EP0210521A1 - Elektrophotographisches Aufzeichnungsmaterial - Google Patents

Elektrophotographisches Aufzeichnungsmaterial Download PDF

Info

Publication number
EP0210521A1
EP0210521A1 EP86109609A EP86109609A EP0210521A1 EP 0210521 A1 EP0210521 A1 EP 0210521A1 EP 86109609 A EP86109609 A EP 86109609A EP 86109609 A EP86109609 A EP 86109609A EP 0210521 A1 EP0210521 A1 EP 0210521A1
Authority
EP
European Patent Office
Prior art keywords
layer
recording material
alkyl
perylene
tetracarboximide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86109609A
Other languages
English (en)
French (fr)
Other versions
EP0210521B1 (de
Inventor
Wolfgang Dr. Wiedemann
Ernst Dr. Spietschka
Helmut Dr. Tröster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0210521A1 publication Critical patent/EP0210521A1/de
Application granted granted Critical
Publication of EP0210521B1 publication Critical patent/EP0210521B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0659Heterocyclic compounds containing two or more hetero rings in the same ring system containing more than seven relevant rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0646Heterocyclic compounds containing two or more hetero rings in the same ring system
    • G03G5/0657Heterocyclic compounds containing two or more hetero rings in the same ring system containing seven relevant rings

Definitions

  • the invention relates to an electrophotographic recording material composed of an electrically conductive layer support, optionally an insulating intermediate layer and a photoconductive layer composed of at least one compound which produces a perylene-3,4,9,10-tetracarboximide derivative as charge carrier, photoconductor as charge transport compound, binder and conventional additives .
  • the invention relates in particular to a recording material comprising an electrically conductive layer support, optionally an insulating intermediate layer, a dye layer with a perylene-3,4,9,10-tetracarboximide derivative as the charge-generating compound and an organic photoconductor as the charge transport compound layer.
  • the recording material according to the invention is advantageously suitable for a lithographic printing form or printed circuit which can be produced by electrophotographic means, consisting of a correspondingly suitable electrically conductive layer support and a photoconductive layer with binders which can be stripped of alkali.
  • the known perylene-3,4,9,10-tetracarboxylic acid derivatives have, as red colored dyes, photosensitivities which range approximately in the range from 620 to 650 nm. It was an object of the invention to find new perylene-3,4,9,10-tetracarboxylic acid derivatives which, if possible, also have good photosensitivity up to 700 nm.
  • an electrophotographic recording material of the type mentioned at the outset in that it contains an asymmetrically substituted perylene-3,4,9,10-tetracarboxylic acid imide in the photoconductive layer.
  • the perylene carboximide according to the invention has one of the following structures: in the R -hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, aryl or aralkyl and A -phenylene, naphthylene or a more condensed aromatic carbocyclic or heterocyclic radical, each of which can be substituted by halogen, alkyl, the cyano or nitro group, in which R and R 'are not the same and are hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, cycloalkyl, aryl, aralkyl or heteroaryl, which can each be substituted by halogen, alkyl, the cyano or nitro group, or in the R -hydrogen, alkyl, hydroxyalkyl, alkoxyalkyl, aryl, aralkyl or heteroaryl, each of which can be substituted by halogen, alkyl, the cyano or nitro group.
  • carbocyclic or heterocyclic radicals examples include naphthylene-1,8 or pyridyl radicals. Cyclohexyl, for example, is suitable as the cycloalkyl.
  • the asymmetrical perylene-3,4,9,10-tetracarboximides according to the invention as charge-producing pigments with many organic pho toleitern, the charge transport compounds, and especially with binders good photosensitive recording materials, both in double and in monolayer arrangement with pigment dispersed therein.
  • the asymmetrical pigments according to the invention have high photosensitivity down to a range of almost 700 nm. This also permits their use in electrophotographic recording materials for He / Ne and LED laser light sources.
  • the substituent R can preferably be hydrogen, alkyl, such as methyl to butyl, hydroxyalkyl, such as 2-hydroxyethyl, alkoxyalkyl, such as 3-methoxypropyl and aralkyl, such as benzyl.
  • the derivatives of the perylene-3,4,9,10-tetracarboxylic acid monoanhydride monoimide (b) can also be used successfully as charge-generating compounds. Because of their good alkali solubility, they can preferably be used in alkali-strippable lithographic printing forms.
  • Position 1 indicates the electrically conductive layer support
  • position 2 indicates the charge layer producing dye layer
  • position 3 indicates the charge transport layer
  • Position 4 indicates the insulating intermediate layer
  • position 5 shows layers which represent a charge carrier-producing dye layer in dispersion.
  • Position 6 shows a photoconductive monolayer of photoconductor, peryien-3,4,9,10-tetracarboximide and binder.
  • Aluminum foil optionally transparent, aluminum-vapor-coated or aluminum-clad polyester foil, is preferably used as the electrically conductive layer support, however, any other support material made sufficiently conductive (e.g. by soot, etc.) can also be used as the layer support.
  • the arrangement of the photoconductor layer can also be on a drum, on flexible endless belts, e.g. made of nickel or steel etc. or on plates.
  • All materials known for this purpose can be used as carrier materials for the electrophotographic production of printing forms, e.g. Aluminum, zinc, magnesium, copper plates or multi-metal plates. Surface-coated aluminum foils have proven particularly useful.
  • the surface refinement consists of mechanical or electrochemical roughening and, if appropriate, subsequent anodizing and treatment with polyvinylphosphonic acid in accordance with DE-OS 16 21 478, corresponding to US Pat. No. 4,153,461.
  • the aim of introducing an insulating intermediate layer is to reduce the charge carrier injection from the metal into the photoconductor layer in the dark. On the other hand, it should not hinder the flow of charge during the exposure process.
  • the intermediate layer acts as a barrier layer, it also serves, if appropriate, to improve the adhesion between the layer support surface and the dye layer or photoconductor layer and should be capable of being stripped off water or alcoholic-alkaline for the production of printing forms.
  • Synthetic resin binders are used, but preference is given to using materials which adhere well to a metal, in particular aluminum surface, and which are slightly dissolved when subsequent layers are applied. These include polyamide resins, polyvinyl alcohols, polyvinyl phosphonic acid, polyurethanes, polyester resins or specifically alkali-soluble binders, such as, for example, styrene-maleic anhydride copolymers.
  • the thickness of organic intermediate layers can be up to 5 u, that of an aluminum oxide intermediate layer is generally in the range from 0.01 to 1 u.m.
  • the dye layer 2 or 5 according to the invention has the function of a layer which generates charge carriers; the dye used determines the spectral photosensitivity of the photoconductive system through its absorption behavior.
  • the application of a homogeneous, densely packed dye layer is preferably obtained by evaporating the pigment onto the support in vacuo.
  • the dye can be evaporated without decomposition under the conditions of 1.33 x 10 -1 to 10 -2 bar and a heating temperature of 240 to 290 ° C.
  • the temperature of the substrate is below 50 ° C.
  • An advantageous layer thickness range of the vapor-deposited dye is between 0.005 and 3 ⁇ m.
  • a thickness range between 0.05 and 1.5 ⁇ m is particularly preferred since the adhesive strength and homogeneity of the vapor-deposited pigment are particularly favorable here.
  • a uniform dye thickness can also be achieved by other coating techniques. This subheading includes mechanical rubbing of the finely powdered dye material into the electrically conductive substrate, electrolytic or electrochemical processes or electrostatic spray technology.
  • homogeneous, well covering dye layers with thicknesses of the order of 0.05 to 3 ⁇ m can also be obtained by grinding the dye with binder, in particular with cellulose nitrates and / or crosslinking binder systems, for example polyisocyanate-crosslinkable acrylic resins, Reactive resins, such as epoxies, DD lacquers, and then coating these dye dispersions according to position 5 in FIGS. 4 and 5.
  • binder in particular with cellulose nitrates and / or crosslinking binder systems, for example polyisocyanate-crosslinkable acrylic resins, Reactive resins, such as epoxies, DD lacquers, and then coating these dye dispersions according to position 5 in FIGS. 4 and 5.
  • binders such as polystyrene, styrene / maleic anhydride copolymers, polymethacrylates, polyvinyl acetates, polyurethanes, polyvinyl butyrals, polycarbonates, polyesters etc. and mixtures thereof can be used.
  • the ratio of dye / binder can vary within wide limits, but preference is given to pigment primers with a pigment content of over 50% and correspondingly high optical density.
  • FIG. 1 Another possibility is to produce a photoconductor layer according to FIG. 1, in which the charge generation centers (pigments) are finely dispersed in the transport layer medium.
  • This arrangement has the advantage of a simpler production method than that of a double layer, and is particularly suitable for the production of lithographic printing forms.
  • the pigment content in the photoconductor layer is preferably up to about 30%.
  • the layer thickness of such arrangements is preferably 2 to 10 ⁇ m.
  • the inverse arrangement of the charge carrier-generating layer 5 in FIG. 5 on the charge-transporting layer 3, when using a p-transport connection, provides photoconductor double layers which have a high photosensitivity when charged positively.
  • Organic materials which have an extensive ⁇ -electron system are particularly suitable as the charge transport material. These include both monomeric and polymeric aromatic or heterocyclic compounds.
  • the monomers used are in particular those which have at least one tertiary amino group and / or one dialkylamino group.
  • Heterocyclic compounds such as oxdiazole derivatives, which are mentioned in German patent 10 58 836 (corresponding to US Pat. No. 3,189,447), have proven particularly useful. These include, in particular, 2,5-bis (p-diethylaminophenyl) oxdiazole-1,3,4; unsymmetrical oxdiazoles, such as 5- [3- (9-ethyl) -carbazolyl] -1,3,4-oxdiazole derivatives (US Pat. No. 4,192,677), about 2- (4-dialkylaminophenyl -) - 5- [3 - (9-ethyl) -carbazolyl] -1,3,4-oxdiazole can be used successfully.
  • Suitable monomeric compounds are arylamine derivatives (triphenylamine) and triarylmethane derivatives (DE-PS 12 37 900), e.g. Bis (4-diethylamino-2-methylphenyl) phenylmethane, more condensed aromatic compounds such as pyrene, benzo-condensed heterocycles (e.g. benzoxazole derivatives).
  • Pyrazolines are also suitable, e.g. 1,3,5-triphenytpyrazoiine or imidazole derivatives (DE-PS 10 60 714 or 11 06 599, corresponding to US-PS 3,180,729, GB-PS 938,434).
  • This subheading also includes triazole, thiadiazole and especially oxazole derivatives, for example 2-phenyl-4- (2 '-chlorophenyl) -5 (4' -diethylaminophenyl) -oxazole, as described in German patents 10 60 260, 12 99 296 , 11 20 875 - (corresponding to US-PS 3,112,197, GB-PS 1,016,520, US-PS 3,257,203).
  • oxazole derivatives for example 2-phenyl-4- (2 '-chlorophenyl) -5 (4' -diethylaminophenyl) -oxazole, as described in German patents 10 60 260, 12 99 296 , 11 20 875 - (corresponding to US-PS 3,112,197, GB-PS 1,016,520, US-PS 3,257,203).
  • Hydrazone derivatives of the following structures have also become a charge transport compound according to US-PS 4,150,987, DE-OS 29 41 509, DE-OS 29 19 791, DE-OS 29 39 483 (corresponding to US-PS 4,338,388, US-PS 4,278,747, GB-PS 2,034,493) proven.
  • Formaldehyde condensation products with various aromatics such as, for example, condensates of formaldehyde and 3-bromopyrene, have proven to be suitable as polymers (DE-OS 21 37 288 corresponding to US Pat. No. 3,842,038).
  • polyvinyl carbazole or copolymers with at least 50% vinyl carbazole content as transport polymers provide good photosensitivity (FIGS. 2 to 4).
  • the charge-transporting layer 3 has practically no photosensitivity in the visible range - (420 to 750 nm). It preferably consists of a mixture of an electron donor compound - (organic photoconductor) with a binder if negative charging is to be carried out. It is preferably transparent, but this is not necessary in the case of a transparent, conductive layer support. Layer 3 has a high electrical resistance of greater than 10 12 12. It prevents the discharge of the electrostatic charge in the dark; when exposed, it transports the charges generated in the dye layer.
  • the added binder influences both the mechanical behavior, such as abrasion, flexibility, film formation, adhesion, etc., and to a certain extent the electrophotographic behavior, such as photosensitivity, residual charge and cyclic behavior.
  • Polyester resins polyvinyl chloride / polyvinyl acetate copolymers, alkyd resins, polyvinyl acetates, polycarbonates, silicone resins, polyurethanes, epoxy resins, poly (meth) acrylates and copolymers, polyvinyl acetals, polystyrenes and styrene copolymers, cellulose derivatives, such as cellulose acetate, etc., are used as binders.
  • thermally post-crosslinking binder systems such as reactive resins, which are composed of an equivalent mixture of hydroxyl-containing polyesters or polyethers and polyfunctional isocyanates, potashisocyanate-crosslinkable acrylate resins, melamine resins, unsaturated polyester resins etc. are successfully used.
  • solubility properties play a particularly important role in the selection of binders.
  • binders which are soluble in aqueous or alcoholic solvent systems, optionally with the addition of acid or alkali, are particularly suitable for practical purposes.
  • Suitable binders are then high molecular weight substances which carry alkali-solubilizing groups.
  • alkali-solubilizing groups are, for example, acid anhydride, carboxyl, phenol, sulfonic acid, sulfonamide or sulfonimide groups.
  • Copolymers with anhydride groups can be used with particularly good results.
  • Copolymers of ethylene or styrene and maleic anhydride or maleic acid semiesters are very particularly suitable.
  • Phenolic resins have also proven their worth.
  • Copolymers of styrene, methacrylic acid and methacrylic acid esters can also be used as alkali-soluble binders (DE-OS 27 55 851).
  • a copolymer of 1 to 35% styrene, 10 to 40% methacrylic acid and 35 to 83% methacrylic acid n-hexyl ester is used.
  • a terpolymer made of 10% styrofoam, 30% methacrylic acid and 60% methacrylic acid n-hexyl ester is particularly suitable.
  • Polyvinyl acetates (PVAc) in particular copolymers of PVAc and crotonic acid, can also be used.
  • the binders used can be used alone or in combination.
  • the mixing ratio of the charge transporting compound to the binder can vary. However, due to the requirement for maximum photosensitivity, ie the largest possible proportion of charge transport compound and for crystallization to be avoided as well Increasing flexibility, ie the greatest possible proportion of binders, sets relatively certain limits.
  • a mixing ratio of approximately 1: 1 parts by weight has generally proven to be preferred, but ratios between 4: 1 to 1: 4 are also suitable.
  • polymeric charge transport compounds such as bromopyrene resin, polyvinyl carbazole, binder proportions of around or below 30% are suitable.
  • layer thicknesses between approximately 2 and 25 ⁇ m are generally used. A thickness range from 3 to 15 ⁇ m has proven to be particularly advantageous. However, if the mechanical requirements and the electrophotographic parameters (charging and development station) of a copying machine permit, the specified limits can be extended upwards or downwards in certain cases.
  • Leveling agents such as silicone oils, wetting agents, in particular nonionic substances, plasticizers of different compositions, such as, for example, those based on chlorinated hydrocarbons or those based on phthalic acid esters are considered to be customary additives. If necessary, conventional sensitizers and / or acceptors can also be added to the charge-transporting layer, but only to the extent that their optical transparency is not significantly impaired.
  • the layer support is completely covered.
  • the residual charge (U R ) after 0.1 sec., Determined from the above bright discharge curves, is a further measure of the discharge of a photoconductor layer.
  • the pigment layers with the asymmetrical perylimide dyes according to formula I, 1 and 2, are produced as described in Example 1. These vapor deposition layers are then coated with a solution of 65 parts by weight To 1920 and 35 parts by weight cellulose nitrate of the standard type 4E (DIN 53179) in THF. After drying, the layer thicknesses ranged from 7 to 8 and 12 to 13 ⁇ m.
  • the spectral photosensitivity of these photoconductor double layers is determined with filters connected upstream according to the method given in Example 1: In the case of negative charging (500 to 550 V), the half-life - (T 1/2 in msec) for the respective wavelength range is determined by exposure.
  • the spectral photosensitivity curve of a photoconductor layer is obtained by plotting the reciprocal half-value energy (1 / E 1/2 cm 2 / ⁇ J) against the wavelength ⁇ (nm).
  • the half-value energy E 1/2 / mJ / cm 2 means the light energy that has to be irradiated in order to discharge the photoconductor layer to half the initial voltage U o .
  • a pigment evaporation layer with pigment according to formula I, 1 is coated with a solution of equal parts by weight of 2-phenyl-4- (2'-chlorophenyl) -5 (4'-diethylaminophenyl) oxazole (Table: Layer 3 - 1) and a polyester resin ( Dynapol R L206) coated in THF.
  • 2- (4'-diethylaminophenyl) 4-chloro-5 (4'-methoxyphenyl) oxazole was used instead of this oxazole derivative (Table: Layer 3 - 2).
  • the two double layers with a layer thickness of 7 to 8 ⁇ gave the following photosensitivity:
  • a mixture of 65 parts by weight of pigment (formula 1, 2), 25 parts by weight of cellulose nitrate of standard type 4E (DIN 53179) and 10 parts by weight of epoxy resin (Epikote R 1001) are ground together intensively in THF for 2 to 3 hours in a ball mill.
  • the finely dispersed solution is then homogeneously applied to a conductive support in thicknesses of approximately 210 mg / m 2 and approximately 490 mg / m 2 and dried.
  • part of the pigment precoat was polished with cotton wool.
  • the pigment pre-coat (approx. 490 mg / m '), which is insoluble for the subsequent coating of the charge transport layer, is mixed with a solution of equal parts by weight To 1920 and a copolymer of styrene / butadiene (Pliolite R S5B) and coated with a solution of 98 parts by weight of polyvinyl carbazole (Luvican R M170, BASF) and 2 parts by weight of polyester resin (Adhesive R 49000) in THF. After drying, the double layer is 4 to 5 ⁇ m thick; their photosensitivity is determined according to Example 1:
  • An aluminum-vapor-coated polyester film is vacuum-coated with the pigments according to formula II, 1 and 2 in a thickness of approximately 200 mg / m 2 .
  • the homogeneous pigment layers are then coated with a solution of equal parts by weight of 2- (4-diethylaminophenyl) -4-chloro-5- (4-methoxyphenyl) oxazole and polycarbonate (Makrolon R 2405) in a thickness of about 8 ⁇ m after drying.
  • the photosensitivity is measured analogously to Example 1:
  • pigment according to formula I, 2 5 parts are added to a solution of 45 parts of To 1920 and 50 parts of copolymer of syrene and maleic anhydride (Scipset R 550). This dispersion is ground very finely in a ball mill for about 2 hours and then layered on wire-brushed aluminum foil (a) and anodized aluminum foil (b) in a thickness of 7 to 8 ⁇ m.
  • the dye After the dye has been prepared in accordance with formula III, 1 (DE-OS 30 17 .185), it is aluminum-vaporized in a vacuum vapor deposition system at 1.3 ⁇ 10 -7 to 10 -4 bar within 7 minutes at about 250 ° C. Evaporated polyester film. A homogeneous, red vapor deposition layer with a layer weight of 135 mg / m 2 is obtained.
  • a solution of 65 parts by weight of To 1920 and 35 parts by weight of cellulose nitrate of standard type 4E is thrown into THF. After drying, the thickness of the charge transport layer is approximately 10 ⁇ m.
  • Dye vapor deposition layers in a thickness range of 135 to 140 mg / m 2 are produced with the compounds III, 1 and II, 6, as described in Example 11. This is followed by a charge transport layer consisting of equal parts by weight To 1920 and a copolymer of styrene and maleic anhydride (Scipset R 550). The total layer thickness is approximately 10 ⁇ m.
  • the photosensitivity is measured analogously to Example 1:
  • a solution of 45 parts of To 1920 and 50 parts of copolymer of styrene and maleic anhydride (Scripset R 550) is mixed with 5 parts of dye according to formula III, 6 and very finely dispersed in a ball mill for about 2 hours. This dispersion is then layered on wire-brushed aluminum foil in a thickness of approx. 10 ⁇ m.
  • the photosensitivity with positive (+) and negative (-) charging gives the following values (halogen-tungsten lamp).
  • Evaporation layers with the perylenetetracarboxylic acid monoimides III, 2 and 3 are produced in 115 and 110 mg / m 2 thickness, as described in Example 1.
  • a solution of 66.7 parts To 1920 and 33.3 parts cellulose nitrate of standard type 4E (DIN 53179) in THF is layered on top. After drying, the layer thickness was 10 to 11 ⁇ m.
  • the homogeneous, strongly red colored dye layers are coated with a solution of 50 parts To 1920, 25 parts polyester resin (Dynapol R L206) and 25 parts polyvinyl chloride-polyvinyl acetate copolymer (Hostaflex R M131) in a thickness of 8 to 9 ⁇ m.
  • the photosensitivity according to Example 1, measured under halogen tungsten light, is:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

Die vorliegende Erfindung betrifft ein elektrophotographisches Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger, gegebenenfalls einer isolierenden Zwischenschicht und einer photoleitfähigen Schicht aus mindestens einer ein Perylen-3,4,9,10-tetracarbonsäureimidderivat als Ladungsträger erzeugende Verbindung, Photoleiter als Ladungstransportverbindung, Bindemittel und übliche Zusätze enthaltenden Schicht, das in der photoleitfähigen Schicht ein unsymmetrisch substituiertes Perylen-3,4,9,10-tetracarbon-säureimid enthält, wie es zum Beispiel aus Formel I <IMAGE> in welcher R - Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Aryl oder Aralkyl und A - Phenylen, Naphthylen oder einen höher kondensierten aromatischen carbocyclischen oder heterocyclischen Rest, die jeweils durch Halogen, Alkyl, die Cyano- oder Nitro-Gruppe substituiert sein können, bedeuten, hervorgeht. Das Material ist in Doppelschichtanordnung für hochlichtempfindliche Systeme und in Einfachschicht zur Herstellung von Druckformen oder gedruckten Schaltungen geeignet.

Description

  • Die Erfindung betrifft ein elektrophotographisches Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger, gegebenenfalls einer isolierenden Zwischenschicht und einer photoleitfähigen Schicht aus mindestens einer ein Perylen-3,4,9,10-tetracarbonsäureimidderivat als Ladungsträger erzeugende Verbindung, Photoleiter als Ladungstransportverbindung, Bindemittel und übliche Zusätze enthaltenden Schicht. Die Erfindung bezieht sich besonders auf ein Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger, gegebenenfalls einer isolierenden Zwischenschicht, einer Farbstoffschicht mit einem Perylen-3,4,9,10-tetracarbonsäureimidderivat als Ladungsträger erzeugende Verbindung und einer organischen Photoleiter als Ladungstransportverbindung enthaltenden Schicht.
  • Das erfindungsgemäße Aufzeichnungsmaterial ist vorteilhaft für eine auf elektrophotographischem Wege herstellbare lithographische Druckform oder gedruckte Schaltung geeignet, bestehend aus einem entsprechend geeigneten elektrisch leitenden Schichtträger und einer photoleitfähigen Schicht mit alkalisch entschichtbaren Bindemitteln.
  • Der Einsatz' von Perylen-3,4,9,10-tetracar- bonsäurederivaten als Ladungsträger erzeugende Pigmentverbindungen in organischen Photoleiterschichten ist bekannt
  • (US-PS 3,904,407, DE-OS 22 37 539 entsprechend US-PS 3,871,882, DE-OS 23 14 051 entsprechend US-PS 3,972,717 und EP-B 0 061 089).
  • Die bekannten Perylen-3,4,9,10-tetracar- bonsäurederivate besitzen als rot gefärbte Farbstoffe Photoempfindlichkeiten, die etwa in den Bereich von 620 bis 650 nm reichen. Es war Aufgabe der Erfindung, neue Perylen-3,4,9,10-tetracar- bonsäurederivate zu finden, die möglichst auch eine gute Photoempfindlichkeit bis 700 nm aufweisen.
  • Die Aufgabe wird erfindungsgemäß durch ein elektrophotographisches Aufzeichnungsmaterial der eingangs genannten Art dadurch gelöst, daß es in der photoleitfähigen Schicht ein unsymmetrisch substituiertes Perylen-3,4,9.10-tetracarbonsäure- imid enthält.
  • Das erfindungsgemäße Perylencarbonsäureimid hat dabei eine der folgenden Strukturen:
    Figure imgb0001
    in der R -Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Aryl oder Aralkyl und
    A -Phenylen, Naphthylen oder einen höher kondensierten aromatischen carbocyclischen oder heterocyclischen Rest, die jeweils durch Halogen, Alkyl, die Cyano-oder Nitro-Gruppe substituiert sein können,
    Figure imgb0002
    in der R und R' -ungleich voneinander sind und Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Cycloalkyl, Aryl, Aralkyl oder Heteroaryl, die jeweils durch Halogen, Alkyl, die Cyano-oder Nitrogruppe substituiert sein können,
    oder
    Figure imgb0003

    in der R -Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Aryl, Aralkyl oder Heteroaryl, die jeweils durch Halogen, Alkyl, die Cyanooder Nitrogruppe substituiert sein können.
  • Vorzugsweise bedeuten in Struktur I
    • R -Niederalkyl oder Benzyl,
    • A -Phenylen und
    • R' -Wasserstoff,
    • in Struktur II
    • R -Wasserstoff, Niederalkyl oder Benzyl und
    • R' -Niederalkoxyalkyl, durch Niederalkyl substituiertes Phenyl, Benzyl oder Pyrenyl,
    • und in Struktur 111
    • R -Niederalkyl, Hydroxyniederalkyl, Niederalkoxyalkyl, Benzyl oder Phenylethyl.
  • Als carbocyclischer oder heterocyclischer Rest kommen zum Beispiel Naphthylen-1,8-oder Pyridyl-Reste in Frage. Als Cycloalkyl kommt zum Beispiel Cyclohexyl in Betracht.
  • Es hat sich überraschend gezeigt, daß die erfindungsgemäßen unsymmetrischen Perylen-3,4,9,10-tetracarbonsäureimide. als Ladungsträger erzeugende Pigmente mit vielen organischen Pho
    toleitern, die Ladungstransportverbindungen darstellen, und besonders mit Bindemitteln gute photoempfindliche Aufzeichnungsmaterialien, sowohl in Doppel-als auch in Monoschichtanordnung mit darin dispers verteiltem Pigment ergeben. Gegenüber den bekannten Perylimidfarbstoffen weisen die erfindungsgemäßen, unsymmetrischen Pigmente hohe Photoempfindlichkeiten bis in einen Bereich von nahezu 700 nm auf. Dies erlaubt auch ihren Einsatz in elektrophotographischen Aufzeichnungsmaterialien für He/Ne-sowie LED-Laserlichtquellen.
  • Besonders vorteilhaft zur Entwicklung von technisch einsatzfähigen organischen Photoleiterschichten ist aber die Vielfalt an Ladungstransportverbindungen und Bindemitteln, mit denen sich die erfindungsgemäßen unsymmetrischen Pigmente zu hochempfindlichen Photoleiterschichten kombinieren lassen.
  • Die Herstellung der erfindungsgemäßen Perylen-3,4,9,10-tetracarbonsäureimide ist bekannt: Die Vorschriften für die als Ausgangsprodukte benötigten Peryien-3,4,9,10-tetracar- bonsäuremonoanhydridmonoimide sind in DE-OS 30 08 420 entsprechend US-PS 4,501,906 und DE-OS 30 17 185 beschrieben. Darin werden die Herstellungsverfahren der Perylen-3,4,9,10-tetracarbonsäure-monoanhydrid-monoalkalisalze (a) sowie die der Perylen-3,4,9,10-tetracarbonsäure-monoan- hydridmonoimide (b) angegeben,
    Figure imgb0004
    worin in der Verbindungsklasse b der Substituent R bevorzugt Wasserstoff, Alkyl, wie Methyl bis Butyl, Hydroxyalkyl, wie 2-Hydroxyethyl, Alkoxyalkyl, wie 3-Methoxypropyl sowie Aralkyl, wie Benzyl sein kann. Die Derivate der Perylen-3,4,9,10-tetracar- bonsäuremonoanhydridmonoimide (b) können auch mit Erfolg als Ladungsträger erzeugende Verbidungen eingesetzt werden. Wegen ihrer guten Alkalilöslichkeit sind sie bevorzugt in alkalisch entschichtbaren lithographischen Druckformen einsatzfähig.
  • Ausgehend von einer Verbindung der Formel b) kommt man durch Kondensation mit Diaminen [R(-NH2)2] oder primären Aminen (R-NH,) zu den erfindungsgemäßen Perylimidbenzimidazol-(1)-oder Peryldiimid-(II)-Pigmenten.
    Figure imgb0005
    So ist z.B. eine Verbindung vom Typ (I) mit R = CH, und
    Figure imgb0006
    beschrieben. In derselben Veröffentlichung ist auch ein Pigment vom Typ (11) mit R = H und R' = 3,5-Xylidin dargestellt. Diese Verbindungen sind je nach Substitution rot -dunkelrot -dunkelviolett gefärbte Pigmente.
  • Der Aufbau des elektrophotographischen Aufzeichnungsmaterials wird anhand der beigefügten Figuren 1 bis 5 schematisch erläutert. Mit Position 1 ist jeweils der elektrisch leitende Schichtträger angezeigt, Position 2 weist auf die Ladungsträger erzeugende Farbstoffschicht hin, und mit Position 3 wird die Ladungen transportierende Schicht angegeben. Position 4 gibt die isolierende Zwischenschicht an und mit Position 5 sind Schichten wiedergegeben, die eine Ladungsträger erzeugende Farbstoffschicht in Dispersion darstellen. Unter Position 6 ist eine photoleitfähige Monoschicht aus Photoleiter, Peryien-3,4,9,10-tetracarbonsäureimid und Bindemittel aufgezeichnet.
  • Als elektrisch leitender Schichtträger kommt bevorzugt Aluminiumfolie, gegebenenfalls transparente, mit Aluminium bedampfte bzw. aluminiumkaschierte Polyesterfolie zum Einsatz, jedoch kann jedes andere genügend leitfähig gemachte Trägermaterial (z.B. durch Ruß etc.) als Schichtträger auch verwendet werden. Die Anordnung der Photoleiterschicht kann auch auf einer Trommel, auf flexiblen Endlosbändern, z.B. aus Nickel oder Stahl etc. oder auf Platten erfolgen.
  • Als Trägermaterialien für die elektrophotographische Herstellung von Druckformen können sämtliche für diesen Zweck bekannten Materialien eingesetzt werden, wie z.B. Aluminium-, Zink-, Magnesium-, Kupferplatten oder Mehrmetallplatten. Besonders bewährt haben sich oberflächenveredelte Aluminiumfolien. Die Oberflächenveredelung besteht in einer mechanischen oder elektrochemischen Aufrauhung und gegebenenfalls in einer anschließenden Anodisierung und Behandlung mit Polyvinylphosphonsäure gemäß DE-OS 16 21 478, entsprechend US-PS 4,153,461.
  • Die Einführung einer isolierenden Zwischenschicht, gegebenenfalls auch einer thermisch, anodisch oder chemisch erzeugten Aluminiumoxid-Zwischenschicht (Fig. 3, Position 4), hat zum Ziel, die Ladungsträgerinjektion vom Metall in die Photoleiterschicht im Dunkeln herabzusetzen. Andererseits soll sie beim Belichtungsvorgang den Ladungsfluß nicht hindern. Die Zwischenschicht wirkt als Sperrschicht, sie dient gegebenenfalls auch dazu, die Haftung zwischen der Schichtträgeroberfläche und der Farbstoffschicht bzw. Photoleiterschicht zu verbessern und sollte für die Herstellung von Druckformen wäßrig oder alkoholisch-alkalisch entschichtbar sein.
  • Für die Zwischenschicht können unterschiedliche Natur-bzw. Kunstharzbindemittel verwendet werden, bevorzugt werden jedoch solche Materialien eingesetzt, die gut auf einer Metall-, speziell Aluminiumoberfläche, haften und beim nachfolgenden Anbringen weiterer Schichten wenig angelöst werden. Hierzu gehören Polyamidharze, Polyvinylalkohole, Polyvinylphosphonsäure, Polyurethane, Polyesterharze oder spezifisch alkalilösliche Bindemittel, wie zum Beispiel Styrol-Maleinsäureanhydrid-Copolymerisate.
  • - Die Dicke organischer Zwischenschichten kann bis zu 5 u betragen, die einer Aluminiumoxid-Zwischenschicht liegt im allgemeinen im Bereich von 0,01 bis 1 u.m.
  • Die erfindungsgemäße Farbstoffschicht 2 oder 5 (Fig. 2 bis 5) besitzt die Funktion einer Ladungsträger erzeugenden Schicht; der dabei eingesetzte Farbstoff bestimmt die spektrale Photoempfindlichkeit des photoleitfähigen Systems durch sein Absorptionsverhalten.
  • Das Aufbringen einer homogenen, dicht gepackten Farbstoffschicht wird bevorzugt durch Aufdampfen des Pigments auf den Schichtträger im Vakuum erhalten. Je nach Vakuumeinstellung läßt sich unter den Bedingungen von 1,33 x 10-1 bis 10-2 bar und 240 bis 290 °C Heiztemperatur der Farbstoff ohne Zersetzung aufdampfen. Die Temperatur des Schichtträgers liegt dabei unter 50 °C.
  • Hierdurch erhält man Schichten mit dicht gepackten Farbstoffmolekülen. Dies hat den Vorteil gegenüber allen anderen Möglichkeiten, sehr dünne homogene Farbstoffschichten zu erzeugen, daß eine optimale Ladungserzeugungsrate in der Farbstoffschicht erhalten werden kann. Die äußerst fein disperse Verteilung des Pigments ermöglicht eine große Konzentration an angeregten Farbstoffmolekülen, die Ladungen in die Transportschicht injizieren. Außerdem wird der Ladungstransport durch die Farbstoffschicht nicht oder nur wenig durch Bindemittel behindert.
  • Ein vorteilhafter Schichtdickenbereich des aufgedampften Farbstoffs liegt zwischen 0,005 und 3 um. Besonders bevorzugt ist ein Dickenbereich zwischen 0,05 und 1,5 u.m, da hier Haftfestigkeit und Homogenität des aufgedampften Pigments besonders günstig sind.
  • Außer dem Aufdampfen des Farbstoffs kann eine gleichmäßige Farbstoffdicke auch durch andere Beschichtungstechniken erreicht werden. Hierher gehören das Aufbringen durch mechanisches Einreiben des feinst gepulverten Farbstoffmaterials in den elektrisch leitenden Schichtträger, durch elektrolytische oder elektrochemische Prozesse oder durch elektrostatische Sprühtechnik.
  • In Kombination mit einer Zwischenschicht oder als Ersatz einer solchen können homogene, gut abdeckende Farbstoffschichten mit Dicken von größenordnungsmäßig 0,05 bis 3 um auch durch Vermahlen des Farbstoffs mit Bindemittel, insbesondere mit Cellulosenitraten und/oder vernetzenden Bindemittelsystemen, zum Beispiel Polyisocyanat-vemetzbaren Acrylharzen, Reaktivharzen, wie zum Beispiel Epoxiden, DD-Lacken, und durch anschließendes Beschichten dieser Farbstoffdispersionen nach Position 5 in Figuren 4 und 5 hergestellt werden. Femer können Bindemittel, wie Polystyrol, Styrol-Maleinsäureanhydrid-Copolymerisate, Polymethacrylate, Polyvinylacetate, Polyurethane, Polyvinylbutyrale, Polycarbonate, Polyester etc. sowie deren Mischungen in Frage kommen.
  • Das Verhältnis Farbstoff/Bindemittel kann dabei in weiten Grenzen variieren, bevorzugt sind allerdings Pigmentvorstriche mit einem Pigmentanteil von über 50 % und dementsprechend hoher optischer Dichte.
  • Eine weitere Möglichkeit besteht in der Herstellung einer Photoleiterschicht gemäß Figur 1, in der die Ladungserzeugungszentren (Pigmente) im Transportschichtmedium fein dispergiert sind. Diese Anordnung hat gegenüber der einer Doppelschicht den Vorteil der einfacheren Herstellungsweise, sie eignet sich besonders zur Herstellung von lithographischen Druckformen. Dabei ist der Pigmentanteil in der Photoleiterschicht bevorzugt bis ca. 30 % anzusetzen. Die Schichtdicke solcher Anordnungen liegt bevorzugt bei 2 bis 10 um.
  • Die inverse Anordnung der Ladungsträger erzeugenden Schicht 5 in Figur 5 auf der Ladungen transportierenden Schicht 3 liefert bei Einsatz einer p-Transportverbindung Photoleiterdoppelschichten, die bei positiver Aufladung eine hohe Photoempfindlichkeit besitzen.
  • Als dem Ladungstransport dienendes Material sind vor allem organische Verbindungen geeignet, die ein ausgedehntes π-Elektronensystem besitzen. Hierzu gehören sowohl monomere wie polymere aromatische bzw. heterocyclische Verbindungen.
  • Als Monomere werden insbesondere solche eingesetzt, die mindestens eine tertiäre Aminogruppe und/oder eine Dialkylaminogruppe aufweisen.
  • Bewährt haben sich besonders heterocyclische Verbindungen, wie Oxdiazolderivate, die in der deutschen Patentschrift 10 58 836 (entsprechend US-PS 3,189,447) genannt sind. Hierzu gehören insbesondere das 2,5-Bis-(p-diethylaminophenyl)-oxdiazol-1,3,4; ferner können unsymmetrische Oxdiazole, wie 5-[3-(9-Ethyl)-carbazolyl]-1,3,4- oxdiazol-Derivate (US-PS 4,192,677), etwa 2-(4-Dialkylaminophenyl-)-5-[3-(9-ethyl)-carbazolyl]-1,3,4-oxdiazol mit Erfolg eingesetzt werden.
  • Weitere geeignete monomere Verbindungen sind Arylamin-Derivate (Triphenylamin) sowie Triarylmethan-Derivate (DE-PS 12 37 900), z.B. Bis(4-diethylamino-2-methylphenyl-)phenylmethan, höher kondensierte aromatische Verbindungen, wie Pyren, benzokondensierte Heterocyclen (z.B. Benzoxazol-Derivate). Außerdem sind Pyrazoline geeignet, z.B. 1,3,5-Triphenytpyrazoiine oder Imidazol-Derivate (DE-PS 10 60 714 oder 11 06 599, entsprechend US-PS 3,180,729, GB-PS 938,434). Hierher gehören auch Triazol-, Thiadiazol-sowie besonders Oxazolderivate, zum Beispiel 2-Phenyl-4-(2' -chlorphenyl)-5(4' -diethylaminophenyl)-oxazol, wie sie in den deutschen Patentschriften 10 60 260, 12 99 296, 11 20 875 - (entsprechend US-PS 3,112,197, GB-PS 1,016,520, US-PS 3,257,203) offenbart sind.
  • Weiter sind 4-Chlor-2(4-dialkylaminophenyl)-5- aryloxazol-Derivate von großem Interesse,
    Figure imgb0007
    worin R = H-, Halogen-, Alkyl-, Alkoxy-Gruppen und R', R" = Alkyl-Gruppen sein können. Ihre Herstellung ist aus DE-OS 28 44 394 bekannt.
  • Als Ladungstransportverbindung haben sich ferner Hydrazonderivate folgender Strukturen
    Figure imgb0008
    Figure imgb0009
    gemäß US-PS 4,150,987, DE-OS 29 41 509, DE-OS 29 19 791, DE-OS 29 39 483 (entsprechend US-PS 4,338,388, US-PS 4,278,747, GB-PS 2,034,493) bewährt.
  • Als Polymere haben sich Formaldehyd-Kondensationsprodukte mit verschiedenen Aromaten, wie zum Beispiel Kondensate aus Formaldehyd und 3-Brompyren, als geeignet erwiesen (DE-OS 21 37 288 entsprechend US-PS 3,842,038). Außerdem liefern Polyvinylcarbazol oder Copolymerisate mit mindestens 50 % Vinylcarbazol-Anteil als Transportpolymere zum Beispiel in Doppelschichtanordnung eine gute Photoempfindlichkeit - (Fig. 2 bis 4).
  • Die Ladungen transportierende Schicht 3 weist ohne die Farbstoffschicht im sichtbaren Bereich - (420 bis 750 nm) praktisch keine Photoempfindlichkeit auf. Sie besteht vorzugsweise aus einem Gemisch einer Elektronendonatorverbindung - (organischer Photoleiter) mit einem Bindemittel, wenn negativ aufgeladen werden soll. Sie ist vorzugsweise transparent, was jedoch bei transparentem, leitendem Schichtträger nicht notwendig ist. Die Schicht 3 besitzt einen hohen elektrischen Widerstand von größer als 1012 12. Sie verhindert im Dunkeln das Abfließen der elektrostatischen Ladung; bei Belichtung transportiert sie die in der Farbstoffschicht erzeugten Ladungen.
  • Neben den beschriebenen Ladungserzeugungs-sowie -transportmaterialien beeinflußt das zugesetzte Bindemittel sowohl das mechanische Verhalten, wie Abrieb, Flexibilität, Filmbildung, Haftung etc. als auch in gewissem Umfang das elektrophotographische Verhalten, wie Photoempfindlichkeit, Restladung sowie zyklisches Verhalten.
  • Als Bindemittel werden Polyesterharze, Polyvinylchlorid/Polyvinylacetat-Mischpolymerisate, Alkydharze, Polyvinylacetate, Polycarbonate, Silikonharze, Polyurethane, Epoxidharze, Poly(meth)-acrylate und Copolymerisate, Polyvinylacetale, Polystyrole und Styrol-Copolymerisate, CelluloseDerivate, wie Celluloseacetobutyrate etc. eingesetzt. Außerdem werden thermisch nachvernetzende Bindemittelsysteme, wie Reaktivharze, die sich aus einem äquivalenten Gemisch von hydroxylgruppenhaltigen Polyestem bzw. Polyethern und polyfunktionellen Isocyanaten zusammensetzen, potyisocyanatvernetzbare Acrylatharze, Melaminharze, ungesättigte Polyesterharze etc. erfolgreich angewandt.
  • Wegen der guten Photoempfindlichkeit, Blitzlichtempfindlichkeit und hohen Flexibilität ist der Einsatz von insbesondere hochviskosen Cellulosenitraten besonders bevorzugt.
  • Bei der Auswahl von Bindemitteln spielen außer den filmbildenden und elektrischen Eigenschaften sowie denen der Haftfestigkeit auf der Schichtträgerunterlage bei Einsatz für Druckformen oder gedruckte Schaltungen vor allem Löslichkeitseigenschaften eine besondere Rolle. Für praktische Zwecke sind solche Bindemittel besonders geeignet, die in wäßrigen oder alkoholischen Lösungsmittelsystemen, gegebenenfalls unter Säure-oder Alkalizusatz, löslich sind. Geeignete Bindemittel sind hernach hochmolekulare Substanzen, die alkalilöslich machende Gruppen tragen. Solche Gruppen sind beispielsweise Säureanhydrid-, Carboxyl-, Phenol-, Sulfosäure-, Sulfonamid-oder Sulfonimidgruppen.
  • Mischpolymerisate mit Anhydridgruppen können mit besonders gutem Erfolg verwendet werden. Ganz besonders geeignet sind Mischpolymerisate aus Ethylen-oder Styrol und Maleinsäureanhydrid bzw. Maleinsäurehalbester. Auch Phenolharze haben sich gut bewährt.
  • Als alkalilösliche Bindemittel können auch Mischpolymerisate aus Styrol, Methacrylsäure und Methacrylsäureester eingesetzt werden (DE-OS 27 55 851). Insbesondere wird ein Mischpolymerisat aus 1 bis 35 % Styrol, 10 bis 40 % Methacrylsäure und 35 bis 83 % Methacrylsäure-n-hexylester verwendet. Hervorragend geeignet ist ein Terpolymerisat aus 10 % Styroi, 30 % Methacrylsäure und 60 % Methacrylsäure-n-hexylester. Weiter sind Polyvinylacetate (PVAc), insbesondere Copolymerisate aus PVAc und Crotonsäure einsatzfähig.
  • Die eingesetzten Bindemittel können allein oder in Kombination zum Einsatz gelangen.
  • Das Mischungsverhältnis der Ladungen transportierenden Verbindung zu dem Bindemittel kann variieren. Jedoch sind durch die Forderung nach maximaler Photoempfindlichkeit, d.h. möglichst großem Anteil an Ladungstransportverbindung und nach zu vermeidender Auskristallisation sowie Erhöhung der Flexibilität, d.h. möglichst großem Anteil an Bindemitteln, relativ bestimmte Grenzen gesetzt. Es hat sich allgemein ein Mischungsverhältnis von etwa 1 : 1 Gewichtsteilen als bevorzugt erwiesen, jedoch sind auch Verhältnisse zwischen 4 : 1 bis 1 : 4 geeignet.
  • Bei Einsatz von polymeren Ladungstransportverbindungen, wie Brompyrenharz, Polyvinylcarbazol, sind Bindemittel-Anteile um oder unter 30 % geeignet.
  • Die jeweiligen Erfordernisse eines Kopiergerätes an die elektrophotographischen sowie mechanischen Eigenschaften des Aufzeichnungsmaterials können durch unterschiedliche Einstellung der Schichten, zum Beispiel Viskosität der Bindemittel, Anteil der Ladungstransportverbindung, in einem weiten Rahmen erfüllt werden.
  • Neben der Transparenz der Ladungen transportierenden Schicht ist für die optimale Photoempfindlichkeit auch ihre Schichtdicke eine wichtige Größe: Schichtdicken zwischen etwa 2 und 25 µm werden im allgemeinen eingesetzt. Als besonders vorteilhaft hat sich ein Dickenbereich von 3 bis 15 um erwiesen. Doch können, wenn es die mechanischen Erfordernisse sowie die elektrophotographischen Parameter (Aufladungs-und Entwicklungsstation) eines Kopiergerätes zulassen, die angegebenen Grenzen nach oben oder unten fallweise erweitert werden.
  • Als übliche Zusätze gelten Verlaufmittel wie Silikonöle, Netzmittel, insbesondere nichtionogene Substanzen, Weichmacher unterschiedlicher Zusammensetzung, wie zum Beispiel solche auf Basis chlorierter Kohlenwasserstoffe oder solche auf Basis von Phthalsäureestern. Gegebenenfalls können der Ladungen transportierenden Schicht als Zusatz auch herkömmliche Sensibilisatoren und/oder Akzeptoren zugefügt werden, jedoch nur in dem Maße, daß ihre optische Transparenz nicht wesentlich beeinträchtigt wird.
  • Die Erfindung wird anhand der Beispiele näher erläutert, ohne sie hierauf zu beschränken.
  • Beispiel 1
  • Auf eine aluminiumbedampfte Polyesterfolie werden die Pigmente gemäß Formel I, 1 und 2 - (Anhang) in einer Vakuum-Bedampfungsanlage bei 1,33 x 10-7 bis 10-1 bar innerhalb von 2 bis 3 Minuten bei 250 bis 260 °C aufgedampft. Man erhält homogene Pigmentschichten mit Schichtgewichten im Bereich von 100 bis 300 mg/m2. Der Schichtträger wird dabei vollständig abgedeckt.
  • Auf diese Aufdampfschichten wird eine Lösung aus gleichen Gewichtsteilen 2,5-Bis(4-diethylaminophenyl-)-oxdiazol-1,3,4 (To 1920, Fp 149 bis 150 °C) und eines Polyurethanharzes - (DesmolacR 2100, Bayer AG) in Tetrahydrofuran - (THF) geschleudert.
  • Anschließend wird die Schicht innerhalb 5 Minuten bei ca. 100 °C in einem Umlufttrockenschrank getrocknet. Die Schichtdicke beträgt danach 7 bis 8 µm, die Schicht ist gut haftend. Die Messung der Photoempfindlichkeit wird folgendermaßen durchgeführt:
    • Zur Ermittlung der Hellentladungskurven bewegt sich die Meßprobe auf einem sich drehenden Teller durch eine Aufladevorrichtung hindurch zur Belichtungsstation, wo sie. mit einer Xenonlampe XBO 150 oder Hatogen-W-Lampe (150 W) kontinuierlich belichtet wird. Ein Wärmeabsorptionsglas und ein Neutralfilter sind der Lampe vorgeschaltet. Die Lichtintensität in der Meßebene liegt im Bereich von 30 bis 50 µW/cm2 oder 5 bis 10 µW/cm2; sie wird unmittelbar nach oder parallel zur Ermittlung der Hellabfallkurve mit einem Optometer gemessen. Die Aufladungshöhe und die photoinduzierte Hellabfallkurve werden über ein Elektrometer durch eine transparente Sonde oszillographisch aufgezeichnet. Die Photoleiterschicht wird durch die Aufladungshöhe (Uo) und diejenige Zeit (T1/2) charakterisiert, nach der die Hälfte der Aufladung Uc/2) erreicht ist. Das Produkt aus T1/2 [s] und der gemessenen Lichtintensität I [µW/cm2] ist die Halbwertsenergie Ein [µJ/cm2].
  • Gemäß dieser Charakterisierungsmethode wird die Photoempfindlichkeit der Doppelschicht bestimmt:
    Figure imgb0010
  • Die Restladung (UR) nach 0,1 sec., ermittelt aus obigen Hellentladekurven, ist ein weiteres Maß für die Entladung einer Photoleiterschicht.
  • Beispiel 2
  • Die Herstellung der Pigmentschichten mit den unsymmetrischen Perylimidfarbstoffen gemäß Formel I, 1 sowie 2, erfolgt, wie in Beispiel 1 beschrieben. Anschließend werden diese Aufdampfschichten mit einer Lösung aus 65 Gewichtsteilen To 1920 und 35 Gewichtsteilen Cellulosenitrat vom Normtyp 4E (DIN 53179) in THF beschichtet. Nach dem Trocknen lagen die Schichtdicken im Bereich von 7 bis 8 und 12 bis 13 µm.
  • Die Photoempfindlichkeit dieser Photoleiterdoppelschichten wird nach Beispiel 1 ermittelt:
    Figure imgb0011
  • Die spektrale Photoempfindlichkeit dieser Photoleiterdoppelschichten wird unter Vorschaltung von Filtern nach der in Beispiel 1 angegebenen Methode bestimmt: Bei negativer Aufladung (500 bis 550 V) wird durch Belichten die Halbwertszeit - (T1/2 in msec) für den jeweiligen Wellenlängenbereich ermittelt. Durch Auftragen der reziproken Halbwertsenergie (1/E1/2cm2/µJ) gegen die Wellenlänge λ (nm) erhält man die spektrale Photoempfindlichkeitskurve einer Photoleiterschicht. Dabei bedeutet die Halbwertsenergie E1/2 /mJ/cm2 diejenige Lichtenergie, die eingestrahlt werden muß, um die Photoleiterschicht auf die Hälfte der Anfangsspannung Uo zu entladen.
  • In Figur 6 sind die spektralen Photoempfindlichkeiten von Photoleiterdoppelschichten mit den Pigmenten I, 1 und I, 2 (entsprechend Kurven 1 und 2) und einer Schichtdicke von 12 bis 13 um aufgezeichnet.
  • Beispiel 3
  • Eine Pigmentaufdampfschicht mit Pigment gemäß Formel I, 1 wird mit einer Lösung aus gleichen Gewichtsteilen 2-Phenyl-4-(2'-chlorphenyl)-5(4'-diethylaminophenyl)-oxazol (Tabelle: Schicht 3 - 1 ) und einem Polyesterharz (DynapolR L206) in THF beschichtet. In einer weiteren Beschichtungslösung wurde anstatt dieses Oxazol-Derivates 2-(4'-Diethylaminophenyl)4-chlor-5(4'-methoxyphenyl)oxazol (Tabelle: Schicht 3 - 2) eingeetzt. Die beiden Doppelschichten mit einer Schichtdicke von 7 bis 8 µ ergaben folgende Photoempfindlichkeit:
    Figure imgb0012
  • Die sehr gute Photoempfindlichkeit, die durch Beschichten von 50 Gewichtsteilen To 1920 mit 50 Gewichtsteilen verschiedener Bindemittel in 7 bis 8 µm Dicke (Lösungsmittel THF) auf einer Pigmentaufdampfschicht mit einem unsymmetrischen Perylimid-Derivat (Formel 1, 2) erreicht wird, wird durch die folgende Tabelle angezeigt:
    Figure imgb0013
  • Beispiel 5
  • Eine Mischung aus 65 Gewichtsteilen Pigment (Formel 1, 2), 25 Gewichtsteilen Cellulosenitrat vom Normtyp 4E (DIN 53179) sowie 10 Gewichtsteilen Epoxidharz (EpikoteR 1001) werden zusammen in THF während 2 bis 3 Stunden in einer Kugelmühle intensiv vermahlen. Danach wird die feindisperse Lösung auf einen leitfähigen Schichtträger in Dicken von ca. 210 mg/m2 und ca. 490 mg/m2 homogen aufgetragen und getrocknet.
  • Zur Erhöhung der Photoempfindlichkeit wurde ein Teil des Pigment-Vorstriches mit Watte poliert.
  • Der für die nachfolgende Beschichtung der Ladungstransportschicht unlösliche Pigment-Vorstrich (ca. 490 mg/m') wird mit einer Lösung aus gleichen Gewichtsteilen To 1920 und einem Copolymerisat aus Styrol/Butadien (PlioliteR S5B) sowie mit einer Lösung aus 98 Gewichtsteilen Polyvinylcarbazol (LuvicanR M170, BASF) und 2 Gewichtsteilen Polyesterharz (AdhesiveR 49000) in THF beschichtet. Nach Trocknung ist die Doppelschicht 4 bis 5 um dick; ihre Photoempfindlichkeit wird gemäß Beispiel 1 bestimmt:
    Figure imgb0014
  • Beispiel 6
  • Eine aluminiumbedampfte Polyesterfolie wird mit den Pigmenten gemäß Formelbild II, 1 und 2 im Vakuum in ca. 200 mg/m2 Dicke bedampft. Die homogenen Pigmentschichten werden anschließend mit einer Lösung aus gleichen Gewichtsteilen 2-(4-Diethylaminophenyl)-4-chlor-5-(4-methoxyphenyl)oxazol und Polycarbonat (MakrolonR 2405) in etwa 8 µm Dicke nach Trocknung beschichtet. Die Vermessung der Photoempfindlichkeit erfolgt analog Beispiel 1:
    Figure imgb0015
  • Beipiel 7
  • Eine Pigmentaufdampfschicht von ca. 135 mg/m2 Dicke, bestehend aus einem Pigment nach Formelbild II, 3, wird gemäß Beispiel 1 hergestellt und mit einer Lösung aus 98 Teilen Polyvinylcarbazol (LuvicanR M170) und 2 Teilen Polyesterharz - (AdhesiveR 49000) in THF beschichtet. Nach Trocknung ist die Doppelschichtdicke 7 um. Nach Vermessung gemäß Beispiel 1 liegt bei einer negativen Aufladung von 510 V eine Halbwertsenergie E1/2 von 2,1 µJ/cm2 vor.
  • Beispiel 8
  • Weitere Aufdampfschichten werden mit den unsymmetrischen Perylimid-Pigmenten II, 4 und 5 hergestellt. Die Dicke dieser homogenen Farbstoffschichten beträgt dabei 185 und 150 mg/m2.
  • Eine Lösung aus gleichen Gewichtsteilen To 1920 und einem Copolymerisat aus Styrol und Maleinsäureanhydrid (ScripsetR 540) wird in ca. 8 um Dicke aufgetragen. Die Vermessung der Photoempfindlichkeit ergibt folgende Werte:
    Figure imgb0016
  • Beispiel 9
  • Zu einer Lösung aus 45 Teilen To 1920 und 50 Teilen Copolymerisat aus Syrol und Maleinsäureanhydrid (ScipsetR 550) werden 5 Teile Pigment nach Formelbild I, 2 gegeben. Diese Dispersion wird in einer Kugelmühle während ca. 2 Stunden sehr fein vermahlen und anschließend auf drahtgebürstete Aluminiumfolie (a) sowie anodisierte Aluminiumfolie (b) in 7 bis 8 µm Dicke geschichtet.
  • Die Photoempfindlichkeit, analog Beispiel 1 mit einer Halogen-Wolfram-Lampe bei positiver und negativer Aufladung vermessen, ist aus der folgenden Tabelle ersichtlich:
    Figure imgb0017
  • Beispiel 10
  • Auf eine Aufdampfschicht (Pigment 1, 1) nach Beispiel 1 wird je eine Lösung aus gleichen Gewichtsteilen Polycarbonat (MakrolonR 3200) und aus den organischen Photoleiterverbindungen
    • a) 1,3,5-Triphenylpyrazolin,
    • b) Bis(4-diethylamino-2-methylphenyl- )phenylmethan sowie
    • c) 9-Ethylcarbazol-3-aldehyd-1,1-diphenylhy- drazon in 7 bis 8 um für a) und b) sowie 9 bis 10 um für c) Dicke (trocken) beschichtet. Die Vermessung der Photoempfindlichkeit mit einer Halogen-Wolfram-Lampe erfolgt wie in Beispiel 1 beschrieben:
      Figure imgb0018
    Beispiel 11
  • Nach Herstellung des Farbstoffes gemäß Formel III, 1 (DE-OS 30 17 .185) wird er in einer Vakuum-Bedampfungsanlage bei 1,3 x10-7 bis 10-4 bar innerhalb von 7 Minuten bei ca. 250 °C auf eine aluminiumbedampfte Polyesterfolie aufgedampft. Man erhält eine homogene, rote Farbstoffaufdampfschicht mit einem Schichtgewicht von 135 mg/m2.
  • Darauf wird eine Lösung aus 65 Gewichtsteilen To 1920 und 35 Gewichtsteilen Cellulosenitrat vom Normtyp 4E in THF geschleudert. Nach dem Trocknen liegt die Dicke der Ladungstransportschicht bei ca. 10 µm.
  • Die Photoempfindlichkeit wird nach Beispiel 1 mit einer Halogen-Wolfram-Lampe - (Belichtungsintensität ca. 4,5 µW/cm2) vermessen:
    • Aufladung (-) 320 V und E1/2 = 0,92 µJ/cm2. Die spektrale Photoempfindlichkeit dieser Schicht geht aus Fig. 7 hervor, sie wurde nach Beispiel 2 bei einer negativen Aufladung von 300 bis 350 V; ermittelt.
    Beispiel 12
  • Farbstoffaufdampfschichten in einem Dickenbereich von 135 bis 140 mg/m2 werden mit den Verbindungen III, 1 sowie II, 6 hergestellt, wie in Beispiel 11 beschrieben. Darauf kommt eine Ladungstransportschicht aus gleichen Gewichtsteilen To 1920 und einem Copolymerisat aus Styrol und Maleinsäureanhydrid (ScipsetR 550). Die Gesamtschichtdicken betragen ca. 10 um. Die Vermessung der Photoempfindlichkeit erfolgt analog Beispiel 1:
    Figure imgb0019
  • Beispiel 13
  • Eine Lösung aus 45 Teilen To 1920 und 50 Teilen Copolymerisat aus Styrol und Maleinsäureanhydrid (ScripsetR 550) wird mit 5 Teilen Farbstoff nach Formelbild III, 6 versetzt und während ca. 2 Stunden in einer Kugelmühle sehr fein dispergiert. Anschließend wird diese Dispersion auf drahtgebürstete Aluminiumfolie in ca. 10 µm Dicke geschichtet. Die Photoempfindlichkeit bei positiver (+) sowie negativer (-) Aufladung ergibt folgende Werte (Halogen-Wolfram-Lampe).
  • Beispiel 14
  • Aufdampfschichten mit den Perylentetracarbonsäuremonoimiden III, 2 und 3 werden in 115 und 110 mg/m2 Dicke, wie in Beispiel 1 beschrieben, hergestellt. Darauf wird eine Lösung aus 66,7 Teilen To 1920 und 33,3 Teilen Cellulosenitrat vom Normtyp 4E (DIN 53179) in THF geschichtet. Nach dem Trocknen lag die Schichtdicke bei 10 bis 11 µm.
  • Die Photoempfindlichkeit der beiden Doppelschichten wird nach Beispiel 1 ermittelt (Halogen-Wolfram-Lampe):
    • (+) Aufladung: 260 V E1/2 = 5,9 µJ/cm2
    • (-) Aufladung: 510 V Ein = 7,9 µJ/cm2
      Figure imgb0020
    Beispiel 15
  • Weitere Aufdampfschichten wurden mit den Perylentetracarbonsäuremonoimiden III, 4 sowie 5 auf aluminiumbedampfter Polyesterfolie in 120 sowie 105 mg/m2 Dicke hergestellt. Die Aufdampfbedingungen waren dabei ca. 270 °C und 10 Minuten bei 1,33 x 10-7 bis 10-2bar.
  • Beispiel 15
  • Weitere Aufdampfschichten wurden mit den Perylentetracarbonsäuremonoimiden III, 4 sowie 5 auf aluminiumbedampfter Polyesterfolie in 120 sowie 105 mg/m2 Dicke hergestellt. Die Aufdampfbedingungen waren dabei ca. 270 °C und 10 Minuten bei 1,33 x10-7 bis 10-8bar.
  • Die homogenen, kräftig rot gefärbten Farbstoffschichten werden mit einer Lösung aus 50 Teilen To 1920, 25 Teilen Polyesterharz (DynapolR L206) und 25 Teilen Polyvinylchlorid-Polyvinylacetat-Copolymerisat (HostaflexR M131) in 8 bis 9 um Dicke beschichtet. Die Photoempfindlichkeit nach Beispiel 1, gemessen unter Halogen-Wolfram-Licht, beträgt:
    Figure imgb0021

Claims (9)

1. Elektrophotographisches Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger, gegebenenfalls einer isolierenden Zwischenschicht und einer photoleitfähigen Schicht aus mindestens einer ein Perylen-3,4,9,10-tetracar- bonsäureimidderivat als Ladungsträger erzeugende Verbindung, Photoleiter als Ladungstransportverbindung, Bindemittel und übliche Zusätze enthaltenden Schicht, dadurch gekennzeichnet, daß es in der photoleitfähigen Schicht ein unsymmetrisch substituiertes Perylen-3,4,9,10-tetracarbon- säureimid enthält.
2. Elektrophotographisches Aufzeichnungsmaterial aus einem elektrisch leitenden Schichtträger. gegebenenfalls einer isolierenden Zwischenschicht, einer Farbstoffschicht mit einem Perylen-3,4,9,10-tetracarbonsäureimidderivat als Ladungsträger erzeugende Verbindung und einer organischen Photoleiter als Ladungstransportverbindung enthaltenden Schicht, dadurch gekennzeichnet, daß es in der Farbstoffschicht ein unsymmetrisch substituiertes Perylen-3,4,9,10-tetracarbonsäureimid enthält.
3. Aufzeichnungsmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es ein Perylen-3,4,9,10-tetracarbonsäureimid folgender Struktur
Figure imgb0022
enthält, in welcher
R -Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Aryl oder Aralkyl und
A -Phenylen, Naphthylen oder einen höher kondensierten aromatischen carbocyclischen oder heterocyclischen Rest, die jeweils durch Halogen, Alkyl, die Cyano-oder Nitro-Gruppe substituiert sein können,

bedeuten.
4. Aufzeichnungsmaterial nach Anspruch 3, dadurch gekennzeichnet, daß R Niederalkyl oder Benzyl, A Phenylen und R' Wasserstoff bedeuten.
5. Aufzeichnungsmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es ein Perylen-3,4,9,10-tetracarbonsäureimid folgender Struktur
Figure imgb0023
enthält, in welcher
R und R' -ungleich voneinander sind und Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Cycloalkyl, Aryl, Aralkyl oder Heteroaryl, die jeweils durch Halogen, Allyl, die Cyano-oder Nitro-Gruppe substituiert sein können,

bedeuten.
6. Aufzeichnungsmaterial nach Anspruch 5, dadurch gekennzeichnet, daß R Wasserstoff. Niederalkyl oder Benzyl und R' Niederalkoxyalkyl, durch Niederalkyl substituiertes Phenyl, Benzyl oder Pyrenyl bedeuten.
7. Aufzeichnungsmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es ein Peryien-3.4,9,10-tetracarbonsäureimid folgender Struktur
Figure imgb0024
enthält, in der
R-Wasserstoff, Alkyl, Hydroxyalkyl, Alkoxyalkyl, Aryl oder Aralkyl, die jeweils durch Halogen, Alkyl, die Cyano-oder Nitro-Gruppe substituiert sein können,

bedeutet
8. Aufzeichnungsmaterial nach Anspruch 7, dadurch gekennzeichnet, daß R Niederalkyl, Hydroxyniederalkyl, Niederalkoxyalkyl, Benzyl oder Phenylethyl bedeutet.
9. Aufzeichnungsmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die photoleitfähige Schicht in wäßrigen Alkalien lösliches Bindemittel enthält.
EP86109609A 1985-07-23 1986-07-14 Elektrophotographisches Aufzeichnungsmaterial Expired - Lifetime EP0210521B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853526249 DE3526249A1 (de) 1985-07-23 1985-07-23 Elektrophotographisches aufzeichnungsmaterial
DE3526249 1985-07-23

Publications (2)

Publication Number Publication Date
EP0210521A1 true EP0210521A1 (de) 1987-02-04
EP0210521B1 EP0210521B1 (de) 1990-05-23

Family

ID=6276477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86109609A Expired - Lifetime EP0210521B1 (de) 1985-07-23 1986-07-14 Elektrophotographisches Aufzeichnungsmaterial

Country Status (4)

Country Link
US (1) US4714666A (de)
EP (1) EP0210521B1 (de)
JP (1) JPS6254267A (de)
DE (2) DE3526249A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409160A2 (de) * 1989-07-21 1991-01-23 Eastman Kodak Company Elektrophotographische Aufzeichnungselemente, die eine Kombination von photoleitfähigen Perylenmaterialien enthalten
EP0447826A1 (de) * 1990-02-23 1991-09-25 Eastman Kodak Company Elektrophotographische Aufzeichnungselemente, die photoleitfähige Perylen-Pigmente enthalten
EP0695972A1 (de) * 1994-07-20 1996-02-07 Konica Corporation Elektrophotographischer Photorezeptor

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792508A (en) * 1987-06-29 1988-12-20 Xerox Corporation Electrophotographic photoconductive imaging members with cis, trans perylene isomers
US4877702A (en) * 1987-10-30 1989-10-31 Mita Industrial Co., Ltd. Electrophotographic sensitive material
US4882254A (en) * 1988-07-05 1989-11-21 Xerox Corporation Photoconductive imaging members with mixtures of photogenerator pigment compositions
US4937164A (en) * 1989-06-29 1990-06-26 Xerox Corporation Thionated perylene photoconductive imaging members for electrophotography
DE3937633A1 (de) * 1989-11-11 1991-05-16 Bayer Ag Heterocyclische verbindungen und deren verwendung als pigmente und farbstoffe
JP2717584B2 (ja) * 1989-11-17 1998-02-18 富士写真フイルム株式会社 電子写真式製版用印刷原版
US5141837A (en) * 1990-02-23 1992-08-25 Eastman Kodak Company Method for preparing coating compositions containing photoconductive perylene pigments
US5139909A (en) * 1990-07-31 1992-08-18 Xerox Corporation Perinone photoconductive imaging members
JPH04145445A (ja) * 1990-10-08 1992-05-19 Iwatsu Electric Co Ltd 電子写真製版用印刷版
JP2530763B2 (ja) * 1991-05-08 1996-09-04 岩崎通信機株式会社 電子写真感光体
US5361148A (en) * 1993-01-21 1994-11-01 International Business Machines Corporation Apparatus for photorefractive two beam coupling
EP0638613B1 (de) * 1993-08-13 1998-12-23 Ciba SC Holding AG Perylenamidinimid-Farbstoffe, ein Verfahren zu deren Herstellung und deren Verwendung
TW279860B (de) * 1993-11-12 1996-07-01 Ciba Geigy Ag
JP3225389B2 (ja) * 1993-12-22 2001-11-05 コニカ株式会社 電子写真感光体用塗布液の製造方法及び電子写真感光体
JP3230175B2 (ja) * 1994-04-26 2001-11-19 コニカ株式会社 電子写真感光体
US5876887A (en) * 1997-02-26 1999-03-02 Xerox Corporation Charge generation layers comprising pigment mixtures
US6051351A (en) * 1999-05-21 2000-04-18 Xerox Corporation Perylenes
US6165661A (en) * 1999-05-21 2000-12-26 Xerox Corporation Perylene compositions
US6322941B1 (en) 2000-07-13 2001-11-27 Xerox Corporation Imaging members
US6194110B1 (en) 2000-07-13 2001-02-27 Xerox Corporation Imaging members
US6391104B1 (en) 2000-12-01 2002-05-21 Bayer Corporation Perylene pigment compositions
US6692562B2 (en) 2002-03-08 2004-02-17 Sun Chemical Corporation Process for making perylene pigment compositions
US8344142B2 (en) * 2004-06-14 2013-01-01 Georgia Tech Research Corporation Perylene charge-transport materials, methods of fabrication thereof, and methods of use thereof
US7422777B2 (en) 2005-11-22 2008-09-09 Eastman Kodak Company N,N′-dicycloalkyl-substituted naphthalene-based tetracarboxylic diimide compounds as n-type semiconductor materials for thin film transistors
US20070134575A1 (en) * 2005-12-12 2007-06-14 Xerox Corporation Photoconductive members
US7473785B2 (en) * 2005-12-12 2009-01-06 Xerox Corporation Photoconductive members
US7514192B2 (en) * 2005-12-12 2009-04-07 Xerox Corporation Photoconductive members
US8617648B2 (en) * 2006-02-01 2013-12-31 Xerox Corporation Imaging members and method of treating an imaging member
US7485399B2 (en) * 2006-02-02 2009-02-03 Xerox Corporation Imaging members having undercoat layer with a polymer resin and near infrared absorbing component
US8212243B2 (en) 2010-01-22 2012-07-03 Eastman Kodak Company Organic semiconducting compositions and N-type semiconductor devices
KR102128477B1 (ko) * 2018-10-05 2020-07-01 한국생산기술연구원 고속 잉크젯 공정용 고채도 스칼렛 색상 염료 잉크

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2237539A1 (de) * 1972-07-31 1974-02-14 Kalle Ag Elektrophotographisches aufzeichnungsmaterial
US3904407A (en) * 1970-12-01 1975-09-09 Xerox Corp Xerographic plate containing photoinjecting perylene pigments
DE2755851A1 (de) * 1977-12-15 1979-06-21 Hoechst Ag Material zur herstellung von druckformen
US4438187A (en) * 1981-04-06 1984-03-20 Mita Industrial Co. Ltd. Photosensitive composition for electrophotography with chloronaphthoquinones
US4447514A (en) * 1982-03-05 1984-05-08 Mita Industrial Co., Ltd. Organic photosensitive material for electrophotography comprising polyvinylcarbazole and pyrene or phenanthrene
US4514482A (en) * 1984-03-08 1985-04-30 Xerox Corporation Photoconductive devices containing perylene dye compositions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898084A (en) * 1971-03-30 1975-08-05 Ibm Electrophotographic processes using disazo pigments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904407A (en) * 1970-12-01 1975-09-09 Xerox Corp Xerographic plate containing photoinjecting perylene pigments
DE2237539A1 (de) * 1972-07-31 1974-02-14 Kalle Ag Elektrophotographisches aufzeichnungsmaterial
DE2755851A1 (de) * 1977-12-15 1979-06-21 Hoechst Ag Material zur herstellung von druckformen
US4438187A (en) * 1981-04-06 1984-03-20 Mita Industrial Co. Ltd. Photosensitive composition for electrophotography with chloronaphthoquinones
US4447514A (en) * 1982-03-05 1984-05-08 Mita Industrial Co., Ltd. Organic photosensitive material for electrophotography comprising polyvinylcarbazole and pyrene or phenanthrene
US4514482A (en) * 1984-03-08 1985-04-30 Xerox Corporation Photoconductive devices containing perylene dye compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMISTRY LETTERS, no. 2, Febr. 1979, published by the Chemical Society of Japan, Tokyo, Japan Y. NAGAO et al. "Synthesis of Unsymmetrical Perylenebis(dicarboxiide) Derivatives" Seiten 151-154 * Seite 151 * *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409160A2 (de) * 1989-07-21 1991-01-23 Eastman Kodak Company Elektrophotographische Aufzeichnungselemente, die eine Kombination von photoleitfähigen Perylenmaterialien enthalten
EP0409160A3 (en) * 1989-07-21 1991-05-29 Eastman Kodak Company Electrophotographic recording elements containing a combination of photoconductive perylene materials
EP0447826A1 (de) * 1990-02-23 1991-09-25 Eastman Kodak Company Elektrophotographische Aufzeichnungselemente, die photoleitfähige Perylen-Pigmente enthalten
EP0695972A1 (de) * 1994-07-20 1996-02-07 Konica Corporation Elektrophotographischer Photorezeptor
US5589309A (en) * 1994-07-20 1996-12-31 Konica Corporation Electrophotographic photoreceptor containing perylenes

Also Published As

Publication number Publication date
EP0210521B1 (de) 1990-05-23
US4714666A (en) 1987-12-22
DE3526249A1 (de) 1987-01-29
JPS6254267A (ja) 1987-03-09
DE3671549D1 (de) 1990-06-28

Similar Documents

Publication Publication Date Title
EP0210521B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2353639C2 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0061089B1 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0061092B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2237539B2 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2314051A1 (de) Elektrophotographisches aufzeichnungsmaterial
DE2756858B2 (de)
DE3790394C2 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0061090B1 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0040402B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2734288C2 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2557430C3 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2237679C3 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0189820A2 (de) Elektrophotographisches Aufzeichnungsmaterial
EP0113437B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2722332C2 (de) 5-[3-(9-Äthyl)-carbazolyl]-1,3,4-oxadiazolderivate
DE4025723A1 (de) Elektrophotographischer photorezeptor
EP0218981B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE4028519C2 (de) Elektrofotografisches Aufzeichnungsmaterial
EP0220604A2 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2822764A1 (de) Elektrophotographisches aufzeichnungsmaterial
DE3502681A1 (de) Elektrophotographisches aufzeichnungsmaterial
DE2059540B2 (de) Elektrophotographisches Aufzeichnungsmaterial mit einer photoleitfänigen Schicht
EP0231835B1 (de) Elektrophotographisches Aufzeichnungsmaterial
DE2239923C3 (de) Elektrophotographisches Aufzeichnungsmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19870717

17Q First examination report despatched

Effective date: 19890117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3671549

Country of ref document: DE

Date of ref document: 19900628

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000705

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000706

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000720

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20000821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010714

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST