Prof. Dr.-Ing. Eickhoff
Albrecht Dipl.-Ing. Kayser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Publication of EP0233330A1 publication Critical patent/EP0233330A1/en
Application granted granted Critical
Publication of EP0233330B1 publication Critical patent/EP0233330B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/005Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space with combinations of different spraying or vaporising means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/106Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet
    • F23D11/107Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting at the burner outlet at least one of both being subjected to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/34Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air
    • F23D14/36Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air in which the compressor and burner form a single unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/142Fuel pumps
    • F23K5/145Fuel pumps combined with fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/285Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with the fire tubes arranged alongside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11101Pulverising gas flow impinging on fuel from pre-filming surface, e.g. lip atomizers

Definitions

  • the invention relates to an oil burner boiler unit according to the preamble of claim 1.
  • the atomizing device is designed as a flat cutting edge, which generates a flat mixture jet, the flame of which is stabilized in the combustion chamber by deflection on a baffle plate.
  • This known unit is able on the one hand to process particularly small amounts of oil with low pollutants and cover a wide control range of the heating power, but on the other hand it tends to deposit oil coke if the air pressure is too low. It has also proven difficult to ignite the flame with a high voltage arc.
  • a known burner-boiler unit, from which the preamble of claim 1 is based, is described in WO 8 504 947.
  • the combustion chamber is divided into two parts separated by a turbulator.
  • a conventional oil or gas burner creates a flame in the first part of the combustion chamber, whereby the combustion gases can be given a certain rotation.
  • the first part of the combustion chamber is traversed by flue gas pipes, through which the flue gas flows out of the second part of the combustion chamber.
  • the second part of the combustion chamber is surrounded by a heat exchanger. Because cooling takes place in the second part of the combustion chamber, sufficient combustion of the carbon monoxide to carbon dioxide is not guaranteed.
  • the heating output can only be varied within a relatively small control range depending on the heating requirements of the connected consumer.
  • the object of the invention is to create an oil burner / boiler unit in which the heating power can be varied within a wide control range and which enables low-pollutant combustion without the formation of oil coke.
  • the combustion air is supplied at a relatively high pressure, namely proportionally to the oil.
  • the pressure at which the air is supplied is preferably between 20 and 200 mbar.
  • This high pressure means turning away from the fan wheels usually used, in which the vast majority of the drive energy is lost.
  • the swirling mixture flow entering the combustion chamber generates a flame-stabilizing recirculation of hot flue gases without the risk of residue deposits and also allows the combustion to be ignited by an electric arc in the central or external return flow area.
  • hot combustion chamber walls in the front area of the combustion chamber can be dispensed with.
  • the water cooling of the jacket in the first part of the combustion chamber (primary zone) lowers the gas temperature, which in conjunction with the short dwell time of the gas in the highly loaded primary zone results in a reduction in nitrogen oxide formation.
  • the remaining reaction temperature is maintained by the heat-insulating jacket in order to ensure the combustion of the carbon monoxide CO to carbon dioxide CO 2 .
  • the fuel pressure source can consist of a compressed gas line when using gas as fuel. If liquid fuel is used, the fuel source contains a feed pump, preferably a positive displacement pump, which is driven synchronously with a positive displacement pump contained in the compressed air source. An annular constriction can be provided between the two parts of the combustion chamber, which supports recirculation in the primary zone and mixing in the secondary zone.
  • the flow path of the flue gases in the heat exchanger is so narrow that a turbulent flow occurs in this flow path at least in the upper speed range of the drive.
  • the heat transfer coefficient increases significantly more with increasing flow than with laminar-flow heat exchangers, i.e. the heat exchanger requires a smaller increase in its heat exchange surfaces with increasing heating capacity.
  • the gas outlet temperature rises less with high heating output.
  • a fixed heat exchanger can be used in the entire output range of the burner with minor changes in the flue gas temperature.
  • a control range of heating power of about 1: 2.5 can be with a fixed airflow nozzle in the Mixing device to be worked.
  • the cross section of the swirl nozzle is changed as a function of the heating power, and preferably as a function of the pressure of the compressed air source. The greater this air pressure, the larger the flow cross section is made at the swirl nozzle. In this way, the swirl nozzle is matched to the heating power required in each case.
  • the control range of the heating output can be increased up to about 1:10.
  • the invention is also suitable for a burner-boiler unit with gas operation. While the swirl-producing mixing device is used both for atomizing the heating oil as well as for mixture formation and flame stabilization during oil operation, the atomizing effect does not apply to a gas burner. The advantages of pollutant reduction and the speed-dependent fuel-air compound control are retained.
  • the two combustion pumps are expediently combined to form a single structural unit, the housing of this structural unit being divided by an intermediate wall which is penetrated by an intermediate shaft connecting the rotors of the two positive displacement pumps.
  • the composite positive displacement fan means more work than the radial fans commonly used with gas fan burners, but this is more than offset by various savings even with a non-power-controlled single-stage burner.
  • volumetric gas metering depends only slightly on the gas pressure in the gas network, so that no pressure regulator is required.
  • a pressure switch is also not required, as the control only fails if the compound fan fails. In such a case, safety devices switch off the gas supply simply because there is no combustion air or the power supply. It is particularly advantageous that speed control is only required for the drive motor of the composite displacement fan and that complex mixing devices with volume control are not required.
  • the fittings and lines between the solenoid valve and the mixing device remain filled with residual gas each time it is switched off, which then seeps into the combustion chamber.
  • the infiltration of residual gas into the combustion chamber can be avoided by placing a small check valve between the inlets of the air blower and gas blower. As soon as the gas supply is shut off, the gas blower sucks in air via the check valve in order to purge the residual gas from the lines. Even if the power supply network fails, the after-running of the drive motor causes the gas to be flushed out of the gas line.
  • the controllable burner-boiler unit shown in FIG. 1 has an electric motor 10, the speed of which is controlled by a speed control unit 11.
  • the output shaft of the electric motor 10 drives a compressed air displacement pump 12 and a heating oil displacement pump 13.
  • the two pumps 12 and 13 are positive displacement pumps, i.e. their delivery rate is proportional to the drive speed. Roots pumps, gear pumps or piston pumps are suitable for this.
  • the pressure lines of the two displacement pumps 12 and 13 lead to the mixing device 14 designed as an atomizing device.
  • the mixing device 14 is accommodated in the nozzle housing 15, which at the same time forms the end of the combustion chamber 16.
  • the tubular nozzle housing 15 has a cover wall 17 closing the combustion chamber 16 on the combustion chamber side and is sealed at the opposite (outer) end with a cover 18.
  • An oil supply line 19 designed as a capillary line is sealingly passed through the cover 18.
  • the oil supply line 19 leads through the nozzle body 20 arranged in the interior of the nozzle housing 15 and exits at its end face.
  • numerous swirl-generating air-conducting elements in the form of vanes 23 are arranged on the flange-like end wall 22 of the nozzle body. These wings 23 are inclined in the circumferential direction according to FIG. 2 and they taper towards the inner end.
  • the vanes 23 delimit channels 24 through which the radially inflowing air receives a peripheral component.
  • Each of the channels 24 is reduced in cross-section to its inner end, so that the air in each channel 24 increasingly be is accelerated.
  • the wings 23 are arranged between the end wall 22 and a plate 25 running parallel to this end wall.
  • the end wall of the plate 25 facing away from the vanes 23 forms the boundary wall of a further swirl nozzle with vanes 26 which are attached to the end side of a further plate 27.
  • the plate 27 runs parallel to the plate 25 and its wings 26 are designed and arranged in the same way as the wings 23 of the plate 22.
  • the air flowing laterally into the nozzle housing 15 through the inlet 28 is distributed in the interior of the nozzle housing and flows radially into the channels 24 between the vanes 23 and into the corresponding channels between the vanes 26.
  • the wings 23 and 26 give the air a twist, i.e. a circular motion.
  • the plate 25 has an annular shape and its inner edge has the shape of an annular cutting edge 29 projecting axially in the flow direction and tapering towards the end.
  • the inner edge of the annular plate 27 is also bent axially in the flow direction and forms a conical ring 30. which surrounds the cutting edge 29 at a radial distance.
  • the heating oil emerging through the tube 21 is caught by the rotating air stream and sprayed onto the inside of the cutting edge 29.
  • the cutting edge 29 is surrounded on both sides by rotating and axially moving air currents, which tear off the heating oil film from the circular sharp tip of the cutting edge 29 and distribute it finely and evenly.
  • the fuel oil droplets mix intimately with the combustion air and together with this enter the tubular combustion chamber 16.
  • ring-shaped flow rollers arise in the front part 16a of the combustion chamber 16, in which part of the mixture flow is returned and which rotate around the longitudinal axis.
  • an electrode 31 is arranged in part 16a of the combustion chamber.
  • Another electrode 31 ' is used for flame monitoring. After ignition, a stable blue flame arises in part 16a of the combustion chamber 16, which essentially fills the part 16a entirely and continues into the rear part 16b.
  • the part 16a forms the primary combustion zone, which is separated from the part 16b by a ring 32, which forms a constricting constriction 33.
  • the peripheral wall of a part 16b, which forms the secondary combustion zone, is provided with a heat-insulating lining 34 and thereby protected against cooling by the heat exchanger.
  • the heat exchanger 35 surrounds the combustion chamber 16 in a ring shape.
  • the path of the water which is supplied to the heat exchanger 35 is shown in solid lines in FIG. 1, while the path of the combustion gases is shown in dashed lines.
  • the water flows axially from the inlet 36 through the outer annular space 37 until it is deflected at the end of this outer annular space 37 on the burner side and reaches the central annular cavity 38.
  • the water flows through this in countercurrent to the cavity 37.
  • the end of the central cavity 38 facing away from the atomizing and mixing device 14 is connected via bent pipe pieces 39 to the inner annular cavity 40 which is flowed through in the opposite direction to the central cavity 38.
  • the outlet 41 for the heated water is arranged near the nozzle-side end of the central cavity 40.
  • the inner boundary wall of the inner cavity 40 is formed by the tube 42, which represents the wall of the combustion chamber 16.
  • the outer wall of the inner cavity 40 consists of the tube 43.
  • the middle cavity 38 is delimited by the tubes 44 and 45 and the outer cavity 37 by the tubes 46 and 47. All tubes 42 to 47 are arranged coaxially with one another and surround them Combustion chamber 16.
  • the collection chamber 48 adjoins the part 16b of the combustion chamber 16, through which the combustion gases enter the annular gap 49 between the tubes 43 and 44.
  • the annular gap 49 is flowed through in the opposite direction to the combustion chamber 16.
  • the fuel gases are then redirected again in order to get into the annular space 50 between the tubes 45 and 46.
  • the outlet end of the annular space 50 is located at the end of the heat exchanger 35 facing away from the mixing device 14. From there, the combustion gases enter the outlet 51, which is separated from the collecting chamber 48 by a heat-insulated wall 52, into a chimney.
  • the swirling mixture flow entering the combustion chamber 16 generates in the first part 16a, which is water-cooled through the wall 42, both a central and a peripheral heating gas recirculation, which stabilize the blue, low-emission heating oil flame.
  • the second part 16b mainly carbon monoxide CO still contained in the heating gas burns to carbon dioxide CO 2 .
  • the part 16b is protected against further cooling by the heat-insulating lining 34. After leaving the secondary combustion zone, to which the deflection space 48 also belongs, the fuel gas has largely reacted.
  • the annular spaces 49 and 50 have a relatively small radial width, so that turbulence can be generated by wall friction. Such turbulence occurs in particular when the motor 10 runs at the upper speed range and delivers a large amount of air at high heating power. Since the heat transfer of the heat exchanger is improved by a turbulent flow, the heat exchanger output adapts to a certain extent to the heating output of the burner.
  • Fig. 3 shows a variant to change the flow cross section of the mixing device for changing the swirl component.
  • the wings 23 are not rigidly attached to the end wall 22, but each wing 23 is pivotally mounted on the central plate 25 on an axis 55.
  • Pins 56 protrude from the upper plate 22, each of which projects into an elongated hole 57 of a wing 23.
  • the middle plate 25 is rotatably supported, and by rotating this plate 25, the angle of attack of the wings mounted on it can be changed in the manner shown in FIG. 3.
  • the plate 25 is rotated by a rod 58 which is connected to the periphery of the plate 25 via a joint 59.
  • the rod 58 protrudes through a tube 60 into a housing 61 which has a ventilation opening 62.
  • the housing 61 there is a bellows 63, which is sealingly connected to the end of the tube 60.
  • the pressure prevailing in the interior of the nozzle housing 15 passes through the pipe 60 into the interior of the bellows 63. The greater this pressure, the further the rod 58 is drawn into the housing 61.
  • the bellows 63 also acts as a spring, which strives to push the rod 58 out of the housing 61. Due to the rod 58 acting tangentially on the plate 25, the plate 25 is rotated as a function of the pressure prevailing in the nozzle housing 15, as a result of which the vanes 23 are pivoted about their axes 55. The greater the pressure in the nozzle housing 15, the greater the cross section of the channels 24 defined by the vanes 23, i.e. the more the tip of a wing 23 is moved away from the adjacent wing.
  • FIG. 4 also shows a swirl nozzle 53 pressed into sheet metal.
  • the heating oil pipe 21 described above can also be replaced by a spray nozzle 70 which is connected to the feed line 19.
  • the air supplied through the inlet 28 flows between fixed vanes 71 which, like the vanes 23 and 26 of the first embodiment, are inclined to impart a peripheral component to the air flowing radially inwards.
  • the wings 71 are partially covered on their upper side by a plate 72 which leaves an outer edge slot 73 through which the air can pass between the wings 71.
  • the outer edge of the annular cutting edge 29 is fastened to the inner ends of the wings 71, in fact halfway up these wings, so that the cutting edge 29 is swept by the rotating air flow both on its underside and on its upper side.
  • the wings 71 rest on the end wall 17 of the combustion chamber. This end wall also carries the electrodes 31 for igniting the flame.
  • the spray emerging from the spray nozzle 70 is sprayed onto the inside of the annular blade 29 and entrained by the rotating air flow.
  • the resulting fine oil film on the blade 29 is carried along by the two air currents at the tear-off edge of the blade and is introduced into the combustion chamber 16 as a rotating spray cone.
  • FIG. 5 is largely the same as that of FIG. 4, but there is no separate spray nozzle. Rather, the feed line 19 leads into the interior of the edge region of the blade 29. Here there is an annular cavity 64 which is connected to the inside of the blade 29 via micro-slots 75. The oil passes through the annular space 64 to the inside of the blade 29 and is entrained here by the rotating and axially moving air stream.
  • Fig. 6 The embodiment of Fig. 6 is similar to that of Fig. 4, except for the fact that there is no cutting edge.
  • the spray nozzle works as a swirl pressure nozzle with air support by the air flowing between the vanes 71.
  • the mixing and atomizing device 14 of FIG. 7 largely corresponds to that of FIG. 1.
  • the tube 21 projects through an opening in the end wall 22 and behind this there is the plate 25 with the annular conical cutting edge 29. Behind the plate 25 is the Plate 27 is arranged with the likewise annular conical cutting edge 29a, which forms an annular gap with the cutting edge 29.
  • the package consisting of the end wall 22 and the plates 25 and 27 contains tangential bores 80 which lead from the nozzle housing 15 into the swirl nozzle 14.
  • the bores 80 are located in the end wall 22 or the plate 25, so that the air flowing from these bores into the nozzle rotates along the inside of the cutting edge 29.
  • the bores 81 are located on the underside of the plate 25 or the top of the plate 27, so that the air flowing through these bores 81 flows along the outside of the cutting edge 29 in a rotating manner. Both air currents have the same direction of rotation.
  • FIG. 8 shows a gas burner / boiler unit, only the primary combustion zone 16a of the combustion chamber being shown, which is delimited by the ring 32, which forms the constriction constriction 33.
  • the burner is essentially constructed in the same way as the oil burners described above, so that the differences from the oil burners are mainly explained below.
  • the mixing device 14 consists of the swirl nozzle 53 which has inclined vanes 71 for the combustion air and an axial nozzle opening 29 behind it.
  • the inner ends of the wings 71 are delimited by the underside of the conical cover member 85.
  • Above the cover member 85 is the guide ring 86, which is designed as an inner cone and, together with the cover member 85, forms a conical passage which leads from the axial bore 88 to the outer regions of the vanes 71.
  • the gas supply line 87 the outlet of which is in the Middle of the underside of the cover member 85 is located so that the fuel gas axially enters the swirl nozzle 53, while the air enters radially and receives a tangential component through the wing 71.
  • the double displacement blower 89 consists of the air displacement pump 12 and the fuel gas displacement pump 13.
  • the displacement blower 89 is mounted on the nozzle housing 15 and supplies the combustion air via the bore 88 and the fuel gas to the mixing device 14 via the gas supply line 87.
  • the displacement pumps 12 and 13 consist of gear pumps in the present case. These pumps are shown in a section which runs in the central plane between the two pump gears, so that only the cogwheel 90 and 91 which is running and is not driven from the outside can be seen.
  • the axes of the pump gearwheels run at right angles to the longitudinal axis of the swirl nozzle 53.
  • the pump gearwheel 90 of the air displacement pump is mounted in the wall 92 and the intermediate wall 93 of the pump housing, and the pump gearwheel 91 of the gas displacement pump 13 is located in the intermediate wall 93 and the housing wall 96 stored.
  • the axes of the indirectly driven pump gears 90 and 91 run on a common line, just as the axes of the directly driven pump gears (also not shown) also run on a common line. It is also possible to produce both pump gear wheels 90, 91 from a single block, which is only supported in the walls 92 and 93 or 92 and 96. In the same way, the directly driven pump gears can consist of a common block that is only supported in two walls.
  • the air displacement pump 12 draws the combustion air from the outside via a silencer 97 and the inlet pipe 98.
  • a collecting chamber 99 is located between the displacer blower 12 and the bore 88.
  • the fuel gas is pressed out of the gas line via a filter 100 and two solenoid valves 101 into the suction chamber 102 and conveyed into the collecting chamber 103 by the displacing fan 13.
  • the gas line 87 leads from the collecting space 103 to the mixing device 14. As long as the line gas pressure is higher than the combustion chamber pressure, the gas pressure drives the displacement pump 13, which thus works as a motor, which partially relieves the electric motor driving the two displacement pumps 12 and 13.
  • check valve 104 Between the air inlet 98 and the suction chamber 102 there is a check valve 104, which can let air through from the air inlet 98 to the suction chamber 102, but which cannot let gas through in the opposite direction.
  • the check valve 104 is kept closed by the gas pressure as long as the solenoid valves 101 are open. When the gas is shut off, the check valve opens due to the suction effect of the displacement fan 13, so that air is sucked into the displacement fan 13 and at the same time residual gas is flushed out of the gas displacement fan 13 and the gas line 87 and still burns in the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

