EP0224764B1 - Axialschub-Ausgleichsvorrichtung für Flüssigkeitspumpe - Google Patents

Axialschub-Ausgleichsvorrichtung für Flüssigkeitspumpe Download PDF

Info

Publication number
EP0224764B1
EP0224764B1 EP86115684A EP86115684A EP0224764B1 EP 0224764 B1 EP0224764 B1 EP 0224764B1 EP 86115684 A EP86115684 A EP 86115684A EP 86115684 A EP86115684 A EP 86115684A EP 0224764 B1 EP0224764 B1 EP 0224764B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
bores
gap
equalizer
equalizer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86115684A
Other languages
English (en)
French (fr)
Other versions
EP0224764A1 (de
Inventor
Johann Guelich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0224764A1 publication Critical patent/EP0224764A1/de
Application granted granted Critical
Publication of EP0224764B1 publication Critical patent/EP0224764B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0416Axial thrust balancing balancing pistons

Definitions

  • the invention relates to an axial thrust compensation device for a liquid pump, which essentially consists of a fixed sleeve and a relief piston rotating in this sleeve and firmly connected to the impeller shaft, and to the use of such an axial thrust compensation device.
  • Such devices are used in liquid pumps, in particular in multi-stage high-performance radial pumps, and have the purpose and the task of neutralizing or reducing large axial thrust forces.
  • the patent specification DE-C 611 232 describes a device for axle thrust relief, in which the working fluid flowing through the gap between the relief piston and the bushing is discharged via drain openings in the bushing and relief holes.
  • the published patent application DE-A 1 940 555 describes an encapsulated centrifugal pump in which an intermediate wall is arranged on both sides of the rotor in the rotor space of the housing.
  • the partition wall and the housing wall form a second channel for the working fluid.
  • the rotor each has a groove which, when the rotor is displaced in the axial direction, changes the flow in the rotor space in such a way that the centering forces acting on the rotor are increased.
  • the construction is self-centering.
  • French patent FR-A 1 276 208 describes a centrifugal pump in which the actual pump wheel lies between unevenly sized pressure surfaces of the axial thrust compensation device.
  • An axial thrust compensation device consists of a rotating pressure compensation or relief piston which is firmly connected to the pump impeller and which runs in a fixed sleeve without contact.
  • the sleeve can be designed as a separate part that is firmly connected to the housing.
  • the relief piston itself can be designed as part of the pump rotor shaft or can be rigidly connected to the rotor shaft as a separate part.
  • the axial thrust compensation device is arranged downstream of the last stage in the direction of the following pump stages.
  • the pressure conditions in the area of the axial thrust compensating device in the liquid are such that, in the operating state, working liquid constantly flows from the impeller side space to and through the gap between the bushing and the relief piston.
  • This liquid is set in rotation in the impeller side space, the intensity of which increases with the flow rate through the gap.
  • the working medium therefore enters the gap with a peripheral component. This rotation of the working fluid can interfere with the maximum performance of the pump by increasing the tendency of the rotor to natural vibrations.
  • the object of the invention is to completely prevent the penetration of liquid on the pump wheel side with pre-rotation into the gap and to supply liquid without pre-rotation to the gap without complex additional devices.
  • the invention as characterized in the claims, solves this problem with the aid of the flowing partial flow from the gap into the impeller side space. Since only pre-rotation-free liquid is fed into the gap via the channels, the rotational movement of the liquid through the gap into the gap space facing away from the pump wheel is reduced, which in turn reduces the tendency of the pump rotor to natural vibrations in the limit load range and thus permits higher pump outputs with the same dimensions of the pump rotor shaft .
  • a device according to the invention has particular advantages for multi-stage, high-speed high-pressure radial pumps such as Boiler feed pumps.
  • the figure shows schematically in section a part of the last two stages of a radial pump with an axial thrust compensation device.
  • the schematic section through the housing and rotor of the last two stages of a radial pump shows the one-part or multi-part, fixed pump housing 1 and the two pump wheels 2, 3, which are rigidly connected to the pump wheel shaft 4.
  • the direction of flow of the liquid in the channels 22, 23 of the pump wheels 2, 3, in the pump wheel adjoining rooms 12, 21, 31 and in the main flow channels 11 is indicated by arrows.
  • the axial thrust compensation device consists of the bush 5, which is fixedly connected to the housing, and the relief piston 6, which is rigidly connected to the rotor shaft 4 and rotates in the bush 5.
  • the sleeve 5 has bores 51, only one of which is shown, which open into an internal groove 52, which in turn opens into the gap 56 between the sleeve 5 and the relief piston 6.
  • the bores in the recess 15 are connected to the wheel side space 31 on the outside of the bush 5.
  • the outer and inner diameter (D 2 , Di) of the sleeve 5 and the outer diameter (Ds) of the relief piston 6 are the flows conditions in this area as shown by the arrows.
  • the embodiment of the invention suitable for a particular type of pump can be determined by a pump specialist without any problems.
  • the groove 52 has the task of uniformly supplying the working fluid to the gap 56 over the circumference of the compensating piston 6 and thus, seen over the circumference, to create pressure conditions which are as balanced as possible. However, it is also conceivable that the groove 52 is completely absent and the bores 51 open directly into the gap 56.
  • the working fluid is supplied to the bores 51 via the recess 15.
  • the recess 15 is missing and the bores 51 are connected directly to the pump wheel side space 31 through lateral bores in the bushing 5 (not shown here) or inclined bores in the housing 1.
  • the rotation of the pump wheel 3 generates a rotating flow of the working fluid in the wheel side space 31 and thus an outward radial pressure gradient.
  • the ratios must now be selected so that in the operating state the radial pressure difference in the side space 31 between the sleeve outer and inner diameter (D 2 , D 1 ) is greater than the pressure loss in the bores 51 and groove 52 with a flow rate (Qi) alone, ie that part of the flow (Q) which flows in the gap 56 towards the end of the gap 56 facing the pump wheel. If this condition is met, a ram flow (Q 2 ) flows from the mouth to the end of the pump impeller end into the impeller side space 31, which at the same time completely prevents the penetration of working fluid with pre-rotation into the gap 56.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf eine Axialschub-Ausgleichsvorrichtung für eine Flüssigkeitspumpe, welche im wesentlichen aus einer feststehenden Büchse und einem in dieser Büchse drehenden, mit der Pumpenradwelle fest verbundenen Entlastungskolben besteht, sowie auf die Verwendung einer derartigen Axialschub-Ausgleichsvorrichtung.
  • Derartige Vorrichtungen werden in Flüssigkeitspumpen, insbesondere in mehrstufigen Hochleistungs-Radialpumpen, eingesetzt und haben den Zweck und die Aufgabe, grosse axiale Schubkräfte zu neutralisieren oder zu mindern.
  • Die Patentschrift DE-C 611 232 beschreibt eine Einrichtung zur Achsschubentlastung, bei welcher die durch den Spalt zwischen Entlastungskolben und Büchse fliessende Arbeitsflüssigkeit über Abflussöffnungen in der Büchse und Entlastungsbohrungen abgeführt werden.
  • Die Offenlegungsschrift DE-A 1 940 555 beschreibt eine gekapselte Zentrifugalpumpe, bei der auf beiden Seiten des Rotors im Rotorraum des Gehäuses eine Zwischenwand angeordnet ist. Zwischenwand und Gehäusewand bilden einen zweiten Kanal für die Arbeitsflüssigkeit. Der Rotor weist je eine Rille auf, die beim Verschieben des Rotors in axialer Richtung, die Strömung im Rotorraum derart verändert, dass die auf den Rotor wirkenden Zentrierkräfte erhöht werden. Die Konstruktion ist selbstzentrierend.
  • Die französische Patentschrift FR-A 1 276 208 beschreibt eine Kreiselpumpe, bei welcher das eigentliche Pumpenrad zwischen ungleichgrossen Druckflächen der Axialschub-Ausgleichsvorrichtung liegen. Um auf die Druckflächen einen möglichst gleichbleibenden Druck auszuüben und damit ein axiales Oszillieren des Pumpenrotors zu vermeiden, wird u.a. vorgeschlagen, in den Lagerbüchsen der ausserhalb der Schubausgleichs-Vorrichtung liegenden Lager radiale Bohrungen anzubringen.
  • Jede dieser Erfindungen löst andere spezifische Aufgaben, aber keine ist dazu geeignet, das Eindringen vorrotierender Arbeitsflüssigkeit in den Spalt zwischen dem Entlastungskolben und der Büchse zu verhindern.
  • Eine Axialschub-Ausgleichsvorrichtung nach dem Oberbegriff des Patentes besteht aus einem mit dem Pumpenlaufrad fest verbundenen, mitdrehenden Druckausgleichs- oder Entlastungskolben, der in einer feststehenden Büchse berührungsfrei läuft. Die Büchse kann als eigener, fest mit dem Gehäuse verbundenen Teil ausgebildet sein. Der Entlastungskolben selbst kann als Teil der Pumpenrotorwelle ausgebildet oder als separater Teil mit der Rotorwelle starr verbunden sein. Die Axialschub-Ausgleichsvorrichtung ist in Richtung der sich folgenden Pumpenstufen der letzten Stufe nachgeordnet.
  • Die Druckverhältnisse im Bereich der Axialschub-Ausgleichsvorrichtung sind in der Flüssigkeit derart, dass im Betriebszustand ständig Arbeitsflüssigkeit vom Pumpenrad-Seitenraum zum und durch den Spalt zwischen Büchse und Entlastungskolben fliesst. Diese Flüssigkeit wird im Pumpenrad-Seitenraum in Rotation versetzt, deren Intensität mit der Durchflussmenge durch den Spalt steigt. Das Arbeitsmedium tritt demnach mit einer Umfangskomponente in den Spalt ein. Diese Rotation des Arbeitsmittels kann die maximale Leistung der Pumpe störend beeinflussen, indem die Neigung des Rotors zu Eigenschwingungen zunimmt.
  • Bisher bekannte Lösungen versuchen die Rotationsbewegung des Arbeitsmittels im Pumpenrad-Seitenraum durch Schikanen wie Rippen, Nuten und ähnliches zu vermindern. Die pumpenradseitig in den Spalt eindringende Flüssigkeit hat aber immer eine, wenn auch verminderte Rotationskomponente, eine sogenannte Vorrotation.
  • Aufgabe der Erfindung ist es, das pumpenradseitige Eindringen von Flüssigkeit mit Vorrotation in den Spalt vollständig zu unterbinden und dem Spalt vorrotationsfreie Flüssigkeit ohne aufwendige Zusatzeinrichtungen zuzuführen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst diese Aufgabe mit Hilfe des fliessenden Teilstromes aus dem Spalt in den Pumpenrad-Seitenraum. Da dem Spalt über die Kanäle nur noch vorrotationsfreie Flüssigkeit zugeführt wird, ist die Rotationsbewegung der Flüssigkeit durch den Spalt in den vom Pumpenrad abgewendete Spaltraum herabgesetzt, was wiederum die Neigung des Pumpenrotors zu Eigenschwingungen im Grenzlastbereich verringert und damit bei gleichen Dimensionen der Pumpenrotorwelle höhere Pumpenleistungen zulässt.
  • Besondere Vorteile bringt eine Vorrichtung nach der Erfindung für mehrstufige, schnellaufende Hochdruck-Radialpumpen wie z.B. Kesselspeisepumpen.
  • Im folgenden wird die Erfindung anhand der Zeichnung eines Ausführungsbeispiels näher erläutert.
  • Die Figur zeigt schematisch im Schnitt einen Teil der letzten zwei Stufen einer Radialpumpe mit einer Axialschub-Ausgleichsvorrichtung.
  • Der schematische Schnitt durch Gehäuse und Rotor der letzten zwei Stufen einer Radialpumpe zeigt das ein- oder mehrteilige, feststehende Pumpengehäuse 1 sowie die beiden Pumpenräder 2, 3, welches starr mit der Pumpenradwelle 4 verbunden sind. Die Strömungsrichtung der Flüssigkeit in den Kanälen 22, 23 der Pumpenräder 2, 3, in den Pumpenrad-Nebenräumen 12, 21, 31 sowie in den Hauptstromkanälen 11 ist mit Pfeilen angezeigt. Die Axialschub-Ausgleichsvorrichtung besteht aus der fest mit dem Gehäuse verbundenen Büchse 5 und dem mit der Rotorwelle 4 starr verbundenen Entlastungskolben 6, der in der Büchse 5 dreht.
  • Die Büchse 5 weist Bohrungen 51 auf, von denen nur eine gezeigt ist, welche in eine Innennute 52 münden, die ihrerseits in den Spalt 56 zwischen Büchse 5 und Entlastungskolben 6 mündet. Auf der Aussenseite der Büchse 5 sind die Bohrungen in unserem Beispiel in der Ausnehmung 15 mit dem Radseitenraum 31 verbunden. Bei entsprechender Dimensionierung und Anordnung der Bohrungen 51 und Nute 52, der Aussen- und Innendurchmesser (D2, Di) der Büchse 5 sowie des Aussendurchmessers (Ds) des Entlastungskolbens 6 sind die Strömungsverhältnisse in diesem Bereich wie mit den Pfeilen eingezeichnet. Die für einen bestimmten Pumpentyp geeignete Ausführung der Erfindung kann von einem Pumpenfachmann problemlos bestimmt werden.
  • Die Wirkungsweise der erfindungsgemässen Anordnung der Kanäle 51 und 52 in der Büchse 5 ist die folgende:
    • Im Betrieb fliesst die Arbeitsflüssigkeit in einem Nebenstrom vom Pumpenrad 32 in den Radseitenraum 31. Beim Fehlen der in unserem Beispiel gezeigten Ausnehmung 15, Kanäle 51 und Nute 52 fliesst die Arbeitsflüssigkeit im Pumpenrad-Seitenraum 31 radial zur pumpenradseitigen Öffnung des Spalts 56 zwischen Büchse 5 und Entlastungskolben 6 der Axialschub-Ausgleichsvorrichtung 5, 6. Die Arbeitsflüssigkeit erfährt dabei im Radseitenraum 31 eine Rotationsbewegung in Drehrichtung des Pumpenrads 3, eine sogenannte Vorrotation. Die Vorrotation wird um so kräftiger, je grösser die Flüssigkeitsmenge, die zum Spalt 56 fliesst, ist.
    • Im gezeigten Beispiel wird nun das Zufliessen von Arbeitsflüssigkeit mit Vorrotation zum pumpenradseitigen Ende des Spaltes 56 dadurch vollständig eliminiert, dass über die Radialbohrungen 51 und Nute 52 vorrotationsfreie Arbeitsflüssigkeit dem Spalt 56 zwischen den beiden Spaltenden zugeführt wird. Ein Teil der durch Bohrungen 51 und Nute 52 strömenden Flüssigkeit (Q2) fliesst über den Spalt 56 in den Pumpenrad-Seitenraum zurück und bewirkt damit eine vollständige Sperrwirkung, so dass keine Flüssigkeit mit Vorrotation in den Spalt 56 eindringen kann. Da es Ziel der Erfindung ist, die Rotation der Flüssigkeit im Spalt 56 zu reduzieren, ist es auch denkbar, dass die Bohrungen 51 nicht Radialbohrungen, sondern gegen die Drehrichtung der Pumpe gerichtet angeordnet sind, womit zusätzlich die im Spalt 56 erfolgende Rotation der Arbeitsflüssigkeit vermindert wird.
  • Die Nute 52 hat die Aufgabe, die Arbeitsflüssigkeit über den Umfang des Ausgleichskolbens 6 dem Spalt 56 gleichmässig zuzuführen und damit über den Umfang gesehen, möglichst ausgeglichene Druckverhältnisse zu schaffen. Es ist aber auch denkbar, dass die Nute 52 vollständig fehlt und die Bohrungen 51 direkt in den Spalt 56 münden.
  • Im Beispiel wird die Arbeitsflüssigkeit den Bohrungen 51 über die Ausnehmung 15 zugeführt. Es ist aber auch denkbar, dass die Ausnehmung 15 fehlt und die Bohrungen 51 direkt durch hier nicht gezeichnete seitliche Bohrung in der Büchse 5 oder Schrägbohrungen im Gehäuse 1 mit dem Pumpenrad-Seitenraum 31 verbunden sind.
  • Die Strömung über Ausnehmung 15, Bohrungen 51 und Nute 52 zum Spalt 56 und teilweise wieder zurück zum pumpenradseitigen Spaltende in den Pumpenrad-Nebenraum 31 kommt wie folgt zustande:
  • Die Rotation des Pumpenrades 3 erzeugt im Radseitenraum 31 eine Rotationsströmung der Arbeitsflüssigkeit und damit einen nach aussen gerichteten radialen Druckgradienten. Die Verhältnisse müssen nun so gewählt werden, dass im Betriebszustand der radiale Druckunterschied im Seitenraum 31 zwischen Büchsenaussen- und Innendurchmesser (D2, D1) grösser ist, als der Druckverlust in den Bohrungen 51 und Nute 52 bei einer Durchflussmenge (Qi) allein, d.h. jenem Teil der Strömung (Q), der im Spalt 56 zu dem Pumpenrad abgekehrten Ende des Spalts 56 fliesst. Wenn diese Bedingung erfüllt ist, fliesst von der Mündung zum pumpenradseitigen Spaltende in den Radseitenraum 31 ein Staustrom (Q2), der gleichzeitig das Eindringen von Arbeitsflüssigkeit mit Vorrotation in den Spalt 56 vollständig verhindert.
  • Günstige Verhältnisse in einer schnellaufenden, mehrstufigen Hochdruckradialpumpe erreicht man beispielsweise, wenn das Verhältnis von Aussenzu Innendurchmesser der Büchse (D2/Di) grösser oder gleich 1,25 ist, und die Summe der Querschnitte der Radialbohrungen 51 mindestens dreimal grösser als der Querschnitt des Spaltes 56 ist, und wenn die Radialbohrungen 51 im Abstand von nur einigen Millimetem, nahe der Stirnfläche 50 angebracht sind.

Claims (10)

1. Axialschub-Ausgleichsvorrichtung (5, 6) für eine Flüssigkeitspumpe, welche im wesentlichen aus einer feststehenden Büchse (5) und einem in dieser Büchse (5) drehenden, mit der Pumpenradwelle fest verbundenen Entlastungskolben (6) besteht, dadurch gekennzeichnet, dass die Büchse (5) Kanäle (51, 52) zum Führen einer in Richtung Entlastungskolben (6) gerichteten Strömung (Q) von Arbeitsflüssigkeit aus dem an die Axialschub-Ausgleichsvorrichtung (5, 6) grenzenden Radseitenraum, (31) aufweist, derart, dass sich in der Mündung (53) der Kanäle (51, 52) in den Spalt (56) zwischen Büchse (5) und Entlastungskolben (6) die Strömung (Q) in zu den beiden Spaltenden gerichtete Strömungen (Qi, Q2) teilt.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kanäle in der Büchse Bohrungen (51) im Büchsenmantel sind, welche gleichmässig über den Umfang der Büchse (5) angeordnet sind.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Kanäle (51) in der Büchse gleichmässig angeordnete Bohrungen im Büchsenmantel (5) und eine Nute (52) sind, wobei die Bohrungen (51) in die Nute (52) münden, die ihrerseits in den Spaltraum (56) mündet.
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Bohrungen (51) im Mantel der Büchse (5) Radialbohrungen sind.
5. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Bohrungen (51) in einem Winkel gegen den Drehsinn der Pumpenradwelle (4) gerichtet sind.
6. Vorrichtung nach einem der vorangehenden Ansprüche 3, 4 oder 5, dadurch gekennzeichnet, dass die Symmetrieachsen der Bohrungen (51) in einer Ebene liegen, die senkrecht zur Achse der Pumpenradwelle (4) steht und die Nute einer Umfangsnute (52) ist
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Quotient von äusserem und innerem Durchmesser der Büchse (Di/D2) grösser oder gleich 1,25 und das Verhältnis der Summe der Bohrungsquerschnitte zum Spaltquerschnitt grösser oder gleich 3 ist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Büchse (5) 24 gleichmässig über den Büchsenumfang im Radialwinkelabstand von 15° angeordnete Radialbohrungen (51) aufweist.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Kanäle (51, 52) in der Nähe der pumpenradseitigen Stirnfläche (50) der Büchse (5) angeordnet sind.
10. Verwendung einer Axialschub-Ausgleichsvorrichtung nach einem der Ansprüche 1 bis 9 in einer mehrstufigen, schnellaufenden Flüssigkeits-Hochdruckradialpumpe.
EP86115684A 1985-11-27 1986-11-12 Axialschub-Ausgleichsvorrichtung für Flüssigkeitspumpe Expired EP0224764B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH5066/85 1985-11-27
CH5066/85A CH669241A5 (de) 1985-11-27 1985-11-27 Axialschub-ausgleichsvorrichtung fuer fluessigkeitspumpe.

Publications (2)

Publication Number Publication Date
EP0224764A1 EP0224764A1 (de) 1987-06-10
EP0224764B1 true EP0224764B1 (de) 1989-05-03

Family

ID=4287365

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86115684A Expired EP0224764B1 (de) 1985-11-27 1986-11-12 Axialschub-Ausgleichsvorrichtung für Flüssigkeitspumpe

Country Status (5)

Country Link
US (1) US4892459A (de)
EP (1) EP0224764B1 (de)
CH (1) CH669241A5 (de)
DE (1) DE3663165D1 (de)
FI (1) FI93259C (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104284A (en) * 1990-12-17 1992-04-14 Dresser-Rand Company Thrust compensating apparatus
FR2687429B1 (fr) * 1992-02-17 1994-04-01 Gec Alsthom Sa Procede et dispositif pour supprimer l'instabilite d'une turbine a vapeur.
DE4313455A1 (de) * 1993-04-24 1994-10-27 Klein Schanzlin & Becker Ag Radialer Spalt, beispielsweise einer Strömungsmaschine
DE29500744U1 (de) * 1995-01-18 1996-05-15 Sihi Ind Consult Gmbh Strömungsmaschine mit Entlastungskolben
US6012898A (en) * 1996-06-07 2000-01-11 Ebara Corporation Submerged motor pump
JPH09324791A (ja) * 1996-06-07 1997-12-16 Ebara Corp サブマージドモータポンプ
US6129507A (en) 1999-04-30 2000-10-10 Technology Commercialization Corporation Method and device for reducing axial thrust in rotary machines and a centrifugal pump using same
JP4281614B2 (ja) * 2004-05-10 2009-06-17 株式会社日立プラントテクノロジー ポンプ装置
US7794199B2 (en) * 2005-05-24 2010-09-14 Franklin Electric Co., Inc. Bypass system for purging air from a submersible pump
US20090004032A1 (en) * 2007-03-29 2009-01-01 Ebara International Corporation Deswirl mechanisms and roller bearings in an axial thrust equalization mechanism for liquid cryogenic turbomachinery
EP2154332A1 (de) * 2008-08-14 2010-02-17 Siemens Aktiengesellschaft Verminderung der thermischen Belastung eines Aussengehäuses für eine Strömungsmaschine
WO2010121255A1 (en) 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
MX2012000059A (es) 2009-06-22 2012-06-01 Echogen Power Systems Inc Sistema y metodo para manejar problemas termicos en uno o mas procesos industriales.
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
RU2451920C1 (ru) * 2010-11-23 2012-05-27 Открытое акционерное общество Научно-производственное объединение "Искра" Экспериментальная установка для исследования модельных ступеней центробежных компрессоров
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
BR112015003646A2 (pt) 2012-08-20 2017-07-04 Echogen Power Systems Llc circuito de fluido de trabalho supercrítico com uma bomba de turbo e uma bomba de arranque em séries de configuração
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
WO2014117074A1 (en) 2013-01-28 2014-07-31 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
AU2014225990B2 (en) 2013-03-04 2018-07-26 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
EP3121450B1 (de) * 2015-07-23 2020-09-02 Sulzer Management AG Pumpe zum fördern eines fluids mit variierender viskosität
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11549512B2 (en) 2018-09-27 2023-01-10 KSB SE & Co. KGaA Multistage pump with axial thrust optimization
EP3896288A1 (de) * 2020-04-16 2021-10-20 Sulzer Management AG Zentrifugalpumpe zum fördern eines fluids
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
CA3201373A1 (en) 2020-12-09 2022-06-16 Timothy Held Three reservoir electric thermal energy storage system
KR102567992B1 (ko) * 2021-08-09 2023-08-18 터보윈 주식회사 베어링마모요인추력저감보정부가 적용된 공기 압축 수단

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE390366C (de) * 1924-02-18 Paul Joseph Charles Marechal Entlastungsvorrichtung an Turbomaschinen
DE539225C (de) * 1931-11-26 Georg Weyland Axialschubentlastung mittels stufenfoermiger Entlastungsscheiben
DE611232C (de) * 1935-03-25 Klein Einrichtung zur Achsschubentlastung an Kreiselpumpen
DE407077C (de) * 1920-11-06 1924-12-10 Paul Joseph Charles Marechal Entlastungsvorrichtung fuer Turbinen
US2410769A (en) * 1941-05-07 1946-11-05 Vickers Electrical Co Ltd Turbine, turbine type compressor, and the like rotating machine
DE922807C (de) * 1945-03-06 1955-01-24 Aeg Einrichtung zum Ausgleich des Axialschubes mehrstufiger Kreiselpumpen
DE1147120B (de) * 1959-10-28 1963-04-11 Siemens Ag Einrichtung zum Ausgleich des Axialschubes bei einer unter Fluessigkeit arbeitenden Kreiselpumpe
FR1276208A (fr) * 1960-12-14 1961-11-17 Pompe sans bourrage ni presse-étoupe avec passage du liquide par une section intérieure du palier d'entrée
US3280750A (en) * 1964-09-17 1966-10-25 Crane Co Motor driven pump
US3393947A (en) * 1966-04-13 1968-07-23 United Aircraft Corp Two-directional axial thrust balancer
US3565543A (en) * 1969-04-02 1971-02-23 United Aircraft Corp Pressure balanced starter rotor
DE1940555C3 (de) * 1969-08-08 1975-11-27 Spezialnoje Konstruktorskoje Bjuro Po Projektirowaniju Germetitscheskich Elektronasosow I Elektrodwigateljej, Kisinew (Sowjetunion) Stopfbuchslose Zentrifugalpumpe
US3614255A (en) * 1969-11-13 1971-10-19 Gen Electric Thrust balancing arrangement for steam turbine
US3671137A (en) * 1970-06-22 1972-06-20 Borg Warner Centrifugal pump with hydrostatic bearing
DE2413655C3 (de) * 1974-03-21 1978-05-03 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Einrichtung zum dynamischen Stabilisieren des Läufers einer Gas- oder Dampfturbine
US4121839A (en) * 1976-08-18 1978-10-24 Mitsui Toatsu Chemicals, Inc. Sealing system for use in composite multi-stage pump
US4170435A (en) * 1977-10-14 1979-10-09 Swearingen Judson S Thrust controlled rotary apparatus
DE2757952C2 (de) * 1977-12-24 1983-02-24 Sihi Gmbh & Co Kg, 2210 Itzehoe Selbstansaugende Kreiselpumpe
JPS5872693A (ja) * 1981-10-28 1983-04-30 Hitachi Ltd 軸推力平衡装置

Also Published As

Publication number Publication date
EP0224764A1 (de) 1987-06-10
CH669241A5 (de) 1989-02-28
US4892459A (en) 1990-01-09
DE3663165D1 (en) 1989-06-08
FI864381A (fi) 1987-05-28
FI93259C (fi) 1995-03-10
FI93259B (fi) 1994-11-30
FI864381A0 (fi) 1986-10-28

Similar Documents

Publication Publication Date Title
EP0224764B1 (de) Axialschub-Ausgleichsvorrichtung für Flüssigkeitspumpe
DE69004975T2 (de) Pumpenlaufrad.
EP0750720B1 (de) Strömungsmaschine mit entlastungskolben
DE3231171C1 (de) Sperrfluessigkeitsdichtung
DE6608771U (de) Lager fuer schnell umlaufende maschinen, vorzugsweise turbolader.
DE112006001186T5 (de) Verbesserte Flügelpumpe
WO1998017916A1 (de) Förderpumpe
DE4200687A1 (de) Radiallager
DE2533804B2 (de) Lager fuer den rotor einer oe-spinnmaschine
DE19850920A1 (de) Radialkolbenpumpe
WO2002081913A2 (de) Hydraulisches pumpenaggregat
DE10238415B4 (de) Gleitlager für eine Welle eines Abgasturboladers
DE2539425C2 (de)
DE102009007696A1 (de) Lageranordnung
DE1728310A1 (de) Druckmitteluebertragungseinrichtung
EP0461131B1 (de) Axialschubentlastungseinrichtung
DE102017106942A1 (de) Hydrodynamische Kupplung
DE29822717U1 (de) Kreiselpumpe, insbesondere zum Pumpen eines Kühlmittels in einem Kühlmittelkreislauf
DE2117766A1 (de) Hochdruckkreiselpumpe
DE1528717B2 (de) Vorrichtung zum ausgleich des axialschubes bei mehrstufigen kreiselpumpen
DE19621773A1 (de) Außendruckluftlagerspindel
DE102016124283A1 (de) Hydrodynamische Kupplung
DE2633481A1 (de) Radialgleitlager fuer die welle schnell laufender maschinen, insbesondere fuer abgasturbolader
DE1528615A1 (de) Hydrostatische Radialkolbeneinheit
DE3007188A1 (de) Drehkammer-pumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870613

17Q First examination report despatched

Effective date: 19880315

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3663165

Country of ref document: DE

Date of ref document: 19890608

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 86115684.2

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051110

Year of fee payment: 20

Ref country code: DE

Payment date: 20051110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051114

Year of fee payment: 20

Ref country code: SE

Payment date: 20051114

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20051122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051216

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20061112

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20061112

EUG Se: european patent has lapsed
BE20 Be: patent expired

Owner name: *GEBRUDER SULZER A.G.

Effective date: 20061112