EP0227985B1 - Ultraschall-Sensor - Google Patents

Ultraschall-Sensor Download PDF

Info

Publication number
EP0227985B1
EP0227985B1 EP86117065A EP86117065A EP0227985B1 EP 0227985 B1 EP0227985 B1 EP 0227985B1 EP 86117065 A EP86117065 A EP 86117065A EP 86117065 A EP86117065 A EP 86117065A EP 0227985 B1 EP0227985 B1 EP 0227985B1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic sensor
electrodes
polymer film
sensor according
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86117065A
Other languages
English (en)
French (fr)
Other versions
EP0227985A3 (en
EP0227985A2 (de
Inventor
Bernd Dr. Granz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0227985A2 publication Critical patent/EP0227985A2/de
Publication of EP0227985A3 publication Critical patent/EP0227985A3/de
Application granted granted Critical
Publication of EP0227985B1 publication Critical patent/EP0227985B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Definitions

  • the invention relates to an ultrasound sensor with a polymer film attached at least in its edge region to a support body, which is piezoelectrically activated in at least one partial region, which is electrically coupled to electrodes.
  • So-called miniature or membrane hydrophones are used to determine the properties of an ultrasound field prevailing in a sound-carrying medium, for example water.
  • the three-dimensional distribution of the sound pressure amplitude of the ultrasound field is determined by measuring the sound pressure prevailing at different locations in a measuring trough with such a hydrophone.
  • a miniature hydrophone is known from "Ultrasonics, September 1981, pages 213 to 216", in which a piezoactive film made of polyvinylidene fluoride PVDF and provided with electrodes on both of its flat sides is stretched onto the end face of a stainless steel tube in an electrically insulated manner.
  • the diameter of the film is about 1 mm.
  • a platinum wire is attached to the inside of the film and is connected to the inner conductor of a coaxial cable. This platinum wire is supported by a backing that fills the interior of the stainless steel tube.
  • the outside of the film is electrical with the stainless steel tube contacted and connected to the shield of the coaxial cable.
  • a major advantage of such hydrophones is that the acoustic impedance of their piezoelectric elements is better matched to the acoustic impedance of water than would be the case if a piezoceramic material were used. Compared to piezoceramic sensors, this results in both an increased frequency bandwidth and a reduced disruptive influence on the ultrasound field at the measurement location.
  • the invention is therefore based on the object of specifying an ultrasonic sensor whose piezoelectric element consists of a polymer and which can also be used when measuring high-energy ultrasonic shock waves.
  • the surface charge vibrations in the piezoelectrically active area of the polymer film caused by an ultrasonic wave are electrically coupled via the medium surrounding the polymer film to the electrodes arranged outside the surface area of the polymer film assigned to the piezoelectrically active area of the polymer film .
  • the piezoelectrically active central area of the polymer film can thus be arranged in the focus area of a focused ultrasound shock wave, since there is no mechanically unstable electrically conductive layer in the sensitive area of the polymer film.
  • the invention is based in part on the knowledge that by using a piezoelectric polymer with a piezoceramic material relatively low dielectric constant, a purely capacitive coupling without high signal losses is possible. Accordingly, the electrodes can be attached spatially separated from the piezoelectrically active region of the polymer film both on the film itself and outside of the film, for example on the support body.
  • the electrodes are advantageously designed in such a way that their mutual capacitance is as small as possible compared to the coupling capacitances, in order to reduce the signal losses occurring due to parasitic capacitances.
  • One of the electrodes is connected to the electrical ground of the system.
  • the coupling capacities to the electrodes are as large as possible. Since, as a rule, the environment of the ultrasound sensor is approximately at ground potential during the measurement, the coupling capacitance of the piezoelectrically active region can be increased to ground by suitable design measures, without additional signal-reducing parasitic capacitances occurring.
  • a flat, also membrane-like additional ground electrode can be arranged in the ultrasonic sensor opposite the piezoelectrically active region of the membrane parallel to its surface. As a result, the piezoelectrically active region is particularly effectively capacitively coupled to ground.
  • cover plates are arranged on the free end faces of the support body opposite the two flat sides of the membrane.
  • a tight chamber is created between the cover plate and the membrane, with a sound-absorbing chamber Liquid is filled.
  • This measure not only increases the reproducibility of the measurements but also creates the possibility of selecting the medium used for acoustic coupling in these chambers of the membrane hydrophone independently of the acoustic carrier medium in the measuring trough.
  • the liquid in the two cavities is an electrolyte.
  • the diameter d of the central region 42 is very much smaller than the diameter D of the membrane 40 of the polymer film 4.
  • the diameter d is the polarized central one Area 42 smaller than 2 mm, in particular smaller than 1 mm.
  • the diameter D of the membrane 40 is advantageously greater than 30 mm, in particular greater than 50 mm choose to reduce the influence of the support body 6 on the sound field to be measured in the central area 42.
  • the thickness of the polymer film 4 is between 10 ⁇ m and 100 ⁇ m, in particular between 25 ⁇ m and 50 ⁇ m.
  • the polymer film 4 is provided on the surface of its piezoelectrically inactive region 44 on its two flat sides with one electrode 8 each.
  • the electrodes 8 are thus arranged in such a way that they are spatially separated from the piezoelectrically active region 42 and do not touch it.
  • the electrodes 8 are preferably located in an outer edge region of the polymer film 4, the width of which is less than 1/4, in particular less than 1/10, of the diameter of the film.
  • the electrodes 8 have an annular shape, for example, and are arranged, for example, concentrically around the central axis 22 in the region of the membrane 40.
  • the electrodes 8 are provided with electrical connecting conductors 82, which lead, for example, in radial grooves 62 of the support body 6 to the cylindrical outer edge of the ultrasonic sensor 2.
  • the connecting conductors 82 can be connected, for example, with a coaxial cable, which forwards the electrical signals to further processing electronics, for example a charge-sensitive amplifier.
  • one of the two connection conductors 82 is connected to the electrical ground.
  • the properties of the ultrasound field of an ultrasound transmitter used for medical purposes are generally measured in a basin filled with a sound-carrying liquid, for example water.
  • the ultrasound sensor 2 is thus surrounded by water 10 during the measurement.
  • the water acting on the polymer film 4 through the ultrasound field Compressive forces generate 42 high-frequency surface charge vibrations in the piezoelectrically active central region.
  • the two flat sides of the polymer film 4 are each provided with an approximately semi-ring-shaped electrode 86 or 87.
  • the two electrodes 86 and 87 are arranged such that they do not overlap.
  • the parasitic capacitance which occurs between the electrodes 86 and 87 and which causes a reduction in the electrical useful signal is thereby reduced. This is particularly advantageous if the ultrasound sensor is also to be used for measuring ultrasound fields that are used in medical diagnostics.
  • one of the two support bodies 6 is provided with a ground electrode 12 on its flat side facing away from the polymer film 4.
  • This ground electrode 12 is connected to the electrical ground together with that electrode 8 which is located in the region between the ground electrode 12 and the polymer film 4.
  • the ground electrode 12 consists of a stainless steel foil, the thickness of which is less than 100 ⁇ m, in particular between 10 ⁇ m and 20 ⁇ m.
  • the ground electrode 12 is a thin metal grid, the thickness of which is also less than 100 ⁇ m. This reduces the disruptive influence of the ground electrode 12 on the ultrasonic field.
  • the electrode 8 located between the ground electrode 12 and the polymer film 4 can also be omitted, since the ground electrode 12 takes over the function of this electrode 8.
  • the cover plates 122 and 124 consist of polymethylpentene, PMP, whose acoustic impedance is almost equal to the acoustic impedance of water.
  • the cover plates 122 and 124 can also consist of a polymer film, the thickness of which is preferably less than 100 ⁇ m.
  • the chambers 100 are sealed off from the outside space and are separated from one another by the polymer film 4.
  • the grooves 62 in which the connecting conductors 82 run for example partially potted with an adhesive 84, or an embodiment according to FIG. 2 is provided in which the grooves do not lead to the inner edge of the support body 6.
  • the chambers 100 are filled with a sound-carrying liquid.
  • Water can be provided as the liquid, for example, in which the signal coupling from the piezoelectrically active central region 42 to the contact electrodes 8 takes place essentially capacitively.
  • the chambers 100 are filled with an electrolyte, for example an aqueous saline solution, the electrical conductivity of which is selected such that the ohmic resistance between the electrodes 8 and the surface of the piezoactive region 42 is less than 1 k ⁇ , in particular less than 100 ⁇ is.
  • the alternating charge signal generated in the piezoelectrically active region 42 is coupled to the electrodes 8 in a first approximation via the series resistance formed by the liquid.
  • At least the surface of the electrodes 8 advantageously consists of a noble metal material, for example gold Au or platinum Pt.
  • one of the cover plates 122 and 124 can also consist of an electrically conductive material, for example a stainless steel foil or an electrically conductive plastic, and can be connected to the electrical ground. As a result, the coupling capacitance of the piezoelectrically active region 42 is increased to ground and the electrical output signal is increased accordingly.
  • one of the cover plates 122 and 124 consists of a metallic material, the ultrasound sensor 2 is to be used in a measurement in an advantageous manner in the sound field of an ultrasound transmitter such that this cover plate is on the side of the ultrasound sensor facing away from the ultrasound transmitter 2 is located.
  • a circular disk-shaped polymer film 4 is fastened to a rotationally symmetrical support body 6, which is provided, for example, on its inner wall with an annular recess which extends to the end faces of the support bodies 6 facing away from the polymer film 4.
  • a likewise annular electrode 88 is inserted into this recess and fixed with a holding flange 66 fastened to the support body 6.
  • the electrodes 88 are, for example, metallic rings whose wall thickness can be less than 1 mm.
  • the electrodes 88 are made, for example, of stainless steel or brass, which is provided with a platinum protective layer, for example, to protect it from the corrosive properties of the surrounding medium. From the electrodes 88 lead 82 lead through grooves 68 of the support body 6 to its cylindrical outer edge.
  • the ultrasonic sensor 24 can also be provided with a ground electrode according to FIG. 4 or with cover plates according to FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

  • Die Erfindung bezieht sich auf einen Ultraschall-Sensor mit einer wenigstens in ihrem Randbereich an einem Stützkörper befestigten Polymerfolie, die wenigstens in einem Teilbereich piezoelektrisch aktiviert ist, der mit Elektroden elektrisch gekoppelt ist.
  • Bei der Bestimmung der Eigenschaften eines in einem schalltragenden Medium, beispielsweise Wasser, herrschenden Ultraschallfeldes werden sogenannte Miniatur- oder Membran-Hydrophone verwendet. Die dreidimensionale Verteilung der Schalldruckamplitude des Ultraschallfeldes wird dadurch ermittelt, daß der an jeweils verschiedenen Orten in einer Meßwanne herrschende Schalldruck mit einem derartigen Hydrophon gemessen wird.
  • Aus "Ultrasonics, September 1981, Seiten 213 bis 216" ist ein Miniatur-Hydrophon bekannt, bei dem eine an ihren beiden Flachseiten mit Elektroden versehene piezoaktive Folie aus Polyvinylidenfluorid PVDF mit einer Dicke von 25 µm auf die Stirnfläche eines Edelstahlrohres elektrisch isoliert aufgespannt ist. Der Durchmesser der Folie beträgt etwa 1 mm. Auf der Innenseite der Folie ist ein Platindraht angebracht, der mit dem Innenleiter eines Koaxialkabels verbunden ist. Dieser Platindraht wird von einem, das Innere des Edelstahlrohres ausfüllenden Backing gestützt. Die Außenseite der Folie ist mit dem Edelstahlrohr elektrisch kontaktiert und mit der Abschirmung des Koaxialkabels verbunden.
  • In "Ultrasonics, Mai 1980, Seiten 123 bis 126" ist ein Membran-Hydrophon offenbart, bei dem eine Folie aus Polyvinylidenfluorid PVDF mit einer Dicke von 25 µm zwischen zwei als Stützkörper dienende Metallringe aufgespannt ist. Dadurch wird eine Membran mit einem Inendurchmesser von etwa 100 mm gebildet. Die Oberflächen der Membran sind in einem kleinen zentralen Bereich mit einander gegenüberliegenden kreisscheibenförmigen Elektroden versehen, deren Durchmesser beispielsweise 4 mm beträgt. Zwischen diesen Elektroden befindet sich der polarisierte, piezoelektrisch aktive Bereich der Membran. Von den kreisscheibenförmigen Elektroden führen als Metallfilme auf die Oberflächen der Membran aufgebrachte Anschlußleiter zum Rand der Membran und werden dort mit Hilfe eines Leitklebers mit einem Koaxialkabel kontaktiert.
  • Ein wesentlicher Vorteil derartiger Hydrophone besteht darin, daß die akustische Impedanz ihrer piezoelektrischen Elemente der akustischen Impedanz von Wasser besser angepaßt ist, als es bei Verwendung eines piezokeramischen Materials der Fall wäre. Dies ergibt gegenüber piezokeramischen Sensoren sowohl eine erhöhte Frequenzbandbreite als auch eine verringerte störende Beeinflussung des Ultraschallfeldes am Meßort.
  • Mit derartigen Hydrophonen lassen sich jedoch keine Ultraschall-Stoßwellen, deren Druckamplituden im Bereich von etwa 10⁸ Pa liegen, messen. Derartige Stoßwellen mit sehr steilen Pulsflanken, deren Anstiegszeiten 1 µs unterschreiten, führen bei den bekannten Hydrophonen zu einer durch Kavitationseffekte verursachten mechanischen Zerstörung der im piezoelektrisch aktiven Bereich der PVDF-Folie aufgebrachten metallischen Elektroden. Solche Stoßwellen treten beispielsweise im Fokusbereich von Lithotriptern auf, bei denen eine fokussierte Ultraschall-Stoßwelle zur Zerstörung von Konkrementen, beispielsweise Nierensteinen in der Niere eines Patienten, verwendet wird. Sowohl bei der Entwicklung, als auch bei der routinemäßigen Überwachung derartiger Geräte ist es erforderlich, die Eigenschaften der Stoßwelle im Fokusbereich zu bestimmen.
  • Der Erfindung liegt somit die Aufgabe zugrunde, einen Ultraschallsensor anzugeben, dessen piezoelektrisches Element aus einem Polymer besteht und der auch bei Messung von energiereichen Ultraschall-Stoßwellen verwendet werden kann.
  • Diese Aufgabe wird erfindungsgemäß gelöst mit dem kennzeichnenden Merkmal des Anspruchs 1. Die im piezoelektrisch aktiven Bereich der Polymerfolie durch eine Ultraschallwelle verursachten Oberflächenladungsschwingungen werden über das die Polymerfolie umgebende Medium zu den außerhalb des dem piezoelektrisch aktiven Bereich der Polymerfolie zugeordneten Oberflächenbereiches der Polymerfolie angeordneten Elektroden elektrisch gekoppelt. Der piezoelektrisch aktive zentrale Bereich der Polymerfolie kann somit im Fokusbereich einer fokussierten Ultraschall-Stoßwelle angeordnet sein, da im sensitiven Bereich der Polymerfolie keine mechanisch instabile elektrisch leitfähige Schicht vorhanden ist.
  • Die Erfindung beruht teilweise auf der Erkenntnis, daß durch die Verwendung eines piezoelektrischen Polymers mit einer gegenüber piezokeramischen Werkstoffen relativ geringen Dielektrizitätskonstante eine rein kapazitive Kopplung ohne hohe Signalverluste möglich wird. Die Elektroden können dementsprechend vom piezoelektrisch aktiven Bereich der Polymerfolie räumlich getrennt sowohl auf der Folie selbst als auch außerhalb der Folie beispielsweise am Stützkörper befestigt sein. Die Elektroden sind dabei in vorteilhafter Weise so gestaltet, daß ihre gegenseitige Kapazität möglichst klein gegenüber den Koppelkapazitäten ist, um die durch parasitäre Kapazitäten auftretenden Signalverluste zu verringern. Eine der Elektroden ist mit der elektrischen Masse des Systems verbunden. Da eine hohe Koppelkapazität mit einem hohen elektrischen Nutzsignal einhergeht, ist es vorteilhaft, wenn die Koppelkapazitäten zu den Elektroden möglichst groß sind. Da in der Regel während der Messung die Umgebung des Ultraschall-Sensors annähernd auf Massepotential liegt, kann insbesondere die Koppelkapazität des piezoelektrisch aktiven Bereiches nach Masse durch geeignete konstruktive Maßnahmen erhöht werden, ohne daß zusätzliche signalreduzierende parasitäre Kapazitäten entstehen. Insbesondere kann gegenüber dem piezoelektrisch aktiven Bereich der Membran parallel zu deren Oberfläche eine flache ebenfalls membranartige zusätzliche Masseelektrode im Ultraschallsensor angeordnet sein. Dadurch wird der piezoelektrisch aktive Bereich besonders wirksam kapazitiv gegen Masse gekoppelt.
  • In einer bevorzugten Ausführungsform sind gegenüber den beiden Flachseiten der Membran auf den freien Stirnseiten des Stützkörpers Deckplatten angeordnet. Zwischen Deckplatte und Membran entsteht somit eine dichte Kammer, die mit einer schalltragenden Flüssigkeit gefüllt ist. Dies hat den Vorteil, daß die im Inneren der Kammer befindliche Flüssigkeit nicht im Austausch mit der das Hydrophon umgebenden Flüssigkeit steht. Durch diese Maßnahme wird sowohl die Reproduzierbarkeit der Messungen erhöht als auch die Möglichkeit geschaffen, das zur akustischen Kopplung verwendete Medium in diesen Kammern des Membran-Hydrophons unabhängig vom akustischen Trägermedium in der Meßwanne zu wählen. In einer besonders vorteilhaften Ausführungsform ist die in den beiden Hohlräumen befindliche Flüssigkeit ein Elektrolyt.
  • Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung verwiesen, in deren
  • Figur 1
    ein Ultraschall-Sensor gemäß der Erfindung schematisch im Schnitt dargestellt ist. In
    Figur 2
    ist eine vorteilhafte Ausgestaltung des Randbereichs des Ultraschall-Sensors ebenfalls im Schnitt dargestellt und
    Figur 3
    zeigt eine besonders vorteilhafte Anordnung der Elektroden auf den Flachseiten der Polymerfolie in einer Draufsicht und
    Figur 4
    zeigt einen Ultraschall-Sensor mit einer besonders vorteilhaft gestalteten Masselektrode im Schnitt. In
    Figur 5
    ist eine bevorzugte Ausführungsform eines geschlossenen Ultraschall-Sensors im Schnitt dargestellt.
    Figur 6
    zeigt eine besonders bevorzugte Ausführungsform eines erfindungsgemäßen Ultraschall-Sensors, bei der die Elektroden außerhalb der Polymerfolie angeordnet sind und in
  • Gemäß Figur 1 enthält ein Ultraschall-Sensor 2 eine beispielsweise kreisscheibenförmige Polymerfolie 4, die zwischen zwei beispielsweise ringförmige Stützkörper 6 straff eingespannt ist und eine Membran 40 bildet. Die Polymerfolie besteht aus einem semikristallinen Polymer, beispielsweise Polyvinylfluorid PVF oder einem Copolymer von Vinylfluorid mit Tetrafluorethylen oder Trifluorethylen, insbesondere biaxial gereckten Polyvinylidenfluorid PVDF. Die Polymerfolie 4 ist in einem zentralen Bereich 42 polarisiert und piezoelektrisch aktiv. Der piezoelektrisch aktive Bereich 42 ist von einem piezoelektrisch inaktiven Bereich 44 umgeben. Der Durchmesser d des beispielsweise kreisscheibenförmigen, rotationssymmetrisch um eine senkrecht zu den Flachseiten der Polymerfolie 4 verlaufende Mittelachse 22 angeordneten zentralen Bereiches 42 ist sehr viel kleiner als der Durchmesser D der Membran 40 der Polymerfolie 4. In einer bevorzugten Ausführungsform ist der Durchmesser d des polarisierten zentralen Bereiches 42 kleiner als 2 mm, insbesondere kleiner als 1 mm. Der Durchmesser D der Membran 40 ist in vorteilhafter Weise größer als 30 mm, insbesondere größer als 50 mm zu wählen, um den Einfluß der Stützkörper 6 auf das im zentralen Bereich 42 zu messende Schallfeld zu verringern. Die Dicke der Polymerfolie 4 beträgt zwischen 10 µm und 100 µm, insbesondere zwischen 25 µm und 50 µm. Die Polymerfolie 4 ist an der Oberfläche ihres piezoelektrisch inaktiven Bereich 44 auf ihren beiden Flachseiten mit jeweils einer Elektrode 8 versehen. Die Elektroden 8 sind somit derart angeordnet, daß sie vom piezoelektrisch aktiven Bereich 42 räumlich getrennt sind und ihn nicht berühren. Die Elektroden 8 befinden sich vorzugsweise in einem äußeren Randbereich der Polymerfolie 4, dessen Breite kleiner als 1/4, insbesondere kleiner als 1/10 des Durchmessers der Folie ist. Die Elektroden 8 haben eine beispielsweise ringförmige Gestalt und sind im Bereich der Membran 40 beispielsweise konzentrisch um die Mittelachse 22 angeordnet. Die Elektroden 8 sind mit elektrischen Anschlußleitern 82 versehen, die beispielsweise in radialen Nuten 62 der Stützkörper 6 zum zylindrischen Außenrand des Ultraschall-Sensors 2 führen. Dort können die Anschlußleiter 82 beispielsweise mit einem Koaxialkabel verbunden werden, das die elektrischen Signale an eine weiterverarbeitende Elektronik, beispielsweise einen ladungsempfindlichen Verstärker, weiterleitet. Insbesondere ist einer der beiden Anschlußleiter 82 mit der elektrischen Masse verbunden.
  • Die Eigenschaften des Ultraschallfeldes eines für medizinische Zwecke verwendeten Ultraschallsenders werden in der Regel in einem mit einer schalltragenden Flüssigkeit, beispielsweise Wasser, gefüllten Becken gemessen. Der Ultraschall-Sensor 2 ist somit während der Messung von Wasser 10 umgeben.Die durch das Ultraschallfeld auf die Polymerfolie 4 einwirkenden Druckkräfte erzeugen im piezoelektrisch aktiven zentralen Bereich 42 hochfrequente Oberflächenladungsschwingungen. Der piezoelektrisch aktive Bereich 42 ist von den Elektroden 8 bei Verwendung reinen Wassers hochohmig getrennt. Wegen der hohen relativen Dielektrizitätszahl εr = 81 von Wasser koppeln jedoch diese Ladungsschwingungen kapazitiv über das als Dielektrikum wirkende Wasser auf die Elektroden 8 über. Da die signalaufnehmenden Elektroden 8 am äußeren Rand des Membranbereiches der Polymerfolie 4 angeordnet sind, können im zentralen Bereich 40 sehr hohe Schalldruckamplituden reproduzierbar gemessen werden, ohne daß die Gefahr einer mechanischen Zerstörung und eines Abplatzens der Elektroden 8 von der Polymerfolie 4 auftritt.
  • Entsprechend Figur 2 können sich die Elektroden 8 auch in den Bereich der Polymerfolie 4 erstrecken, der zwischen den Stützkörpern 6 eingeklemmt ist. Die Nuten 64, in denen die Anschlußleiter 82 verlaufen, müssen sich somit nicht mehr bis zum Innenrand der Stützkörper 6 erstrecken.
  • In der vorteilhaften Ausführungsform gemäß Figur 3 sind die beiden Flachseiten der Polymerfolie 4 jeweils mit einer annähernd halbringförmigen Elektrode 86 bzw. 87 versehen. Die beiden Elektroden 86 und 87 sind derart angeordnet, daß sie sich nicht überlappen. Die zwischen den Elektroden 86 und 87 auftretende parasitäre Kapazität, die eine Verminderung des elektrischen Nutzsignals verursacht, wird dadurch verringert. Dies ist insbesondere dann von Vorteil, wenn der Ultraschall-Sensor auch zum Messen von Ultraschallfeldern eingesetzt werden soll, die in der medizinischen Diagnostik verwendet werden.
  • Gemäß Figur 4 ist einer der beiden Stützkörper 6 an seiner, der Polymerfolie 4 abgewandten Flachseite mit einer Masseelektrode 12 versehen. Diese Masseelektrode 12 ist gemeinsam mit derjenigen Elektrode 8, die sich im Gebiet zwischen der Masselektrode 12 und der Polymerfolie 4 befindet, mit der elektrischen Masse verbunden. Dadurch wird die Koppelkapazität des piezoelektrisch aktiven Bereiches 42 nach Masse und somit das an den Eingängen eines Verstärkers 26 anliegende elektrische Signal vergrößert. Die Masselektrode 12 besteht in einer vorteilhaften Ausführungsform aus einer Edelstahlfolie, deren Dicke weniger als 100 µm, insbesondere zwischen 10 µm und 20 µm beträgt. In einer besonders vorteilhaften Ausführungsform ist die Masseelektrode 12 ein dünnes Metallgitter, dessen Dicke ebenfalls kleiner als 100 µm ist. Dadurch wird der störende Einfluß der Masseelektrode 12 auf das Ultraschallfeld verringert. Die zwischen Masseelektrode 12 und Polymerfolie 4 befindliche Elektrode 8 kann in einer besonders bevorzugten, vereinfachten Ausführungsform auch entfallen, da die Masseelektrode 12 die Funktion dieser Elektrode 8 übernimmt.
  • Entsprechend der Ausführungsform gemäß Figur 5 sind die Stützkörper 6 an ihren der Polymerfolie 4 abgewandten Flachseiten jeweils mit einer Deckplatte 122 bzw. 124 versehen. Zwischen dem Membranbereich 40 der Polymerfolie 4 und den Deckplatten 122 und 124 entsteht somit jeweils eine dichte Kammer 100. In einer vorteilhaften Ausführungsform bestehen diese Deckplatten 122 und 124 aus einem Kunststoff, beispielsweise Polystyrol PS oder Polymethacrylsäuremethylester PMMA, welcher der außerhalb der Kammer 100 befindlichen schalltragenden Flüssigkeit weitgehend akustisch angepaßt und dessen Einfluß auf das zu messende Schallfeld gering ist. In einer besonders vorteilhaften Ausführungsform bestehen die Deckplatten 122 und 124 aus Polymethylpenten, PMP, dessen akustische Impedanz nahezu gleich der akustischen Impedanz von Wasser ist. Insbesondere können die Deckplatten 122 und 124 auch aus einer Polymerfolie bestehen, deren Dicke vorzugsweise kleiner als 100 µm ist. Die Kammern 100 sind gegenüber dem Außenraum dicht verschlossen und sind durch die Polymerfolie 4 voneinander getrennt. Dazu sind die Nuten 62 in denen die Anschlußleiter 82 verlaufen, beispielsweise mit einem Klebstoff 84 teilweise vergossen oder es ist eine Ausführungsform gemäß Figur 2 vorgesehen, bei der die Nuten nicht bis zum Innenrand der Stützkörper 6 führen. Die Kammern 100 sind mit einer schalltragenden Flüssigkeit gefüllt. Als Flüssigkeit kann beispielsweise Wasser vorgesehen sein, bei dem die Signalkopplung vom piezoelektrisch aktiven zentralen Bereich 42 zu den Kontaktelektroden 8 im wesentlichen kapazitiv erfolgt. In einer besonderen Ausführungsform sind die Kammern 100 mit einem Elektrolyten, z.B. einer wässrigen Kochsalzlösung, gefüllt, dessen elektrische Leitfähigkeit so gewählt ist, daß der ohmsche Widerstand zwischen den Elektroden 8 und der Oberfläche des piezoaktiven Bereichs 42 kleiner als 1 kΩ insbesondere kleiner als 100 Ω ist. In dieser Ausführungsform erfolgt die Kopplung des im piezoelektrisch aktiven Bereich 42 erzeugten Wechselladungssignals auf die Elektroden 8 in erster Näherung über den durch die Flüssigkeit gebildeten Serienwiderstand. Wenigstens die Oberfläche der Elektroden 8 besteht in vorteilhafter Weise aus einem edelmetallischen Werkstoff, beispielsweise Gold Au oder Platin Pt.
  • Eine der Deckplatten 122 und 124 kann in einer besonderen Ausführungsform auch aus einem elektrisch leitfähigen Werkstoff, beispielsweise einer Edelstahlfolie oder einem elektrisch leitfähigen Kunststoff bestehen und mit der elektrischen Masse verbunden sein. Dadurch wird die Koppelkapazität des piezoelektrisch aktiven Bereichs 42 nach Masse vergrößert und das elektrische Ausgangssignal entsprechend erhöht. Besteht eine der Deckplatte 122 und 124 aus einem metallischen Werkstoff, so ist der Ultraschall-Sensor 2 bei einer Messung in vorteilhafter Weise so im Schallfeld eines Ultraschall-Senders einzusetzen, daß sich diese Deckplatte auf der dem Ultraschall-Sender abgewandten Seite des Ultraschall-Sensors 2 befindet.
  • Bei einem besonders vorteilhaften Ultraschall-Sensor 24 gemäß Figur 6 ist eine kreisscheibenförmige Polymerfolie 4 an einem rotationssymmetrischen Stützkörper 6 befestigt, der beispielsweise an seiner Innenwand mit einer ringförmigen Ausnehmung versehen ist, die sich bis zu den der Polymerfolie 4 abgewandten Stirnseiten der Stützkörper 6 erstreckt. In diese Ausnehmung ist jeweils eine ebenfalls ringförmige Elektrode 88 eingeschoben und mit einem am Stützkörper 6 befestigten Halteflansch 66 fixiert. Die Elektroden 88 sind beispielsweise metallische Ringe deren Wandstärke weniger als 1 mm, betragen kann. Die Elektroden 88 bestehen beispielsweise aus Edelstahl oder aus Messing, das zum Schutz vor den korrosiven Eigenschaften des umgebenden Mediums beispielsweise mit einer Platinschutzschicht versehen ist. Von den Elektroden 88 führen Anschlußleiter 82 über Nuten 68 des Stützkörpers 6 zu seinem zylindrischen Außenrand.
  • In dieser besonders bevorzugten Ausführungsform ist die Polymerfolie 4 somit nicht mehr mit Elektroden beschichtet. Dies hat den Vorteil, daß der Ultraschall-Sensor 24 auch in seinen linearen Dimensionen erheblich verkleinert werden kann, da sich in dieser Ausführungsform die Elektroden 88 auch in unmittelbarer Nähe des Fokus einer Ultraschall-Stoßwelle befinden können, ohne daß die Gefahr einer Zerstörung der Elektroden 88 besteht. Eine derartige Miniaturisierung des Ultraschall-Sensors 24 hat den Vorteil, daß die Koppelkapazitäten des piezoelektrisch aktiven Bereiches 42 zu den Elektroden 88 durch eine Verringerung des gegenseitigen Abstandes vergrößert werden und somit die Empfindlichkeit des Ultraschall-Sensors 24 erhöht wird.
  • Auch in der Ausführungsform nach Figur 6 kann der Ultraschall-Sensor 24 mit einer Masseelektrode entsprechend Figur 4 oder mit Deckplatten entsprechend Figur 5 versehen sein.

Claims (11)

  1. Ultraschall-Sensor mit einer wenigstens in ihrem Randbereich an einem Stützkörper befestigten Polymerfolie, die wenigstens in einem Teilbereich piezoelektrisch aktiviert ist, der mit Elektroden elektrisch gekoppelt ist, dadurch ge kennzeichnet, daß die Elektroden (8) räumlich getrennt vom piezoelektrisch aktiven Bereich (42) angeordnet sind.
  2. Ultraschall-Sensor nach Anspruch 1, dadurch gekennzeichnet, daß die Oberfläche des piezoelektrisch aktiven Bereiches (42) kleiner als die Gesamtfläche des eine Membran (40) bildenden Teils der Polymerfolie (4) ist.
  3. Ultraschall-Sensor nach Anspruch 2, dadurch gekennzeichnet, daß die Elektroden (8) auf den Flachseiten der Polymerfolie (4) wenigstens teilweise im Oberflächenbereich der Membran (40) angeordnet sind.
  4. Ultraschall-Sensor nach Anspruch 3, dadurch gekennzeichnet, daß eine kreisscheibenförmige Membran (40) vorgesehen ist, die in ihrem äußeren Randbereich mit kreisringförmigen Elektroden (8) versehen ist, die konzentrisch um einen zentralen kreisscheibenförmigen piezoelektrisch aktiven Bereich (42) angeordnet sind.
  5. Ultraschall-Sensor nach Anspruch 3 oder 4, da durch gekennzeichnet, daß sich die auf den einander gegenüberliegenden Flachseiten der Polymerfolie (4) angeordneten Elektroden (86, 87) nicht überlappen.
  6. Ultraschall-Sensor nach Anspruch 1 oder 2, da durch gekennzeichnet, daß Elektroden (88) vorgesehen sind, die von der Polymerfolie (4) räumlich getrennt angeordnet sind.
  7. Ultraschall-Sensor nach Anspruch 6, dadurch gekennzeichnet, daß bei einer kreisscheibenförmigen Polymerfolie (4) ringförmige Elektroden (88) vorgesehen sind, die am Stützkörper (6) angeordnet sind.
  8. Ultraschall-Sensor nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß gegenüber einer der beiden Flachseiten der Membran (40) auf der der Membran (40) abgewandten Stirnseite des Stützkörpers (6) eine kreisscheibenförmige Masseelektrode (12) angeordnet ist.
  9. Ultraschall-Sensor nach Anspruch 8, dadurch gekennzeichnet, daß die Masseelektrode (12) ein Metallgitter ist.
  10. Ultraschall-Sensor nach Anspruch 1 oder 8, da durch gekennzeichnet, daß gegenüber den beiden Flachseiten der Membran (40) auf den freien Stirnseiten des Stützkörpers (6) jeweils eine Deckplatte (122, 124) angeordnet ist und daß zwischen Deckplatte (122, 124) und Membran (40) jeweils eine dichte Kammer (100) gebildet wird, die mit einer schalltragenden Flüssigkeit gefüllt ist.
  11. Ultraschall-Sensor nach Anspruch 9, dadurch gekennzeichnet, daß die schalltragende Flüssigkeit ein Elektrolyt ist.
EP86117065A 1985-12-20 1986-12-08 Ultraschall-Sensor Expired - Lifetime EP0227985B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3545382 1985-12-20
DE3545382 1985-12-20

Publications (3)

Publication Number Publication Date
EP0227985A2 EP0227985A2 (de) 1987-07-08
EP0227985A3 EP0227985A3 (en) 1987-10-21
EP0227985B1 true EP0227985B1 (de) 1991-03-06

Family

ID=6289135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117065A Expired - Lifetime EP0227985B1 (de) 1985-12-20 1986-12-08 Ultraschall-Sensor

Country Status (4)

Country Link
US (1) US4734611A (de)
EP (1) EP0227985B1 (de)
JP (1) JP2591737B2 (de)
DE (1) DE3677921D1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813402A (en) * 1986-02-19 1989-03-21 Siemens Aktiengesellschaft Coupling member for a shock wave therapy device
DE3762459D1 (de) * 1986-07-30 1990-05-31 Siemens Ag Sensor fuer akustische stosswellenimpulse.
US4813415A (en) * 1986-08-18 1989-03-21 Siemens Aktiengesellschaft Sensor for evaluation of shock wave pulses
DE8622104U1 (de) * 1986-08-18 1987-12-17 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zum Zertrümmern von Konkrementen
US4924131A (en) * 1987-10-14 1990-05-08 Fujikura Ltd. Piezo-electric acceleration sensor
US4835435A (en) * 1988-01-19 1989-05-30 Hewlett-Packard Company Simple, sensitive, frequency-tuned drop detector
DE3808019A1 (de) * 1988-03-10 1989-09-21 Siemens Ag Ultraschall-sensor
EP0381796B1 (de) * 1989-02-10 1995-08-09 Siemens Aktiengesellschaft Ultraschall-Sensor
DE3931578A1 (de) * 1989-09-22 1991-04-04 Wolf Gmbh Richard Piezoelektrisches membran-hydrophon
US5159228A (en) * 1990-08-24 1992-10-27 Siemens Aktiengesellschaft Pressure wave sensor
US5072426A (en) * 1991-02-08 1991-12-10 Sonic Technologies Self-monitoring shock wave hydrophone
US5381386A (en) * 1993-05-19 1995-01-10 Hewlett-Packard Company Membrane hydrophone
US5406951A (en) * 1993-10-15 1995-04-18 Ten Hoff; Harm Intra-luminal ultrasonic instrument
US5479377A (en) * 1994-12-19 1995-12-26 Lum; Paul Membrane-supported electronics for a hydrophone
US6012779A (en) * 1997-02-04 2000-01-11 Lunar Corporation Thin film acoustic array
US20050245824A1 (en) * 2004-04-20 2005-11-03 Acoustic Marketing Research, A Colorado Corporation, D/B/A Sonora Medical Systems, Inc. High-intensity focused-ultrasound hydrophone
DE102005044677A1 (de) * 2005-09-19 2007-03-29 Abb Patent Gmbh Magnetisch-induktiver Durchflussmesser mit einer Erdungsscheibe
DE102006004874A1 (de) * 2006-02-03 2007-08-09 Robert Bosch Gmbh Sensorvorrichtung für Fahrzeuge
US7859171B2 (en) * 2006-10-10 2010-12-28 Micallef Joseph A Piezoelectric ultracapacitor
US7755257B2 (en) * 2007-09-03 2010-07-13 Micallef Joseph A Piezoelectric ultracapacitor
US8569930B2 (en) * 2009-05-11 2013-10-29 Nec Corporation Piezoelectric actuator and audio components
JP6263902B2 (ja) * 2013-08-21 2018-01-24 株式会社村田製作所 超音波発生装置
US9389139B2 (en) * 2014-07-15 2016-07-12 The United States Of America As Represented By The Secretary Of The Army Method for studying the evolution of damage in cylinders subjected to internal radial explosion

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL86434C (de) * 1951-04-27
JPS4936154B1 (de) * 1969-09-09 1974-09-27
US3912830A (en) * 1971-10-13 1975-10-14 Kureha Chemical Ind Co Ltd Method of producing a piezoelectric or pyroelectric element
JPS5147878A (ja) * 1974-10-22 1976-04-23 Tadashi Abe Futonitsuketamishinme
US4048526A (en) * 1975-08-08 1977-09-13 Minnesota Mining And Manufacturing Company Kinetic sensor employing polymeric piezoelectric material
US4079437A (en) * 1976-04-30 1978-03-14 Minnesota Mining And Manufacturing Machine and method for poling films of pyroelectric and piezoelectric material
AT375466B (de) * 1977-07-27 1984-08-10 List Hans Messwertaufnehmer mit einem piezoelektrischen messelement
JPS572196A (en) * 1980-06-04 1982-01-07 Pioneer Electronic Corp Pickup cartridge of movable coil type
US4433400A (en) * 1980-11-24 1984-02-21 The United States Of America As Represented By The Department Of Health And Human Services Acoustically transparent hydrophone probe
JPS58102581A (ja) * 1981-12-14 1983-06-18 Japan Synthetic Rubber Co Ltd 改良された高分子圧電材料の製造法
US4653036A (en) * 1984-10-23 1987-03-24 The United States Of America As Represented By The Department Of Health And Human Services Transducer hydrophone with filled reservoir

Also Published As

Publication number Publication date
US4734611A (en) 1988-03-29
EP0227985A3 (en) 1987-10-21
DE3677921D1 (de) 1991-04-11
EP0227985A2 (de) 1987-07-08
JP2591737B2 (ja) 1997-03-19
JPS62154900A (ja) 1987-07-09

Similar Documents

Publication Publication Date Title
EP0227985B1 (de) Ultraschall-Sensor
US6215231B1 (en) Hollow sphere transducers
US4433400A (en) Acoustically transparent hydrophone probe
DeReggi et al. Piezoelectric polymer probe for ultrasonic applications
US4517665A (en) Acoustically transparent hydrophone probe
DE69401099T2 (de) Mikrorillen für die Entwurf von breitbandiger klinischer Ultraschallwandler
US4653036A (en) Transducer hydrophone with filled reservoir
EP0332916A1 (de) Ultraschall-Sensor
Platte A polyvinylidene fluoride needle hydrophone for ultrasonic applications
US5155708A (en) Acoustic wave sensor and method of making same
EP3538289B1 (de) Ultraschallwandler
DE29509574U1 (de) Schallwandler
EP1731229A1 (de) Ultraschallwandlerantriebsverfahren
EP0267475B1 (de) Ultraschall-Sensor
EP0381796B1 (de) Ultraschall-Sensor
EP0166180B1 (de) Hydrophon
CN107923788A (zh) 用于高频超声的膜水下听音器及其制造方法
EP0472085B1 (de) Ultraschallsensor
DE3149732C2 (de)
DE202007007135U1 (de) Piezoelektrischer Ultraschallwandler
US5724315A (en) Omnidirectional ultrasonic microprobe hydrophone
EP0086531B1 (de) Anordnung zur Untersuchung mit Ultraschall
US5293353A (en) Method for manufacturing an acoustic sensor, and acoustic sensor obtained thereby, having a substantially non-detachable protective layer
CN217726112U (zh) 一种环形超声换能器
DE3718604A1 (de) Ultraschall-sensor mit polymerfolie und elektrolytischer elektrodenankopplung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19871125

17Q First examination report despatched

Effective date: 19900125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3677921

Country of ref document: DE

Date of ref document: 19910411

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931122

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941208

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010219

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208