Die Erfindung betrifft eine Ölbrenner-Heizkessel-Einheit nach dem Oberbegriff des Patentanspruchs 1.The invention relates to an oil burner boiler unit according to the preamble of claim 1.

Bei einer bekannten Ölbrenner-Heizkessel-Einheit dieser Art (DE-PS 3 020 398) ist die Zerstäubungsvorrichtung als flache Schneide ausgebildet, die einen ebenen Gemischstrahl erzeugt, dessen Flamme in der Brennkammer durch Umlenkung an einer Prallplatte stabilisiert wird. Diese bekannte Einheit ist einerseits imstande, besonders kleine ÖImengen schadstoffarm zu verarbeiten und einen weiten Regelbereich der Heizleistung abzudecken, jedoch neigt sie andererseits bei zu geringer Luftpressung zur Ablagerung von Ölkoks. Ferner hat es sich als schwierig erwiesen, die Zündung der Flamme mit einem Hochspannungslichtbogen durchzuführen.In a known oil burner boiler unit of this type (DE-PS 3 020 398), the atomizing device is designed as a flat cutting edge, which generates a flat mixture jet, the flame of which is stabilized in the combustion chamber by deflection on a baffle plate. This known unit is able on the one hand to process particularly small amounts of oil with low pollutants and cover a wide control range of the heating power, but on the other hand it tends to deposit oil coke if the air pressure is too low. It has also proven difficult to ignite the flame with a high voltage arc.

