EP0197079B1 - Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre - Google Patents

Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre Download PDF

Info

Publication number
EP0197079B1
EP0197079B1 EP19850904831 EP85904831A EP0197079B1 EP 0197079 B1 EP0197079 B1 EP 0197079B1 EP 19850904831 EP19850904831 EP 19850904831 EP 85904831 A EP85904831 A EP 85904831A EP 0197079 B1 EP0197079 B1 EP 0197079B1
Authority
EP
European Patent Office
Prior art keywords
cooling
zone
sheet
tempering
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19850904831
Other languages
German (de)
English (en)
Other versions
EP0197079A1 (fr
Inventor
Stéphane Georges Jean-Marie Viannay
Bernard Marie Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bertin Technologies SAS
Original Assignee
Bertin et Cie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin et Cie SA filed Critical Bertin et Cie SA
Priority to AT85904831T priority Critical patent/ATE38689T1/de
Publication of EP0197079A1 publication Critical patent/EP0197079A1/fr
Application granted granted Critical
Publication of EP0197079B1 publication Critical patent/EP0197079B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the invention relates to a process for the quenching of metal sheets such as steel, making it possible to carry out in the same installation the hard quenching and the soft quenching and an installation for carrying out the process.
  • the heat flux necessary to cool a sheet is proportional to the thickness of the latter and to the cooling rate.
  • the cooling rate required is approximately 10 ° C / s between 800 ° C and 600 ° C and does not depend on the thickness of the sheet, at least for thicknesses less than 25 mm .
  • the invention provides a quenching method as defined in claim 1 making it possible to carry out, with the same installation, either hard quenching or soft quenching.
  • the sheet to be treated is scrolled through a primary zone with a high cooling flow so as to bring the surface of the sheet into the temperature range corresponding to the desired structure, cooling is completed by passing through a secondary zone with cooling flow. moderate.
  • the cooling flow and the residence time are chosen so that the super temperature sheet thickness does not fall below 500 ° C in the high-cooling zone and is maintained above 500 ° C in the moderately-cooling zone, the cooling being effected by caléfaction or boiling in film; in the case of hardening the cooling flow and the residence time are chosen so that the surface temperature of the sheet is rapidly close to 100 ° C. so that in the zone with moderate cooling the cooling is carried out by nucleated boiling .
  • the high cooling flow is around 1.5 MW / m 2 in the case of soft quenching and is approximately three times higher in the case of hard quenching, while the moderate cooling flow can vary between 0.2 and 0.8 MW / m 2 approximately, in the case of soft quenching, the heat exchange taking place by film boiling or heat-setting, and is approximately three times higher in the case of hard quenching, l 'heat exchange by nucleated boiling.
  • the installation according to the invention intended for the implementation of this process is defined in claim 5.
  • This comprises a cooling section with high thermal flow followed by a cooling section with moderate thermal flow, the flow of cooling of the first section being adjustable in a ratio of 1 to 3 and that of the second section, in a ratio of 1 to 4, for a given boiling regime (either nucleated boiling, or calefaction) to allow their adaptation to the speeds cooling demanded.
  • Figure 1 is a schematic representation of a first embodiment of a cooling installation for the implementation of the method according to the invention.
  • Figure 2 shows the cooling curves of a sheet subjected to gentle quenching.
  • Figure 3 shows the cooling curves of a sheet subjected to hard quenching.
  • the sheet to be treated leaving the rolling mill at a temperature of the order of 800 ° C, passes through a primary cooling zone capable of evacuating a high thermal flux or intense cooling zone. At least the surface of the sheet is thus brought, at the exit from this zone, into a temperature range corresponding to the desired final martensitic or perlitic-ferritic structure depending on whether it is a question of obtaining a hard quench or a quench sweet. Cooling is continued in a secondary cooling zone capable of evacuating a moderate thermal flux sufficient to maintain the surface temperature of the product substantially at the level corresponding to the desired final structure.
  • the surface temperature of the sheets at the exit from the cooling zone with high thermal flux does not depend on their thickness but only on the initial temperature and the cooling thermal flux.
  • thermal modeling has shown that if a sheet metal at least 12 mm thick is cooled for 3 seconds and whose initial temperature is above 750 ° C with a flow of the order 2 MVII / m z , the surface temperature of the sheet does not depend on its thickness and does not drop below 500 ° C and therefore does not reach the areas of hard quench structure formation.
  • the average temperature of the sheet remains above 600 ° C and depends on the thickness.
  • Cooling can then be completed in the secondary moderate-flow cooling zone (0.8 to 0.2 MW / M 2 depending on the thickness of the sheet), which is adjusted so as to maintain an average cooling rate of 10 ° C / second approximately up to 600 ° C.
  • the surface temperature always remains between 600 ° C and 500 ° C.
  • Cooling is therefore obtained comparable to that obtained by cooling at a constant speed of 10 ° C / s considered necessary for obtaining soft quenching structures.
  • the initial temperature of which is 800 ° C.
  • the final temperature of 600 ° C. with a running speed of 2 m / s
  • the heat flow for cooling the primary zone being of the order of 2 MW / m 2
  • the length of the primary zone is 6 m and that of the secondary zone 24 m, resulting in an installation of 30 m total length.
  • FIG. 3 shows the evolution of the surface, average and core temperatures of a 25 mm thick sheet having passed through the installation as indicated above.
  • the sheets must be brought into the martensitic domain by very rapid cooling.
  • hard quenching tests have shown that the sheets should be cooled to an average temperature below 150 ° C, which for thick sheets leads to high cooling times, for example 120 seconds for a sheet of 50 mm thick.
  • the maximum tolerable temperature difference between the head and the tail of a sheet imposing a minimum speed of the order of 0.1 to 0.2 m / s, the maximum residence time of a sheet moving in the area at intense cooling is 60 seconds.
  • a thermal modeling shows that, after leaving the first zone of intense cooling adjusted to the maximum of its capacities, the heat flow necessary in the second zone to complete the cooling to 150 ° C hardly exceeds 2 MW / m 2 .
  • FIG. 3 shows the evolution of the surface, average and core temperatures of a sheet 50 mm thick having passed through the installation as indicated above.
  • FIG. 1 schematically represents an exemplary embodiment of a cooling installation for implementing the method according to the invention.
  • the sheets leaving the rolling mill 1 pass into a leveling installation 2, then into the cooling installation 3.
  • This installation comprises a primary zone 4 with a high cooling flow and a secondary zone 5 with a moderate cooling flow.
  • the sheet to be treated 6 circulating in the intense cooling zone 4, between upper rollers 7 and lower 8, must have good flatness.
  • the sheet leaving the rolling mill is passed through the leveling installation 2, which has a double advantage: in terms of leveling, straightening the sheet hot, therefore with low energy consumption , and in terms of cooling, better water distribution.
  • the intense cooling zone consists of elements such as those described in French patent 2,223,096. It comprises a number of pairs of guide rollers between which the sheet passes. These rollers are enclosed in an enclosure 9 having between the rollers flat walls, mutually parallel and with the upper and lower faces of the sheet. These walls allow passage to a blade of cooling water supplied by intakes provided on the casings of some of the rollers and discharged by outlets provided on the casings of other rollers. The adjustment of the water flow allows the cooling flow to be varied in a ratio of 3.
  • the pairs of guide rollers allow the sheet metal to move, but also help maintain it to prevent accidental deformation during cooling.
  • the thickness of the sheets subjected to the treatment being variable, the upper part of the machine carrying the upper rollers must be mobile to allow the adjustment of the passage between the rollers, also this part of the installation is expensive and it is advantageous to decrease its length. In practice, we limit our to a length of the order of 6 meters.
  • the moderate cooling zone 5 comprises drive rollers 10 on which the sheet rests and sprayers or sprinkler devices with a water blade or laminar jets provided between the rollers.
  • two-dimensional jet spraying devices 11, 12 are used, as described in French patent 2,421,678. These devices consist of hollow bodies, terminated by an elongated slot, supplied with gas under moderate pressure and with water. The water, injected inside the hollow bodies, is ejected by a stream of pressurized gas, through the slot, giving a two-dimensional spray jet.
  • the length of the secondary zone 5 is of the order of 24 meters.
  • the speed of rotation of the rollers is adjustable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

On fait défiler la tôle à traiter (6) dans une zone primaire à flux de refroidissement élevé (4) et réglable de manière à amener la température superficielle de la tôle dans le domaine de température correspondant à la structure désirée. On achève le refroidissement par passage dans une zone secondaire à flux de refroidissement modéré (5) et réglable, maintenant la température superficielle, au niveau souhaité. Installation comportant une zone primaire de refroidissement intense (4) et une zone secondaire de refroidissement modéré (5).

Description

  • L'invention concerne un procédé de trempe au défilé de tôles d'un métal tel que l'acier permettant de réaliser dans une même installation la trempe dure et la trempe douce et une installation pour la mise en oeuvre du procédé.
  • Les traitements thermiques ou thermomécani- ques d'aciers peu chargés en éléments d'alliage permettent dans certaines conditions d'obtenir des caractéristiques mécaniques égales et mêmes supérieures à celles d'aciers plus fortement alliés de manière classique. On a donc, dans un but de compétitivité des prix, développé des méthodes de trempe directe dans la chaude de laminage.
  • On utilise actuellement deux types de traitement thermique:
    • - la trampe dure qui a pour but l'obtention d'une structure martensitique, et qui nécessite une vitesse de refroidissement maximale jusqu'à une température inférieure à 200°C, pour atteindre le domaine martensitique
    • - la trempe douce, ayant pour but l'obtention d'une structure ferritique, perlitique ou bainitique se formant dans une zone de température supérieure à 400°C, nécessite des vitesses de refroidissement pouvant être 10 fois moindres que précédemment dans la zone des températures allant de 800°C (température initiale) à 600°C (témperature finale).
  • Ces conditions sont réalisés notamment dans deux types de machines:
    • - pour la trempe dure dans une machine à refroidissement accéléré, telle que celle décrite par exemple dans le brevet français 2.223.096, dans laquelle des rouleaux de guidage font progresser la tôle à traiter dans une enceinte alimentée de chaque côté des faces de la tôle par des admissions d'eau dont le débit permet l'évacuation d'un flux de chaleur de l'ordre de 5 MW/m2. Egalement, pour la trempe dure, l'article «Use of controlled spray cooling for quenched steels» de N.V. ZIMIN paru dans «Metal Science and Heat Treatment», vol. 19 N° 1/2 janvier/février, pages 117-120, une méthode de refroidissement en plusieurs étapes. On refroidit la surface de la tôle par une pulvérisation vigoureuse d'eau (0,6-0,8 m3/sec m2) jusqu'à la transformation martensitique puis on continue le refroidissement jusqu'au coeur du métal par pulvérisation modérée de l'orde de -0,1 m3/ sec m2. C'est une méthode de trempe dure dans laquelle on utilise deux pulvérisateurs de débits différents pour obtenir les deux types de refroidissement. On connaît également de l'article «Bethle- hem installs new plate quench and temper facili- ty» publié dans «Iron and Steel Engineer» vol. 43, N° 10 octobre 1966, pages 169-170, une unité de trempe dure présentant deux zones: une première de refroidissement rapide à haute pression et fort débit et une deuxième zone de refroidissement lent maintenant la surface de la tôle à une basse température comme dans l'article précédent.
    • Les unités de trempe ci-dessus décrites ont la possibilité de faire varier le refroidissement en fonction de l'épaisseur des tôles, mais toujours dans des proportions correspondant au seul type de trempe dure. Aucun de ces dispositifs ne permet d'obtenir les deux types de trempe dure et douce,
    • - pour la trempe douce par une machine de refroidissement à jets laminaires ou à lame d'eau, telle par exemple celle décrite dans la publication «Transactions I.S.J.» vol. 22, 1982, p. B 245.246 et permettant l'évacuation d'un flux de chaleur de l'ordre'de 0,4 à 0,8 MW/m2.
  • Les caractéristiques des tôles soumises à une trempe dure ou douce étant différentes, il serait intéressant de pouvoir, avec une installation unique et avec une dépense énergétique réduite, produire des tôles selon l'une ou l'autre méthode. Malheureusement, pour des raisons d'ordre hydrodynamique, l'installation de trempe douce ne peut en aucun cas évacuer le flux de chaleur nécessaire à la trempe dure et l'installation de trempe dure ne peut descendre aux valeurs de flux de la trempe douce.
  • En effet, le flux thermique nécessaire pour refroidir une tôle est proportionnel à l'épaisseur de celle-ci et à la vitesse de refroidissement.
  • Dans le cas de la trempe douce, la vitesse de refroidissement nécessaire est d'environ 10°C/s entre 800°C et 600°C et ne dépend pas l'épaisseur de la tôle, du moins pour des épaisseurs inférieures à 25 mm.
  • Dans le cas de la trempe dure, la vitesse de refroidissement est nettement plus importante et dépend de l'épaisseur de la tôle. C'est ainsi qu'entre 800°C et 200°C, on a:
      • environ 100°C/s pour une tôle de 10 mm
      • environ 30°C/s pour une tôle de 30 mm
      • environ 10°C/s pour une tôle de 50 mm.
  • Pour les tôles épaisses (au dessus de 30 mm), la diffusion de la chaleur dans le métal limite la vitesse de refroidissement.
  • Des remarques précédentes, il découle que, selon l'épaisseur de la tôle, il peut y avoir un rapport de 10 entre le flux thermique nécessaire à une trempe dure et celui nécessaire à une trempe douce. Quel que soit le procédé de refroidissement utilisé en métallurgie, le flux thermique en régime de caléfaction (pour une température superficielle du métal supérieure à 400°C) varie sensiblement comme la puissance 0,6 à 0,9 du débit d'eau. Les débits d'eau doivent donc varier dans un rapport très supérieur à 10 pour réaliser à la fois la trempe dure et la trempe douce.
  • L'invention propose un procédé de trempe tel qu'il a été défini dans la revendication 1 permettant de réaliser avec une même installation soit la trempe dure, soit la trempe douce.
  • On fait défiler la tôle à traiter dans une zone primaire à flux de refroidissement élevé de manière à amener la superficie de la tôle dans le domaine de température correspondant à la structure désirée, on achève le refroidissement par passage dans une zone secondaire à flux de refroidissement modéré.
  • Avantageusement, dans le cas de la trempe douce, le flux de refroidissement et le temps de séjour sont choisis pour que la température superficielle de la tôle ne descende pas au-dessous de 500°C dans la zone à refroidissement élevé et soit maintenue au-dessus de 500°C dans la zone à refroidissement modéré, le refroidissement s'effectuant par caléfaction ou ébullition en film; dans le cas de la trempe dure le flux de refroidissement et le temps de séjour sont choisis pour que la température superficielle de la tôle soit rapidement proche de 100°C de façon que dans la zone à refroidissement modéré le refroidissement s'effectue par ébullition nucléée.
  • Le flux de refroidissement élevé est de l'ordre de 1,5 MW/m2 dans le cas de la trempe douce et est environ trois fois plus élevé dans le cas de la trempe dure, tandis que le flux de refroidissement modéré peut varier entre 0,2 et 0,8 MW/m2 environ, dans le cas de la trempe douce, l'échange thermique se faisant par ébullition en film ou caléfaction, et est environ trois fois plus élevé dans le cas de la trempe dure, l'échange thermique se faisant par ébullition nucléée.
  • L'installation selon l'invention destinée à la mise en oeuvre de ce procédé est définie dans la revendication 5. Celle-ci comporte une section de refroidissement à flux thermique élevé suivi d'une section de refroidissement à flux thermique modéré, le flux de refroidissement de la première section étant réglable dans un rapport de 1 à 3 et celui de la deuxième section, dans un rapport de 1 à 4, pour un régime d'ébullition donné (soit ébullition nuclée, soit caléfaction) pour permettre leur adaptation aux vitesses de refroidissement demandées.
  • Les explications et figures données ci-après à titre d'exemples permettront de comprendre comment l'invention peut être réalisée.
  • La figure 1 est une représentation schématique d'une première forme de réalisation d'une installation de refroidissement pour la mise en oeuvre du procédé selon l'invention. La figure 2 montre les courbes de refroidissement d'une tôle soumise à une trempe douce. La figure 3 montre les courbes de refroidissement d'une tôle soumise à une trempe dure.
  • Selon le procédé de l'invention, la tôle à traiter, sortant du laminoir à une température de l'ordre de 800°C, passe dans une zone primaire de refroidissement susceptible d'évacuer un flux thermique élevé ou zone de refroidissement intense. Au moins la surface de la tôle est ainsi amenée, à la sortie de cette zone, dans un domaine de température correspondant à la structure finale désirée martensitique ou perlitique-ferritique selon qu'il s'agit d'obtenir une trempe dure ou une trempe douce. Le refroidissement est poursuivi dans une zone secondaire de refroidissement susceptible d'évacuer un flux thermique modéré suffisant pour maintenir la température superficielle du produit sensiblement au niveau correspondant à la structure finale désirée.
  • Comme il a été précédemment signalé, la température superficielle des tôles à la sortie de la zone de refroidissement à flux thermique élevé ne dépend pas de leur épaisseur mais uniquement de la température initiale et du flux thermique de refroidissement. En ce qui concerne la trempe douce une modélisation thermique a montré que si l'on refroidit pendant 3 secondes une tôle d'au moins 12 mm d'épaisseur et dont la température initiale est supérieure à 750°C avec un flux de l'ordre de 2 MVII/mz, la température superficielle de la tôle ne dépend pas de son épaisseur et ne descend pas en dessous de 500°C et par conséquent n'atteint pas des domaines de formation de structure de trempe dure. Par contre la température moyenne de la tôle reste supérieure à 600°C et dépend de l'épaisseur.
  • Le refroidissement peut alors être achevé dans la zone secondaire de refroidissement à flux modéré (0,8 à 0,2 MW/M 2 selon l'épaisseur de la tôle), qui est réglée de façon à maintenir une vitesse de refroidissement moyenne de 10°C/seconde environ jusqu'à 600°C. Dans cette zone secondaire, la température superficielle reste toujours comprise entre 600°C et 500°C.
  • On obtient donc un refroidissement comparable à celui obtenu par un refroidissement à la vitesse constante de 10°C/s jugée nécessaire à l'obtention de structures de trempe douce.
  • Selon un exemple de réalisation d'installation conforme à l'invention: pour une tôle de 25 mm d'épaisseur dont la température initiale est de 800°C, et la température finale de 600°C avec une vitesse de défilement de 2 m/s, le flux thermique de refroidissement de la zone primaire étant de l'ordre de 2 MW/m2, la longueur de la zone primaire est de 6m et celle de la zone secondaire de 24 m, d'où une installation de 30 m de longueur totale.
  • La figure 3 montre l'évolution des températures superficielles, moyennes et à coeur d'une tôle de 25 mm d'épaisseur ayant traversé l'installation comme indiqué ci-dessus.
  • Une installation de trempe douce, comme actuellement connue, aurait eu une longueur de 40m.
  • Pour obtenir une trempe dure, il faut amener les tôles dans le domaine martensitique par un refroidissement très rapide. En outre, des essais de trempe dure ont montré que les tôles devaient être refroidies jusqu'à une température moyenne inférieure à 150°C, ce qui pour des tôles épaisses conduit à des temps de refroidissement élevés, par exemple 120 secondes pour une tôle de 50 mm d'épaisseur.
  • L'écart de température maximum tolérable entre la tête et la queue d'une tôle imposant une vitesse minimum de l'ordre de 0,1 à 0,2 m/s, le temps de séjour maximum d'une tôle défilant dans la zone à refroidissement intense est de 60 secondes.
  • Une modélisation thermique montre que, après sortie de la première zone de refroidissement intense réglée au maximum de ses capacités, le flux thermique nécessaire en deuxième zone pour achever le refroidissement jusqu'à 150°C ne dépasse guère 2 MW/m 2.
  • La température de peau des tôles en sortie de la zone primaire à flux de refroidissement élevé (ou zone de refroidissement intense) étant proche de 100°C, le phénomène de caléfaction, qui, dans le cas de la trempe douce, limitait les échanges thermiques, a disparu et le refroidissement classique par eau pulvérisée devient important et montre une efficacité de l'ordre de 40% par suite d'une vaporisation intense. Ainsi, pour un flux thermique de 2 MW/m2 et une efficacité de refroidissement de 40%, le débit surfacique d'eau à réaliser est de 2 kg/m2. Ce débit est du même ordre de grandeur que celui nécessaire au refroidissement dans la zone secondaire à flux de refroidissement modéré et correspondant aux caractéristiques des installations classiques de trempe douce (environ 0,8 MW/m2 en régime de caléfaction).
  • L'exemple d'installation précédemment décrite avec une zone primaire de 6 m et une zone secondaire de 24 m permettra de traiter des tôles de 50 mm d'épaisseur défilant à la vitesse de 0,2 m/s ou de 70 mm défilant à 0,1 m/s.
  • La figure 3 montre l'évolution des températures superficielles, moyennes et à coeur d'une tôle de 50 mm d'épaisseur ayant traversé l'installation comme indiqué ci-dessus.
  • La figure 1 représente schématiquement un exemple de réalisation d'une installation de refroidissement pour la mise en oeuvre du procédé selon l'invention. Les tôles sortant du laminoir 1 passent dans une installation de planage 2, puis dans l'installation de refroidissement 3. Cette installation comprend une zone primaire 4 à flux de refroidissement élevé et une zone secondaire 5 à flux de refroidissement modéré.
  • La tôle à traiter 6 circulant, dans la zone de refroidissement intense 4, entre des rouleaux supérieurs 7 et inférieurs 8, doit présenter une bonne planéité. Afin d'obtenir la planéité requise, on fait passer la tôle sortant du laminoir dans l'installation de planage 2, ce qui présente un double avantage: au niveau du planage, redresser la tôle à chaud, donc avec consommation d'une faible énergie, et au niveau du refroidissement, une meilleure répartition de l'eau.
  • La zone de refroidissement intense est constituée par des éléments tels que ceux décrits dans le brevet français 2.223.096. Elle comporte un certain nombre de couples de rouleaux de guidage entre lesquels passe la tôle. Ces rouleaux sont enfermés dans une enceinte 9 présentant entre les rouleaux des parois planes, parallèles entre elles et avec les faces supérieure et inférieure de la tôle. Ces parois laissent le passage à une lame d'eau de refroidissement alimentée par des admissions prévues sur les carters de certains des rouleaux et évacuée par des sorties prévues sur les carters d'autres rouleaux. Le réglage du débit d'eau permet de faire varier le flux de refroidissement dans un rapport de 3.
  • Les couples de rouleaux de guidage permettent le déplacement de la tôle mais participent également au maintien de celle-ci pour empêcher sa déformation accidentelle lors du refroidissement. L'épaisseur des tôles soumises au traitement étant variable, la partie haute de la machine portant les rouleaux supérieurs doit être mobile pour permettre le réglage du passage entre les rouleaux, aussi cette partie de l'installation est onéreuse et l'on a intérêt à en diminuer sa longueur. Pratiquement, on se limite à une longueur de l'ordre de 6 mètres.
  • La zone de refroidissement modéré 5 comporte des rouleaux d'entraînement 10 sur lesquels repose la tôle et des pulvérisateurs ou des dispositifs à aspersion à lame d'eau ou jets laminaires prévus entre les rouleaux. Selon une forme préférée, on utilise des dispositifs de pulvérisation à jet bidimensionnel 11, 12, tels que décrits dans le brevet français 2.421.678. Ces dispositifs sont constitués par des corps creux, terminés par une fente allongée, alimentés en gaz sous pression modérée et en eau. L'eau, injectée à l'intérieur des corps creux, est éjectée par un courant de gaz sous pression, au travers de la fente en donnant un jet pulvérisé bidimensionnel. Par suite de la bonne définition du jet pulvérisé, il est possible d'obtenir un refroidissement homogène sur la largeur de la tôle et semblable sur les deux faces avec un appareillage relativement peu onéreux et dont la puissance de refroidissement est aisément réglable dans un rapport de 4. Ce refroidissement homogène et symétrique permet d'éviter les déformations de la tôle.
  • Dans l'exemple représenté, la longueur de la zone secondaire 5 est de l'ordre de 24 mètres.
  • L'installation conforme à la description précédente permet:
    • - d'effectuer une trempe dure au défilé, la zone de refroidissement intense étant réglée au maximum de ses capacités avec des tôles épaisses de 70 mm au plus et pouvant dépasser 10 m de longueur,
    • - d'effectuer une trempe dure ou statique de tôles d'épaisseur supérieure à 70 mm, (on fait alors subir à la tôle des mouvements de va-et- vient dans la zone de refroidissement secondaire),
      d'effectuer une trempe douce avec la zone de refroidissement intense réglée pour un flux de refroidissement de 1 à 2 MW/m2 et une vitesse de défilement de l'ordre de 2 m/s.
  • Dans les différents exemples, la vitesse de rotation des rouleaux est réglable.

Claims (7)

1. Procédé de trempe au défilé de tôles d'acier initialement à haute température (-800°C) permettant de réaliser sélectivement dans une même installation la trempe dure ou douce par passage à une même vitesse dans deux zones successives respectivement de refroidissement intense jusqu'à une température de peau prédéterminée, soit environ 100°C ou 500°C selon le type de trempe à obtenir, puis une deuxième zone de refroidissement modéré par maintien de la température de peau précédemment obtenue, caractérisé en ce que l'on réalise, dans la première zone, un refroidissement intense par circulation longitudinale forcée sur chaque face de la tôle d'une lame d'eau de débit réglable, dans la deuxième zone un refroidissement modéré par pulvérisation transversale d'eau sur chaque face de la tôle, le débit d'eau pulvérisée étant également réglable, les débits d'eau dans les deux zones étant réglés de manière que les flux de refroidissement varient dans un même rapport du simple au triple selon trempe dure ou douce, à partir d'un débit simple fixe, correspondant à un flux de refroidissement de 1,5 MW/m2 pour la première zone selon l'épaisseur de la tôle pour maintenir la valeur de la température superficielle de ladite tôle, les temps de séjour respectifs de la tôle dans les deux zones de refroidissement intense et modéré étant dans un rapport de l'ordre d'au moins 4.
2. Procédé selon la revendication 1, caractérisé en ce que dans la première zone, le débit de l'eau est multiplié par 3 lorsque l'on passe de la trempe douce à la trempe dure, tandis que le débit d'eau dans la seconde zone est réglé sensiblement à la même valeur dans les deux cas.
3. Procédé selon la revendication 1, caractérisé en ce que les débits d'eau dans la première zone et dans la deuxième zone sont sensiblement identiques en trempe dure.
4. Procédé selon la revendication 1, caractérisé en ce que les vitesses de défilement de la tôle entre trempe douce et trempe dure sont dans un rapport d'au moins 1 à 10 soit environ 2 m/s en trempe douce et environ 0,2 m/s en trempe dure.
5. Installation unique pour la mise en oeuvre du procédé de trempe sélectivement dure ou douce selon la revendication 1, caractérisée en ce qu'elle comporte une zone à flux de refroidissement élevé (4) et une zone à flux de refroidissement modéré (5) comportant des rouleaux à vitesse de rotation réglable (7, 8, 10) sur et/ou entre lesquels passe la tôle à traiter (6) et des dispositifs de refroidissement à débit réglable (9, 11, 12), ces dits dispositifs étant constitués dans la première zone par une enceinte (9) enfermant les rouleaux (7, 8) et présentant entre les rouleaux des parois planes parallèles entre elles et avec les faces supérieure et inférieure de la tôle pour délimiter une lame d'eau à débit réglable, et dans la deuxième zone, par des rampes transversales de refroidissement à pulvérisation (11, 12) ou à aspersion s'étendant à distance, parallèlement à chaque face de la tôle, sur la même longueur que les rouleaux inférieurs (10).
6. Installation selon la revendication 5, caractérisée en ce que l'enceinte de la zone à flux de refroidissement élevé (4) comporte des dispositifs d'injection et des dispositifs d'extraction sur les carters de certains rouleaux et parallèlement aux- dits rouleaux.
7. Installation selon la revendication 5, caractérisée en ce que les rampes transversales sont des pulvérisateurs pneumatiques (11, 12) à jet bidimensionnel disposés au-dessus et en dessous de la tôle (6) à traiter et entre les rouleaux (10).
EP19850904831 1984-10-09 1985-10-04 Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre Expired EP0197079B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85904831T ATE38689T1 (de) 1984-10-09 1985-10-04 Verfahren und vorrichtung zum abschrecken von durchlaufenden metallblechen, insbesondere von stahlblechen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8415458A FR2571384A1 (fr) 1984-10-09 1984-10-09 Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre
FR8415458 1984-10-09

Publications (2)

Publication Number Publication Date
EP0197079A1 EP0197079A1 (fr) 1986-10-15
EP0197079B1 true EP0197079B1 (fr) 1988-11-17

Family

ID=9308468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19850904831 Expired EP0197079B1 (fr) 1984-10-09 1985-10-04 Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre

Country Status (6)

Country Link
EP (1) EP0197079B1 (fr)
JP (1) JPS62501300A (fr)
AU (1) AU5011185A (fr)
DE (1) DE3566272D1 (fr)
FR (1) FR2571384A1 (fr)
WO (1) WO1986002384A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809645A1 (de) * 1988-03-18 1989-09-28 Mannesmann Ag Verfahren zum abkuehlen von hohlkoerpern
AU6769498A (en) * 1997-03-25 1998-10-20 Aluminum Company Of America Process for quenching heat treatable metal alloys
WO2000001857A1 (fr) * 1998-07-07 2000-01-13 Didier Tecnica, S.A. Unite de refroidissement rapide de tole par pulverisation d'eau
US6374901B1 (en) * 1998-07-10 2002-04-23 Ipsco Enterprises Inc. Differential quench method and apparatus
MX2023008750A (es) * 2021-01-29 2023-08-01 Jfe Steel Corp Aparato de temple rapido y metodo de temple rapido para lamina de metal, y metodo para fabricar lamina de acero.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3300198A (en) * 1963-12-27 1967-01-24 Olin Mathieson Apparatus for quenching metal
FR2223096B1 (fr) * 1973-03-26 1976-09-10 Usinor
JPS5337511A (en) * 1976-09-21 1978-04-06 Ishikawajima Harima Heavy Ind Co Ltd Heat treating equipment for steel sheet
FR2421678A2 (fr) * 1978-04-03 1979-11-02 Bertin & Cie Dispositif de pulverisation a jet bidimensionnel
JPS5864320A (ja) * 1981-10-14 1983-04-16 Kobe Steel Ltd 厚鋼板用冷却設備

Also Published As

Publication number Publication date
FR2571384A1 (fr) 1986-04-11
JPS62501300A (ja) 1987-05-21
EP0197079A1 (fr) 1986-10-15
AU5011185A (en) 1986-05-02
WO1986002384A1 (fr) 1986-04-24
DE3566272D1 (en) 1988-12-22

Similar Documents

Publication Publication Date Title
EP2100673B1 (fr) Procédé et dispositif de soufflage de gaz sur une bande en défilement.
RU2302304C2 (ru) Способ и установка для изготовления горячекатаной полосы из аустенитных нержавеющих сталей
CA2320942A1 (fr) Installation de fabrication de bandes d'acier inoxydable laminees a froid
US4168993A (en) Process and apparatus for sequentially forming and treating steel rod
FR2498092A1 (fr) Installation pour le laminage direct d'une piece coulee en acier et production a partir de ladite piece d'un produit fini en acier
EP0197079B1 (fr) Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre
FR2798871A1 (fr) Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites
FR2738843A1 (fr) Procede de traitement thermique d'un rail en acier
SU1674689A3 (ru) Способ обработки стального проката
WO2010049600A1 (fr) Four pour une installation de traitement thermique d'une bande d'acier en défilement continu et procédé associé
EP0761829B1 (fr) Dispositif de refroidissement d'un produit laminé
EP0161236B1 (fr) Dispositif perfectionnés pour la fabrication de rails
FR2650298A1 (fr) Procede de patentage direct d'un fil metallique lamine a chaud
JP3460583B2 (ja) 厚鋼板の製造装置及び厚鋼板の製造方法
EP0169827B1 (fr) Procédé pour fabriquer du fil machine en acier dur
EP2176438A1 (fr) Ligne combinée de recuit et de galvanisation et procédé de transformation d'une ligne de recuit continu en une telle ligne combinée
EP0686209B1 (fr) Procede et installation de traitement continu d'une bande d'acier galvanisee
BE1004526A6 (fr) Procede de traitement thermique d'un produit en acier.
WO2020085352A1 (fr) Dispositif de trempe, procédé de trempe et procédé de production de plaque métallique
FR2513548A1 (fr) Procede de laminage a chaud de feuillards et laminoir a chaud pour feuillards
JP2012512029A (ja) 金属ストリップのスケールを除去するための方法および装置
FR2522688A1 (fr) Procede et installation de traitement thermique de barres en acier allie pretes a l'emploi, notamment pour la construction mecanique
JPS5886922A (ja) 鋼板の急速冷却装置
FR2488279A1 (fr) Traitement par refroidissement accelere de barres en acier dans la chaude de laminage
RU2218427C2 (ru) Способ получения полосы из высокопрочной стали и устройство для его осуществления

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19870629

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 38689

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ST. ASSOC. MARIETTI & PIPPARELLI

REF Corresponds to:

Ref document number: 3566272

Country of ref document: DE

Date of ref document: 19881222

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85904831.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950922

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950925

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951001

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951017

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951102

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19951116

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951121

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961004

Ref country code: GB

Effective date: 19961004

Ref country code: AT

Effective date: 19961004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

Ref country code: BE

Effective date: 19961031

BERE Be: lapsed

Owner name: BERTIN & CIE

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 85904831.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST