EP0211965B1 - Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung - Google Patents

Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung Download PDF

Info

Publication number
EP0211965B1
EP0211965B1 EP85109424A EP85109424A EP0211965B1 EP 0211965 B1 EP0211965 B1 EP 0211965B1 EP 85109424 A EP85109424 A EP 85109424A EP 85109424 A EP85109424 A EP 85109424A EP 0211965 B1 EP0211965 B1 EP 0211965B1
Authority
EP
European Patent Office
Prior art keywords
tanks
constituent
mould
constituent tanks
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85109424A
Other languages
English (en)
French (fr)
Other versions
EP0211965A1 (de
Inventor
Jürgen Dreier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roth Werke GmbH
Original Assignee
Roth Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roth Werke GmbH filed Critical Roth Werke GmbH
Priority to AT85109424T priority Critical patent/ATE39907T1/de
Priority to EP85109424A priority patent/EP0211965B1/de
Priority to DE8585109424T priority patent/DE3567431D1/de
Publication of EP0211965A1 publication Critical patent/EP0211965A1/de
Application granted granted Critical
Publication of EP0211965B1 publication Critical patent/EP0211965B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • B65D88/32Hoppers, i.e. containers having funnel-shaped discharge sections in multiple arrangement

Definitions

  • the invention relates to a method for producing a storage container for liquids, in particular heating oil, made of thermoplastic, whereby at least two elementary containers are molded simultaneously in a blow mold or a rotary mold and the elementary containers are connected to one another by at least one lower and one upper connecting channel, wherein the elementary containers and the connecting channels are simultaneously formed as an integral part.
  • Plastic storage tanks for heating oil or any other liquid goods are manufactured with different capacities.
  • a container battery also known as a battery tank.
  • the larger the capacity of a container the greater the wall thickness of the container must be.
  • the elementary containers can have much smaller wall thicknesses than containers with large walls.
  • the elementary containers are cylindrical, arranged in a row and connected to one another via connecting channels.
  • the connecting channels lie in a longitudinal median plane of the container.
  • Distances are provided between the elementary containers, which cannot be avoided because of the design of the hollow form in which the container is formed.
  • the invention is based on the object of proposing a method of the type mentioned at the outset with which storage containers can be produced which, in relation to their space requirement, have a considerably larger capacity than the known storage containers which are dissolved in elementary containers.
  • the invention is also intended to propose design features for the container that are particularly advantageous for the basic concept.
  • a shape for the production of the container is also to be proposed by the invention.
  • the invention ensures that the elementary containers can be moved close together, preferably wall to wall, so that no unused space remains between the elementary containers. Further contributes to the better utilization of the space that the elementary containers are cuboid, so that there are no gussets between the elementary containers.
  • the arrangement of the connecting channels on edges instead of in the longitudinal center plane, as is the case with the known container according to DE-PS 2 758 838, is also an essential feature which contributes to the elementary containers being able to be joined together with or without a gap.
  • the invention is applicable not only for the production of containers in the blow molding process, but also for the production of containers in the rotary process.
  • the necessary plasticity can also be produced according to claim 4 by heating the connecting channels. Such subsequent heating is of course also possible with blown containers.
  • the elementary containers are placed against one another without a space.
  • small gaps may be appropriate, e.g. to allow an inspection of the elementary containers from the outside.
  • the method according to the invention is also particularly suitable for using the same shape to produce both independent elementary containers and larger containers which consist of two or more elementary containers, connection channels not being produced in the former case, while connection channels are formed in the case of larger containers.
  • the plastic plastic tube extruded into the mold is then squeezed in the space between two elementary containers. This enables a very efficient production of containers with single, double, triple, etc. capacity.
  • an elementary container can have a capacity of 1000 liters, so that containers with e.g. 1000 liters, 2000 liters and 3000 liters capacity can be produced.
  • cuboid should also be understood to mean containers which are strongly rounded at their edges, in particular at their vertical longitudinal edges, in order to maintain a high overall strength of the container at a given wall thickness.
  • the elementary containers can also have circumferential constrictions which further improve the strength.
  • substantially cuboid is thus intended to mean that a geometric cuboid is filled as completely as possible, taking into account the design features necessary for good strength, deviations in the volume of an elementary container from the volume of a circumscribing purely geome cubic cubic in the range of 5% to 15% of the volume of the geometric cuboid should be allowed and fall within the scope of the invention.
  • edges in particular side edges
  • edges it is generally not a question of edges in the narrower sense, but of the vertical corner regions of the elementary containers, which, as said, are rounded off with large radii can be and are then, for example, parts of cylindrical surfaces.
  • the cavities of the mold are preferably divided diagonally. With this type of division, the blow molding process extrudes the tube of plastic plastic material extruded between the mold halves as evenly as possible, thereby achieving a wall thickness that is as uniform as possible. This contributes to the saving of plastic material.
  • the inclination of the cuboid cavities to one another has the advantage that, after demolding, relatively small swiveling movements of the elementary containers are sufficient to bring them into the end position relative to one another.
  • the cavities can also be arranged relative to one another, which has the advantage that both halves of the shape are the same, as a result of which the shape can be produced cheaply.
  • Interchangeable insert parts can be quickly replaced with little effort, so that independent elementary containers or larger containers can be produced, which consist of several elementary containers, as required. So far, the transition to a different container size has involved extensive assembly work (removing a large and heavy mold and inserting a new, heavy mold, e.g. into a blow molding machine), which meant that a molding machine had to be down for a long time. The possibility of being able to produce different container sizes with the same mold is also a very important investment advantage, since such large molds are very expensive. Insert parts for a blow mold advantageously have a cavity for receiving displaced plastic material.
  • a special cuboid shape is advantageously provided for the elementary containers, namely the shape of a square column.
  • Containers shaped in this way are particularly advantageous in terms of strength, since all side walls have the same dimensions and the approximation to a cylindrical shape, which would be optimal in terms of strength, is particularly good.
  • the connecting channels can be shaped differently. They can have a flat, upright cross section. In this case, it is advantageous to support the large walls against one another by cusps molded onto them.
  • the connection channels can also have a circular cross section, in which case support bumps are not required.
  • the connecting channels preferably have corrugated walls, which facilitates the flexibility of the connecting channels.
  • Adjacent elementary containers are preferably locked together.
  • Various embodiments are specified in the claims for the formation of the lock.
  • the elementary containers engage in one another in a form-fitting manner, elevations on one elementary container engaging in recesses on the other elementary container.
  • the necessary nozzles are advantageously arranged on the ceiling of the elementary container concerned only on one elementary container. This is sufficient, since all elementary containers communicate with each other. On the other hand, it is advantageous to provide the possibility of attaching sockets to each elementary container, which is necessary if each elementary container is to be an independently usable container.
  • the storage container B consists of two elementary containers E i , E2, which communicate with one another via a lower connecting channel 1 and an upper connecting channel 2.
  • the elementary containers Ei, E2 and the connecting channels 1, 2 consist of a coherent piece.
  • the elementary containers E i , E2 have a relative position to one another, as is shown in FIG. 1.
  • the side walls 3, 4, which lie against one another later, run at an angle a to one another, which in the example shown is 45 ° .
  • the two elementary containers are fixed to one another in their swiveled-together position by locking points 7.
  • Two height-offset locking points 7 are preferably provided, which can be approximately at the height of the connecting channels 1, 2, for example.
  • the elementary containers are essentially in the form of a square column. However, where a square pillar has its longitudinal edges, there are roundings 8 which have a relatively large radius. In the lower third of each elementary container there is also a circumferential constriction 9; in the middle of the height of the constriction 9, each elementary container has a circular cross section. A ceiling 10 of each elementary container in turn merges with roundings 11 with a large radius in the container side walls. The container bottom 12 of each elementary container merges with edges 13 into the container side walls.
  • the shape described is essentially only the shape of a strictly geometric square column. The deviations described arise from the need to optimize the shape in terms of strength.
  • nozzles on the elementary container E2 There are three nozzles on the elementary container E2, namely a ventilation nozzle 14, a removal nozzle 15 and a filling nozzle 16. No nozzles are provided on the ceiling 10 'of the elementary container E 1 .
  • the storage container B can be produced both in a blow mold and in a rotary mold. In the following it is assumed that the container was produced by the blow molding process. Blow molds are shown in cross-section in FIGS. 4 and 5.
  • the shape designated overall by Fi consists of two mold halves 17, 18 which can be joined together on a separating surface 19.
  • the separating surface 19 runs essentially diagonally over the cavities Hi, H 2 and is bent over the edge 52, which roughly corresponds to the later bending line of the connecting channels 1, 2. This bend results from the fact that the cavities Hi, H 2 are to each other such that the angle ⁇ between the walls 20, 21 of the mold cavities Hi, H 2 is less than 90 °, in the present case, this angle is 45 °.
  • the mold contains insert pieces 22, 23.
  • the insert pieces have such a shape that there are 1, 2 mold connection channels 24 in the area of the connecting channels to be produced.
  • the mold halves 17, 18 are first moved far apart in the direction of the arrows 25, 26. Between the two mold halves, a hose is extruded in a blow molding machine, in which the mold F i is installed, and is still in a good plastic state initially hangs between the mold halves 17, 18. When the hose is completely extruded, the mold halves are moved together. After the mold has been closed, the space inside the tube is inflated, the tube wall being pressed against the inner walls of the cuboid cavities H 1 , H 2 .
  • the connecting channels 1, 2 also form.
  • connection channels 1, 2 can still be shaped, which can also be brought about in a targeted manner in that the shape in the area of the shape connection channels 24 is cooled less than in the rest of the area.
  • the elementary containers E 1 , E2 formed in the mold cavities Hi, H 2 are now brought into the relative position according to FIG. 2 to one another, as has already been described.
  • the necessary deformation of the connecting channels is relatively small because of the relatively small angle ⁇ , which is advantageous for the production.
  • the mold F 2 in FIG. 5 has mold halves 27, 28 which are of identical design.
  • the mold halves can be separated and joined together on a continuous separating surface 29.
  • the mold halves include cavities H ' 1 and H' 2 , which are oriented somewhat differently relative to one another than the cavities Hi, H 2 of the mold F 1 .
  • the angle ⁇ 'between the cavities is 90 ° here.
  • This arrangement has the advantage that the mold halves 27, 28 can be made the same. However, the connecting channels between the elementary containers then have to be deformed more than when manufactured in the form Fi.
  • the form F 2 contains inserts 30, 31 which separate the cavities H ' 1 and H' 2 from each other.
  • the mold F 2 could also contain moldings that leave mold connection channels between the cavities H ' 1 and H' 2 open.
  • Connectors 30, 31, which separate the cavities, are used when elementary containers are to be produced that can be used independently. In this case, of course, the necessary connectors must be molded onto both elementary containers.
  • the inserts 30, 31 and 22, 23 are quickly replaceable, as are the inserts for forming additional nozzles, so that a shape of manufacture is large with only minor conversion work ßer containers, which consist of several elementary containers, can be converted to the production of the smallest units, in which independent elementary containers are produced.
  • the inserts 30, 31 enclose a cavity 32 which is intended to hold plastic material which is obtained when the hose is squeezed.
  • the space 32 extends over the entire height of the cavities H ' 1 and H' 2 .
  • the connecting channel 1 (the connecting channel 2 is of identical design) has a flat cross section with large side walls 33, 34.
  • the side wall 33 merges into the side wall 34 via rounded portions 33a, 33b.
  • bumps 35, 36 are integrally formed on the side walls 33, 34. After a certain narrowing of the channel, these come into contact with one another and prevent further squeezing.
  • the clear cross section Q is at least equal to the cross section of the filling line which is to be connected to the filling nozzle 16. This ensures that communication between the two containers is possible without throttling, which hinders the compensation of the filling levels in the elementary containers.
  • the wall of the connecting channel is corrugated, which is shown in Fig. 7.
  • the bending axis lies approximately in the area of the inner side wall 34 of the channel 1.
  • FIGS. 8 and 9 a connecting channel 1 'is shown, which can be used instead of the channel according to FIGS. 6 and 7.
  • This connecting channel has a circular cross section, as can be seen from FIG. 8.
  • This channel also has a corrugated wall (see FIG. 9) with bead-shaped elevations 37 'and trough-shaped depressions 38'.
  • a connecting channel according to FIGS. 8 and 9 is dimensionally stable, so that there is no fear of crushing even when bending.
  • the ribbing which is formed by the elevations 37 and the depressions 38, also contributes to increasing the rigidity.
  • FIG. 10 and 11 show the formation of a locking point, as it is e.g. can be provided at 7 (see Fig. 2).
  • the eyes are offset in height such that they can overlap one another.
  • a connecting bolt 41 made of plastic is inserted through mutually aligned bores in the eyes.
  • the ends 41a, 41b of the bolt are crimped like a rivet, whereby the bolt 41 is axially secured.
  • the eyes 39, 40 are components of welded parts 42 of the same design. be injection molded from thermoplastic.
  • Each welding part 41 has a welding flange 43 which is connected to the container wall by welding.
  • the welding parts 42 are inserted into the blow mold. When the container is blown, the weld-on parts weld to the weld-on flanges 43 with the container wall.
  • the elementary containers Ei, E2 are held together by clips 44.
  • the clamp 44 engages around strips 45, 46, which in turn are components of weld-on parts.
  • the welded-in parts to be connected with the clamp 44 are at the same height, while in the embodiment according to FIGS. 10 and 11, as stated, there is a height offset.
  • the connection structures lie within a plane 47 which is applied to the side wall of the container.
  • FIGS. 14 and 15 which shows a further connection construction, also shows that there are two locking points above the height of the container.
  • the locking points described so far can be arranged at the same point as the straps 48, 49, which are used in the storage container according to FIGS. 14 and 15.
  • eyelets 50 and 51 are integrally formed on each elementary container, through which a belt 48 is pulled.
  • Two possible connection types are shown.
  • the belt 48 has at its end a loop 53 which is pushed through the eyelet 50 and through which a bolt 54 is inserted.
  • a loop 55 encompasses an area 56 of the tab in which the eyelet 51 is located.
  • the two types of connection can also be used in combination.
  • FIG. 16 shows a battery tank consisting of three containers B.
  • the elementary containers E i , E2 lie against one another without a gap, while there are distances 58, 59 between the individual containers B. This also enables a visual inspection of the container from the side. In principle, however, it is possible to omit the gaps 58, 59 to further save space. Since neither the connecting channels nor the locking constructions protrude laterally, the containers B can be moved closer together.
  • the three containers B are connected to one another by a ventilation line 60, a removal line 61 and a filling line 62.
  • the lines 60, 61, 62 are connected to the connecting pieces 14, 15 and 16, respectively.
  • a container B which consists of two elementary containers Ei, E2.
  • a container B can also consist of more than two elementary containers.
  • Containers consisting of three elementary containers can also be used in a particularly practical manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines aus thermoplastischem Kunststoff bestehenden Lagerbehälters für Flüssigkeiten, insbesondere Heizöl, wobei in einer Blasform oder einer Rotationsform mindestens zwei Elementarbehälter gleichzeitig geformt werden und die Elementarbehälter mindestens durch einen unteren und einen oberen Verbindungskanal miteinander verbunden sind, wobei die Elementarbehälter und die Verbindungskanäle gleichzeitig als einstückiges Teil geformt werden.
  • Aus Kunststoff bestehende Lagerbehälter für Heizöl oder eventuelle sonstige flüssige Güter werden mit verschiedenen Kapazitäten hergestellt. Meist werden mehrere Behälter zu einer Behälterbatterie, auch als Batterietank bezeichnet, zusammengestellt. Je größer die Kapazität eines Behälters ist, desto größer muß auch im allgemeinen die Wanddicke des Behälters sein. Es ist bekannt, die Wanddicke von Behältern mit großer Kapazität dadurch in Grenzen zu halten, daß der Gesamtbehälter in Elementarbehälter aufgelöst wird. Die Elementarbehälter können wesentlich geringere Wanddikken haben als Behälter mit großflächigen Wänden. Aus Sicherheitsgründen ist vorgeschrieben, daß die Verbindungskanäle zwischen den Elementarbehältern mit diesen aus einem Stück bestehen. Es ist also nicht zulässig, insbesondere untere Verbindungskanäle, über die benachbarte Elementarbehälter miteinander kommunizieren, an die Elementarbehälter anzuflanschen.
  • Bei einem bekannten Behälter (DE-PS 2 758 838) sind die Elementarbehälter zylindrisch ausgebildet, in einer Reihe angeordnet und über Verbindungskanäle miteinander verbunden. Die Verbindungskanäle liegen in einer Längsmittelebene des Behälters. Zwischen den Elementarbehältern sind Abstände vorgesehen, die nicht vermeidbar sind wegen der Gestaltung der Hohlform, in der der Behälter geformt wird. Zwischen den zylindrischen Elementarbehältern befinden sich auch nicht ausgenutzte Raumzwickel, so daß die tatsächliche Kapazität wesentlich kleiner ist als ein den Behälter umfassender quaderförmiger Raum, der den Raumbedarf des Behälters umschreibt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art vorzuschlagen, mit dem Lagerbehälter hergestellt werden können, die im Verhältnis zu ihrem Raumbedarf eine wesentlich größere Kapazität haben als die bekannten, in Elementarbehälter aufgelösten Lagerbehälter. Durch die Erfindung sollen auch Gestaltungsmerkmale für den Behälter vorgeschlagen werden, die für die Grundkonzeption besonders vorteilhaft sind. Schließlich soll durch die Erfindung auch eine Form für die Herstellung des Behälters vorgeschlagen werden.
  • Diese Aufgabe wird mit den Merkmalen der Ansprüche 1, 7 bzw. 20 gelöst.
  • Durch die Erfindung wird erreicht, daß die Elementarbehälter nahe aneinander herangerückt werden können, vorzugsweise Wand an Wand, so daß zwischen den Elementarbehältern kein ungenutzter Raum verbleibt. Weiterhin trägt zur besseren Ausnutzung des Raumes bei, daß die Elementarbehälter quaderförmig ausgebildet sind, so daß Raumzwickel zwischen den Elementarbehältern nicht vorhanden sind. Die Anordnung der Verbindungskanäle an Kanten statt in der Längsmittelebene, wie dies bei dem bekannten Behälter nach der DE-PS 2 758 838 der Fall ist, ist ebenfalls ein wesentliches Merkmal, das dazu beiträgt, daß die Elementarbehälter mit oder ohne Abstand aneinandergefügt werden können.
  • Bei Anwendung des Blasformverfahrens ist es vorteilhaft, die Schwenkung der Behälter unmittelbar nach der Entformung vorzunehmen, da in diesem Stadium die Verbindungskanäle noch biegsam sind (Anspruch 2). Eine gute Biegbarkeit der Verbindungskanäle kann insbesondere auch mit einer besonderen Temperierung gemäß Anspruch 3 erreicht werden.
  • Die Erfindung ist nicht nur für die Herstellung von Behältern im Blasformverfahren anwendbar, sondern auch für die Behälterherstellung im Rotationsverfahren. Die nötige Plastizität kann auch hierbei gemäß Anspruch 4 durch Erwärmung der Verbindungskanäle hergestellt werden. Eine solche nachträgliche Erwärmung ist selbstverständlich auch bei geblasenen Behältern möglich.
  • Wie schon oben erwähnt, ist vorzuziehen, daß die Elementarbehälter ohne Zwischenraum aneinander angelegt werden. Kleine Zwischenräume können jedoch zweckmäßig sein, z.B. um eine Überprüfung der Elementarbehälter von außen zu ermöglichen.
  • Das erfindungsgemäße Verfahren ist insbesondere auch dazu geeignet, mit der gleichen Form sowohl selbständige Elementarbehälter herzustellen als auch größere Behälter, die aus zwei oder mehr Elementarbehältern bestehen, wobei im ersteren Fall Verbindungskanäle nicht hergestellt werden, während im Falle größerer Behälter Verbindungskanäle geformt werden. Bei geblasenen Behältern wird dann der in die Form extrudierte Schlauch aus plastischem Kunststoff im Zwischenraum zwischen zwei Elementarbehälter abgequetscht. Dadurch ist eine sehr rationelle Fertigung von Behältern mit einfacher, zweifacher, dreifacher usw. Kapazität möglich. Beispielsweise kann ein Elementarbehälter eine Kapazität von 1000 Liter haben, so daß in der gleichen Form wahlweise Behälter mit z.B. 1000 Liter, 2000 Liter und 3000 Liter Kapazität hergestellt werden können.
  • Zum Begriff "quaderförmig" sei bemerkt, daß unter "im wesentlichen quaderförmig" auch Behälter verstanden werden sollen, die an ihren Kanten, insbesondere an ihren senkrechten Längskanten, stark abgerundet sind, um bei gegebener Wanddicke eine große Festigkeit des Behälters insgesamt zu erhalten. Die Elementarbehälter können auch umlaufende Einschnürungen aufweisen, die die Festigkeit weiterhin verbessern. "Im wesentlichen quaderförmig" soll also bedeuten, daß ein geometrischer Quader unter Berücksichtigung der für eine gute Festigkeit nötigen Gestaltungsmerkmale möglichst vollständig ausgefüllt wird, wobei Abweichungen des Volumens eines Elementarbehälters vom Volumen eines ihn umschreibenden rein geometrischen Quaders im Bereich von 5% bis 15% des Volumens des geometrischen Quaders zulässig sein sollen und in Bereich der Erfindung fallen. Wenn im Zusammenhang mit der Erfindung von Kanten, insbesondere Seitenkanten, der Elementarbehälter besprochen wird, so handelt es sich in der Regel hierbei nicht um Kanten im engeren Sinn, sondern um die senkrechten Eckbereiche der Elementarbehälter, die, wie gesagt, auch mit großen Radien abgerundet sein können und dann z.B. Teile von Zylinderflächen sind.
  • Vorzugsweise sind die Hohlräume der Form diagonal geteilt. Bei dieser Art der Teilung wird beim Blasformverfahren der zwischen die Formhälften extrudierte Schlauch aus plastischem Kunststoffmaterial möglichst gleichmäßig gedehnt, wodurch eine möglichst gleichmäßige Wandstärke erreicht wird. Dies trägt zur Ersparnis an Kunststoffmaterial bei.
  • Die Schrägstellung der quaderförmigen Hohlräume zueinander hat den Vorteil, daß nach der Entformung verhältnismäßig kleine Schwenkbewegungen der Elementarbehälter genügen, um diese in die Endlage relativ zueinander zu bringen. Die Hohlräume können jedoch auch relativ zueinander angeordnet sein, was den Vorteil bringt, daß beide Hälften der Form gleich sind, wodurch die Form billig herstellbar ist.
  • Auswechselbare Einsatzteile können mit geringem Arbeitsaufwand rasch ausgetauscht werden, so daß je nach Bedarf selbständige Elementarbehälter oder größere Behälter hergestellt werden können, die aus mehreren Elementarbehältern bestehen. Bisher war der Übergang auf eine andere Behältergröße mit umfangreichen Montagearbeiten (Entnahme einer großen und schweren Form und Einsetzen einer neuen, schweren Form, z.B. in eine Blasformmaschine) verbunden, was lange Stillstandszeiten einer Formungsmaschine bedingte. Die Möglichkeit, mit der gleichen Form verschiedene Behältergrößen herstellen zu können, ist auch investitionsmäßig ein sehr wesentlicher Vorteil, da so große Formen sehr teuer sind. Einsatzteile für eine Blasform haben vorteilhafterweise einen Hohlraum für die Aufnahme von verdrängtem Kunststoffmaterial.
  • Vorteilhafterweise wird eine spezielle Quaderform für die Elementarbehälter vorgesehen, nämlich die Form einer quadratischen Säule. So geformte Behälter sind festigkeitsmäßig besonders vorteilhaft, da alle Seitenwände die gleichen Abmessungen haben und die Annäherung an eine Zylinderform, die festigkeitsmäßig optimal wäre, besonders gut ist.
  • Die Verbindungskanäle können verschieden geformt sein. Sie können einen flachen, hochkant stehenden Querschnitt aufweisen. Hierbei ist es vorteilhaft, die großen Wände durch an diese angeformte Höcker gegeneinander abzustützen. Die Verbindungskanäle können auch einen kreisrunden Querschnitt aufweisen, in welchem Fall Abstützhöcker nicht erforderlich sind. Vorzugsweise haben die Verbindungskanäle gewellte Wände, wodurch die Biegbarkeit der Verbindungskanäle erleichtert wird.
  • Vorzugsweise sind benachbarte Elementarbehälter miteinander verriegelt. Für die Ausbildung der Verriegelung sind in den Ansprüchen verschiedene Ausführungsformen angegeben.
  • Gemäß einer weiteren Ausgestaltung der Erfindung greifen die Elementarbehälter formschlüssig ineinander, wobei Erhöhungen an einem Elementarbehälter in Vertiefungen am anderen Elementarbehälter eingreifen.
  • Vorteilhafterweise sind bei einem Behälter, der aus mehreren Elementarbehältern zusammengesetzt ist, nur an einem Elementarbehälter die nötigen Stutzen an der Decke des betreffenden Elementarbehälters angeordnet. Dies genügt, da ja alle Elementarbehälter untereinander kommunizieren. Andererseits ist es vorteilhaft, an jedem Elementarbehälter die Möglichkeit der Anbringung von Stutzen vorzusehen, was dann nötig ist, wenn jeder Elementarbehälter ein selbständig verwendbarer Behälter sein soll.
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
    • Fig. 1 eine Draufsicht auf zwei Elementarbehälter im Stadium unmittelbar nach der Entnahme aus einer Form,
    • Fig. 2 eine Draufsicht auf einen fertigen, aus zwei Elementarbehältern bestehenden Behälter, wobei die beiden Behälter nach Fig. 1 durch Schwenken aneinandergefügt sind,
    • Fig. 3 eine Seitenansicht des Behälters in Richtung des Pfeiles 111 in Fig. 2,
    • Fig. 4 einen Querschnitt durch eine Blasform mit abgeknickter Teilungsebene,
    • Fig. 5 einen Querschnitt durch eine Blasform mit durchlaufender Teilungsebene und gleich ausgebildeten Formhälften,
    • Fig. 6 einen vertikalen Schnitt durch einen Verbindungskanal entsprechend der Linie VI-VI in Fig. 3 in einem gegenüber Fig. 3 vergrößerten Maßstab,
    • Fig. 7 einen Längsschnitt durch einen Verbindungskanal entsprechend der Linie VII-VII in Fig. 6,
    • Fig. 8 einen Querschnitt durch einen Verbindungskanal mit kreisrundem Querschnitt,
    • Fig. 9 einen Längsschnitt durch den Kanal nach Fig. 8 entsprechend der Linie IX-IX in Fig. 8,
    • Fig. 10 eine Verriegelungsstelle zwischen zwei Elementarbehältern in Seitenansicht entsprechend dem Pfeil X in Fig. 11,
    • Fig. 11 eine Draufsicht auf die Verriegelungsstelle entsprechend dem Pfeil XI in Fig. 10,
    • Fig. 12 eine Ansicht einer Verriegelungsstelle gemäß einer weiteren Ausführungsform der Erfindung in Richtung des Pfeiles XII in Fig. 13,
    • Fig. 13 eine Draufsicht auf die Verriegelungsstelle entsprechend dem Pfeil XIII in Fig. 12,
    • Fig. 14 eine Seitenansicht eines Lagerbehälters, dessen Elementarbehälter durch Zuggurte miteinander verbunden sind,
    • Fig. 15 einen horizontalen Teilschnitt nach Linie XV-XV in Fig. 14 in einem gegenüber Fig. 14 vergrößerten Maßstab, wobei nur die äußeren Eckbereiche der Elementarbehälter dargestellt sind und
    • Fig. 16 einen Batterietank, bestehend aus drei Lagerbehältern, von denen jeder aus zwei Elementarbehältern besteht.
  • Der Lagerbehälter B nach den Fig. 2 und 3 besteht aus zwei Elementarbehältern Ei, E2, die über einen unteren Verbindungskanal 1 und einen oberen Verbindungskanal 2 miteinander kommunizieren. Die Elementarbehälter Ei, E2 und die Verbindungskanäle 1, 2 bestehen aus einem zusammenhängenden Stück.
  • In der noch zu beschreibenden Form haben die Elementarbehälter Ei, E2 eine relative Lage zueinander, wie sie in Fig. 1 dargestellt ist. Hierbei verlaufen die später aneinanderliegenden Seitenwände 3, 4 unter einem Winkel a zueinander, der beim dargestellten Beispiel 45° beträgt. An der Seitenwand 3 befindet sich eine Vertiefung 5 und an der Seitenwand 4 eine Erhöhung 6, die nach dem Zusammenschwenken (Zustand nach Fig. 2) in die Vertiefung eingreift. Die beiden Elementarbehälter werden nach dem Zusammenschwenken in ihrer zusammengeschwenkten Lage durch Verriegelungsstellen 7 aneinander fixiert. Vorzugsweise sind zwei höhenversetzte Verriegelungsstellen 7 vorgesehen, die z.B. etwa auf der Höhe der Verbindungskanäle 1, 2 liegen können.
  • Die Elementarbehälter haben im wesentlichen die Form einer quadratischen Säule. Allerdings befinden sich dort, wo eine quadratische Säule ihre Längskanten hat, Abrundungen 8, die einen verhältnismäßig großen Radius haben. Im unteren Drittel jedes Elementarbehälters befindet sich auch eine umlaufende Einschnürung 9; in der Höhenmitte der Einschnürung 9 hat jeder Elementarbehälter einen kreisförmigen Querschnitt. Eine Decke 10 jedes Elementarbehälters geht wiederum über Abrundungen 11 mit großem Radius in die Behälterseitenwände über. Der Behälterboden 12 jedes Elementarbehälters geht über Kanten 13 in die Behälterseitenwände über. Die beschriebene Form ist nur im wesentlichen die Form einer streng geometrischen quadratischen Säule. Die beschriebenen Abweichungen ergeben sich aus der Notwendigkeit, die Form in festigkeitsmäßiger Hinsicht optimal zu gestalten.
  • Am Elementarbehälter E2 befinden sich drei Stutzen, nämlich ein Entlüftungsstutzen 14, ein Entnahmestutzen 15 und ein Befüllungsstutzen 16. An der Decke 10' des Elementarbehälters E1 sind Stutzen nicht vorhanden.
  • Der Lagerbehälter B kann sowohl in einer Blasform als auch in einer Rotationsform hergestellt werden. Im folgenden sei angenommen, daß der Behälter im Blasformverfahren hergestellt wurde. Blasformen sind in den Fig. 4 und 5 im Querschnitt dargestellt.
  • Die Form nach Fig. 4 hat zwei im wesentlichen quaderförmige Hohlräume H1 und H2. Die insgesamt mit Fi bezeichnete Form besteht aus zwei Formhälften 17, 18, die an einer Trennfläche 19 zusammengefügt werden können. Die Trennfläche 19 verläuft im wesentlichen diagonal über die Hohlräume Hi, H2 und ist über die Kante 52 abgeknickt, die etwa mit der späteren Biegelinie der Verbindungskanäle 1, 2 übereinstimmt. Diese Abknickung ergibt sich daraus, daß die Hohlräume Hi, H2 so zueinander stehen, daß der Winkel β zwischen den Wänden 20, 21 der Formhohlräume Hi, H2 kleiner ist als 90°, im vorliegenden Fall beträgt dieser Winkel 45°.
  • In dem Bereich, in dem sich die Formhohlräume Hi, H2 am nächsten kommen, enthält die Form Einsatzstücke 22, 23. Die Einsatzstücke haben eine solche Form, daß im Bereich der herzustellenden Verbindungskanäle 1, 2 Form-Verbindungskanäle 24 vorhanden sind.
  • Bei der Herstellung eines Behälters sind die Formhälften 17, 18 zunächst weit auseinandergefahren in Richtung der Pfeile 25, 26. Zwischen die beiden Formhälften wird in einer Blasformmaschine, in die die Form Fi eingebaut ist, ein Schlauch extrudiert, der in noch gut plastischem Zustand zunächst zwischen den Formhälften 17, 18 hängt. Wenn der Schlauch vollständig extrudiert ist, werden die Formhälften zusammengefahren. Nach dem Schließen der Form wird der Raum innerhalb des Schlauches aufgeblasen, wobei die Schlauchwand an die Innenwände der quaderförmigen Hohlräume H1, H2 angedrückt wird. Hierbei bilden sich auch die Verbindungskanäle 1, 2 aus.
  • Nach einer gewissen Abkühlzeit (in den Wänden der Form verlaufen in der Zeichnung nicht dargestellte Kühlkanäle für Kühlwasser) wird die Form geöffnet. Die Elementarbehälter sind in diesem Stadium bereits genügend stabil, um gehandhabt werden zu können. Hingegen sind die Verbindungskanäle 1, 2 noch formbar, was gezielt auch dadurch bewirkt werden kann, daß im Bereich der Form-Verbindungskanäle 24 die Form weniger stark gekühlt wird als im übrigen Bereich. Die in den Formhohlräumen Hi, H2 geformten Elementarbehälter E1, E2 werden nun in die relative Stellung nach Fig. 2 zueinander gebracht, wie dies bereits beschrieben wurde. Die hierbei nötige Verformung der Verbindungskanäle ist relativ gering wegen des relativ kleinen Winkels ß, was für die Herstellung vorteilhaft ist.
  • Die Form F2 nach Fig. 5 hat Formhälften 27, 28, die gleich ausgebildet sind. Die Formhälften sind an einer durchlaufenden Trennfläche 29 trennbar und zusammenfügbar. Die Formhälften schließen Hohlräume H'1 und H'2 ein, die etwas anders relativ zueinander orientiert sind als die Hohlräume Hi, H2 der Form F1. Der Winkel β' zwischen den Hohlräumen beträgt hier 90°. Diese Anordnung hat den Vorteil, daß die Formhälften 27, 28 gleich ausgebildet werden können. Allerdings müssen die Verbindungskanäle zwischen den Elementarbehältern dann stärker verformt werden als bei Herstellung in der Form Fi.
  • Die Form F2 enthält Einsatzstücke 30, 31, die die Hohlräume H'1 und H'2 voneinander trennen. Die Form F2 könnte auch Formstücke enthalten, die Form-Verbindungskanäle zwischen den Hohlräumen H'1 und H'2 offenlassen. Verbindungsstücke 30, 31, die die Hohlräume trennen, werden dann verwendet, wenn Elementarbehälter hergestellt werden sollen, die selbständig verwendbar sind. In diesem Fall müssen natürlich an beide Elementarbehälter die nötigen Stutzen angeformt werden.
  • Die Einsatzstücke 30, 31 und 22, 23 sind rasch auswechselbar, ebenso wie die Einsätze zur Formung zusätzlicher Stutzen, so daß mit nur geringen Umbauarbeiten eine Form von der Herstellung großer Behälter, die aus mehreren Elementarbehälter bestehen, auf die Herstellung kleinster Einheiten, bei der selbständige Elementarbehälter hergestellt werden, umgestellt werden kann.
  • Die Einsatzstücke 30, 31 schließen einen Hohlraum 32 ein, der für die Aufnahme von Kunststoffmaterial bestimmt ist, das beim Abquetschen des Schlauches anfällt. Der Raum 32 erstreckt sich über die gesamte Höhe der Hohlräume H'1 und H'2. Entsprechend befinden sich auch dann, wenn Einsatzstücke verwendet werden, die Form-Verbindungskanäle offenlassen, außerhalb dieser Einsatzstücke im Bereich der Trennfläche 19 bzw. 29 Hohlräume für die Aufnahme von beim Abquetschen verdrängtem Kunststoffmaterial.
  • Die Beschaffenheit der Verbindungskanäle 1, 2 ist in den Fig. 6, 7 dargestellt. Wie Fig. 6 zeigt, hat der Verbindungskanal 1 (der Verbindungskanal 2 ist gleich ausgebildet) einen flachen Querschnitt mit großflächigen Seitenwänden 33, 34. Die Seitenwand 33 geht über Abrundungen 33a, 33b in die Seitenwand 34 über. Um, insbesondere bei der Verformung der Verbindungskanäle während des Verschwenkens der Elementarbehälter E1, E2, ein Zusammenquetschen des Verbindungskanales zu verhindern, sind an die Seitenwände 33, 34 Höcker 35, 36 angeformt. Diese kommen nach einer gewissen Verengung des Kanales aneinander zur Anlage und verhindern eine weiteres Zusammenquetschen. Der lichte Querschnitt Q ist mindestens gleich dem Querschnitt der Befüllleitung, die an den Befüllungsstutzen 16 anzuschließen ist. Dadurch ist die Gewähr gegeben, daß die Kommunikation zwischen beiden Behältern möglich ist, ohne daß eine Drosselung entsteht, die den Ausgleich der Füllspiegel in den Elementarbehältern behindert.
  • Die Wand des Verbindungskanales ist gewellt, was in Fig. 7 dargestellt ist. Über die Kanalwand umlaufende wulstförmige Erhebungen 37 wechseln mit rinnenförmigen Vertiefungen 38 ab. Auch durch diese Formgebung wird die Biegefähigkeit der Verbindungskanäle verbessert. Die Biegeachse liegt etwa im Bereich der inneren Seitenwand 34 des Kanales 1.
  • In den Fig. 8 und 9 ist ein Verbindungskanal 1' dargestellt, der anstelle des Kanales nach den Fig. 6 und 7 verwendet werden kann. Dieser Verbindungskanal hat einen kreisrunden Querschnitt, wie aus Fig. 8 ersichtlich ist. Auch dieser Kanal hat eine gewellte Wand (siehe Fig. 9) mit wulstförmigen Erhebungen 37' und rinnenförmigen Vertiefungen 38'. Ein Verbindungskanal nach den Fig. 8 und 9 ist formsteif, so daß auch beim Biegen ein Zusammenquetschen nicht zu befürchten ist. Insbesondere trägt auch die Verrippung, die durch die Erhebungen 37 und die Vertiefungen 38 gebildet ist, zur Erhöhung der Steifigkeit bei.
  • Die Fig. 10 und 11 zeigen die Ausbildung einer Verriegelungsstelle, wie sie z.B. bei 7 (siehe Fig. 2) vorgesehen werden kann. An jedem der zu verriegelnden Elementar behälter befindet sich ein Auge 39 bzw. 40. Die Augen sind derart höhenversetzt, daß sie einander überlappen können. Durch miteinander fluchtende Bohrungen in den Augen ist ein aus Kunststoff bestehender Verbindungsbolzen 41 hindurchgesteckt. Die Enden 41a, 41 b des Bolzens sind nach Art eines Nietes verquetscht, wodurch der Bolzen 41 axial gesichert ist.
  • Die Augen 39, 40 sind Bestandteile von gleich ausgebildeten Anschweißteilen 42. Diese können z.B. im Spritzgießverfahren aus thermoplastischem Kunststoff hergestellt sein. Jeder Anschweißteil 41 hat einen Anschweißflansch 43, der durch Schweißung mit der Behälterwand verbunden ist. Bei der Herstellung des Behälters werden die Anschweißteile 42 in die Blasform eingelegt. Beim Blasen des Behälters verschweißen die Anschweißteile an den Anschweißflanschen 43 mit der Behälterwand.
  • Bei der Variante nach den Fig. 12 und 13 sind die Elementarbehälter Ei, E2 durch Klammern 44 zusammengehalten. Die Klammer 44 umgreift Leisten 45, 46, die wiederum Bestandteile von Anschweißteilen sind. Bei der Ausführung nach den Fig. 12 und 13 liegen die mit der Klammer 44 zu verbindenden Einschweißteile auf gleicher Höhe, während bei der Ausführungsform nach den Fig. 10 und 11, wie gesagt, ein Höhenversatz vorhanden ist. Wie die Draufsichten nach den Fig. 11 und 13 zeigen, liegen die Verbindungskonstruktionen innerhalb einer Ebene 47, die an die Seitenwand des Behälters angelegt ist.
  • Aus Fig. 14, die eine weitere Verbindungskonstruktion zeigt, geht auch hervor, daß über die Höhe des Behälters zwei Verriegelungsstellen vorhanden sind. Die bisher beschriebenen Verriegelungsstellen können an gleicher Stelle angeordnet sein wie die Gurte 48, 49, die bei dem Lagerbehälter nach den Fig. 14 und 15 verwendet werden.
  • Gemäß den Fig. 14 und 15 sind an jedem Elementarbehälter Ei, E2 Ösen 50 bzw. 51 angeformt, durch die ein Gurt 48 hindurchgezogen ist. Dargestellt sind zwei mögliche Verbindungsarten. Bei der am Elementarbehälter Ei dargestellten Verbindungsart hat der Gurt 48 an seinem Ende eine Schlaufe 53, die durch die Öse 50 geschoben ist und durch die ein Bolzen 54 hindurchgesteckt ist. Bei der Verbindungsstelle am Elementarbehälter E2 umgreift eine Schlaufe 55 einen Bereich 56 des Lappens, in dem sich die Öse 51 befindet. Die beiden Verbindungsarten können auch kombiniert verwendet werden. In den Wänden der Elementarbehälter Ei, E2 befinden sich Vertiefungen 57, in denen die Gurte liegen. Dadurch sind die Gurte gegen Herabhängen fixiert und stehen nicht seitlich über die Behälterwand vor. Auch die Verbindungskonstruktion nach den Fig. 14 und 15 liegt vollständig innerhalb einer vorderen Berührungsebene entsprechend der Ebene 47 in Fig. 11.
  • Fig. 16 zeigt einen Batterietank, der aus drei Behältern B besteht. Die Elementarbehälter Ei, E2 liegen ohne Abstand aneinander, während zwischen den einzelnen Behälter B Abstände 58, 59 vorhanden sind. Dies ermöglicht auch eine visuelle Inspektion der Behälter von der Seite her. Im Prinzip jedoch ist es möglich, zur weiteren Raumersparnis auch die Zwischenräume 58, 59 wegzulassen. Da weder die Verbindungskanäle noch die Verriegelungskonstruktionen seitlich vorstehen, ist das unmittelbare Aneinanderrücken der Behälter B möglich.
  • Die drei Behälter B sind durch eine Entlüftungsleitung 60, eine Entnahmeleitung 61 und eine Befüllungsleitung 62 miteinander verbunden. Die Leitungen 60, 61, 62 sind an die Stutzen 14 bzw. 15 bzw. 16 angeschlossen.
  • Die Erfindung wurde am Beispiel eines Behälters B beschrieben, der aus zwei Elementarbehältern Ei, E2 besteht. Ein Behälter B kann jedoch auch aus mehr als zwei Elementarbehältern bestehen. In besonderem Maße praktisch verwendbar sind auch Behälter, die aus drei Elementarbehältern bestehen.

Claims (26)

1. Verfahren zur Herstellung eines aus thermoplastischem Kunststoff bestehenden Lagerbehälters (B) für Flüssigkeiten, insbesondere Heizöl, wobei in einer Blasform (Fi, F2) oder einer Rotationsform mindestens zwei Elementarbehälter (Ei, E2) gleichzeitig geformt werden und die Elementarbehälter (Ei, E2) mindestens durch einen unteren und einen oberen Verbindungskanal (1, 2) miteinander verbindbar sind, wobei die Elementarbehälter (E1, E2) und die Verbindungskanäle (1, 2) gleichzeitig ggf. als einstückiges Teil geformt werden, dadurch gekennzeichnet, daß die im wesentlichen quaderförmig gestalteten Elementarbehälter (Ei, E2) in einer relativen Lage zueinander geformt werden, in der die Elementarbehälter (Ei, E2) nur an einer Behälterkante oder in der Nähe einer Behälterkante nahe beieinander liegen und die Verbindungskanäle (1, 2) an diesen Kanten hergestellt werden und daß nach der Entnahme des einstückigen Teils aus der Hohlform (F1, F2) die Elementarbehälter (Ei, E2) zum Verbringen in die Endform um die genannten Behälterkanten oder um eine nahe bei diesen liegenden Biegeachse unter Verformung der Verbindungskanäle (1, 2) und Annäherung der Elementarbehälter (Ei, E2) aneinander geschwenkt werden, vorzugsweise bis zu einer relativen Lage, in der die Quader-Seitenwände (3, 4) parallel zueinander liegen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß nach einer Formung des Behälters (B) im Blasformverfahren die Schwenkung der Elementarbehälter (Ei, E2) in die Endform unmittelbar nach der Entformung des Behälters im noch nahezu plastischen Zustand der Verbindungskanäle (1, 2) durchgeführt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Verbindungskanäle (1, 2) in der Hohlform (Fi, F2) auf einer höheren Temperatur gehalten werden als die Wände der Elementarbehälter (Ei, E2).
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindungskanäle nach der Entformung des Behälters durch Erwärmung plastifiziert und anschließend daran die Schwenkung der Elementarbehälter in die Endform durchgeführt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei der Schwenkung in die Endform die Elementarbehälter (Ei, E2) mit Seitenwänden (3, 4) aneinander angelegt werden.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Elementarbehälter (Ei, E2) im Blasverfahren geformt werden, wobei der in die Form (F1, F2) extrudierte Schlauch aus plastischem Kunststoff im Zwischenraum zwischen zwei Elementarbehältern (Ei, E2) abgequetscht wird.
7. Form zur Durchführung des Verfahrens nach Anspruch 1, dadurch gekennzeichnet, daß die Form (Fi, F2) mindestens zwei im wesentlichen quaderförmige Hohlräume (H1, H2; H'1, H'2) enthält, daß die quaderförmigen Hohlräume im Bereich einer ihrer Kanten benachbart sind, daß die Verbindungskanäle (1, 2) im Bereich dieser Kanten angeordnet sind und daß sich die Trennflächen (9, 19; 29) diagonal über die quaderförmigen Hohlräume (Hi, H2; H'1, H'2) erstrecken.
8. Form nach Anspruch 7, dadurch gekennzeichnet, daß benachbarte Seiten (20, 21) der quaderförmigen Hohlräume (Hi, H2) einen Winkel (ß) einschließen, der kleiner als 90° ist, vorzugsweise zwischen 30° und 60° liegt, vorzugsweise ca. 45° beträgt.
9. Form nach Anspruch 7, dadurch gekennzeichnet, daß benachbarte Seiten (20, 21) der quaderförmigen Hohlräume H'i, H'2) einen Winkel (ß') von 90° einschließen, daß die Trennebene (29) über die gesamte Form (F2) hinweg gerade durchläuft und daß die beiden Formbehälter (27, 28) gleich ausgebildet sind.
10. Anwendung der Form gemäß den Ansprüchen 7 bis 9 zur Herstellung von Elementarbehältern, gekennzeichnet durch auswechselbare Einsatzteile (22, 23; 30, 31), wobei Einsatzteile (22, 23) für die Herstellung von aus zusammenhängenden Elementarbehältern (Ei, E2) bestehenden Behältern (B) Form-Verbindungskanäle (24) für die Formung der Verbindungskanäle (1, 2) zwischen den quaderförmigen Hohlräumen (H1, H2, H'1, H'2) freilassen und Einsatzteile (30, 31) für die Herstellung von separaten Elementarbehältern die Verbindung zwischen benachbarten quaderförmigen Hohlräumen (Hi, H2; H'1, H'2) abschließen und daß vorzugsweise weitere auswechselbare Einsatzteile vorgesehen sind, mit denen wahlweise Behälterstutzen oder eine glatte Behälterdecke formbar sind.
11. Anwendung nach Anspruch 10, dadurch gekennzeichnet, daß für das Blasformverfahren die Einsatzteile (30, 31) zusammen einen Hohlraum (32) für die Aufnahme von Kunststoffmaterial einschließen, das beim Abquetschen des zwischen die Formhälften (27, 38) extrudierten Kunststoffschlauches verdrängt wird.
12. Lagerbehälter (B) aus thermoplastischem Kunststoff für die Lagerung von Flüssigkeiten, insbesondere Heizöl, der aus mindestens zwei Elementarbehältern (Ei, E2) besteht, die über mindestens einen unteren und einen oberen Verbindungskanal (1, 2) miteinander verbunden sind, welche Kanäle (1, 2) einstückig mit den Elementarbehältern (Ei, E2) ausgebildet sind, dadurch gekennzeichnet, daß die Elementarbehälter (Ei, E2) im wesentlichen quaderförmig sind und benachbarte Seitenwände (3, 4) der Elementarbehälter (Ei, E2) parallel zueinander stehen und nahe beieinander liegen, eventuell ohne Zwischenraum, und daß sich Verbindungskanäle (1, 2) nur zwischen zwei benachbarten Kanten oder in der Nähe solcher Kanten der Elementarbehälter (Ei, E2) erstrecken.
13. Lagerbehälter nach Anspruch 12, dadurch gekennzeichnet, daß die Elementarbehälter (Ei, E2) im wesentlichen als quadratische Säulen ausgebildet sind.
14. Lagerbehälter nach Anspruch 12, dadurch gekennzeichnet, daß die Verbindungskanäle (1, 2) einen flachen Querschnitt aufweisen, dessen lange Seitenwände parallel zu den Seitenkanten der Elementarbehälter (Ei, E2) verlaufen.
15. Lagerbehälter nach Anspruch 14, dadurch gekennzeichnet, daß die Wände (33, 34) der Verbindungskanäle (1, 2) durch in die Kanal-Seitenwände (33, 34) eingeformte Höcker (35, 36) gegeneinander abgestützt sind.
16. Lagerbehälter nach Anspruch 13, dadurch gekennzeichnet, daß die Verbindungskanäle (1') einen kreisrunden Querschnitt haben.
17. Lagerbehälter nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, daß die Verbindungskanäle (1, 2; 1') derart gewellte Wände haben, daß die Verbindungskanäle abwechselnd ringförmig eingeschnürt und ausgebuchtet sind.
18. Lagerbehälter nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß benachbarte Elementarbehälter (Ei, E2) derart miteinander verriegelt sind, daß sie in der Endform des Behälters (B) zusammengehalten werden, z.B. an Seitenkanten, die den Seitenkanten gegenüberliegen, an denen sich die Verbindungskanäle (1, 2) befinden, wobei sich vorzugsweise Verriegelungsstellen etwa auf den Höhen der Verbindungskanäle (1, 2) befinden, wobei vorzugsweise die Verriegelungsmittel innerhalb einer an die Seitenwand des Behälters angelegten gedachten Ebene (47) liegen.
19. Lagerbehälter nach Anspruch 18, dadurch gekennzeichnet, daß an den Elementarbehältern (Ei, E2) Augen (39, 40) angeordnet sind, deren Bohrungen aufeinander ausgerichtet sind und durch die Verbindungsbolzen (41) hindurchgesteckt sind, vorzugsweise Bolzen aus Kunststoff, deren Enden (41a, 41b) nach Art eines Nietes verquetscht sind (Fig. 10, 11).
20. Lagerbehälter nach Anspruch 18, dadurch gekennzeichnet, daß an den Elementarbehältern (Ei, E2) Leisten (45, 46) angeordnet sind, die durch Profile (44) mit C-förmigem Querschnitt miteinander verklammert sind.
21. Lagerbehälter nach einem der Ansprüche 19 und 20, dadurch gekennzeichnet, daß sich die Augen (39, 40) bzw. Leisten (45, 46) an Formteilen (42) befinden, die einen Anschweißflansch (43) aufweisen, der an die Wand der Elementarbehälter (Ei, E2) angeschweißt ist.
22. Lagerbehälter nach Anspruch 18, dadurch gekennzeichnet, daß die Elementarbehälter (E1, E2) durch Zugelemente (48, 49), insbesondere Gurte, miteinander verbunden sind, die vorzugsweise in Vertiefungen (57) an den Wänden der Elementarbehälter (Ei, E2) liegen.
23. Lagerbehälter nach Anspruch 22, dadurch gekennzeichnet, daß an die Elementarbehälter (Ei, E2) Vorsprünge (56) mit Durchbrüchen (51) angeformt sind, vorzugsweise an äußeren Seitenkanten, und daß die Gurte (48, 49) durch die Durchbrüche (51) hindurchgezogen sind.
24. Lagerbehälter nach einem der Ansprüche 12 bis 23, dadurch gekennzeichnet, daß die Elementarbehälter (Ei, E2) an ihren benachbarten Seitenwänden (3, 4) durch Vorsprünge (6) und Vertiefungen (5), in die Vorsprünge (6) eingreifen, gegeneinander fixiert sind.
25. Lagerbehälter nach einem der Ansprüche 12 bis 24, dadurch gekennzeichnet, daß bei einem aus mehreren Elementarbehältern (E1, E2) zusammengesetzten Lagerbehältern (B) nur an der Decke (10) eines Elementarbehälters (E2) Stutzen (14, 15, 16) für eine Entlüftungsleitung (60), eine Entnahmeleitung (61) und eine Befüllungsleitung (62) angeordnet sind.
EP85109424A 1985-07-26 1985-07-26 Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung Expired EP0211965B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT85109424T ATE39907T1 (de) 1985-07-26 1985-07-26 Lagerbehaelter aus thermoplastischem kunststoff fuer fluessigkeiten, insbesondere fuer heizoel, sowie verfahren und form zu seiner herstellung.
EP85109424A EP0211965B1 (de) 1985-07-26 1985-07-26 Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung
DE8585109424T DE3567431D1 (en) 1985-07-26 1985-07-26 Liquid-container of thermoplastic material, especially fuel, and its production method and shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85109424A EP0211965B1 (de) 1985-07-26 1985-07-26 Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung

Publications (2)

Publication Number Publication Date
EP0211965A1 EP0211965A1 (de) 1987-03-04
EP0211965B1 true EP0211965B1 (de) 1989-01-11

Family

ID=8193646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109424A Expired EP0211965B1 (de) 1985-07-26 1985-07-26 Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung

Country Status (3)

Country Link
EP (1) EP0211965B1 (de)
AT (1) ATE39907T1 (de)
DE (1) DE3567431D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3833646A1 (de) * 1988-10-04 1990-04-05 Roth Werke Gmbh Lagerbehaelter fuer fluessigkeiten
FR2671542A1 (fr) * 1991-01-16 1992-07-17 Resma Sarl Reservoir en matiere plastique de contenance modulable.
DE202006015139U1 (de) 2006-09-29 2007-01-04 KVT Klävertec GmbH Kunststoffbehälter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1455496B2 (de) * 1964-04-25 1974-01-24 Kautex-Werke Reinhold Hagen Gmbh, 5300 Bonn-Holzlar Mit einem Beruhigungstopf versehener Kraftstofftank für Fahrzeuge
FR1540333A (fr) * 1967-03-14 1968-09-27 Corps creux et moules à coquilles permettant une fabrication multiple et simultanée au moyen d'une paraison de nappe tubulaire en matière plastique
CH481738A (fr) * 1968-08-06 1969-11-30 Proplasto Ag Procédé et moule de fabrication d'un récipient à plusieurs compartiments
DE2758838C2 (de) * 1977-12-30 1985-01-31 Kautex Werke Reinold Hagen AG, 5300 Bonn Tank aus thermoplastischem Kunststoff

Also Published As

Publication number Publication date
DE3567431D1 (en) 1989-02-16
ATE39907T1 (de) 1989-01-15
EP0211965A1 (de) 1987-03-04

Similar Documents

Publication Publication Date Title
DE60114202T2 (de) Kunststoffbehälter mit runden schultern
DE69219157T2 (de) Spritzgiessen von kunststoffgegenständen die hohlförmige rippen aufweisen
DE1604653B2 (de) Hohlkoerper aus kunststoff sowie verfahren und vorrichtung zu dessen herstellung
DE19500043C2 (de) Vorratsbehälter mit Abstützmittel
DE2044713A1 (de) Verfahren zur Herstellung eines aus Kunstharz bestehenden Behalters bzw Kastens und nach diesem Verfahren hergestelltes Erzeugnis
DE2440900C2 (de) Spritzgiessform zum herstellen von kastenfoermigen behaeltern, insbesondere von flaschentransportkaesten
CH621742A5 (de)
CH680581A5 (de)
EP0211965B1 (de) Lagerbehälter aus thermoplastischem Kunststoff für Flüssigkeiten, insbesondere für Heizöl, sowie Verfahren und Form zu seiner Herstellung
DE2152110A1 (de) Kunststoff-Behaelter,insbesondere fuer Flaschen u.dgl.
DE3900894A1 (de) Verfahren zur herstellung von flaschenkaesten mit waagrechten griffholmen sowie entsprechende flaschenkaesten
DE2149569B2 (de) Vorrichtung zum Herstellen eines zwei voneinander getrennte Zellen aufweisenden Kanisters
EP0626248B1 (de) Hohlform zur Herstellung von Hohlkörpern mit Handgriffen
EP0204200B1 (de) Verfahren und Vorrichtung zum Herstellen von Hohlkörpern aus thermoplastischem Material im Blasverfahren
DE813584C (de) Zweiteilige Spritzgiessform
DE2457758C3 (de) Vorrichtung zum Herstellen, Füllen und Verschließen von Hohlkörpern aus thermoplastischem Material
EP0189906B1 (de) Werkzeug zum Spritzgiessen von stapelbaren Behältern
DE2619590C2 (de) Heizöl-Lagertank aus thermoplastischem Kunststoff
AT334618B (de) Blasvorrichtung zur herstellung eines zwei voneinander getrennte zellen aufweisenden hohlkorpers
DE2809500A1 (de) Lagerbehaelter aus kunststoff fuer fluessigkeiten, insbesondere heizoelbehaelter
EP0687630A1 (de) Im Spritzgiessverfahren hergestelltes Kunstoffteil
DE4330998A1 (de) Transportkasten aus Kunststoff
DE20121919U1 (de) Formteil sowie daraus gebildeter Hohlkörper
DE2723515A1 (de) Aus thermoplastischem kunststoff geblasener bandagenloser tank
DE1245579B (de) Verfahren und Vorrichtung zum Herstellen von Flaschen und anderen Hohlkoerpern im Blasverfahren aus plastifiziertem Material, insbesondere thermoplastischen Kunststoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870319

17Q First examination report despatched

Effective date: 19870828

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890111

Ref country code: NL

Effective date: 19890111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19890111

Ref country code: BE

Effective date: 19890111

REF Corresponds to:

Ref document number: 39907

Country of ref document: AT

Date of ref document: 19890115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3567431

Country of ref document: DE

Date of ref document: 19890216

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920715

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000629

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000825

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST