EP0212567A2 - Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer - Google Patents

Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer Download PDF

Info

Publication number
EP0212567A2
EP0212567A2 EP86111215A EP86111215A EP0212567A2 EP 0212567 A2 EP0212567 A2 EP 0212567A2 EP 86111215 A EP86111215 A EP 86111215A EP 86111215 A EP86111215 A EP 86111215A EP 0212567 A2 EP0212567 A2 EP 0212567A2
Authority
EP
European Patent Office
Prior art keywords
turbine wheel
gas
oxidant
fuel gas
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86111215A
Other languages
English (en)
French (fr)
Other versions
EP0212567B1 (de
EP0212567A3 (en
Inventor
Bernhard Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PE Manufacturing GmbH
Original Assignee
Bodenseewerk Perkin Elmer and Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Perkin Elmer and Co GmbH filed Critical Bodenseewerk Perkin Elmer and Co GmbH
Publication of EP0212567A2 publication Critical patent/EP0212567A2/de
Publication of EP0212567A3 publication Critical patent/EP0212567A3/de
Application granted granted Critical
Publication of EP0212567B1 publication Critical patent/EP0212567B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/10Mixing gases with gases
    • B01F23/19Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/16Spectrometer burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2514Self-proportioning flow systems
    • Y10T137/2521Flow comparison or differential response
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2514Self-proportioning flow systems
    • Y10T137/2521Flow comparison or differential response
    • Y10T137/2529With electrical controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2496Self-proportioning or correlating systems
    • Y10T137/2559Self-controlled branched flow systems
    • Y10T137/2564Plural inflows
    • Y10T137/2567Alternate or successive inflows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7822Reactor surface closes chamber
    • Y10T137/7823Valve head in inlet chamber
    • Y10T137/7825Rectilinear valve stem rigid with reactor surface

Definitions

  • a line-emitting light source emits a light bundle that contains the resonance spectral lines of a sought element.
  • This beam of light passes through a flame burning on a burner and falls on a photoelectric detector.
  • a liquid sample to be examined is sprayed into the flame by means of an atomizer, so that the sample is atomized by the flame and the elements contained in the sample are present in the flame in atomic form.
  • the then weakening of the light beam in the flame provides a measure of the proportion of the element sought in the sample.
  • the burner is fired with a fuel gas, e.g. Acetylene, and air operated as an oxidant.
  • nitrous oxide N 2 O
  • Nitrous oxide has a higher oxygen content than air.
  • the supply of fuel gas is increased in order to maintain the correct stoichiometric ratio between fuel gas and oxidant.
  • the gas control device mentioned at the outset is provided, which ensures the setting of the gas flows to the burner and the keeping of these gas flows constant.
  • a fixed throttle is provided and the pressure is changed to adjust the gas flow.
  • the flow of the fuel gas when switching to a second oxidant with a higher oxygen content, for example laughing gas can be increased in a defined manner via the servomotor and the setpoint of the pressure regulator.
  • DE-OS 28 33 553 discloses a gas control device for controlling the supply of fuel gas to a burner in an atomic absorption spectrometer, in which a digital value supplied by a control unit is converted into an electrical voltage by a D / A converter. This voltage is applied to a voltage-pressure converter, which converts it into a proportional pressure. The voltage-pressure converter in turn acts on a “volume booster” (not described in more detail) which is arranged in the fuel gas line downstream of a fixed pressure regulator. There is no flow measurement and feedback there.
  • DE-OS 30 05 784 shows a gas control device for controlling the fuel gas and oxidant supply to a burner in an atomic absorption spectrometer, in which the pressure of the oxidant is regulated by a fixed pressure regulator and the pressure regulator is followed by a flow regulator.
  • This flow regulator contains a fixed throttle and a needle valve downstream of it. The pressure drop across the fixed throttle is converted into an electrical signal by means of a differential pressure converter. Depending on this signal, the needle valve can be adjusted, possibly automatically via a servomotor.
  • a corresponding flow regulator is provided for the fuel gas.
  • DE-OS 25 52 890 shows a turbine wheel flow meter with a turbine wheel which carries at least one magnet which excites a magnetic field probe for generating output pulses with each revolution of the rotor.
  • the magnetic field probe contains a Hall sensor.
  • the invention has for its object to design a gas control device of the type mentioned with simple and inexpensive means so that the gas flows can be adjusted reproducibly.
  • the pressure regulator is set to such a pressure that the desired gas flow reproducibly flows through the fixed throttle.
  • a turbine wheel flow meter is used as a measuring device for the flow velocity, which gives direct digital signals to the control unit. It is not a variable throttle in the form of a - complex - needle valve adjusted but the setpoint of a pressure regulator arranged upstream of a fixed throttle. Compared to DE-OS 30 05 784, very complex electronic components in the form of the differential pressure converter and an A / D converter connected downstream of it are avoided.
  • the construction according to the invention thus creates a device which is inexpensive in comparison with previously known gas control devices and which nonetheless permits a reproducible setting of predetermined flow rates.
  • the gas control device contains a first connection 10, to which a first oxidant in the form of compressed air can be connected, a second connection 12, which can be connected to a source of laughing gas as the second oxidant.
  • a third connection 14 can be connected to a source of fuel gas, preferably acetylene.
  • a pressure sensor 16, 18 and 20 is connected to each of the three connections 10, 12 and 14. The pressure sensors 16, 18, 20 signal whether gas pressure is present at the connection in question. These signals are connected to a control unit 28 via signal lines 22, 24 or 26.
  • the control unit 28 is a microprocessor-controlled electronics according to the main patent bib (patent application P 34 07 552.6).
  • the first connection 10 is followed by a shut-off valve 30 designed as a solenoid valve, which is controlled by the control unit 28 via a control line 32 and is shut off in the de-energized state.
  • a shut-off valve 30 designed as a solenoid valve, which is controlled by the control unit 28 via a control line 32 and is shut off in the de-energized state.
  • a 3/2-way valve 34 is designed as a solenoid valve and is also controlled by the control unit 28 via a control line 36.
  • the 2/3 directional valve 34 connects the first connection 10 and the shut-off valve 30 connected downstream thereof to a line 38, while the second connection 12 is closed.
  • the 3/2-way valve 34 Connects in its second switching position the 3/2-way valve 34 the second port 12 with the line 38, while the connection to the shut-off valve 30 and the first port 10 is shut off.
  • the 3/2-way valve In the de-energized state, the 3/2-way valve is in its first switching position, which is shown in Fig. 1.
  • Von.der 38 leads a branch line 39 via a pressure regulator 37 to an atomizer.
  • a storage volume 41 is connected between the shut-off valve 30 and the 3/2-way valve 34.
  • the line 38 leads to a pressure regulator 40.
  • the output of the pressure regulator 40 is connected via a fixed throttle 44 to an oxidant connection of the burner.
  • the pressure regulator 40 is a conventional pressure reducing valve, the setpoint of which can be changed via an adjusting spindle.
  • the adjusting spindle can be adjusted by an actuator 46.
  • the servomotor 46 or suitable tapping means give position signals to the control unit 28.
  • the servomotor 46 is accordingly controlled by the control unit 28. This is represented by a line 48.
  • the third connection 14 is followed by a shut-off valve 50 designed as a solenoid valve.
  • the shut-off valve is controlled by the control unit 28 via a line 52.
  • the third connection 14 is connected to a pressure regulator 54 via the shut-off valve 50.
  • the pressure regulator 54 is also a conventional pressure reducing valve like the pressure regulator 40.
  • An adjusting spindle of the pressure regulator 54 for adjusting the setpoint is adjustable by means of a servomotor 56.
  • the servomotor 56 or suitable tapping means give position signals to the control unit 28.
  • the servomotor 56 is accordingly controlled by the control unit 28.
  • the exit of the Pressure regulator 54 is connected to a fuel gas connection of the burner via a fixed throttle 58.
  • the pressure regulator 37 in the branch line 39 is followed by a flow meter 43 via a throttle 37, the signal line 43 'of which is connected to the control unit 28.
  • a flow meter 45 whose signal line 45 ′ is connected to the control unit 28, is connected downstream of the pressure regulator 40 via the throttle 44.
  • a flow meter 59 whose signal line 59 'is connected to the control unit 28, is connected downstream of the pressure regulator 54 via throttle 58.
  • Each flow meter 43, 45, 59 is constructed in the manner shown in FIGS. 2a, b.
  • a turbine wheel 49 with vanes 51 is rotatably mounted in bearings 53 in a housing 47 which is closed on all sides.
  • a gas inlet 55 is designed like a nozzle and is oriented tangentially to the vanes 51 of the turbine wheel 49.
  • a gas outlet 57 of the housing 47 is connected to the line leading to the atomizer, the oxidant connection or the fuel gas connection of the burner.
  • Each flow meter 43, 45, 49 contains means for interacting with the turbine wheel 49 for generating signals for indicating the gas flow.
  • the turbine wheel 49 is provided with two diametrically opposite magnets 61 which can be embedded, for example, in the plastic from which the turbine wheel 49 is made.
  • a Hall sensor 63 is arranged in the housing 47 in the area of action of the magnets 61. which is connected to the respective signal line 43 ', 45' or 59 '.
  • an output signal is generated at the Hall sensor 63 when one of the magnets 61 arranged on the turbine wheel 49 passes the Hall sensor 63.
  • the frequency of these output signals is dependent on the rotational speed of the turbine wheel 49 and thus on the flow speed of the gas that strikes the turbine wheel 49 through the gas inlet 55.
  • the occurrence of these output signals can be used in various ways to determine the flow velocity of the gas. For example, the time between the occurrence of two successive output signals can be determined.
  • K and m parameters that are determined empirically for the different arrangements. The value of these parameters depends, for example, on the structure of the gas inlet 55 in the housing 47, on the structure of the housing 47 and on the shape of the turbine wheel 49. These parameters, especially K, are also dependent on the type and composition of the gas flowing through the housing 47 and that Turbine wheel 49 drives. However, the parameters can be determined with high accuracy for each arrangement and each gas, so that the gas flows of the specified type can be measured with great accuracy and reproducibly adjusted via the control unit 28 and the pressure regulator 37, 40, 54.
  • magnets 61 and the Hall sensor 63 which represent particularly simple and easy-to-implement signal-generating means
  • other, preferably non-contact, signal-generating means can also be used, which enable the rotational speed of the turbine wheel 47 to be determined.
  • the output signals of the Hall sensors 63 input into the control unit 28 are processed in the control unit 28, i.e. for certain circumstances, e.g. Air or nitrous oxide compared as an oxidant, stored or specified target values.
  • the respective controllers 37, 40, 54 are adjusted via the associated servomotors 37 ', 46 and 56.
  • the program steps required for this can easily be incorporated into the programming of the control unit 28 and do not require any further explanation at this point.
  • FIG. 3 An advantageous arrangement of the flow meters is shown schematically in FIG. 3.
  • the housings 47 of the three flow meters 43, 45 and 59 are arranged together to form a block 69 which is directly connected to the pressure regulators 37, 40, and 54.
  • the gas inlets 55 of the individual housings 47 in the block 69 are formed by flow restrictors in the manner of the flow restrictors 44 and 58.
  • the gas outlets 57 are arranged, to which the lines to the atomizer, the oxidant connection and the fuel gas connection of the burner are connected directly.
  • the housing 47 as a whole or its parts in the region of the turbine wheel 49 can consist of a non-magnetic metal.
  • the turbine wheel 49 is braked by eddy currents which are caused by the rotation of the turbine wheel. This has the advantage that the service life of the device is increased and the frequency of the signals generated by the Hall sensor 63 is kept low, which increases the measuring accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Volume Flow (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Fluid Pressure (AREA)
  • Flow Control (AREA)

Abstract

Die Gasregeleinrichtung enthält in den Zuleitungen zum Zerstäuber, Oxidansanschluß und Brenngasanschluß des Brenners je einen Druckregler (35,40,54) und je einen, dem Druckregler nachgeschalteten Strömungsmesser (43,45,59). Die Strömungsmesser enthalten ein Turbinenrad (49), das von dem durchströmenden Gas beaufschlagt ist und durch dessen Drehung von der Drehgeschwindigkeit und damit von der Gasströmung abhängige Ausgangssignale erzeugt werden. Diese Ausgangssignale werden in die Steuereinheit (28) eingegeben, und die Stellmotore (37',46,56) der Druckregler (37,40,54) werden reproduzierbar auf bestimmte Gasströmungen eingestellt.

Description

  • Die Erfindung betrifft eine Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer, ent­haltend
    • (a) je eine Drossel für Brenngas und Oxidans und
    • (b) je einen der Drossel vorgeschalteten Druck­regler für Brenngas und Oxidans,
    bei welcher
    • (c) die Drosseln für Brenngas und Oxidans feste Durchflußquerschnitte haben,
    • (d) die Sollwerte der Druckregler durch je einen Stellmotor reproduzierbar einstellbar sind und
    • (e) eine Steuereinheit mit einer mikroprozessorge­steuerten Elektronik vorgesehen ist, durch welche die Stellmotore in reproduzierbarer Weise steuerbar sind.
  • Bei einem Atomabsorptions-Spektrometer sendet eine linienemittierende Lichtquelle ein Lichtbündel aus, das die Resonanzspektrallinien eines gesuchten Elements enthält. Dieses Lichtbündel durchsetzt eine auf einem Brenner brennende Flamme und fällt auf einen photoelektrischen Detektor. In die Flamme wird mittels eines Zerstäubers eine zu untersuchen­de flüssige Probe eingesprüht, so daß die Probe durch die Flamme atomisiert wird und die in der Probe enthaltenen Elemente in der Flamme in ato­marer Form vorliegen. Die dann auftretende Schwächung des Lichtbündels in der Flamme liefert ein Maß für den Anteil des gesuchten Elements in der Probe. Der Brenner wird dabei mit einem Brenn­gas, z.B. Azetylen, und Luft als Oxidans betrieben. Es ist auch bekannt, dem Brenner statt Luft Lachgas (N ₂ O) als Oxidans zuzuführen, um eine heißere Flamme zu erhalten. Lachgas hat einen höheren Sauerstoffanteil als Luft. Bei Verwendung von Lach­gas wird die Zufuhr von Brenngas erhöht, um das richtige stöchiometrische Verhältnis zwischen Brenngas und Oxidans einzuhalten.
  • Um reproduzierbare Verhältnisse zu erhalten, ist die eingangs erwähnte Gasregeleinrichtung vorge­sehen, welche die Einstellung der Gasströmungen zum Brenner und die Konstanthaltung dieser Gasströmun­gen gewährleistet. Bei dieser Gasregeleinrichtung ist eine fest eingestellte Drossel vorgesehen und zur Einstellung der Gasströmung wird der Druck verändert. Insbesondere kann so die Strömung des Brenngases bei der Umschaltung auf ein zweites Oxidans mit höherem Sauerstoffanteil, z.B. Lachgas, über den Stellmotor und den Sollwert des Druckreg­lers in definierter Weise erhöht werden.
  • Es hat sich gezeigt, daß eine solche Gasregelein­richtung zwar optimal steuerbar ist, aber eine bestimmte Einstellung bei einer Verstellung der Zerstäuberdüse oder einer Änderung des Vordrucks nicht leicht reproduziert werden kann.
  • Durch die DE-OS 28 33 553 ist eine Gasregelein­richtung zur Regelung der Brenngaszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer bekannt, bei welcher ein von einem Steuergerät gelieferter Digitalwert von einem D/A-Wandler in eine elektrische Spannung umgesetzt wird. Diese Spannung wird auf einen Spannungs-Druck-Wandler gegeben und von diesem in einen proportionalen Druck umgesetzt. Der Spannungs-Druck-Wandler beaufschlagt wiederum einen nicht näher beschrie­benen "Volumenbooster", der in der Brenngasleitung stromab von einem fest eingestellten Druckregler angeordnet ist. Eine Strömungsmessung und Rückfüh­rung erfolgt dort nicht.
  • Die DE-OS 30 05 784 zeigt eine Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektro­meter, bei welcher der Druck des Oxidans durch einen fest eingestellten Druckregler geregelt wird und dem Druckregler ein Strömungsregler nachge­schaltet ist. Dieser Strömungsregler enthält eine feste Drossel und stromab von dieser ein Nadelven­til. Der Druckabfall an der festen Drossel wird mittels eines Differenzdruckwandlers in ein elektrisches Signal umgesetzt. In Abhängigkeit von diesem Signal ist das Nadelventil, ggf. automatisch über einen Stellmotor, verstellbar. Ein ent­sprechender Strömungsregler ist für das Brenngas vorgesehen.
  • Die Firmendruckschrift der Firma Carl Zeiss, Ober­kochen/Württ. "Flammenzusatz zum Spektralphotometer PMQ II und Registrierenden Spektralphotometer RPQ 20A" zeigt eine Gasregelvorrichtung mit Fein­druckreglern für Brenngas und Oxidans und einer auswechselbaren Drosseldüse in der Brenngasleitung.
  • Die DE-OS 25 52 890 zeigt einen Turbinenrad-Strö­mungsmesser mit einem Turbinenrad, das mindestens einen Magneten trägt, der bei jeder Umdrehung des Rotors eine Magnetfeldsonde zur Erzeugung von Aus­gangsimpulsen erregt. Die Magnetfeldsonde enthält einen Hall-Sensor.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Gasregelvorrichtung der eingangs genannten Art mit einfachen und preisgüngstigen Mitteln so auszubilden, daß sich die Gasströmungen reproduzierbar einstellen lassen.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß
    • (f) jedem Druckregler ein Turbinenrad-Strömungs­messer nachgeschaltet ist,
    • (g) an dem Turbinenrad-Strömungsmesser signaler­zeugende Mittel vorgesehen sind, die mit dem Turbinenrad zur Erzeugung von Ausgangsimpulsen zusammenwirken, deren Frequenz der Drehzahl des Turbinenrades proportional ist,
    • (h) die Ausgangsimpulse auf die Steuereinheit zur Bildung eines digitalen Strömungsgeschwindig­keitssignals aufgeschaltet sind und
    • (i) die Sollwerte der Druckregler über die von der Steuereinheit ansteuerbaren Stellmotore im Sinne der Einhaltung vorgegebener Strömungs­geschwindigkeits-Sollwerte veränderbar sind.
  • Auf diese Weise erfolgt eine Rückmeldung über die tatächliche Gasströmung an die Steuereinheit. Der Druckregler wird jeweils auf einen solchen Druck eingestellt, daß durch die feste Drossel reprodu­zierbar die gewünschte Gasströmung fließt.
  • Damit wird die gewünschte Reproduzierbarkeit in der Einstellung der Gasströmungen für alle Betriebsbe­dingungen der Gasregeleinrichtung erreicht und zwar unabhängig von z.B. Neujustierungen des Zerstäubers und Änderungen des an dem Druckregler anliegenden Vordrucks.
  • Im Gegensatz zu der DE-OS 28 33 553 erfolgt bei der erfindungsgemäßen Anordnung eine Strömungsmessung und eine Rückführung des Strömungsmeßwertes zu einem Steuergerät. Ebenfalls im Gegensatz zu der DE-OS 28 33 553 wird die Strömung
    dadurch geregelt, daß der Sollwert eines vor einer festen Drossel angeordneten Druckreglers veränderbar ist. Diese Veränderung des Sollwertes des Druckreglers erfolgt in Abhängigkeit von dem rückgeführten Strömungsmeßwert. Aufwendige D/A-Wandler, Spannungs-Druck-Wandler und Volumen­booster sind entbehrlich.
  • Im Gegensatz zu der DE-OS 30 05 784 wird als Meßgeber für die Strömungsgeschwindigkeit ein Turbinenrad-Strömungsmesser benutzt, der unmittel­bar digitale Signale an die Steuereinheit gibt. Es wird nicht eine variable Drossel in Form eines - aufwendigen - Nadelventils verstellt sondern der Sollwert eines stromauf von einer festen Drossel angeordneten Druckreglers. Auch im Vergleich zu der DE-OS 30 05 784 werden sehr aufwendige elektro­nische Bauteile in Form des Differenzdruckwandlers und eines diesem nachgeschalteten A/D-Wandlers vermieden.
  • Durch die erfindungsgemäße Konstruktion wird somit eine im Vergleich zu vorbekannten Gasregelein­richtungen preisgünstiges Gerät geschaffen, das nichtsdestoweniger eine reproduzierbare Einstellung von vorgegebenen Strömungsmengen gestattet.
  • Weitere Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Ein Ausführungsbeispiel der Erfindung ist in den Abbildungen dargestellt und wird nachfolgend anhand der Bezugszeichen im einzelnen erläutert und be­schrieben. Es zeigen
    • Fig. 1 ein Blockschaltbild der erfindungsge­mäßen Gasregeleinrichtung.
    • Fig. 2a,b einen Längsschnitt bzw. Querschnitt durch einen Strömungsmesser in der Gas­regeleinrichtung nach Fig. 1; und
    • Fig. 3 eine schematische Darstellung der Anord­nung der Strömungsmesser nach Fig. 2 in der Gasregeleinrichtung nach Fig. 1.
  • Die Gasregeleinrichtung enthält nach dem Blockschalt­bild von Fig. 1 einen ersten Anschluß 10, an welchen ein erstes Oxidans in Form von Druckluft anschließbar ist, einen zweiten Anschluß 12, der mit einer Quelle von Lachgas als zweitem Oxidans verbindbar ist. Ein dritter Anschluß 14 ist mit einer Quelle von Brenn­gas, vorzugsweise von Acetylen, verbindbar. An jeden der drei Anschlüsse 10, 12 und 14 ist ein Drucksensor 16, 18 bzw. 20 angeschlossen. Die Drucksensoren 16, 18, 20 signalisieren, ob Gasdruck an dem betreffenden Anschluß ansteht. Diese Signale sind über Signallei­tungen 22, 24 bzw. 26 auf eine Steuereinheit 28 ge­schaltet. Die Steuereinheit 28 ist eine mikroprozessor­gesteuerte Elektronik entsprechend dem Hauptpatent ..... (Patentanmeldung P 34 07 552.6).
  • Dem ersten Anschluß 10 ist ein als Magnetventil ausge­bildetes Absperrventil 30 nachgeschaltet, das über eine Steuerleitung 32 von der Steuereinheit 28 gesteuert und im stromlosen Zustand abgesperrt ist.
  • Ein 3/2-Wegeventil 34 ist als Magnetventil ausgebildet und über eine Steuerleitung 36 ebenfalls von der Steuer­einheit 28 gesteuert. Das 2/3-Wegeventil 34 verbindet in seiner ersten Schaltstellung den ersten Anschluß 10 und das diesem nachgeschaltete Absperrventil 30 mit einer Leitung 38, während der zweite Anschluß 12 abge­sperrt ist. In seiner zweiten Schaltstellung verbindet das 3/2-Wegeventil 34 den zweiten Anschluß 12 mit der Leitung 38, während die Verbindung zu dem Absperrventil 30 und dem ersten Anschluß 10 abgesperrt ist. Im strom­losen Zustand befindet sich das 3/2-Wegeventil in seiner ersten Schaltstellung, die in Fig. 1 dargestellt ist.
  • Von.der Leitung 38 führt eine Zweigleitung 39 über einen Druckregler 37 zu einem Zerstäuber. Zwischen dem Absperrventil 30 und dem 3/2-Wegeventil 34 ist ein Speichervolumen 41 angeschlossen.
  • Die Leitung 38 führt zu einem Druckregler 40. Der Aus­gang des Druckreglers 40 ist über eine fest Drossel 44 mit einem Oxidansanschluß des Brenners verbunden. Der Druckregler 40 ist ein übliches Druckmindererventil, dessen Sollwert über eine Stellspindel veränderbar ist. Die Stellspindel ist durch einen Stellmotor 46 verstell­bar. Der Stellmotor 46 oder geeignete Abgriffmittel geben Stellungssignale an die Steuereinheit 28. Der Stellmotor 46 wird dementsprechend von der Steuer­einheit 28 gesteuert. Das ist durch eine Leitung 48 dargestellt.
  • Dem dritten Anschluß 14 ist ein als Magnetventil ausge­bildetes Absperrventil 50 nachgeschaltet. Das Absperr­ventil wird über eine Leitung 52 von der Steuereinheit 28 gesteuert. Über das Absperrventil 50 ist der dritte Anschluß 14 mit einem Druckregler 54 verbunden. Der Druckregler 54 ist ebenfalls ein übliches Druckminderer­ventil wie der Druckregler 40. Eine Stellspindel des Druckreglers 54 zur Verstellung des Sollwerts ist durch einen Stellmotor 56 verstellbar. Der Stellmotor 56 oder geeignete Abgriffmittel geben Stellungssignale an die Steuereinheit 28. Der Stellmotor 56 wird dementsprechend von der Steuereinheit 28 gesteuert. Der Ausgang des Druckreglers 54 ist über eine feste Drossel 58 mit einem Brenngasanschluß des Brenners verbunden.
  • Dem Druckregler 37 in der Zweigleitung 39 ist über eine Drossel 37 ein Strömungsmesser 43 nachgeschaltet, dessen Signal­leitung 43' an die Steuereinheit 28 angeschlossen ist. Dem Druckregler 40 ist über die Drossel 44 ein Strömungsmesser 45 nachgeschaltet, dessen Signalleitung 45' an die Steuereinheit 28 angeschlossen ist. Dem Druckregler 54 ist über Drossel 58 ein Strömungsmesser 59 nachgeschaltet, dessen Signalleitung 59' an die Steuereinheit 28 angeschlossen ist.
  • Jeder Strömungsmesser 43,45,59 ist in der in Fig. 2a,b dargestellten Weise aufgebaut. In einem allseitig ge­schlossenen Gehäuse 47 ist ein Turbinenrad 49 mit Flügeln 51 drehbar in Lagern 53 gelagert. Ein Gasein­tritt 55 ist düsenartig ausgebildet und tangential zu den Flügeln 51 des Turbinenrades 49 ausgerichtet. Ein Gasaustritt 57 des Gehäuses 47 ist an die zu dem Zerstäuber, dem Oxidansanschluß oder dem Brenngas­anschluß des Brenners führende Leitung angeschlossen.
  • Jeder Strömungsmesser 43,45,49 enthält mit dem Turbinenrad 49 zusammenwirkende Mittel zur Erzeugung von Signalen zur Anzeige der Gasströmung. In dem dargestellten Ausführungsbeispiel ist das Turbinenrad 49 mit zwei diametral gegenüberliegend angeordneten Magneten 61 versehen, die z.B. in den Kunststoff eingebettet sein können, aus dem das Tur­binenrad 49 besteht. In dem Gehäuse 47 ist im Wirkungs­bereich der Magnete 61 ein Hall-Sensor 63 angeordnet, der mit der jeweiligen Signalleitung 43',45' oder 59' verbunden ist.
  • Bei Drehung des Turbinenrades 49 wird am Hall-Sensor 63 ein Ausgangssignal erzeugt, wenn einer der an dem Turbinenrad 49 angeordneten Magnete 61 an dem Hall-­Sensor 63 vorbeiläuft. Die Frequenz dieser Ausgangs­signale ist abhängig von der Drehgeschwindigkeit des Turbinenrades 49 und damit von der Strömungsgeschwindig­keit des Gases, daß durch den Gaseintritt 55 auf das Turbinenrad 49 trifft. Das Auftreten dieser Ausgangs­signale kann in verschiedener Weise zur Bestimmung der Strömungsgeschwindigkeit des Gases genutzt werden. So kann z.B. die Zeit zwischen dem Auftreten zweier aufeinanderfolgender Ausgangssignale bestimmt werden. Bei einer solchen Anordnung ist die Strömungsgeschwin­digkeit S, die z.B. in l/min angegeben werden kann, durch die Zahl N der zwischen zwei aufeinanderfolgenden Ausgangssignalen des Hall-Sensors 63 gezählten Impulse eines Zählers nach folgender Beziehung bestimmt:
    S = K · N -m .
  • Darin sind K und m Parameter, die empirisch für die verschiedenen Anordnungen bestimmt werden. Diese Parameter sind in ihrem Wert z.B. von der Struktur des Gaseintritts 55 in dem Gehäuse 47, vom Aufbau des Gehäuses 47 und von der Form des Turbinen­rades 49 abhängig. Diese Parameter, vor allem K, sind auch von der Art und Zusammensetzung des Gases ab­hängig, das durch das Gehäuse 47 fließt und das Turbinenrad 49 antreibt. Jedoch lassen sich die Para­meter mit hoher Genauigkeit für jede Anordnung und jedes Gas bestimmen, so daß mit dem Strömungsmesser der angegebenen Art die Gasströmungen mit großer Genauigkeit gemessen und über die Steuereinheit 28 und die Druckregler 37,40,54 reproduzierbar einge­stellt werden können.
  • Anstelle der Magnete 61 und des Hall-Sensors 63, die besonders einfache und leicht zu verwirklichende signalerzeugende Mittel darstellen, können auch andere, bevorzugt berührungslos arbeitende signal­erzeugende Mittel verwendet werden, die eine Be­stimmung der Drehgeschwindigkeit des Turbinenrades 47 ermöglichen.
  • Die in die Steuereinheit 28 eingegebenen Ausgangs­signale der Hall-Sensoren 63 werden in der Steuer­einheit 28 verarbeitet, das heißt mit für bestimmte Gegebenheiten, z.B. Luft oder Lachgas als Oxidans, gespeicherten oder vorgegebenen Sollwerten verglichen. Bei Abweichungen von Sollwerten werden die jeweiligen Regler 37,40,54 über die zugehörigen Stellmotoren 37', 46 und 56 verstellt. Die dazu notwendigen Programm­schritte können ohne weiteres in die Programmierung der Steureinheit 28 eingearbeitet werden und bedürfen an dieser Stelle keiner weiteren Erläuterung.
  • Eine vorteilhafte Anordnung der Strömungsmesser ist schematisch in Fig. 3 dargestellt. Die Gehäuse 47 der drei Strömungsmesser 43,45 und 59 sind dabei gemeinsam zu einem Block 69 angeordnet, der unmittelbar mit den Druckreglern 37,40,und 54 verbunden ist. In diesem Fall werden die Gaseintritte 55 der einzelnen Gehäuse 47 in dem Block 69 von Strömungsdrosseln nach Art der Strömungsdrosseln 44 und 58 gebildet. An dem Block 69 sind die Gasaustritte 57 angeordnet, an die sich un­mittelbar die Leitungen zum Zerstäuber, dem Oxidans­anschluß und zum Brenngasanschluß des Brenners an­schließen.
  • Das Gehäuse 47 als ganzes oder seine Teile im Bereich des Turbinenrades 49 können aus einem unmagnetischen Metall bestehen. Dadurch wird das Turbinenrad 49 durch Wirbelströme gebremst, die durch die Drehung des Tur­binenrades hervorgerufen werden. Das hat den Vorteil, daß die Lebensdauer der Einrichtung erhöht und die Frequenz der vom Hall-Sensor 63 erzeugten Signale niedrig gehalten wird, wodurch sich die Meßgenauigkeit erhöht.

Claims (4)

1. Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer, enthaltend
(a) je eine Drossel (37'',44,58) für Brenngas und Oxidans und
(b) je einen der Drossel (37'',44,58) vorge­schalteten Druckregler (37,40,54) für Brenngas und Oxidans,
bei welcher
(c) die Drosseln (37'',44,58) für Brenngas und Oxidans feste Durchflußquerschnitte haben,
(d) die Sollwerte der Druckregler (37,40,54) durch je einen Stellmotor (37',46,56) re­produzierbar einstellbar sind und
(e) eine Steuereinheit (28) mit einer mikro­prozessorgesteuerten Elektronik vorgesehen ist, durch welche die Stellmotore (37',46, 56) in reproduzierbarer Weise steuerbar sind,
dadurch gekennzeichnet, daß
(f) jedem Druckregler (37,44,58) ein Turbinen­rad-Strömungsmesser (43,45,59) nachge­schaltet ist,
(g) an dem Turbinenrad-Strömungsmesser (43,44, 58) signalerzeugende Mittel vorgesehen sind, die mit dem Turbinenrad (49) zur Erzeugung von Ausgangsimpulsen zusammen­wirken, deren Frequenz der Drehzahl des Turbinenrades (49) proportional ist,
(h) die Ausgangsimpulse auf die Steuereinheit (28) zur Bildung eines digitalen Strö­mungsgeschwindigkeitssignals aufgeschaltet sind und
(i) die Sollwerte der Druckregler (37,44,58) über die von der Steuereinheit (28) an­steuerbaren Stellmotore (37',46,56) im Sinne der Einhaltung vorgegebener Strö­mungsgeschwindigkeits-Sollwerte veränder­bar sind.
2. Gasregeleinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die besagten festen Drosseln (37',44,58) für Brenngas und Oxidans düsenartig ausgebildet und so in einem Gehäuse (47) des Turbinenrad-Strömungsmessers (43,45, 59) angeordnet sind, daß das Turbinenrad (49) des Turbinenrad-Strömungsmessers (43,45,49) von dem aus der Drossel (37',44,58) austretenden Gasstrom angeblasen wird.
3. Gasregeleinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß
(a) das Turbinenrad (49) des Turbinenrad-­Strömungsmessers jeweils in einem Gehäuse (47) gelagert ist, das wenigstens im Bereich des Turbinenrades (49) aus einem unmagnetischen Metall besteht, und
(b) die signalerzeugenden Mittel von min­destens einem, an dem Turbinenrad (49) angebrachten Magneten (61) und einem auf der Außenseite des Gehäuses (47) ange­brachten Hall-Sensor (63) gebildet sind.
4. Gasregeleinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß an dem Turbinenrad (49) zwei diametral einander gegenüberliegend angeordnete Magnete (61) vorgesehen sind.
EP19860111215 1984-03-01 1986-08-13 Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer Expired - Lifetime EP0212567B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19843407552 DE3407552A1 (de) 1984-03-01 1984-03-01 Gasregeleinrichtung zur regelung der brenngas- und oxidanszufuhr zu einem brenner bei einem atomabsorptions-spektrometer
DE19853529547 DE3529547A1 (de) 1984-03-01 1985-08-17 Gasregeleinrichtung zur regelung der brenngas- und oxidanszufuhr zu einem brenner bei einem atomabsorptions-spektrometer
DE3529547 1985-08-17

Publications (3)

Publication Number Publication Date
EP0212567A2 true EP0212567A2 (de) 1987-03-04
EP0212567A3 EP0212567A3 (en) 1989-03-29
EP0212567B1 EP0212567B1 (de) 1990-04-11

Family

ID=37857096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19860111215 Expired - Lifetime EP0212567B1 (de) 1984-03-01 1986-08-13 Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer

Country Status (6)

Country Link
US (2) US4640677A (de)
EP (1) EP0212567B1 (de)
JP (2) JPH0660872B2 (de)
AU (1) AU586699B2 (de)
DE (2) DE3407552A1 (de)
GB (1) GB2155205B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116629C (zh) * 1998-05-18 2003-07-30 武汉三联水电控制设备公司 全数字式微机控制水轮机调速器

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115687A (en) * 1981-06-10 1992-05-26 Badger Meter, Inc. Method and apparatus for taking a proportional sample of flowing gas in a line
US5016482A (en) * 1981-06-10 1991-05-21 Clingman Jr William H Method of taking a proportional sample of flowing gas in a line
DE3407552A1 (de) * 1984-03-01 1985-09-05 Bodenseewerk Perkin Elmer Co Gasregeleinrichtung zur regelung der brenngas- und oxidanszufuhr zu einem brenner bei einem atomabsorptions-spektrometer
DE3531276A1 (de) * 1985-09-02 1987-03-05 Bodenseewerk Perkin Elmer Co Verfahren und geraet zur bestimmung der nullinie bei atomabsorptions-spektrometern
DE3769395D1 (de) * 1986-08-06 1991-05-23 Eppendorf Geraetebau Netheler Flammenphotometer mit konstantflussregelung.
DE3633660A1 (de) * 1986-10-03 1988-04-14 Bodenseewerk Perkin Elmer Co Sicherheitsvorrichtung bei membran-gasdruckreglern
DE3723032A1 (de) * 1987-07-11 1989-01-19 Bodenseewerk Perkin Elmer Co Atomabsorptions-spektrometer
US4913648A (en) * 1988-12-27 1990-04-03 The United States Of America As Represented By The Secretary Of The Navy Quartz burner for use in an atomic absorption spectrometer for the analysis of organometal compounds via hydride derivatization
US5355214A (en) * 1990-08-31 1994-10-11 Varian Associates, Inc. Flow control device
DE4113695A1 (de) * 1991-04-26 1992-10-29 Bayer Ag Kontinuierlich betriebener gasanalysator
US5368059A (en) * 1992-08-07 1994-11-29 Graco Inc. Plural component controller
DE4334336A1 (de) * 1993-10-08 1995-05-04 Mannesmann Ag Gasanalysator mit geregelter Meßgaszuführung und dynamischer Probenverdünnung
US5476115A (en) * 1994-03-10 1995-12-19 Praxair Technology, Inc. Automatic gas blending system
AUPO551197A0 (en) * 1997-03-07 1997-03-27 Varian Australia Pty Ltd Spectroscopic analysis method and apparatus
IT1315000B1 (it) * 2000-03-08 2003-01-21 Techint Spa Dispositivo di alimentazione di una o piu' schiere di bruciatori.
JP4151192B2 (ja) * 2000-03-30 2008-09-17 株式会社島津製作所 フレーム式原子吸光分光光度計
AUPQ944500A0 (en) * 2000-08-16 2000-09-07 Gbc Scientific Equipment Pty Ltd Atomic absorption spectrometer
AU7560301A (en) * 2000-08-16 2002-02-25 Gbc Scient Equip Pty Ltd Safety apparatus for an atomic absorption spectrometer burner
US7270098B2 (en) * 2002-07-15 2007-09-18 Teleflex Canada Inc. Vehicle heater and controls therefor
GB0227109D0 (en) * 2002-11-20 2002-12-24 Air Prod & Chem Volume flow controller
GB2400164B (en) * 2003-04-04 2006-04-19 Carver Plc Improvements in or relating to fluid control
DE102004055716C5 (de) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I)
US8100121B2 (en) * 2005-08-16 2012-01-24 Bsh Bosch Und Siemens Hausgeraete Gmbh Timer for a gas cooking hob
EP1767841A3 (de) * 2005-09-23 2009-03-25 Robert Bosch Gmbh Gasbrenner für ein Heizgerät
DE102007014427B4 (de) * 2007-03-22 2010-09-09 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Elektrische Feststellbremsanlage für ein Nutzfahrzeug und Betriebsverfahren
TWI433855B (zh) * 2008-06-04 2014-04-11 Univation Tech Llc 漿液觸媒流分流器及其使用方法
ES2749877T3 (es) * 2010-11-29 2020-03-24 Air Prod & Chem Método y aparato de medición del peso molecular de un gas
JP6753366B2 (ja) * 2017-06-23 2020-09-09 株式会社島津製作所 分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2552890A1 (de) * 1975-11-25 1977-05-26 Jernss Hans Peter Anordnung zur messung von stroemungsmittelmengen
DE2833533A1 (de) * 1977-08-04 1979-02-15 Bo Granbom Dichtungsvorrichtung fuer druckfluidumzylinder
DE3005784A1 (de) * 1979-03-05 1980-09-18 Perkin Elmer Corp Mess- und steuersystem fuer den fluidfluss in einem brenner fuer die atomspektroskopie
US4314764A (en) * 1977-10-18 1982-02-09 Varian Tectron Party Ltd. Chemical analysis sample control
US4370060A (en) * 1980-12-10 1983-01-25 Nissan Motor Co., Ltd. Flame photometric detector analyzer

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1325116A (en) * 1919-12-16 Island
US2170136A (en) * 1939-02-15 1939-08-22 Edward M Gavin Reserve fuel control system
US2416161A (en) * 1942-06-12 1947-02-18 Union Carbide & Carbon Corp Heating flame regulation
US3010468A (en) * 1958-09-18 1961-11-28 Union Carbide Corp Preheat flame control
US3583844A (en) * 1969-06-09 1971-06-08 Instrumentation Labor Inc Atomic absorption spectroanalytical instrument control system
US3712582A (en) * 1970-07-16 1973-01-23 D Moesta Fluid flow control valve and linear actuator therefor
US3653394A (en) * 1970-11-04 1972-04-04 Robert W Mcjones Priority charging system
DE7206538U (de) * 1971-03-01 1972-10-26 The Perkin-Elmer Corp Zerstaeuber
US3762428A (en) * 1971-11-15 1973-10-02 Ocean Systems Volumetric gas mixing system
US3856042A (en) * 1973-06-21 1974-12-24 Nasa Combined pressure regulator and shutoff valve
GB1474024A (en) * 1973-07-27 1977-05-18 Lucas Industries Ltd Throttle valve
JPS538539Y2 (de) * 1974-03-30 1978-03-06
US3905394A (en) * 1974-04-12 1975-09-16 Digital Dynamics Inc Flow control system
JPS5280517A (en) * 1975-12-26 1977-07-06 Hitachi Ltd Valve opening and closing mechanism for vacuum exhaust device
US4043742A (en) * 1976-05-17 1977-08-23 Environmental Data Corporation Automatic burner monitor and control for furnaces
JPS5921455B2 (ja) * 1976-08-18 1984-05-19 松下電器産業株式会社 強制給排気式燃焼制御装置
US4111637A (en) * 1977-03-10 1978-09-05 Phillips Petroleum Company Control system for plurality of gas supplies
GB1565310A (en) * 1977-12-01 1980-04-16 Battelle Development Corp Method and apparatus for controlling fuel to oxidant ratioof a burner
GB1588478A (en) * 1978-05-22 1981-04-23 Perkin Elmer Corp Gas flow control apparatus
US4348169A (en) * 1978-05-24 1982-09-07 Land Combustion Limited Control of burners
JPS55131621A (en) * 1979-03-29 1980-10-13 Nippon Kokan Kk <Nkk> Mixture controlling method for composite fuel gas
US4220413A (en) * 1979-05-03 1980-09-02 The Perkin-Elmer Corporation Automatic gas flow control apparatus for an atomic absorption spectrometer burner
US4277254A (en) * 1980-02-15 1981-07-07 Energy Systems, Incorporated Control system and apparatus for producing compatible mixtures of fuel gases
JPS5765518A (en) * 1980-10-07 1982-04-21 Toshiba Corp Controller for multi-fuel combustion type boiler
US4490156A (en) * 1981-06-10 1984-12-25 Texaco Inc. Partial oxidation system
GB2113831B (en) * 1982-01-19 1985-10-02 Philips Electronic Associated Method of analysis using atomic absorption spectrophotometry
NL8204991A (nl) * 1982-12-24 1984-07-16 Faber Bv Elektronische ionisatiesensor voor het automatisch regelen van de luchtbehoefte bij gasverwarmingsapparaten.
DE3307409A1 (de) * 1983-03-02 1984-09-06 Kosizky, Wladimir, Dr., 8000 München Atomabsorptions-spektrophotometer mit rueckkopplung
FR2547922B3 (fr) * 1983-06-24 1986-02-21 Thomson Csf Methode d'analyse quantitative par spectroscopie par absorption et dispositif pour sa mise en oeuvre
DE3407552A1 (de) * 1984-03-01 1985-09-05 Bodenseewerk Perkin Elmer Co Gasregeleinrichtung zur regelung der brenngas- und oxidanszufuhr zu einem brenner bei einem atomabsorptions-spektrometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2552890A1 (de) * 1975-11-25 1977-05-26 Jernss Hans Peter Anordnung zur messung von stroemungsmittelmengen
DE2833533A1 (de) * 1977-08-04 1979-02-15 Bo Granbom Dichtungsvorrichtung fuer druckfluidumzylinder
US4314764A (en) * 1977-10-18 1982-02-09 Varian Tectron Party Ltd. Chemical analysis sample control
DE3005784A1 (de) * 1979-03-05 1980-09-18 Perkin Elmer Corp Mess- und steuersystem fuer den fluidfluss in einem brenner fuer die atomspektroskopie
US4370060A (en) * 1980-12-10 1983-01-25 Nissan Motor Co., Ltd. Flame photometric detector analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1116629C (zh) * 1998-05-18 2003-07-30 武汉三联水电控制设备公司 全数字式微机控制水轮机调速器

Also Published As

Publication number Publication date
US4681530A (en) 1987-07-21
AU586699B2 (en) 1989-07-20
JPH0750028B2 (ja) 1995-05-31
DE3529547C2 (de) 1987-12-17
EP0212567B1 (de) 1990-04-11
AU6150486A (en) 1987-02-19
JPS60205237A (ja) 1985-10-16
GB2155205B (en) 1987-12-16
DE3407552C2 (de) 1987-10-22
EP0212567A3 (en) 1989-03-29
GB8501762D0 (en) 1985-02-27
JPS6298238A (ja) 1987-05-07
DE3529547A1 (de) 1987-02-26
JPH0660872B2 (ja) 1994-08-10
DE3407552A1 (de) 1985-09-05
US4640677A (en) 1987-02-03
GB2155205A (en) 1985-09-18

Similar Documents

Publication Publication Date Title
EP0212567B1 (de) Gasregeleinrichtung zur Regelung der Brenngas- und Oxidanszufuhr zu einem Brenner bei einem Atomabsorptions-Spektrometer
EP1370806B1 (de) Verfahren und vorrichtung zur einstellung der luftzahl
DE2458719A1 (de) Ionisations-durchflussmesser
DE2917876C2 (de) Steueranordnung zur Regulierung der Ausströmung aus einem Verdampfungsbehälter
DE19917268A1 (de) Verfahren zum Überprüfen eines elektromagnetischen Durchflußmessers und elektromagnetische Durchflußmesseranordnung
DE1961438B2 (de) Drehzahlsteuerungseinrichtung für eine Kraftmaschine zur Steuerung der Leerlauf drehzahl
DE3124960A1 (de) &#34;vorrichtung zur messung der masse eines stroemenden mediums&#34;
DE2845426A1 (de) Verfahren und vorrichtung zur spektroskopischen analyse
DE3005784A1 (de) Mess- und steuersystem fuer den fluidfluss in einem brenner fuer die atomspektroskopie
DE19912317C9 (de) Verfahren zur Regelung des Anteils der einer Brennkraftmaschine rückgeführten Abgasmenge
EP0164591A2 (de) Verfahren zur Langzeitbestimmung und Dauerüberwachung des Schadstoffgehaltes von feststoffbeladenen Abgasströmen
DE1573074A1 (de) Verfahren und Anordnung zur fortlaufenden Mischung von Gas-Teilstroemen in einem bestimmten Verhaeltnis
DE2505231C3 (de) Vorrichtung zur Brennstoffregelung in Brennkraftmaschinen
DE2649682C2 (de) Verfahren und Vorrichtung zur Prüfung von Vergasern
DE3635128A1 (de) Verfahren und vorrichtung zum nachweisen von oel in aerosoler verteilung in einem luftstrom
DE68905330T2 (de) Geraet zur messung und steuerung eines fluid-stromes durch eine trennwand.
DE3123260C2 (de) Regeleinrichtung für die Regelung des Kraftstoff-Luft-Verhältnisses einer Verbrennungskraftmaschine
DE2833553A1 (de) Automatische gasdurchflussregelvorrichtung
DE2209779B2 (de) Heißgaskolbenmotor, bei dem die Brennstoffzufuhr zur Brennervorrichtung mittels eines auf wenigstens einen Parameter des Motors reagierendes Regelgeräts geregelt wird
EP0596201A2 (de) Verfahren und Vorrichtung zur Gasmengeneinstellung bei Abgasmessungen
EP0353746B1 (de) Vorrichtung und Verfahren zum Erzeugen eines Feststoffaerosols
DE1960131A1 (de) Regeleinrichtung mit mindestens zwei Wirbel-Muffelbrennern
EP0434085B1 (de) Sensorsystem
CH638046A5 (de) Verfahren und versuchsanordnung zur untersuchung von gasen.
DE3531276C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890427

17Q First examination report despatched

Effective date: 19890718

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODENSEEWERK PERKIN-ELMER GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3670372

Country of ref document: DE

Date of ref document: 19900517

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930802

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 8

Ref country code: FR

Payment date: 19930831

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930927

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940813

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000928

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050813