Eine bekannte Brenner-Heizkessel-Einheit, von der der Oberbegriff des Patentanspruchs 1 ausgeht, ist in WO 8 504 947 beschrieben. Bei der bekannten Einrichtung ist die Brennkammer in zwei durch einen Turbulator voneinander getrennte Teile unterteilt. In dem ersten Teil der Brennkammer erzeugt ein konventioneller ÖI- oder Gasbrenner eine Flamme, wobei den Brenngasen eine gewisse Rotation erteilt werden kann. Der erste Teil der Brennkammer ist von Rauchgasrohren durchzogen, durch die hindurch das Rauchgas aus dem zweiten Teil der Brennkammer abströmt. Der zweite Teil der Brennkammer ist von einem Wärmetauscher umgeben. Dadurch, dass im zweiten Teil der Brennkammer eine Kühlung erfolgt, ist keine ausreichende Verbrennung des Kohlenmonoxids zu Kohlendioxid gewährleistet. Ausserdem kann die Heizleistung nur in einem relativ geringen Regelbereich in Abhängigkeit vom Heizbedarf des angeschlossenen Verbrauchers variiert werden.A known burner-boiler unit, from which the preamble of claim 1 is based, is described in WO 8 504 947. In the known device, the combustion chamber is divided into two parts separated by a turbulator. A conventional oil or gas burner creates a flame in the first part of the combustion chamber, whereby the combustion gases can be given a certain rotation. The first part of the combustion chamber is traversed by flue gas pipes, through which the flue gas flows out of the second part of the combustion chamber. The second part of the combustion chamber is surrounded by a heat exchanger. Because cooling takes place in the second part of the combustion chamber, sufficient combustion of the carbon monoxide to carbon dioxide is not guaranteed. In addition, the heating output can only be varied within a relatively small control range depending on the heating requirements of the connected consumer.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Ölbrenner-Heizkessel-Einheit zu schaffen, bei der die Heizleistung innerhalb eines grossen Regelbereichs veränderbar ist und die eine schadstoffarme Verbrennung ohne Entstehung von Ölkoks ermöglicht.Proceeding from this prior art, the object of the invention is to create an oil burner / boiler unit in which the heating power can be varied within a wide control range and which enables low-pollutant combustion without the formation of oil coke.

Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmalen.This object is achieved according to the invention with the features specified in the characterizing part of patent claim 1.

Bei der erfindungsgemäßen Ölbrenner-Heizkessel-Einheit wird die Verbrennungsluft mit einem verhältnismäßig hohen Druck zugeführt, und zwar mengenproportional zum Öl. Der Druck, mit dem die Luft zugeführt wird, beträgt vorzugsweise zwischen 20 und 200 mbar. Dieser hohe Druck erfordert die Abkehr von den üblicherweise verwendeten Lüfterrädem, in denen der weitaus größte Teil der Antriebgenergie verlorengeht. Eine Verdrängerpumpe lie-19rt den erforderlichen hohen Druck mit hohem Wirkungsgrad. Dieser Druck wird in der Zerstäubungsvorrichtung umgesetzt, jedoch nicht verbraucht. Die Druckenergie gelangt zu einem großen Teil mit dem Gemischstrom in die Brennkammer, um dort noch Mischarbeit zu leisten. Dadurch sinkt die Schadstoffbildung und das erforderliche Brennraumvolumen wird verringert.In the oil burner-boiler unit according to the invention, the combustion air is supplied at a relatively high pressure, namely proportionally to the oil. The pressure at which the air is supplied is preferably between 20 and 200 mbar. This high pressure means turning away from the fan wheels usually used, in which the vast majority of the drive energy is lost. A positive displacement pump lie-1 9 rt the required high pressure with high efficiency. This pressure is converted in the atomizing device, but is not consumed. A large part of the pressure energy comes into the combustion chamber with the mixture flow in order to still perform mixing work there. This reduces pollutant formation and the required combustion chamber volume is reduced.

Der in die Brennkammer eintretende drallbehaftete Gemischstrom erzeugt eine flammenstabilisierende Rezirkulation von heißen Rauchgasen ohne die Gefahr von Rückstandsablagerung und erlaubt darüber hinaus die stoßfreie Zündung der Verbrennung durch einen elektrischen Lichtbogen im zentralen oder äußeren Rückströmgebiet. Infolge der guten Hochdruckzerstäubung und Vermischung kann auf heiße Brennkammerwände im vorderen Bereich der Brennkammer verzichtet werden. Durch die Wasserkühlung des Mantels im ersten Teil der Brennkammer (Primärzone) wird die Gastemperatur gesenkt, wodurch in Verbindung mit der kurzen Verweilzeit des Gases in der hochbelasteten Primärzone eine Verminderung der Stickoxidbildung bewirkt wird. Im hinteren Teil der Brennkammer (Sekundärzone) wird durch den wärmeisolierenden Mantel die verbliebene Reaktionstemperatur aufrechterhalten, um die Verbrennung des Kohlenmonoxids CO zu Kohlendioxid CO2 zu gewährleisten.The swirling mixture flow entering the combustion chamber generates a flame-stabilizing recirculation of hot flue gases without the risk of residue deposits and also allows the combustion to be ignited by an electric arc in the central or external return flow area. As a result of the good high pressure atomization and mixing, hot combustion chamber walls in the front area of the combustion chamber can be dispensed with. The water cooling of the jacket in the first part of the combustion chamber (primary zone) lowers the gas temperature, which in conjunction with the short dwell time of the gas in the highly loaded primary zone results in a reduction in nitrogen oxide formation. In the rear part of the combustion chamber (secondary zone), the remaining reaction temperature is maintained by the heat-insulating jacket in order to ensure the combustion of the carbon monoxide CO to carbon dioxide CO 2 .

Die Brennstoffdruckquelle kann bei Verwendung von Gas als Brennstoff aus einer Druckgasleitung bestehen. Wird Flüssigbrennstoff benutzt, dann enthält die Brennstoffquelle eine Förderpumpe, vorzugsweise eine Verdrängerpumpe, die synchron mit einer in der Druckluftquelle enthaltenen Verdrängerpumpe angetrieben ist. Zwischen beiden Teilen der Brennkammer kann eine ringförmige Einschnürung vorgesehen sein, die die Rezirkulation in der Primärzone und die Durchmischung in der Sekundärzone unterstützt.The fuel pressure source can consist of a compressed gas line when using gas as fuel. If liquid fuel is used, the fuel source contains a feed pump, preferably a positive displacement pump, which is driven synchronously with a positive displacement pump contained in the compressed air source. An annular constriction can be provided between the two parts of the combustion chamber, which supports recirculation in the primary zone and mixing in the secondary zone.

Durch die Verwendung einer Dralldüse in der Mischvorrichtung wird eine rotationssymmetrische Luftstromzerstäubung erreicht und ein drallbehafteter Gemischstrom erzeugt. Dies hat bei Öl als Brennstoff den Vorteil einer feinen Zerstäubung, einer guten Vermischung und einer relativ homogenen Brennstoffverteilung. Durch die Drallstabilisierung der Flamme entfällt die Verwendung von Prallplatten.By using a swirl nozzle in the mixing device, rotationally symmetrical airflow atomization is achieved and a swirled mixture flow is generated. With oil as fuel, this has the advantage of fine atomization, good mixing and a relatively homogeneous fuel distribution. Due to the swirl stabilization of the flame, the use of baffle plates is no longer necessary.

Gemäß einer bevorzugten Weiterbildung der Erfindung ist vorgesehen, daß der Strömungsweg der Rauchgase im Wärmetauscher so eng ist, daß mindestens im oberen Drehzahlbereich des Antriebs eine turbulente Strömung in diesem Strömungsweg auftritt. Bei einem turbulent durchströmten Hochleistungswärmetauscher wächst die Wärmeübergangszahl mit zunehmender Durchströmung erheblich stärker als bei laminar durchströmten Wärmetauschern, d.h. der Wärmetauscher benötigt bei steigender Heizleistung eine geringere Vergrößerung seiner Wärmetauschflächen. Bei einem festen Wärmetauscher steigt die Gasaustrittstemperatur bei hoher Heizleistung weniger an. Durch Verengung des Strömungswegs der Rauchgase paßt sich die Wärmetauscherleistung der Leistung des Brenners in einem weiten Bereich an, so daß es nicht erforderlich ist, die Wärmeaustauschflächen zu vergrößern. Im gesamten Leistungsbereich des Brenners kann bei geringen Veränderungen der Abgastemperatur mit festem Wärmetauscher gearbeitet werden.According to a preferred development of the invention, it is provided that the flow path of the flue gases in the heat exchanger is so narrow that a turbulent flow occurs in this flow path at least in the upper speed range of the drive. In the case of a turbulent high-performance heat exchanger, the heat transfer coefficient increases significantly more with increasing flow than with laminar-flow heat exchangers, i.e. the heat exchanger requires a smaller increase in its heat exchange surfaces with increasing heating capacity. With a fixed heat exchanger, the gas outlet temperature rises less with high heating output. By narrowing the flow path of the flue gases, the heat exchanger performance matches the performance of the burner in a wide range, so that it is not necessary to enlarge the heat exchange surfaces. A fixed heat exchanger can be used in the entire output range of the burner with minor changes in the flue gas temperature.

Bis zu einem Regelbereich der Heizleistung von etwa 1:2,5 kann mit fester Luftstromdüse in der Mischvorrichtung gearbeitet werden. Für wesentlich größere Regelbereiche, die das System zuläßt, ist es zweckmäßig, den Querschnitt der Dralldüse verändern zu können, um die erforderliche hohe Luftgeschwindigkeit zu erhalten, ohne einen zu hohen Luftdruck erzeugen zu müssen. Gemäß einer Weiterbildung der Erfindung ist vorgesehen, daß der Querschnitt der Dralldüse in Abhängigkeit von der Heizleistung verändert wird, und zwar vorzugsweise in Abhängigkeit von dem Druck der Druckluftquelle. Je größer dieser Luftdruck ist, umso größer wird der Strömungsquerschnitt an der Dralldüse gemacht. Auf diese Weise wird die Dralldüse auf die jeweils benötigte Heizleistung abgestimmt. Mit einer derartig variierbaren Dralldüse kann der Regelbereich der Heizleistung bis zu etwa 1:10 vergrößert werden.Up to a control range of heating power of about 1: 2.5 can be with a fixed airflow nozzle in the Mixing device to be worked. For much larger control ranges that the system allows, it is advisable to be able to change the cross section of the swirl nozzle in order to obtain the required high air speed without having to generate excessive air pressure. According to a development of the invention, it is provided that the cross section of the swirl nozzle is changed as a function of the heating power, and preferably as a function of the pressure of the compressed air source. The greater this air pressure, the larger the flow cross section is made at the swirl nozzle. In this way, the swirl nozzle is matched to the heating power required in each case. With such a variable swirl nozzle, the control range of the heating output can be increased up to about 1:10.

Die Erfindung eignet sich auch für eine Brenner-Heizkessel-Einheit mit Gasbetrieb. Während beim Ölbetrieb die drallerzeugende Mischvorrichtung sowohl zur Zerstäubung des Heizöls als auch zur Gemischbildung und zur Flammenstabilisierung dient, entfällt bei einem Gasbrenner die Zerstäubungswirkung. Die Vorteile der Schadstoffreduktion und der drehzahlabhängigen Brennstoff-Luft-Verbundregelung werden beibehalten. Bei einem Gasbrenner wird man zweckmäßigerweise die beiden Verbrennerpumpen zu einer einzigen Baueinheit zusammenfassen, wobei das Gehäuse dieser Baueinheit durch eine Zwischenwand unterteilt ist, welche von einer die Läufer der beiden Verdrängerpumpen verbindenden Zwischenwelle durchdrungen wird. Das Verbund-Verdrängergebläse bedeutet gegenüber den bei Gasgebläsebrennern gebräuchlichen Radiallüftern einen Mehraufwand, der aber schon bei einem nicht leistungsgeregelten einstufigen Brenner durch verschiedene Einsparungen mehr als aufgewogen wird. Die volumetrische Gaszumessung hängt nur geringfügig vom Gasvordruck im Gasnetz ab, so daß kein Druckregelgerät benötigt wird. Auch ein Druckwächter ist nicht erforderlich, da die Regelung nur versagt, wenn das Verbundgebläse ausfällt. In einem solchen Fall schalten Sicherheitseinrichtungen die Gaszufuhr schon wegen des Ausbleibens der Verbrennungsluft oder der Stromversorgung ab. Besonders vorteilhaft ist, daß eine Drehzahlregelung nur für den Antriebsmotor des Verbund-Verdrängergebläses erforderlich ist und daß aufwendige Mischvorrichtungen mit Volumenregelung nicht erforderlich sind.The invention is also suitable for a burner-boiler unit with gas operation. While the swirl-producing mixing device is used both for atomizing the heating oil as well as for mixture formation and flame stabilization during oil operation, the atomizing effect does not apply to a gas burner. The advantages of pollutant reduction and the speed-dependent fuel-air compound control are retained. In the case of a gas burner, the two combustion pumps are expediently combined to form a single structural unit, the housing of this structural unit being divided by an intermediate wall which is penetrated by an intermediate shaft connecting the rotors of the two positive displacement pumps. The composite positive displacement fan means more work than the radial fans commonly used with gas fan burners, but this is more than offset by various savings even with a non-power-controlled single-stage burner. The volumetric gas metering depends only slightly on the gas pressure in the gas network, so that no pressure regulator is required. A pressure switch is also not required, as the control only fails if the compound fan fails. In such a case, safety devices switch off the gas supply simply because there is no combustion air or the power supply. It is particularly advantageous that speed control is only required for the drive motor of the composite displacement fan and that complex mixing devices with volume control are not required.

Bei den üblichen Gasgebläsebrennern bleiben bei jedem Abschalten die Armaturen und Leitungen zwischen dem Magnetventil und der Mischvorrichtung mit Restgas gefüllt, das nachfolgend in den Brennraum einsickert. Bei der erfindungsgemäßen Vorrichtung kann das Einsickern von Restgas in den Brennraum vermieden werden, indem ein kleines Rückschlagventil zwischen die Einlässe von Luftgebläse und Gasgebläse gelegt wird. Sobald die Gaszufuhr abgesperrt wird, saugt das Gasgebläse über das Rückschlagventil Luft an, um das Restgas aus den Leitungen zu spülen. Auch bei Ausfall des Stromversorgungsnetzes wird durch den Nachlauf des Antriebsmotors noch das Ausspülen von Gas aus der Gasleitung bewirkt.With conventional gas-blown burners, the fittings and lines between the solenoid valve and the mixing device remain filled with residual gas each time it is switched off, which then seeps into the combustion chamber. In the device according to the invention, the infiltration of residual gas into the combustion chamber can be avoided by placing a small check valve between the inlets of the air blower and gas blower. As soon as the gas supply is shut off, the gas blower sucks in air via the check valve in order to purge the residual gas from the lines. Even if the power supply network fails, the after-running of the drive motor causes the gas to be flushed out of the gas line.

Im folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.Exemplary embodiments of the invention are explained in more detail below with reference to the drawings.

Es zeigen:

  • Fig. 1 einen Längsschnitt durch eine Brenner-Heizkessel-Einheit mit regelbarer Heizleistung,
  • Fig. 2 einen Schnitt entlang der Linie 11-11 von Fig.1,
  • Fig. 3 einen Schnitt ähnlich demjenigen der Fig. 2 bei einer Ausführungsform, bei der der Strömungsquerschnitt der Dralldüse in Abhängigkeit vom Luftdruck verändert wird,
  • Fig. 4 einen Längsschnitt durch einen Drall-Luftstromzerstäuber mit zentraler Ölauftragung aus einer Druckdüse,
  • Fig. 5 einen Längsschnitt durch einen anderen Drall-Luftstromzerstäuber mit ringförmiger konischer Zerstäubungsschneide,
  • Fig. 6 einen Längsschnitt durch einen weiteren Drall-Luftstromerzeuger mit Druckdüse, jedoch ohne Zerstäubungsschneide,
  • Fig. 7 einen Längsschnitt durch eine andere Ausführungsform des Drall-Luftstromerzeugers mit Druckdüse und
  • Fig. 8 einen Längsschnitt durch eine Gasbrenner-Heizkessel-Einheit.
Show it:
  • 1 shows a longitudinal section through a burner-boiler unit with adjustable heating output,
  • 2 shows a section along the line 11-11 of FIG. 1,
  • 3 shows a section similar to that of FIG. 2 in an embodiment in which the flow cross section of the swirl nozzle is changed as a function of the air pressure,
  • 4 shows a longitudinal section through a swirl airflow atomizer with central oil application from a pressure nozzle,
  • 5 shows a longitudinal section through another swirl airflow atomizer with an annular conical atomizing cutting edge,
  • 6 shows a longitudinal section through a further swirl air flow generator with a pressure nozzle, but without an atomizing cutting edge,
  • Fig. 7 shows a longitudinal section through another embodiment of the swirl air flow generator with pressure nozzle and
  • Fig. 8 is a longitudinal section through a gas burner boiler unit.

Die in Fig. 1 dargestellte regelbare Brenner-Heizkessel-Einheit weist einen Elektromotor 10 auf, dessen Drehzahl von einem Drehzahl-Steuergerät 11 gesteuert wird. Die Ausgangswelle des Elektromotors 10 treibt eine Druckluft-Verdrängerpumpe 12 und eine Heizöl-Verdrängerpumpe 13 an. Die beiden Pumpen 12 und 13 sind Verdrängerpumpen, d.h. ihre Fördermenge ist der Antriebsgeschwindigkeit proportional. Hierzu eignen sich beispielsweise Roots-Pumpen, Zahnradpumpen oder Kolbenpumpen. Die Druckleitungen der beiden Verdrängerpumpen 12 und 13 führen zu der als Zerstäubungsvorrichtung ausgebildeten Mischvorrichtung 14.The controllable burner-boiler unit shown in FIG. 1 has an electric motor 10, the speed of which is controlled by a speed control unit 11. The output shaft of the electric motor 10 drives a compressed air displacement pump 12 and a heating oil displacement pump 13. The two pumps 12 and 13 are positive displacement pumps, i.e. their delivery rate is proportional to the drive speed. Roots pumps, gear pumps or piston pumps are suitable for this. The pressure lines of the two displacement pumps 12 and 13 lead to the mixing device 14 designed as an atomizing device.

Die Mischvorrichtung 14 ist in dem Düsengehäuse 15 untergebracht, das gleichzeitig den stirnseitigen Abschluß der Brennkammer 16 bildet. Das rohrförmige Düsengehäuse 15 weist brennkammerseitig eine die Brennkammer 16 verschließende Deckelwand 17 auf und ist am entgegengesetzten (äußeren) Ende mit einem Deckel 18 abdichtend verschlossen. Durch den Deckel 18 ist eine als Kapillarleitung ausgebildete Ölzufuhrleitung 19 abdichtend hindurchgeführt. Die Ölzufuhrleitung 19 führt durch den im Innern des Düsengehäuses 15 angeordneten Düsenkörper 20 hindurch und tritt an dessen Stirnseite aus. Um das Austrittsrohr 21 herum sind an der flanschartigen Stirnwand 22 des Düsenkörpers zahlreiche drallerzeugende luftleitende Elemente in Form von Flügeln 23 angeordnet. Diese Flügel 23 sind gemäß Fig. 2 in Umfangsrichtung schräggestellt und sie verjüngen sich zum inneren Ende hin. Die Flügel 23 begrenzen Kanäle 24, durch die die radial einströmende Luft eine Umfangskomponente erhält. Jeder der Kanäle 24 verringert sich im Querschnitt zu seinem inneren Ende hin, so daß in jedem Kanal 24 die Luft zunehmend beschleunigt wird.The mixing device 14 is accommodated in the nozzle housing 15, which at the same time forms the end of the combustion chamber 16. The tubular nozzle housing 15 has a cover wall 17 closing the combustion chamber 16 on the combustion chamber side and is sealed at the opposite (outer) end with a cover 18. An oil supply line 19 designed as a capillary line is sealingly passed through the cover 18. The oil supply line 19 leads through the nozzle body 20 arranged in the interior of the nozzle housing 15 and exits at its end face. Around the outlet pipe 21, numerous swirl-generating air-conducting elements in the form of vanes 23 are arranged on the flange-like end wall 22 of the nozzle body. These wings 23 are inclined in the circumferential direction according to FIG. 2 and they taper towards the inner end. The vanes 23 delimit channels 24 through which the radially inflowing air receives a peripheral component. Each of the channels 24 is reduced in cross-section to its inner end, so that the air in each channel 24 increasingly be is accelerated.

Die Flügel 23 sind zwischen der Stirnwand 22 und einer parallel zu dieser Stirnwand verlaufenden Platte 25 angeordnet. Die den Flügeln 23 abgewandte Stirnwand der Platte 25 bildet die Begrenzungswand einer weiteren Dralldüse mit Flügeln 26, die an der Stirnseite einer weiteren Platte 27 angebracht sind. Die Platte 27 verläuft parallel zur Platte 25 und ihre Flügel 26 sind in gleicher Weise ausgebildet und angeordnet wie die Flügel 23 der Platte 22.The wings 23 are arranged between the end wall 22 and a plate 25 running parallel to this end wall. The end wall of the plate 25 facing away from the vanes 23 forms the boundary wall of a further swirl nozzle with vanes 26 which are attached to the end side of a further plate 27. The plate 27 runs parallel to the plate 25 and its wings 26 are designed and arranged in the same way as the wings 23 of the plate 22.

Die durch den Einlaß 28 seitlich in das Düsengehäuse 15 einströmende Luft verteilt sich im Innern des Düsengehäuses und strömt radial in die Kanäle 24 zwischen den Flügeln 23 sowie in die entsprechenden Kanäle zwischen den Flügeln 26 ein. Durch die Flügel 23 und 26 erhält die Luft einen Drall, d.h. eine kreisende Bewegung.The air flowing laterally into the nozzle housing 15 through the inlet 28 is distributed in the interior of the nozzle housing and flows radially into the channels 24 between the vanes 23 and into the corresponding channels between the vanes 26. The wings 23 and 26 give the air a twist, i.e. a circular motion.

Die Platte 25 ist ringförmig ausgebildet und ihr innerer Rand hat die Form einer in Strömungsrichtung axial abstehenden ringförmigen, sich zum Ende hin konisch verjüngenden Schneide 29. Auch die innere Kante der ringförmigen Platte 27 ist in Strömungsrichtung axial umgebogen und sie bildet einen konischen Ring 30, der die Schneide 29 mit radialem Abstand umgibt.The plate 25 has an annular shape and its inner edge has the shape of an annular cutting edge 29 projecting axially in the flow direction and tapering towards the end. The inner edge of the annular plate 27 is also bent axially in the flow direction and forms a conical ring 30. which surrounds the cutting edge 29 at a radial distance.

Das durch das Rohr 21 austretende Heizöl wird von dem rotierenden Luftstrom erfaßt und auf die Innenseite der Schneide 29 aufgesprüht. Die Schneide 29 wird zu beiden Seiten von rotierenden und sich axial bewegenden Luftströmungen umströmt, die den Heizölfilm von der kreisförmigen scharfen Spitze der Schneide 29 abreißen und es fein und gleichmäßig verteilen. Die Heizöltröpfchen vermischen sich dabei innig mit der Verbrennungsluft und treten zusammen mit dieser in die rohrförmige Brennkammer 16 ein. Infolge der Drallinjektion unter hohem Druck erstehen im vorderen Teil 16a der Brennkammer 16 ringförmige Strömungswalzen, in denen ein Teil des Gemischstromes zurückgeführt wird und die um die Längsachse herum rotieren. Zum Zünden des Gemisches ist im Teil 16a der Brennkammer eine Elektrode 31 angeordnet. Eine weitere Elektrode 31' dient zur Flammenüberwachung. Nach dem Zünden entsteht im Teil 16a der Brennkammer 16 eine stabile blaue Flamme, die den Teil 16a im wesentlichen ganz ausfüllt und sich in den rückwärtigen Teil 16b hinein fortsetzt.The heating oil emerging through the tube 21 is caught by the rotating air stream and sprayed onto the inside of the cutting edge 29. The cutting edge 29 is surrounded on both sides by rotating and axially moving air currents, which tear off the heating oil film from the circular sharp tip of the cutting edge 29 and distribute it finely and evenly. The fuel oil droplets mix intimately with the combustion air and together with this enter the tubular combustion chamber 16. As a result of the swirl injection under high pressure, ring-shaped flow rollers arise in the front part 16a of the combustion chamber 16, in which part of the mixture flow is returned and which rotate around the longitudinal axis. To ignite the mixture, an electrode 31 is arranged in part 16a of the combustion chamber. Another electrode 31 'is used for flame monitoring. After ignition, a stable blue flame arises in part 16a of the combustion chamber 16, which essentially fills the part 16a entirely and continues into the rear part 16b.

Der Teil 16a bildet die Primärverbrennungszone, die gegenüber dem Teil 16b durch einen Ring 32, welcher eine querschnittsverengende Einschnürung 33 bildet, getrennt ist. Die Umfangswand eines Teiles 16b, der die sekundäre Verbrennungszone bildet, ist mit einer wärmeisolierenden Auskleidung 34 versehen und dadurch gegen Kühlung durch den Wärmetauscher geschützt.The part 16a forms the primary combustion zone, which is separated from the part 16b by a ring 32, which forms a constricting constriction 33. The peripheral wall of a part 16b, which forms the secondary combustion zone, is provided with a heat-insulating lining 34 and thereby protected against cooling by the heat exchanger.

Der Wärmetauscher 35 umgibt die Brennkammer 16 ringförmig. Der Weg des Wassers, das dem Wärmetauscher 35 zugeführt wird, ist in Fig. 1.in durchgezogenen Linien dargestellt, während der Weg der Verbrennungsgase gestrichelt dargestellt ist.The heat exchanger 35 surrounds the combustion chamber 16 in a ring shape. The path of the water which is supplied to the heat exchanger 35 is shown in solid lines in FIG. 1, while the path of the combustion gases is shown in dashed lines.

Das Wasser strömt von Einlaß 36 axial durch den äußeren Ringraum 37, bis es am brennerseitigen Ende dieses äußeren Ringraums 37 umgelenkt wird und in den mittleren ringförmigen Hohlraum 38 gelangt. Diesen durchströmt das Wasser im Gegenstrom zum Hohlraum 37. Das der Zerstäubungs- und Mischvorrichtung 14 abgewandte Ende des mittleren Hohlraums 38 ist über gebogene Rohrstücke 39 mit dem inneren ringförmigen Hohlraum 40 verbunden, der in Gegenrichtung zum mittleren Hohlraum 38 durchströmt wird. In der Nähe des düsenseitigen Endes des mittleren Hohlraums 40 ist der Auslaß 41 für das erwärmte Wasser angeordnet.The water flows axially from the inlet 36 through the outer annular space 37 until it is deflected at the end of this outer annular space 37 on the burner side and reaches the central annular cavity 38. The water flows through this in countercurrent to the cavity 37. The end of the central cavity 38 facing away from the atomizing and mixing device 14 is connected via bent pipe pieces 39 to the inner annular cavity 40 which is flowed through in the opposite direction to the central cavity 38. The outlet 41 for the heated water is arranged near the nozzle-side end of the central cavity 40.

Die innere Begrenzungswand des inneren Hohlraums 40 wird von dem Rohr 42 gebildet, das die Wand der Brennkammer 16 darstellt. Die äußere Wand des inneren Hohlraums 40 besteht aus dem Rohr 43. Der mittlere Hohlraum 38 wird von den Rohren 44 und 45 begrenzt und der äußere Hohlraum 37 von den Rohren 46 und 47. Alle Rohre 42 bis 47 sind koaxial zueinander angeordnet und sie umgeben die Brennkammer 16.The inner boundary wall of the inner cavity 40 is formed by the tube 42, which represents the wall of the combustion chamber 16. The outer wall of the inner cavity 40 consists of the tube 43. The middle cavity 38 is delimited by the tubes 44 and 45 and the outer cavity 37 by the tubes 46 and 47. All tubes 42 to 47 are arranged coaxially with one another and surround them Combustion chamber 16.

An den Teil 16b der Brennkammer 16 schließt sich der Sammelraum 48 an, durch den die Brenngase in den Ringspalt 49 zwischen den Rohren 43 und 44 gelangen. Der Ringspalt 49 wird in Gegenrichtung zur Brennkammer 16 durchströmt. Anschließend werden die Brenngase noch einmal umgelenkt, um in den Ringraum 50 zwischen den Rohren 45 und 46 zu gelangen. Das Austrittsende des Ringraums 50 befindet sich an dem der Mischvorrichtung 14 abgewandten Ende des Wärmetauschers 35. Von dort gelangen die Verbrennungsgase in den Auslaß 51, der von der Sammelkammer 48 durch eine wärmeisolierte Wand 52 getrennt ist, in einen Kamin.The collection chamber 48 adjoins the part 16b of the combustion chamber 16, through which the combustion gases enter the annular gap 49 between the tubes 43 and 44. The annular gap 49 is flowed through in the opposite direction to the combustion chamber 16. The fuel gases are then redirected again in order to get into the annular space 50 between the tubes 45 and 46. The outlet end of the annular space 50 is located at the end of the heat exchanger 35 facing away from the mixing device 14. From there, the combustion gases enter the outlet 51, which is separated from the collecting chamber 48 by a heat-insulated wall 52, into a chimney.

Der verdrallt in die Brennkammer 16 eintretende Gemischstrom erzeugt in dem ersten Teil 16a, der durch die Wand 42 hindurch wassergekühlt ist, sowohl eine zentrale als auch eine periphere Heizgasrezirkulation, die die blaue, schadstoffarme Heiz- ölflamme stabilisieren. In dem zweiten Teil 16b verbrennt hauptsächlich noch im Heizgas enthaltenes Kohlenmonoxid CO zu Kohlendioxid C02 nach. Der Teil 16b ist durch die wärmeisolierende Auskleidung 34 gegen weitere Kühlung geschützt. Nach Verlassen der sekundären Verbrennungszone, zu der auch der Umlenkraum 48 gehört, ist das Brenngas weitgehend ausreagiert.The swirling mixture flow entering the combustion chamber 16 generates in the first part 16a, which is water-cooled through the wall 42, both a central and a peripheral heating gas recirculation, which stabilize the blue, low-emission heating oil flame. In the second part 16b mainly carbon monoxide CO still contained in the heating gas burns to carbon dioxide CO 2 . The part 16b is protected against further cooling by the heat-insulating lining 34. After leaving the secondary combustion zone, to which the deflection space 48 also belongs, the fuel gas has largely reacted.

Die Ringräume 49 und 50 haben eine relativ geringe radiale Weite, so daß durch Wandreibung Turbulenzen erzeugt werden können. Solche Turbulenzen treten insbesondere dann auf, wenn bei hoher Heizleistung der Motor 10 mit dem oberen Drehzahlbereich läuft und eine große Luftmenge fördert. Da durch eine turbulente Strömung der Wärmeübergang des Wärmetauschers verbessert wird, paßt sich die Wärmetauscherleistung in einem gewissen Maße der Heizleistung des Brenners an.The annular spaces 49 and 50 have a relatively small radial width, so that turbulence can be generated by wall friction. Such turbulence occurs in particular when the motor 10 runs at the upper speed range and delivers a large amount of air at high heating power. Since the heat transfer of the heat exchanger is improved by a turbulent flow, the heat exchanger output adapts to a certain extent to the heating output of the burner.

Durch die oben beschriebene Anordnung der Flügel 23 in Verbindung mit der ringförmigen Klinge 29 wird eine Dralldüse 53 gebildet, die dem Gemischstrom eine umfangsmäßige und eine axiale Bewegungskomponente erteilt.The above-described arrangement of the vanes 23 in connection with the annular blade 29 forms a swirl nozzle 53 which gives the mixture flow a circumferential and an axial movement component.

Wenn ein größer Regelbereich der Heizleistung gefordert wird, kann es zweckmäßig sein, den Strömungsquerschnitt der Dralldüse 53 zu verändern, damit der durch die Dralldüse verursachte Druckverlust bei hohem Durchsatz nicht zu groß wird bzw. damit die Zerstäubung bei kleinem Durchsatz nicht zu schlecht wird.If a larger control range of the heating power is required, it can be expedient to change the flow cross section of the swirl nozzle 53 so that the pressure loss caused by the swirl nozzle does not become too great at high throughput or so that the atomization does not become too bad at low throughput.

Fig. 3 zeigt eine Variante, um den Strömungsquerschnitt der Mischvorrichtung zur Änderung der Drallkomponente zu verändern. Zu diesem Zweck sind die Flügel 23 an der Stirnwand 22 nicht starr angebracht, sondern jeder Flügel 23 ist an einer Achse 55 schwenkbar auf der mittleren Platte 25 gelagert. Von der oberen Platte 22 stehen Stifte 56 ab, von denen jeder in ein Langloch 57 eines Flügels 23 hineinragt. Die mittlere Platte 25 ist drehbar gelagert, und durch Drehung dieser Platte 25 können die Anstellwinkel der an ihr gelagerten Flügel in der in Fig. 3 dargestellten Weise verändert werden. Die Drehung der Platte 25 erfolgt durch eine Stange 58, die über ein Gelenk 59 mit dem Umfang der Platte 25 verbunden ist. Die Stange 58 ragt durch ein Rohr 60 hindurch in ein Gehäuse 61 hinein, das eine Belüftungsöffnung 62 aufweist. Im Gehäuse 61 befindet sich ein Faltenbalg 63, der abdichtend mit dem Ende des Rohres 60 verbunden ist. Durch das Rohr 60 hindurch gelangt der im Innern des Düsengehäuses 15 herrschende Druck in das Innere des Faltenbalges 63. Je größer dieser Druck ist, um so weiter wird die Stange 58 in das Gehäuse 61 hineingezogen. Der Faltenbalg 63 wirkt zugleich als Feder, die bestrebt ist, die Stange 58 aus dem Gehäuse 61 herauszudrücken. Durch die tangential an der Platte 25 angreifende Stange 58 wird die Platte 25 in Abhängigkeit von dem im Düsengehäuse 15 herrschenden Druck gedreht, wodurch die Flügel 23 um ihre Achsen 55 herum verschwenkt werden. Je größer der Druck im Düsengehäuse 15 ist, um so größer wird der Querschnitt der von den Flügeln 23 begrenzten Kanälen 24 gemacht, d.h. um so mehr wird die Spitze eines Flügels 23 von dem benachbarten Flügel wegbewegt.Fig. 3 shows a variant to change the flow cross section of the mixing device for changing the swirl component. For this purpose, the wings 23 are not rigidly attached to the end wall 22, but each wing 23 is pivotally mounted on the central plate 25 on an axis 55. Pins 56 protrude from the upper plate 22, each of which projects into an elongated hole 57 of a wing 23. The middle plate 25 is rotatably supported, and by rotating this plate 25, the angle of attack of the wings mounted on it can be changed in the manner shown in FIG. 3. The plate 25 is rotated by a rod 58 which is connected to the periphery of the plate 25 via a joint 59. The rod 58 protrudes through a tube 60 into a housing 61 which has a ventilation opening 62. In the housing 61 there is a bellows 63, which is sealingly connected to the end of the tube 60. The pressure prevailing in the interior of the nozzle housing 15 passes through the pipe 60 into the interior of the bellows 63. The greater this pressure, the further the rod 58 is drawn into the housing 61. The bellows 63 also acts as a spring, which strives to push the rod 58 out of the housing 61. Due to the rod 58 acting tangentially on the plate 25, the plate 25 is rotated as a function of the pressure prevailing in the nozzle housing 15, as a result of which the vanes 23 are pivoted about their axes 55. The greater the pressure in the nozzle housing 15, the greater the cross section of the channels 24 defined by the vanes 23, i.e. the more the tip of a wing 23 is moved away from the adjacent wing.

Anhand von Fig. 3 wurde die Möglichkeit erläutert, den drallerzeugenden Querschnitt der Dralldüse 53 zu verändern. Alternativ oder zusätzlich besteht die Möglichkeit, die axiale Komponente der Dralldüse 53 zu verändern, z.B. durch einen druckabhängig in der Düsenöffnung bewegbaren Kegel.The possibility of changing the swirl-generating cross section of the swirl nozzle 53 was explained with reference to FIG. 3. Alternatively or additionally, there is the possibility of changing the axial component of the swirl nozzle 53, e.g. through a cone that can be moved in the nozzle opening depending on the pressure.

Fig. 4 zeigt auch eine in Blech gepreßte Dralldüse 53. In dem Drallraum 80 kann das zuvor beschriebene Heizölrohr 21 auch durch eine Sprühdüse 70 ersetzt werden, die an die Zufuhrleitung 19 angeschlossen ist. Die durch den Einlaß 28 zugeführte Luft strömt zwischen fest angebrachte Flügel 71, die, ebenso wie die Flügel 23 und 26 des ersten Ausführungsbeispiels, schräggestellt sind, um der radial von außen nach innen strömenden Luft eine Umfangskomponente zu erteilen. Die Flügel 71 sind an ihrer Oberseite teilweise von einer Platte 72 bedeckt, die außen einen Randschlitz 73 freiläßt, durch den die Luft zwischen die Flügel 71 gelangen kann. Der äußere Rand der ringförmigen Schneide 29 ist an den inneren Enden der Flügel 71 befestigt, und zwar in halber Höhe dieser Flügel, so daß die Schneide 29 sowohl an ihrer Unterseite als auch an ihrer Oberseite von dem rotierenden Luftstrom gestrichen wird. Die Flügel 71 ruhen auf der Stirnwand 17 der Brennkammer. Diese Stirnwand trägt außerdem die Elektroden 31 zum Zünden der Flamme.4 also shows a swirl nozzle 53 pressed into sheet metal. In the swirl chamber 80, the heating oil pipe 21 described above can also be replaced by a spray nozzle 70 which is connected to the feed line 19. The air supplied through the inlet 28 flows between fixed vanes 71 which, like the vanes 23 and 26 of the first embodiment, are inclined to impart a peripheral component to the air flowing radially inwards. The wings 71 are partially covered on their upper side by a plate 72 which leaves an outer edge slot 73 through which the air can pass between the wings 71. The outer edge of the annular cutting edge 29 is fastened to the inner ends of the wings 71, in fact halfway up these wings, so that the cutting edge 29 is swept by the rotating air flow both on its underside and on its upper side. The wings 71 rest on the end wall 17 of the combustion chamber. This end wall also carries the electrodes 31 for igniting the flame.

Der aus der Sprühdüse 70 austretende Sprühnebei wird auf die Innenseite der ringförmigen Klinge 29 gesprüht und von dem rotierenden Luftstrom mitgerissen. Der so entstehende feine Ölfilm auf der Klinge 29 wird von den beiden Luftströmungen an der Abreißkante der Klinge mitgenommen und als rotierender Sprühkegel in den Brennraum 16 eingeführt.The spray emerging from the spray nozzle 70 is sprayed onto the inside of the annular blade 29 and entrained by the rotating air flow. The resulting fine oil film on the blade 29 is carried along by the two air currents at the tear-off edge of the blade and is introduced into the combustion chamber 16 as a rotating spray cone.

Das Ausführungsbeispiel der Fig. 5 gleicht weitgehend demjenigen der Fig. 4, jedoch ist keine separate Sprühdüse vorhanden. Die Zufuhrleitung 19 führt vielmehr in das Innere des Randbereichs der Klinge 29. Hier befindet sich ein ringförmiger Hohlraum 64, der über Mikroschlitze 75 mit der Innenseite der Klinge 29 in Verbindung steht. Das Öl gelangt durch den Ringraum 64 auf die Innenseite der Klinge 29 und wird hier von dem rotierenden und sich axial bewegenden Luftstrom mitgerissen.The embodiment of FIG. 5 is largely the same as that of FIG. 4, but there is no separate spray nozzle. Rather, the feed line 19 leads into the interior of the edge region of the blade 29. Here there is an annular cavity 64 which is connected to the inside of the blade 29 via micro-slots 75. The oil passes through the annular space 64 to the inside of the blade 29 and is entrained here by the rotating and axially moving air stream.

Auch das Ausführungsbeispiel von Fig. 6 gleicht demjenigen von Fig. 4, mit Ausnahme der Tatsache, daß keine Schneide vorhanden ist. Die Sprühdüse arbeitet als Dralldruckdüse mit Luftunterstützung durch die zwischen den Flügeln 71 entlangströmende Luft.The embodiment of Fig. 6 is similar to that of Fig. 4, except for the fact that there is no cutting edge. The spray nozzle works as a swirl pressure nozzle with air support by the air flowing between the vanes 71.

Die Misch- und Zerstäubungsvorrichtung 14 von Fig. 7 entspricht weitgehend derjenigen von Fig. 1. Das Rohr 21 ragt durch eine Öffnung der Stirnwand 22 hindurch und hinter dieser befindet sich die Platte 25 mit der ringförmigen konischen Schneide 29. Hinter der Platte 25 ist die Platte 27 mit der ebenfalls ringförmigen konischen Schneide 29a angeordnet, welche mit der Schneide 29 einen Ringspalt bildet. Das Packet aus der Stirnwand 22 und den Platten 25 und 27 enthält tangentiale Bohrungen 80, die vom Düsengehäuse 15 in die Dralldüse 14 hineinführen. Die Bohrungen 80 befinden sich in der Stirnwand 22 bzw. der Platte 25, so daß die aus diesen Bohrungen in die Düse strömende Luft an der Innenseite der Schneide 29 entlang rotiert. Die Bohrungen 81 befinden sich an der Unterseite der Platte 25 bzw. der Oberseite der Platte 27, so daß die durch diese Bohrungen 81 einströmende Luft rotierend an der Außenseite der Schneide 29 entlangströmt. Beide Luftströmungen haben die gleiche Drehrichtung.The mixing and atomizing device 14 of FIG. 7 largely corresponds to that of FIG. 1. The tube 21 projects through an opening in the end wall 22 and behind this there is the plate 25 with the annular conical cutting edge 29. Behind the plate 25 is the Plate 27 is arranged with the likewise annular conical cutting edge 29a, which forms an annular gap with the cutting edge 29. The package consisting of the end wall 22 and the plates 25 and 27 contains tangential bores 80 which lead from the nozzle housing 15 into the swirl nozzle 14. The bores 80 are located in the end wall 22 or the plate 25, so that the air flowing from these bores into the nozzle rotates along the inside of the cutting edge 29. The bores 81 are located on the underside of the plate 25 or the top of the plate 27, so that the air flowing through these bores 81 flows along the outside of the cutting edge 29 in a rotating manner. Both air currents have the same direction of rotation.

Fig. 8 zeigt eine Gasbrenner-Heizkessel-Einheit, wobei von der Brennkammer nur die Primärverbrennungszone 16a dargestellt ist, welche durch den Ring 32, der die querschnittsverengende Einschnürung 33 bildet, begrenzt ist. Der Brenner ist im wesentlichen ebenso ausgebildet wie die zuvor beschriebenen Ölbrenner, so daß im folgenden hauptsächlich die Unterschiede gegenüber den Ölbrennern erläutert werden.8 shows a gas burner / boiler unit, only the primary combustion zone 16a of the combustion chamber being shown, which is delimited by the ring 32, which forms the constriction constriction 33. The burner is essentially constructed in the same way as the oil burners described above, so that the differences from the oil burners are mainly explained below.

Die Mischvorrichtung 14 besteht aus der Dralldüse 53, die schrägstehende Flügel 71 für die Verbrennungsluft sowie dahinter eine axiale Düsenöffnung 29 aufweist. Die inneren Enden der Flügel 71 sind durch die Unterseite des kegelförmigen Abdeckorgans 85 begrenzt. Über dem Abdeckorgan 85 befindet sich der als Innenkegel ausgebildete Leitring 86, der zusammen mit dem Abdeckorgan 85 einen kegelförmigen Durchlaß bildet, welcher von der axialen Bohrung 88 zu den Außenbereichen der Flügel 71 führt. Durch das Abdeckorgan 85 führt die Gaszufuhrleitung 87, deren Auslaß sich in der Mitte der Unterseite des Abdeckorgans 85 befindet, so daß das Brenngas axial in die Dralldüse 53 eintritt, während die Luft radial eintritt und durch die Flügel 71 eine tangentiale Komponente erhält.The mixing device 14 consists of the swirl nozzle 53 which has inclined vanes 71 for the combustion air and an axial nozzle opening 29 behind it. The inner ends of the wings 71 are delimited by the underside of the conical cover member 85. Above the cover member 85 is the guide ring 86, which is designed as an inner cone and, together with the cover member 85, forms a conical passage which leads from the axial bore 88 to the outer regions of the vanes 71. Through the cover member 85 leads the gas supply line 87, the outlet of which is in the Middle of the underside of the cover member 85 is located so that the fuel gas axially enters the swirl nozzle 53, while the air enters radially and receives a tangential component through the wing 71.

Das Doppel-Verdrängergebläse 89 besteht aus der Luft-Verdrängerpumpe 12 und der Brenngas-Verdrängerpumpe 13. Das Verdrängergebläse 89 ist auf dem Düsengehäuse 15 montiert und liefert über die Bohrung 88 die Verbrennungsluft und über die Gaszufuhrleitung 87 das Brenngas zur Mischvorrichtung 14. Die Verdrängerpumpen 12 und 13 bestehen im vorliegenden Fall aus Zahnradpumpen. Diese Pumpen sind in einem Schnitt dargestellt, der in der Mittelebene zwischen den beiden Pumpenzahnrädern verläuft, so daß man nur das mitlaufende, von außen nicht angetriebene Zahnrad 90 bzw. 91 sieht. Die Achsen der Pumpenzahnräder verlaufen rechtwinklig zur Längsachse der Dralldüse 53. Das Pumpenzahnrad 90 der Luft-Verdrängerpumpe ist in der Wand 92 und der Zwischenwand 93 des Pumpengehäuses gelagert, und das Pumpenzahnrad 91 der Gas-Verdrängerpumpe 13 ist in der Zwischenwand 93 und der Gehäusewand 96 gelagert. Die Achsen der mittelbar angetriebenen Pumpenzahnräder 90 und 91 verlaufen auf einer gemeinsamen Linie, ebenso wie die Achsen der (nicht dargestellten) unmittelbar angetriebenen Pumpenzahnräder ebenfalls auf einer gemeinsamen Linie verlaufen. Es ist auch möglich, beide Pumpenzahnräder 90,91 aus einem einzigen Block herzustellen, der nur in den Wänden 92 und 93 oder 92 und 96 gelagert ist. In gleicher Weise können auch die direkt angetriebenen Pumpenzahnräder aus einem gemeinsamen Block bestehen, der nur in zwei Wänden gelagert ist.The double displacement blower 89 consists of the air displacement pump 12 and the fuel gas displacement pump 13. The displacement blower 89 is mounted on the nozzle housing 15 and supplies the combustion air via the bore 88 and the fuel gas to the mixing device 14 via the gas supply line 87. The displacement pumps 12 and 13 consist of gear pumps in the present case. These pumps are shown in a section which runs in the central plane between the two pump gears, so that only the cogwheel 90 and 91 which is running and is not driven from the outside can be seen. The axes of the pump gearwheels run at right angles to the longitudinal axis of the swirl nozzle 53. The pump gearwheel 90 of the air displacement pump is mounted in the wall 92 and the intermediate wall 93 of the pump housing, and the pump gearwheel 91 of the gas displacement pump 13 is located in the intermediate wall 93 and the housing wall 96 stored. The axes of the indirectly driven pump gears 90 and 91 run on a common line, just as the axes of the directly driven pump gears (also not shown) also run on a common line. It is also possible to produce both pump gear wheels 90, 91 from a single block, which is only supported in the walls 92 and 93 or 92 and 96. In the same way, the directly driven pump gears can consist of a common block that is only supported in two walls.

Die Luft-Verdrängerpumpe 12 saugt die Verbrennungsluft über einen Schalldämpfer 97 und das Einlaßrohr 98 von außen an. Zwischen dem Verdrängergebläse 12 und der Bohrung 88 befindet sich ein Sammelraum 99. Das Brenngas wird aus der Gasleitung über einen Filter 100 und zwei Magnetventile 101 in den Ansaugraum 102 gedrückt und durch das Verdrängergebläse 13 in den Sammelraum 103 gefördert. Die Gasleitung 87 führt vom Sammelraum 103 zur Mischvorrichtung 14. Solange der Leitungsgasdruck höher ist als der Brennkammerdruck, treibt der Gasdruck die Verdrängerpumpe 13 an, die somit als Motor arbeitet, der den die beiden Verdrängerpumpen 12 und 13 antreibenden Elektromotor teilweise entlastet.The air displacement pump 12 draws the combustion air from the outside via a silencer 97 and the inlet pipe 98. A collecting chamber 99 is located between the displacer blower 12 and the bore 88. The fuel gas is pressed out of the gas line via a filter 100 and two solenoid valves 101 into the suction chamber 102 and conveyed into the collecting chamber 103 by the displacing fan 13. The gas line 87 leads from the collecting space 103 to the mixing device 14. As long as the line gas pressure is higher than the combustion chamber pressure, the gas pressure drives the displacement pump 13, which thus works as a motor, which partially relieves the electric motor driving the two displacement pumps 12 and 13.

Zwischen dem Lufteinlaß 98 und dem Ansaugraum 102 befindet sich ein Rückschlagventil 104, das Luft vom Lufteinlaß 98 zu dem Ansaugraum 102 durchlassen kann, das aber in Gegenrichtung kein Gas durchlassen kann. Das Rückschlagventil 104 wird durch den Gasdruck geschlossen gehalten, solange die Magnetventile 101 offen sind. Wenn das Gas abgesperrt wird, öffnet das Rückschlagventil durch die Saugwirkung des Verdrängergebläses 13, so daß Luft in das Verdrängergebläse 13 eingesaugt und gleichzeitig Restgas aus dem Gas-Verdrängergebläse 13 und der Gasleitung 87 ausgespült wird und in der Brennkammer noch verbrennt.Between the air inlet 98 and the suction chamber 102 there is a check valve 104, which can let air through from the air inlet 98 to the suction chamber 102, but which cannot let gas through in the opposite direction. The check valve 104 is kept closed by the gas pressure as long as the solenoid valves 101 are open. When the gas is shut off, the check valve opens due to the suction effect of the displacement fan 13, so that air is sucked into the displacement fan 13 and at the same time residual gas is flushed out of the gas displacement fan 13 and the gas line 87 and still burns in the combustion chamber.

Claims (9)

1. Burner-boiler assembly comprising a mixing device (14) arranged at one end of a tubular combustion chamber (16), a fuel pressure source and a compressed air source (12) connected to the mixing device (14), a heat exchanger (35) encompassing the combustion chamber (16), wherein the combustion chamber (16) consists of a section (16a) confronted with the mixing device (14) and of a section (16b) averted from the mixing device, between both sections (16a and 16b), a constriction (33) is provided and the section (16a) of the combustion chamber (16) confronted with the mixing device (14) comprises a jacket cooled by the water of the heat exchanger (35), characterized in that the pressure of the compressed air source (12) is higher than about 15 mbar, and the section (16b) of the combustion chamber (16) averted from the mixing device (14) is separated from the heat exchanger (35) by a thermally insulating jacket (34).
2. Burner-boiler assembly as set forth in claim 1, characterized in that a conveyer pump (13) forming the fuel pressure source and the compressed air source (12) consist of positive displacement pumps driven synchronously by a common speed-controllable drive (10).
3. Burner-boiler assembly as set forth in claim 2, characterized in that the flow path of the combustion gases in the heat exchanger (35) is so narrow that, at least in the upper speed range of the drive (10), a turbulent flow occurs in said flow path (49, 50).
4. Burner-boiler assembly as set forth in one of claims 1 to 3, characterized in that the mixing device (14) includes a swirl nozzle (53).
5. Burner-boiler assembly as set forth in claim 4, provided for oil as a fuel, characterized in that the mixing device (14) is of an atomizer type which contains a conical annular blade (29), that a means is provided to ensure a uniform distribution of oil on a surface of the blade (29) and that air-guiding elements conduct the fed air by a twist along at least one of the two blade surfaces.
6. Burner-boiler assembly as set forth in claim 5, characterized in that the air-guiding elements are wings (23, 26) of which each is pivotable about an axis (55) so that the distance of its tip to the adjacent wing is changed.
7. Bumer-boiler assembly as set forth in claim 6, characterized in that the control of the wings (23, 26) is performed by a pneumatic adjusting member (58, 63) operative responsive to the supply pressure of the mixing device (14).
8. Burner-boiler assembly as set forth in one of claims 2 to 7, characterized in that the two positive displacement pumps (12, 13) are combined to a double pump which comprises tow pairs of firmly interconnected rotors, of which two rotors of two pumps are arranged with their shafts along a common straight line.
9. Burner-boiler assembly as set forth in one of the preceding claims and provided to use gas as a fuel, characterized in that an air duct (98) extending to the air-displacement pump (12) is connected via a nonreturn valve (104) with a gas duct extending to the gas displacement pump (13), said nonreturn valve opening in the direction from the air duct (98) to the gas duct.
EP86115977A 1986-01-18 1986-11-18 Burner-boiler unit Expired EP0233330B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3601343 1986-01-18
DE3601343 1986-01-18
DE19863608698 DE3608698A1 (en) 1986-01-18 1986-03-15 BURNER BOILER UNIT
DE3608698 1986-03-15

Publications (2)

Publication Number Publication Date
EP0233330A1 EP0233330A1 (en) 1987-08-26
EP0233330B1 true EP0233330B1 (en) 1989-04-05

Family

ID=25840207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115977A Expired EP0233330B1 (en) 1986-01-18 1986-11-18 Burner-boiler unit

Country Status (2)

Country Link
EP (1) EP0233330B1 (en)
DE (1) DE3608698A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9007627U1 (en) * 1990-01-18 1993-06-03 Kraft-Industriewärmetechnik Dr. Ricke GmbH, 8759 Hösbach Burners with low NOx emissions
WO1992000490A1 (en) * 1990-06-29 1992-01-09 Nippon Chemical Plant Consultant Co., Ltd. Burner
DE4035149A1 (en) * 1990-11-06 1992-05-07 Kloeckner Humboldt Deutz Ag Gas and droplet separator - has cylindrical chamber for gas to spin through with oil scraper plate and outflow
DE4216532C2 (en) * 1992-05-19 1997-02-20 Webasto Thermosysteme Gmbh Low pressure air flow atomizer for a burner liquid fuel
AT410588B (en) * 1998-11-12 2003-06-25 Windhager Zentralheizung Ag LIQUID FUEL BOILERS
DE10121144A1 (en) * 2001-04-30 2002-11-07 Webasto Thermosysteme Gmbh Automotive heater has secondary burner with outlet baffle constriction
DE10144408B4 (en) * 2001-09-10 2007-05-10 Webasto Ag Nozzle for atomising liquid fuel
DE10144407B4 (en) * 2001-09-10 2007-05-10 Webasto Ag Nozzle for atomising liquid fuel
DE10205573B4 (en) * 2002-02-11 2005-10-06 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner
DE10211590B4 (en) * 2002-03-15 2007-11-08 J. Eberspächer GmbH & Co. KG Atomiser nozzle, in particular for a vehicle heater
DE10331575B4 (en) * 2003-07-11 2005-08-25 Webasto Ag Burner for a heater with a fuel nozzle
DE102004029029B4 (en) * 2004-06-09 2018-12-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Injection head
EA008046B1 (en) * 2005-02-22 2007-02-27 Александр Владимирович Клюев Method of burning fuel and burner therefor
DE102005022772A1 (en) * 2005-05-12 2007-01-11 Universität Karlsruhe Burner with partial premixing and pre-evaporation of the liquid fuel
DE102008026478A1 (en) * 2008-06-03 2009-12-10 Deutz Ag Heating device for a building
JP6542659B2 (en) * 2015-12-25 2019-07-10 リンナイ株式会社 Combustion device
CN112443964B (en) * 2019-08-28 2022-09-13 青岛经济技术开发区海尔热水器有限公司 Gas water heater and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE857924C (en) * 1949-06-03 1952-12-04 Emil Dr-Ing Kirschbaum Atomizing nozzle
DE6910031U (en) * 1969-03-13 1969-07-10 Siemens Ag DRIVE FOR FAN AND PUMP OF OIL BURNERS
US4395223A (en) * 1978-06-09 1983-07-26 Hitachi Shipbuilding & Engineering Co., Ltd. Multi-stage combustion method for inhibiting formation of nitrogen oxides
DE2943590A1 (en) * 1979-10-29 1981-05-07 Fritz Dr.-Ing. 8026 Ebenhausen Schoppe METHOD FOR FIRING A BOILER AND BOILER FOR CARRYING OUT THE METHOD
DE3020398C2 (en) * 1980-05-29 1982-04-15 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Oil burner
SE442053B (en) * 1984-04-17 1985-11-25 Nils Axel Ambjoern Oestbo turbulators

Also Published As

Publication number Publication date
DE3608698A1 (en) 1987-07-23
EP0233330A1 (en) 1987-08-26
DE3608698C2 (en) 1990-05-03

Similar Documents

Publication Publication Date Title
EP0233330B1 (en) Burner-boiler unit
DE2527618C2 (en) Process and device for the combustion of coal dust
DE69821730T2 (en) Fuel atomizing burner and combustion process performed with this burner
DE3729861C2 (en) Method for operating a soot filter device for a diesel engine and soot filter device for carrying out this method
DE2801367C2 (en)
EP0598189B1 (en) Pulverizer for an oil burner
DE2326302A1 (en) DEVICE FOR CONTINUOUS FLAME BURNING A COMPRESSED AIR-FUEL MIXTURE
DE2345282B2 (en) Combustion device for gas turbine engines
EP0000358B1 (en) Method for controlling the combustion of liquid fuels, and burner arrangement suitable for carrying out the method
DE2503128A1 (en) BURNING DEVICE FOR A GAS TURBINE
DE2727795C2 (en) Combustion chamber for a gas turbine
EP0392158B1 (en) Method for operating a combustion plant for fossil fuels
DE2261596C3 (en)
CH654392A5 (en) LIQUID FUEL BURNER.
EP0101462B1 (en) Burner for pulverulent, gaseous and/or liquid fuels
EP0283435B1 (en) Burner
DE2212321A1 (en) Burner arrangement
EP0109585A1 (en) Vaporizing oil burner comprising an oil atomizing device
DE2724532A1 (en) Combined burner for firing oil and gas - has blades imposing rotating flow to ensure mixing and efficient burning
DE2345838A1 (en) BURNER
DE102010046956B4 (en) Ölvormischbrenner
DE2212320A1 (en) Heating device for absorption cooler
EP0007424B1 (en) Burner device for combustion of liquid fuel
EP0683884B1 (en) Adjustable blue-flame burner
DE2828319C2 (en) Liquid fuel burner with a cylindrical swirl chamber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB NL SE

17P Request for examination filed

Effective date: 19870923

17Q First examination report despatched

Effective date: 19880408

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB NL SE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86115977.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19971130

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001030

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001116

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001122

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011119

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

EUG Se: european patent has lapsed

Ref document number: 86115977.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST