EP0209651B1 - Process for manufacturing spinneret plates - Google Patents

Process for manufacturing spinneret plates Download PDF

Info

Publication number
EP0209651B1
EP0209651B1 EP86105992A EP86105992A EP0209651B1 EP 0209651 B1 EP0209651 B1 EP 0209651B1 EP 86105992 A EP86105992 A EP 86105992A EP 86105992 A EP86105992 A EP 86105992A EP 0209651 B1 EP0209651 B1 EP 0209651B1
Authority
EP
European Patent Office
Prior art keywords
layer
resist material
nozzle
case
funnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86105992A
Other languages
German (de)
French (fr)
Other versions
EP0209651A2 (en
EP0209651A3 (en
Inventor
Wolfgang Dr. Ehrfeld
Peter Dr. Hagmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT86105992T priority Critical patent/ATE66254T1/en
Publication of EP0209651A2 publication Critical patent/EP0209651A2/en
Publication of EP0209651A3 publication Critical patent/EP0209651A3/en
Application granted granted Critical
Publication of EP0209651B1 publication Critical patent/EP0209651B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49428Gas and water specific plumbing component making
    • Y10T29/49432Nozzle making

Definitions

  • the invention relates to a method for producing spinneret plates with funnel-shaped pre-channels and to the nozzle capillaries connected thereafter using deep lithographic and galvanic methods according to the preamble of claim 1.
  • spinneret plates are required for the production of fibers, the raw material of organic or inorganic material in a flowable state being pressed through a large number of spinneret channels in the plates.
  • the spinneret channels consist of nozzle capillaries through which the material emerges as a fiber, and much more pre-channels to which the material to be spun is fed.
  • the pre-channels are often in the form of funnels which taper towards the nozzle capillaries in order to finally merge into the latter.
  • a generic method for producing an ink jet nozzle arrangement is known from US-A-4246076.
  • a layer of a photopolimerizable material is applied to a substrate with an electrically conductive, passivated surface and is irradiated with a perforated pattern via a mask.
  • a further layer of the same material is then applied to this layer and irradiated through a second mask with a smaller hole pattern, so that after removal of the non-irradiated areas on the substrate, a columnar, step-shaped negative form of the ink jet nozzle remains.
  • An electroplating layer enclosing the negative mold is then produced on the substrate, whereupon the substrate is separated from the electroplating layer and the negative mold is removed by a solvent.
  • the object of the invention is to provide a method of the generic type by which a continuous transition from the pre-channels to the nozzle capillaries is ensured.
  • nozzle capillaries can also be produced in the form of tubular approaches using the same solution principle.
  • Spinneret plates with tubular nozzle capillaries are particularly advantageously used as components for the production of spinneret devices for the production of hollow or multicomponent fibers.
  • Such spinneret devices generally consist of a plurality of spinneret plates arranged one above the other.
  • the nozzle capillaries can be manufactured with extreme precision and uniformity both in their individual cross-section and in their mutual position according to the method according to the invention and the mutual adjustment of several relatively large spinneret plates for assembling the spinneret devices is not a major problem, the production of hollow or Multi-component fibers with any cross-section and structure possible. This makes it possible to produce fibers with new and unusual uses.
  • the continuous transition from the pre-channels to the nozzle capillaries that can be achieved with the invention is not only with circular cross sections, but also with profiled, e.g. Star-shaped cross sections of the nozzle capillaries possible.
  • FIG. 1 shows a metallic plate with funnel-shaped pre-channels 144.
  • the side of the plate 141 at which the tapered ends of the pre-channels 144 open is connected to a layer 142 made of a radiation-sensitive negative resist material.
  • This layer 142 is partially irradiated through the pre-channels 144 with X-rays 143 of an electron synchrotron, so that regions 145 which are difficult to dissolve are formed, the shape of which corresponds to that of the nozzle capillaries.
  • the pre-channels 144 are then filled with a removable filling material 152 which connects to the regions 145 (FIG. 2).
  • columnar negative shapes 151 of the nozzle capillaries are formed on the plate 141.
  • an electroplating layer 162 including the negative molds 151 is produced on the metallic plate 141 serving as the electroplating electrode (FIG. 3).
  • the filling material 152 and the negative molds 151 of the nozzle capillaries are removed after the electroplating layer 162 has been leveled, so that a spinneret plate 163 consisting of the parts 141 and 162 is formed, in which the nozzle capillaries 161 connect seamlessly to the funnel-shaped pre-channels 144 (FIG. 4).
  • the irradiated areas 142b are first coated with a liquid developer removed ( Figure 2a) and then the removed areas and the pre-channels 144 filled with a removable filler 152a, which is less soluble than the positive resist material of the layer 142a ( Figure 2b). Then the non-irradiated areas of the layer 142a are removed, so that columnar negative shapes 151a of the nozzle capillaries are also formed in this case on the metallic plate 141 according to FIG. 2c.
  • the further steps incrementating and leveling the electroplating layer 162, FIG. 3a, removing the filling material 152a) correspond to those described above, so that in this case too a spinneret plate 163 is produced, as is shown schematically in FIG.
  • the method according to the invention can also be used for the production of spinneret plates with tubular nozzle capillaries.
  • the metallic plate 141 with the pre-channels 144 is used as an irradiation mask (FIG. 5), whereupon the layer 142 is again partially irradiated from the opposite side.
  • a mask is used for the irradiation with the high-energy radiation 181 (FIG. 6), the absorber structures 182 of which correspond to the outer diameters of the tubular attachments of the nozzle capillaries, so that the irradiated areas 174 and 175 are non-irradiated tubular areas 183 Wrap layer 142.
  • the non-irradiated tubular areas 183 are removed with a liquid developer, so that tubular cavities 192 are formed (FIG. 7). In these cavities 192 is under Using the plate 141 as an electrode produces an electroplating structure in the form of tubular, metallic lugs 202 (FIG. 8). Then, after leveling the electroplating structure, the remaining resist material of layer 142 and filler 191 are removed, so that a spinneret plate 211 consisting of plate 141 with funnel-shaped pre-channels 144 and tubular nozzle capillaries 202 is formed (FIG. 9).
  • the irradiated areas corresponding to the interior of the nozzle capillaries are first removed with a liquid developer and replaced by a radiation-insensitive filling material 191a, which also fills the pre-channels 144 (FIG. 6a). Then there is repeated partial irradiation of the layer 142a with high-energy radiation 181 via a mask, the absorber structures 182a of which have openings 182b which correspond to the outer diameters of the tubular attachments for the nozzle capillaries.
  • tubular, irradiated areas 183a are formed between the filling material 191a and the non-irradiated resist material of the layer 142a, which are removed with a liquid developer, so that tubular cavities 192a are formed (FIG. 7a).
  • the further treatment is carried out analogously to the description of FIGS. 8 and 9.
  • the metallic plate with the funnel-shaped pre-channels is also produced by deep lithographic-galvanic means can be.
  • a layer 121 made of a negative resist material is applied to a plate 12 serving as a galvanic electrode.
  • This layer 121 is partially irradiated with parallel X-ray radiation 123 from an electron synchrotron via a mask 122 arranged at a short distance.
  • the unit consisting of mask 122, resist layer 121 and plate 12 executes a wobble movement (arrows) relative to the beam direction.
  • the openings 125 in the absorber structure of the mask 122 have a cross section that corresponds to that of the nozzle capillaries.
  • the radiation 123 creates areas 124 in the resist layer 121 with a funnel-shaped cross section which widens to form the plate 12 and, owing to the radiation, are less soluble than the non-irradiated areas of the layer 121.
  • negative forms 131 of the funnel-shaped pre-channels are formed on the plate 12.
  • the plate 12 and the negative molds 131 are removed, so that a metallic plate 141 provided with funnel-shaped pre-channels 144 according to FIG. 12 is produced.
  • the metallic plate with funnel-shaped pre-channels can also be produced by deep lithographic-galvanic means when using a positive resist material.
  • the areas which have been created during the irradiation with a wobble movement according to FIG. 10 are removed and replaced by a filler material. After removing the remaining resist material with a This gives developers negative forms of the funnel-shaped pre-channels from the filling material, which are processed further in accordance with FIGS. 11 and 12.
  • a wobble movement can take the place of a wobble movement.
  • PMMA is used as the positive resist material, which after the irradiation is dissolved in a liquid developer of butyl diglycol, morpholine, ethanolamine and water.
  • the negative resist material is based on polystyrene, the developer required for this consists of a mixture of ketones and higher alcohols.
  • the galvanic deposition of metal takes place in a chloride-free nickel sulfamate bath at a temperature of 52 ° C.
  • the removable radiation-insensitive filling material consists of a mixture of an epoxy resin and an internal release agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Micromachines (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Building Environments (AREA)
  • Seasonings (AREA)

Abstract

The present invention relates to a method for producing spinning nozzle plates having funnel-shaped preliminary channels in flow communication with nozzle capillaries. Two embodiments of the method are provided which use photolithographic and electrodeposition techniques. Common to both embodiments of the method is the use of a metal plate provided with funnel-shaped preliminary channels as a self-aligning irradiation mask for irradiating a photoresist layer provided on the metal plate. Nozzle capillaries subsequently defined either in an electrodeposited layer according to a first embodiment of the invention or in electrodeposited tubular projections according to a second embodiment of the invention, have an offset-free, continuous transition between themselves and the preliminary channels. Photolithographic and electrodeposition techniques may also be used to define the funnel-shaped preliminary channels in the metal plates.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von Spinndüsenplatten mit trichterförmigen Vorkanälen und sich hieran anschließeden Düsenkapillaren unter Anwendung tiefenlithographischer und galvanischer Methoden nach dem Oberbegriff von Anspruch 1.The invention relates to a method for producing spinneret plates with funnel-shaped pre-channels and to the nozzle capillaries connected thereafter using deep lithographic and galvanic methods according to the preamble of claim 1.

Derartige Spinndüsenplatten werden für die Herstellung von Fasern benötigt, wobei der Ausgangsstoff aus organischem oder anorganischem Material in fließfähigem Zustand durch eine Vielzahl von Spinndüsenkanälen in den Platten hindurchgepreßt wird. Die Spinndüsenkanäle bestehen in den meisten Fällen aus Düsenkapillaren, durch die das Material als Faser austritt, und wesentlich weiteren Vorkanälen, denen das zu verspinnende Material zugeführt wird. Die Vorkanäle haben häufig die Form von Trichtern, die sich zu den Düsenkapillaren hin verjüngen, um schließlich in letztere überzugehen. Bei der getrennten Herstellung von Vorkanälen und Düsenkapillaren besteht die Gefahr, daß am Übergang in der Trennfuge ein unerwünschter Versatz auftritt.Such spinneret plates are required for the production of fibers, the raw material of organic or inorganic material in a flowable state being pressed through a large number of spinneret channels in the plates. In most cases, the spinneret channels consist of nozzle capillaries through which the material emerges as a fiber, and much more pre-channels to which the material to be spun is fed. The pre-channels are often in the form of funnels which taper towards the nozzle capillaries in order to finally merge into the latter. When pre-channels and nozzle capillaries are manufactured separately, there is a risk that an undesired offset occurs at the transition in the parting line.

Ein gattungsgemäßes Verfahren zur Herstellung einer Tintenstrahldüsenanordnung ist aus der US-A-4246076 bekannt. Dabei wird auf einem Substrat mit elektrisch leitfähiger, passivierter Oberfläche eine Schicht eines photopolimerisierbaren Materials aufgebracht, die über eine Maske mit einem Lochmuster bestrahlt wird. Sodann wird auf diese Schicht eine weitere Schicht aus dem gleichen Material aufgebracht und über eine zweite Maske mit kleinerem Lochmuster bestrahlt, so daß nach dem Entfernen der nicht bestrahlten Bereiche auf dem Substrat eine säulenförmige, eine Stufe aufweisende Negativform der Tintenstrahldüse verbleibt. Hierauf wird auf dem Substrat eine die Negativform einschließende Galvanikschicht erzeugt, worauf das Substrat von der Galvanikschicht getrennt und die Negativform durch ein Lösungsmittel entfernt wird.A generic method for producing an ink jet nozzle arrangement is known from US-A-4246076. In this case, a layer of a photopolimerizable material is applied to a substrate with an electrically conductive, passivated surface and is irradiated with a perforated pattern via a mask. A further layer of the same material is then applied to this layer and irradiated through a second mask with a smaller hole pattern, so that after removal of the non-irradiated areas on the substrate, a columnar, step-shaped negative form of the ink jet nozzle remains. An electroplating layer enclosing the negative mold is then produced on the substrate, whereupon the substrate is separated from the electroplating layer and the negative mold is removed by a solvent.

Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren der gattungsgemäßen Art einen Weg aufzuzeigen, durch den ein kontinuierlicher Übergang von den Vorkanälen zu den Düsenkapillaren sichergestellt wird.The object of the invention is to provide a method of the generic type by which a continuous transition from the pre-channels to the nozzle capillaries is ensured.

Diese Aufgabe wird mit den im Kennzeichen von Anspruch 1 enthaltenen Maßnahmen gelöst. Durch die Verwendung der mit den trichterförmigen Vorkanälen versehenen metallischen Platte als Bestrahlungsmaske wird ein versatzfreier, fluchtender Übergang erzielt, wobei als strahlungsempfindliches Material sowohl ein Negativ-Resist als auch ein Positiv-Resist eingesetzt werden kann. In Anspruch 2 wird gezeigt, daß nach demselben Lösungsprinzip auch Düsenkapillaren in Form von rohrförmigen Ansätzen hergestellt werden können. Spinndüsenplatten mit rohrförmigen Düsenkapillaren werden besonders vorteilhaft als Bauteile für die Herstellung von Spinndüsenvorrichtungen für die Erzeugung von Hohl- oder Mehrkomponentenfasern eingesetzt. Solche Spinndüsenvorrichtungen bestehen im allgemeinen aus mehreren übereinander angeordneten Spinndüsenplatten. Da nach dem erfindungsgemäßen Verfahren die Düsenkapillaren sowohl in ihrem Einzelquerschnitt als auch in ihrer gegenseitigen Lage mit äußerster Präzision und Gleichmäßigkeit gefertigt werden können und die gegenseitige Justierung von mehreren relativ großen Spinndüsenplatten zum Zusammensetzen der Spinndüsenvorrichtungen kein größeres Problem darstellt, ist die Herstellung von Hohl- oder Mehrkomponentenfasern mit beliebigem Querschnitt und Aufbau möglich. Hierdurch lassen sich Fasern mit neuen und ungewöhnlichen Verwendungszwecken herstellen.This object is achieved with the measures contained in the characterizing part of claim 1. By using the metallic plate provided with the funnel-shaped pre-channels as an irradiation mask, an offset-free, aligned transition is achieved, wherein both a negative resist and a positive resist can be used as the radiation-sensitive material. In claim 2 it is shown that nozzle capillaries can also be produced in the form of tubular approaches using the same solution principle. Spinneret plates with tubular nozzle capillaries are particularly advantageously used as components for the production of spinneret devices for the production of hollow or multicomponent fibers. Such spinneret devices generally consist of a plurality of spinneret plates arranged one above the other. Since the nozzle capillaries can be manufactured with extreme precision and uniformity both in their individual cross-section and in their mutual position according to the method according to the invention and the mutual adjustment of several relatively large spinneret plates for assembling the spinneret devices is not a major problem, the production of hollow or Multi-component fibers with any cross-section and structure possible. This makes it possible to produce fibers with new and unusual uses.

Der mit der Erfindung erzielbare, kontinuierliche Übergang von den Vorkanälen zu den Düsenkapillaren ist nicht nur bei kreisförmigen Querschnitten, sondern auch bei profilierten, z.B. sternförmigen Querschnitten der Düsenkapillaren möglich.The continuous transition from the pre-channels to the nozzle capillaries that can be achieved with the invention is not only with circular cross sections, but also with profiled, e.g. Star-shaped cross sections of the nozzle capillaries possible.

Die einzelnen Verfahrensschritte werden im folgenden anhand der Figuren erläutert:
Die Figur 1 zeigt eine metallische Platte mit trichterförmigen Vorkanälen 144. Die Seite der Platte 141, an der die verjüngten Enden der Vorkanäle 144 münden, ist mit einer Schicht 142 aus einem strahlungsempfindlichen Negativ-Resistmaterial verbunden. Diese Schicht 142 wird partiell durch die Vorkanäle 144 hindurch mit Röntgenstrahlung 143 eines Elektronensynchrotrons bestrahlt, so daß schwer lösliche Bereiche 145 entstehen, deren Form derjenigen der Düsenkapillaren entspricht.
The individual process steps are explained below with reference to the figures:
FIG. 1 shows a metallic plate with funnel-shaped pre-channels 144. The side of the plate 141 at which the tapered ends of the pre-channels 144 open is connected to a layer 142 made of a radiation-sensitive negative resist material. This layer 142 is partially irradiated through the pre-channels 144 with X-rays 143 of an electron synchrotron, so that regions 145 which are difficult to dissolve are formed, the shape of which corresponds to that of the nozzle capillaries.

Danach werden die Vorkanäle 144 mit einem wieder entfernbaren Füllmaterial 152 gefüllt, das sich mit den Bereichen 145 verbindet (Fig. 2). Nach dem Entfernen der nicht bestrahlten Bereiche der Schicht 142 mit einem flüssigen Entwickler entstehen auf der Platte 141 säulenförmige Negativformen 151 der Düsenkapillaren. Nun wird auf der als Galvanikelektrode dienenden metallischen Platte 141 eine die Negativformen 151 einschließende Galvanikschicht 162 erzeugt (Fig. 3). Das Füllmaterial 152 und die Negativformen 151 der Düsenkapillaren werden nach dem Einebnen der Galvanikschicht 162 herausgelöst, so daß eine aus den Teilen 141 und 162 bestehende Spinndüsenplatte 163 entsteht, bei der sich die Düsenkapillaren 161 nahtlos an die trichterförmigen Vorkanäle 144 anschließen (Figur 4).The pre-channels 144 are then filled with a removable filling material 152 which connects to the regions 145 (FIG. 2). After removing the non-irradiated areas of the layer 142 with a liquid developer, columnar negative shapes 151 of the nozzle capillaries are formed on the plate 141. Now, an electroplating layer 162 including the negative molds 151 is produced on the metallic plate 141 serving as the electroplating electrode (FIG. 3). The filling material 152 and the negative molds 151 of the nozzle capillaries are removed after the electroplating layer 162 has been leveled, so that a spinneret plate 163 consisting of the parts 141 and 162 is formed, in which the nozzle capillaries 161 connect seamlessly to the funnel-shaped pre-channels 144 (FIG. 4).

Im Falle der Verwendung eines Positiv-Resistmaterials als strahlungsempfindliche Schicht 142a werden zunächst die bestrahlten Bereiche 142b mit einem flüssigen Entwickler entfernt (Figur 2a) und sodann die entfernten Bereiche und die Vorkanäle 144 mit einem wieder entfernbaren Füllmaterial 152a ausgefüllt, das schwerer löslich ist als das Positiv-Resistmaterial der Schicht 142a (Figur 2b). Darauf werden die nicht bestrahlten Bereiche der Schicht 142a entfernt, so daß auch in diesem Falle säulenförmige Negativformen 151a der Düsenkapillaren auf der metallischen Platte 141 entsprechend Figur 2c entstehen. Die weiteren Schritte (Erzeugen und Einebnen der Galvanikschicht 162, Fig. 3a, Entfernen des Füllmaterials 152a) entsprechen den vorbeschriebenen, so daß auch in diesem Falle eine Spinndüsenplatte 163 erzeugt wird, wie sie schematisch in Figur 4 gezeigt ist.If a positive resist material is used as radiation-sensitive layer 142a, the irradiated areas 142b are first coated with a liquid developer removed (Figure 2a) and then the removed areas and the pre-channels 144 filled with a removable filler 152a, which is less soluble than the positive resist material of the layer 142a (Figure 2b). Then the non-irradiated areas of the layer 142a are removed, so that columnar negative shapes 151a of the nozzle capillaries are also formed in this case on the metallic plate 141 according to FIG. 2c. The further steps (creating and leveling the electroplating layer 162, FIG. 3a, removing the filling material 152a) correspond to those described above, so that in this case too a spinneret plate 163 is produced, as is shown schematically in FIG.

Das erfindungsgemäße Verfahren läßt sich auch anwenden für die Herstellung von Spinndüsenplatten mit rohrförmigen Düsenkapillaren. Auch in diesem Falle wird die metallische Platte 141 mit den Vorkanälen 144 als Bestrahlungsmaske benutzt (Figur 5), worauf die Schicht 142 nochmals partiell von der gegenüberliegenden Seite aus bestrahlt wird. Bei Verwendung eines Negativ-Resistmaterials wird für die Bestrahlung mit der energiereichen Strahlung 181 (Fig. 6) eine Maske benutzt, deren Absorberstrukturen 182 den Außendurchmessern der rohrförmigen Ansätze der Düsenkapillaren entsprechen, so daß die bestrahlten Bereiche 174 und 175 nicht bestrahlte rohrförmige Bereiche 183 der Schicht 142 umschließen. Nach dem Auffüllen der Vorkanäle 144 mit einem wieder entfernbaren Füllmaterial 191 werden die nichtbestrahlten rohrförmigen Bereiche 183 mit einem flüssigen Entwickler herausgelöst, so daß rohrförmige Hohlräume 192 entstehen (Figur 7). In diesen Hohlräumen 192 wird unter Verwendung der Platte 141 als Elektrode eine Galvanikstruktur in der Form von rohrförmigen, metallischen Ansatzen 202 erzeugt (Figur 8). Sodann werden nach dem Einebnen der Galvanikstruktur das restliche Resistmaterial der Schicht 142 und das Füllmaterial 191 entfernt, so daß eine aus der Platte 141 mit den trichterförmigen Vorkanälen 144 und den rohrförmigen Düsenkapillaren 202 bestehende Spinndüsenplatte 211 entsteht (Figur 9).The method according to the invention can also be used for the production of spinneret plates with tubular nozzle capillaries. In this case too, the metallic plate 141 with the pre-channels 144 is used as an irradiation mask (FIG. 5), whereupon the layer 142 is again partially irradiated from the opposite side. When using a negative resist material, a mask is used for the irradiation with the high-energy radiation 181 (FIG. 6), the absorber structures 182 of which correspond to the outer diameters of the tubular attachments of the nozzle capillaries, so that the irradiated areas 174 and 175 are non-irradiated tubular areas 183 Wrap layer 142. After the pre-channels 144 have been filled with a removable filler 191, the non-irradiated tubular areas 183 are removed with a liquid developer, so that tubular cavities 192 are formed (FIG. 7). In these cavities 192 is under Using the plate 141 as an electrode produces an electroplating structure in the form of tubular, metallic lugs 202 (FIG. 8). Then, after leveling the electroplating structure, the remaining resist material of layer 142 and filler 191 are removed, so that a spinneret plate 211 consisting of plate 141 with funnel-shaped pre-channels 144 and tubular nozzle capillaries 202 is formed (FIG. 9).

Im Falle der Verwendung eines Positiv-Resistmaterials werden zunächst die bestrahlten, dem Innenraum der Düsenkapillaren entsprechenden Bereiche mit einem flüssigen Entwickler entfernt und durch ein strahlungsunempfindliches Füllmaterial 191a ersetzt, das auch die Vorkanäle 144 ausfüllt (Figur 6a). Sodann erfolgt eine nochmalige partielle Bestrahlung der Schicht 142a mit energiereicher Strahlung 181 über eine Maske, deren Absorberstrukturen 182a Durchbrüche 182b aufweisen, die den Außendurchmessern der rohrförmigen Ansätze für die Düsenkapillaren entsprechen.If a positive resist material is used, the irradiated areas corresponding to the interior of the nozzle capillaries are first removed with a liquid developer and replaced by a radiation-insensitive filling material 191a, which also fills the pre-channels 144 (FIG. 6a). Then there is repeated partial irradiation of the layer 142a with high-energy radiation 181 via a mask, the absorber structures 182a of which have openings 182b which correspond to the outer diameters of the tubular attachments for the nozzle capillaries.

Auf diese Weise entstehen zwischen dem Füllmaterial 191a und dem nicht bestrahlten Resistmaterial der Schicht 142a rohrförmige, bestrahlte Bereiche 183a, die mit einem flüssigen Entwickler entfernt werden, so daß rohrförmige Hohlräume 192a entstehen (Figur 7a). Die weitere Behandlung (Galvanisieren 202, Einebnen der Galvanikstruktur, Entfernen des Füllmaterials 191a und des restlichen Resistmaterials 142a) erfolgt analog der Beschreibung zu Figur 8 und 9.In this way, tubular, irradiated areas 183a are formed between the filling material 191a and the non-irradiated resist material of the layer 142a, which are removed with a liquid developer, so that tubular cavities 192a are formed (FIG. 7a). The further treatment (electroplating 202, leveling of the electroplating structure, removal of the filler 191a and the remaining resist material 142a) is carried out analogously to the description of FIGS. 8 and 9.

Anhand der Figuren 10, 11 und 12 wird im folgenden gezeigt, daß auch die metallische Platte mit den trichterförmigen Vorkanälen auf tiefenlithographisch-galvanischem Wege hergestellt werden kann. Hierzu wird auf einer als Galvanikelektrode dienenden Platte 12 eine Schicht 121 aus einem Negativ-Resistmaterial aufgebracht. Diese Schicht 121 wird über eine in geringem Abstand angeordnete Maske 122 partiell mit paralleler Röntgenstrahlung 123 eines Elektronensynchrotrons bestrahlt. Während der Bestrahlung führt die aus Maske 122, Resistschicht 121 und Platte 12 bestehende Einheit eine Taumelbewegung (Pfeile) relativ zur Strahlrichtung aus. Die Durchbrüche 125 in der Absorber struktur der Maske 122 haben einen Querschnitt, der dem der Düsenkapillaren entspricht. Durch die Strahlung 123 entstehen in der Resistschicht 121 Bereiche 124 mit trichterförmigen zur Platte 12 sich erweiterndem Querschnitt, die aufgrund der Bestrahlung im Vergleich zu den nicht bestrahlten Bereichen der Schicht 121 schwerer löslich sind. Nach dem Entfernen der nicht bestrahlten Bereiche der Resistschicht 121 mit einem flüssigen Entwickler entstehen auf der Platte 12 Negativformen 131 der trichterförmigen Vorkanäle. Nach dem galvanischen Abscheiden von Metall auf der Platte 12 und dem Einebnen dieser Galvanikschicht 141 (Figur 11) werden die Platte 12 und die Negativformen 131 entfernt, so daß eine mit trichterförmigen Vorkanälen 144 versehene metallische Platte 141 gemäß Figur 12 entsteht.Based on FIGS. 10, 11 and 12, it is shown below that the metallic plate with the funnel-shaped pre-channels is also produced by deep lithographic-galvanic means can be. For this purpose, a layer 121 made of a negative resist material is applied to a plate 12 serving as a galvanic electrode. This layer 121 is partially irradiated with parallel X-ray radiation 123 from an electron synchrotron via a mask 122 arranged at a short distance. During the irradiation, the unit consisting of mask 122, resist layer 121 and plate 12 executes a wobble movement (arrows) relative to the beam direction. The openings 125 in the absorber structure of the mask 122 have a cross section that corresponds to that of the nozzle capillaries. The radiation 123 creates areas 124 in the resist layer 121 with a funnel-shaped cross section which widens to form the plate 12 and, owing to the radiation, are less soluble than the non-irradiated areas of the layer 121. After the non-irradiated areas of the resist layer 121 have been removed with a liquid developer, negative forms 131 of the funnel-shaped pre-channels are formed on the plate 12. After the galvanic deposition of metal on the plate 12 and the leveling of this electroplating layer 141 (FIG. 11), the plate 12 and the negative molds 131 are removed, so that a metallic plate 141 provided with funnel-shaped pre-channels 144 according to FIG. 12 is produced.

Die Herstellung der metallischen Platte mit trichterförmigen Vorkanälen kann auch bei Verwendung eines Positiv-Resistmaterials auf tiefenlithographisch-galvanischem Wege erfolgen. Die gemäß Fig. 10 während der Bestrahlung mit einer Taumelbewegung entstandenen Bereiche werden in diesem Falle entfernt und durch ein Füllmaterial ersetzt. Nach dem Entfernen des restlichen Resistmaterials mit einem Entwickler erhält man so Negativformen der trichterförmigen Vorkanäle aus dem Füllmaterial, die entsprechend den Figuren 11 und 12 weiterbearbeitet werden. Bei trapezförmigen Vorkanälen kann an die Stelle einer Taumelbewegung eine Kippbewegung treten.The metallic plate with funnel-shaped pre-channels can also be produced by deep lithographic-galvanic means when using a positive resist material. In this case, the areas which have been created during the irradiation with a wobble movement according to FIG. 10 are removed and replaced by a filler material. After removing the remaining resist material with a This gives developers negative forms of the funnel-shaped pre-channels from the filling material, which are processed further in accordance with FIGS. 11 and 12. In the case of trapezoidal pre-channels, a wobble movement can take the place of a wobble movement.

Werden geringere Ansprüche an die Qualität der Vorkanäle gestellt, so kann anstelle der Bestrahlung mit einer Taumelbewegung eine Bestrahlung mit stark divergenter Strahlung einer flächenhaften Strahlungsquelle treten.If lower demands are placed on the quality of the pre-channels, then radiation with strongly divergent radiation from a planar radiation source can take the place of the radiation with a wobble movement.

Als Positiv-Resistmaterial wird PMMA verwendet, das nach der Bestrahlung in einem flüssigen Entwickler aus Butyldiglycol, Morpholin, Ethanolamin und Wasser gelöst wird. Das Negativ-Resistmaterial ist auf Polystyrol-Basis aufgebaut, der hierfür erforderliche Entwickler besteht aus einem Gemisch aus Ketonen und höheren Alkoholen. Die galvanische Abscheidung von Metall erfolgt in einem chloridfreien Nickelsulfamatbad bei einer Temperatur von 52° C. Weitere Badbestandteile sind Borsäure, die zur Pufferung des Elektrolyten bei pH = 4 dient, und ein Netzmittel zur Porenverhütung. Die Röntgenmaske besteht aus einem für Röntgenstrahlung weitgehend durchlässigen Maskenträger aus ca. 20 µm starkem Beryllium und einem für Röntgenstrahlung weitgehend undurchlässigen Absorber aus ca. 15 µm Gold. Als energiereiche Strahlung wird Synchrotronstrahlung mit einer charakteristischen Wellenlänge von λc= 0,2 nm verwendet. Das wieder entfernbare strahlungsunempfindliche Füllmaterial besteht aus einem Gemisch aus einem Epoxidharz und einem internen Trennmittel.PMMA is used as the positive resist material, which after the irradiation is dissolved in a liquid developer of butyl diglycol, morpholine, ethanolamine and water. The negative resist material is based on polystyrene, the developer required for this consists of a mixture of ketones and higher alcohols. The galvanic deposition of metal takes place in a chloride-free nickel sulfamate bath at a temperature of 52 ° C. Other bath components are boric acid, which serves to buffer the electrolyte at pH = 4, and a wetting agent to prevent pores. The X-ray mask consists of a mask carrier made of approximately 20 µm thick beryllium, which is largely transparent to X-rays, and an absorber made of approximately 15 µm gold, which is largely impervious to X-rays. Synchrotron radiation with a characteristic wavelength of λ c = 0.2 nm is used as high-energy radiation. The removable radiation-insensitive filling material consists of a mixture of an epoxy resin and an internal release agent.

Claims (4)

  1. Process for manufacturing spinneret plates with funnel-shaped basic channels and nozzle-type capillary tubes, which communicate with said channels, by means of deep-lithographic and galvanic methods, comprising the following steps:
    a) partially irradiating a layer of resist material, which has been applied to a metallic plate, with energy-rich radiation by means of a mask;
    b1) removing the non-radiated regions of the layer of resist material in the case where a negative resist material is used, so that negative forms of the nozzle-type capillary tubes are produced on the metallic plate, or
    b2) removing the irradiated regions of the layer of resist material, filling these regions with a filler material, which is removable again, and subsequently removing the non-irradiated regions of the layer of resist material in the case where a positive resist material is used, so that negative forms of the nozzle-type capillary tubes are likewise produced on the metallic plate;
    c) producing a galvanic layer, which encloses the negative forms of the nozzle-type capillary tubes, on the metallic plate, which serves as a galvanic electrode, and removing the negative forms;
    characterised by the following features:
    d) the metallic plate (141) is provided with the funnel-shaped basic channels (144);
    e) the layer (142) of resist material is bonded to the side of the metallic plate (141), to which the tapering ends of the basic channels (144) extend;
    f) the metallic plate (141), which is provided with the funnel-shaped basic channels (144), is used as a mask for the partial irradiation of the layer (142) of resist material;
    g1) in the case where a negative resist material is used (case b1), the basic channels (144) are filled, after irradiation, with a filler material (152), which is removable again and is removed after the production and levelling of the galvanic layer (162), just like the negative forms (152);
    g2) in the case where a positive resist material is used (case b2), the basic channels (144), together with the regions (142b) which are produced after irradiation and development, are filled with the filler material (152a), which is removable again and is removed after the production and levelling of the galvanic layer (162), so that
       in both cases, a spinneret plate (163) is produced, which comprises the plate (141) with the funnel-shaped basic channels (144) and the galvanic layer (162) with the nozzle-type capillary tubes (161).
  2. Process for manufacturing spinneret plates with tubular nozzle-type capillary tubes according to claim 1, characterised by the following steps:
    h1) after partial irradiation in accordance with a) and f), repeatedly and partially irradiating the layer (142) with energy-rich radiation (181) by means of a mask, the absorber structures (182) of which correspond to the outer diameters of the tubular extensions for the nozzle-type capillary tubes, and filling the basic channels (144) with a filler material (191), which is removable again, in the case where a negative resist material is used, or
    h2) after partial irradiation in accordance with a) and f), removing the irradiated regions and filling the removed regions and the basic channels (144) with a filler material (191a), which is removable again and is insensitive to radiation, repeately and partially irradiating the layer (142a) by means of a mask, the absorber structures (182a) of which have openings (182b), which correspond to the outer diameters of the tubular extensions for the nozzle-type capillary tubes, in the case where a positive resist material is used;
    i1) removing the non-irradiated regions (183) of the layer (142) of negative resist material, so that tubular spaces (192, Fig. 7) are produced in the case of f₁, or
    i2) removing the regions (183a, Fig. 6a) of the layer (142a) of positive resist material, which have been irradiated by means of the mask, so that tubular spaces (192a, Fig. 7a) are likewise produced in the case of f₂;
    j) producing a galvanic structure (202) in the tubular spaces (192 or 192a), levelling same and removing the filler material (191 or 191a) and the remaining resist material (142 or 142a) according to step e), so that a spinneret plate (211, Fig. 9) is produced, which comprises the plate (141) with the funnel-shaped basic channels (144) and the tubular nozzle-type capillary tubes (202).
  3. Process according to claim 1 or 2, characterised in that the metallic plate (141) with the funnel-shaped basic channels (144) is likewise manufactured by means of deep-lithographic and galvanic methods.
  4. Process according to claim 1, 2 or 3, characterised in that the X-radiation, which is produced by an electron synchrotron, is used as energy-rich radiation.
EP86105992A 1985-07-09 1986-04-30 Process for manufacturing spinneret plates Expired - Lifetime EP0209651B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86105992T ATE66254T1 (en) 1985-07-09 1986-04-30 PROCESS FOR MANUFACTURING SPINNOZE PLATES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853524411 DE3524411A1 (en) 1985-07-09 1985-07-09 METHOD FOR PRODUCING SPINNING NOZZLE PLATES
DE3524411 1985-07-09

Publications (3)

Publication Number Publication Date
EP0209651A2 EP0209651A2 (en) 1987-01-28
EP0209651A3 EP0209651A3 (en) 1988-09-14
EP0209651B1 true EP0209651B1 (en) 1991-08-14

Family

ID=6275266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86105992A Expired - Lifetime EP0209651B1 (en) 1985-07-09 1986-04-30 Process for manufacturing spinneret plates

Country Status (8)

Country Link
US (1) US4694548A (en)
EP (1) EP0209651B1 (en)
JP (1) JPH0747249B2 (en)
AT (1) ATE66254T1 (en)
AU (1) AU585624B2 (en)
BR (1) BR8603196A (en)
CA (1) CA1258572A (en)
DE (2) DE3524411A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189437A (en) * 1987-09-19 1993-02-23 Xaar Limited Manufacture of nozzles for ink jet printers
DE3841621A1 (en) * 1988-12-10 1990-07-12 Draegerwerk Ag ELECTROCHEMICAL MEASURING CELL WITH MICROSTRUCTURED CAPILLARY OPENINGS IN THE MEASURING ELECTRODE
US5119550A (en) * 1989-07-03 1992-06-09 Eastman Kodak Company Method of making transfer apparatus having vacuum holes
US5189777A (en) * 1990-12-07 1993-03-02 Wisconsin Alumni Research Foundation Method of producing micromachined differential pressure transducers
DE4042125A1 (en) * 1990-12-28 1992-07-02 Maxs Ag METHOD FOR PRODUCING A REINFORCED FLAT OBJECT HAVING MICRO-OPENINGS
US5206983A (en) * 1991-06-24 1993-05-04 Wisconsin Alumni Research Foundation Method of manufacturing micromechanical devices
US5190637A (en) * 1992-04-24 1993-03-02 Wisconsin Alumni Research Foundation Formation of microstructures by multiple level deep X-ray lithography with sacrificial metal layers
US5378583A (en) * 1992-12-22 1995-01-03 Wisconsin Alumni Research Foundation Formation of microstructures using a preformed photoresist sheet
US5412265A (en) * 1993-04-05 1995-05-02 Ford Motor Company Planar micro-motor and method of fabrication
US5413668A (en) * 1993-10-25 1995-05-09 Ford Motor Company Method for making mechanical and micro-electromechanical devices
DE19530193A1 (en) * 1995-08-17 1997-02-20 Bosch Gmbh Robert Nozzle plate, in particular for fuel injection valves, and method for producing a nozzle plate
AU7163596A (en) * 1995-10-30 1997-05-22 Kimberly-Clark Corporation Fiber spin pack
GB9623185D0 (en) * 1996-11-09 1997-01-08 Epigem Limited Improved micro relief element and preparation thereof
WO1999014214A1 (en) * 1997-09-15 1999-03-25 The Procter & Gamble Company Antimicrobial quinolones, their compositions and uses
US6272275B1 (en) 1999-06-25 2001-08-07 Corning Incorporated Print-molding for process for planar waveguides
DE10305425B4 (en) * 2003-02-03 2006-04-27 Siemens Ag Production method for a perforated disk for ejecting a fluid
DE10305427B4 (en) * 2003-02-03 2006-05-24 Siemens Ag Production method for a perforated disk for ejecting a fluid
CN111702323B (en) * 2020-06-30 2022-05-10 苏州锐涛光电科技有限公司 Processing method of spinneret orifice of melt-blown plate die

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192136A (en) * 1962-09-14 1965-06-29 Sperry Rand Corp Method of preparing precision screens
US3512247A (en) * 1966-11-16 1970-05-19 Celanese Corp Process for producing spinnerettes
US3449221A (en) * 1966-12-08 1969-06-10 Dynamics Res Corp Method of making a monometallic mask
US4246076A (en) * 1979-12-06 1981-01-20 Xerox Corporation Method for producing nozzles for ink jet printers
US4430784A (en) * 1980-02-22 1984-02-14 Celanese Corporation Manufacturing process for orifice nozzle devices for ink jet printing apparati
DE3042483A1 (en) * 1980-11-11 1982-06-16 Philips Patentverwaltung Gmbh, 2000 Hamburg METHOD AND ARRANGEMENT FOR PRODUCING A NOZZLE PLATE FOR INK JET WRITER
DE3206820C2 (en) * 1982-02-26 1984-02-09 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for making separation nozzle elements
NL8203521A (en) * 1982-09-10 1984-04-02 Philips Nv METHOD FOR MANUFACTURING AN APPARATUS
US4552831A (en) * 1984-02-06 1985-11-12 International Business Machines Corporation Fabrication method for controlled via hole process

Also Published As

Publication number Publication date
AU585624B2 (en) 1989-06-22
DE3680837D1 (en) 1991-09-19
EP0209651A2 (en) 1987-01-28
US4694548A (en) 1987-09-22
AU5988886A (en) 1987-01-15
DE3524411A1 (en) 1987-01-15
CA1258572A (en) 1989-08-22
JPH0747249B2 (en) 1995-05-24
EP0209651A3 (en) 1988-09-14
DE3524411C2 (en) 1989-05-03
JPS6244322A (en) 1987-02-26
ATE66254T1 (en) 1991-08-15
BR8603196A (en) 1987-02-24

Similar Documents

Publication Publication Date Title
EP0209651B1 (en) Process for manufacturing spinneret plates
DE19715582B4 (en) Method and system for generating three-dimensional bodies from computer data
DE4309524C1 (en) Method of producing three=dimensional object free from distortion - by successively photo curing layers of liquid or powder under control of computer which differentiates between each core and outer skin
DE3587656T2 (en) Stereolithographic device and method for producing three-dimensional objects.
DE3689701T2 (en) Manufacture of microsieves and microsieves produced by this process.
DE102012212587A1 (en) Apparatus and method for layering a three-dimensional object
EP2855119A1 (en) Method for constructing a three-dimensional molded body
WO2004014637A1 (en) Device and method for producing a three-dimensional object by means of a generative production method
DE4017260A1 (en) Mfg. gradient coil arrangement for MRI - achieving high coil position accuracy using removable formers, adhesive and setting resin
EP0667450B1 (en) Method of manufacturing a nozzle plate
EP3278119B1 (en) Additive manufacturing method for producing a space transformer and space transformer
EP0486855A1 (en) Engraved roller
DE3517730C2 (en)
DE3517729C2 (en)
DE2933570B2 (en) Process for making separation nozzle elements
EP0305318A1 (en) Method for the manufacture of ink channels in a print head of an ink jet matrix printer
EP0179452B1 (en) Print head production process for ink printing mechanism
EP0618502A1 (en) Process for making stepped moulds, stepped moulds and high precision stepped microstructure bodies moulded therewith
EP1040916B1 (en) Method and apparatus for producing a printing plate
DE4404560C1 (en) Process for producing a mother die for the galvanic production of seamless rotary screen printing stencils, in particular made of nickel
DE3631804A1 (en) Process and apparatus for producing microfilters, and a microfilter produced accordingly
DE1771882B2 (en) Process for the production of a patterned cylindrical screen printing stencil made of metal
DE1803599A1 (en) Prodn of metal forms for use as nozzles in rocket - motors
DE4021662C2 (en) Printing machine with electrochemically changeable printing form
DE10305427B4 (en) Production method for a perforated disk for ejecting a fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870227

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19900209

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 66254

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3680837

Country of ref document: DE

Date of ref document: 19910919

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86105992.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970416

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970425

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970429

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970430

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981101

EUG Se: european patent has lapsed

Ref document number: 86105992.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990318

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990329

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040128

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101