EP0192995B1 - Abgasrohrkrümmer - Google Patents

Abgasrohrkrümmer Download PDF

Info

Publication number
EP0192995B1
EP0192995B1 EP86101304A EP86101304A EP0192995B1 EP 0192995 B1 EP0192995 B1 EP 0192995B1 EP 86101304 A EP86101304 A EP 86101304A EP 86101304 A EP86101304 A EP 86101304A EP 0192995 B1 EP0192995 B1 EP 0192995B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
pipes
pipe
exhaust pipe
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86101304A
Other languages
English (en)
French (fr)
Other versions
EP0192995A1 (de
Inventor
Rainer Diez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Boysen GmbH and Co KG
Original Assignee
Friedrich Boysen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Boysen GmbH and Co KG filed Critical Friedrich Boysen GmbH and Co KG
Priority to AT86101304T priority Critical patent/ATE41041T1/de
Publication of EP0192995A1 publication Critical patent/EP0192995A1/de
Application granted granted Critical
Publication of EP0192995B1 publication Critical patent/EP0192995B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits

Definitions

  • the invention relates to an exhaust pipe elbow for at least four-cylinder internal combustion engines with internal combustion, each with a cylinder assigned exhaust pipes, which are grouped together in associated additional exhaust pipes, which in turn lead to a common exhaust pipe leading to an exhaust muffler, with all exhaust pipes as well as the further exhaust pipes each one below the other have the same length.
  • DE-A-33 14 839 shows an exhaust pipe elbow for four-cylinder in-line engines with exhaust pipes of approximately the same length, each of which is brought together in pairs in further exhaust pipes.
  • One of the exhaust pipes opens laterally into the other exhaust pipe, which accordingly forms a common exhaust pipe downstream of the mouth of the one exhaust pipe.
  • the pipe lengths of the further exhaust pipes between the merging of the exhaust pipes and the mouth of one exhaust pipe into the other exhaust pipe are of unequal length.
  • each further exhaust pipe is approximately 80% of the sum of the diameters of the outlet pipes which are brought together in the respective further exhaust pipe. If it is assumed that the outlet pipes have the same diameter d in the usual way, then the diameter D of a further exhaust pipe is
  • the further exhaust pipes each have a cross-sectional area F, where applies
  • the cross-sectional area of a further exhaust pipe is therefore significantly larger than the total cross-sectional area of the exhaust pipes which are respectively merged into a further exhaust pipe, since the total cross-sectional area of two exhaust pipes is 2 ⁇ d 2 .
  • the object of the invention is now to provide an exhaust pipe elbow which, even when combined with a conventional catalytic converter arrangement, enables approximately the same power yield as is possible in previous exhaust pipe elbows only without the arrangement of a catalytic converter arrangement.
  • an exhaust pipe elbow of the type specified above in that the total cross-sectional area of the exhaust pipes is larger than the total cross-sectional area of the outgoing exhaust pipes, the total cross-sectional area in turn is larger than that of the common exhaust pipe, and in that the exhaust pipes with nozzle-like openings in the outgoing exhaust pipes are brought together, which in turn open into the common exhaust pipe with nozzle-like narrowed orifices.
  • the exhaust pipes of the engine or one row of cylinders of the same are expediently combined into two groups, the two associated further exhaust pipes being brought together into the common exhaust pipe assigned to the engine or the row of cylinders.
  • the total cross-sectional areas of a group of exhaust pipes are approximately 1.5 to 2.5 times the cross-sectional area of the further exhaust pipe assigned to this group and the cross-sectional area of the common exhaust pipe is approximately one third to three-quarters of the total cross-sectional area of the further exhaust pipes opening therein corresponds.
  • the outlet pipes should preferably have approximately twice the length of the exhaust gas pipes.
  • the length of the common exhaust pipe can correspond approximately to the length of the exhaust gas pipes. If necessary, however, the common exhaust pipe can also be longer. A shorter dimension of the common exhaust pipe is in principle also possible, but in some circumstances a relatively small mixture of the exhaust gas flows coming from the further exhaust pipes has to be accepted.
  • the ratio of the length of an outlet pipe to the length of a further exhaust pipe is particularly preferably approximately 6: 2.5.
  • the ratio of the lengths of the outgoing exhaust pipes and the common exhaust pipe can be approximately 5: 4.
  • a particular advantage of the invention is that the common exhaust pipe can accommodate a lambda probe, as is customary for controlling the engine in exhaust gas cleaning by means of catalysts.
  • the lambda probe is arranged in an area of the exhaust system with a small cross-section and is acted upon by the entire exhaust gases of the engine or a row of cylinders. It is therefore reliably prevented that part of the exhaust gas flow or the exhaust gases of individual cylinders can bypass the lambda probe.
  • an arrangement is particularly expedient in which the lambda probe is arranged in the region of the mouth of the common exhaust pipe in a catalyst chamber. Because here the exhaust gases have reached a particularly good degree of mixing. In addition, the high flow velocity of the exhaust gases means that there is a constant gas exchange in the vicinity of the lambda probe.
  • the arrangement of the lambda probe in front of the catalyst chamber takes into account the fact that higher exhaust gas temperatures are advantageous for the lambda probe than those prevailing in the downstream chamber.
  • the merging of two exhaust pipes into one exhaust pipe is preferably carried out in such a way that one exhaust pipe passes continuously through the pipe junction into the downstream exhaust pipe and the other exhaust pipe is connected laterally at an angle by arranging an opening which is drawn around half the circumference and on the first pipe the pipe wall adjoining the pipe in the axial direction on one side - upstream - of the opening is pressed in to form a surface which is oblique to the pipe axis, the layout of which resembles an ellipse half, and by the other pipe being blunt on one circumferential half and the other circumferential half End cut obliquely to the tube axis is welded to the first tube, the obliquely cut edge welding on the elliptical oblique surface edge and on the opening edges extending this edge and the bluntly cut edge on the opening edge opposite the inclined surface t is.
  • the cutting plane of the oblique cut and the axis of the other tube should form approximately the same angle as the oblique surface and the axis of the one tube, so that the tube axes form a V that is approximately symmetrical to the oblique surface.
  • the design described enables a particularly high stability due to the one-piece tube arranged continuously.
  • the design of the inclined surface together with the connection shown of the other tube ensures the formation of the nozzle-shaped constrictions for the exhaust gas flows which merge into one another in a structurally particularly simple manner.
  • a funnel part is preferably arranged, one end of which has a cross section corresponding to the further pipe and the other end of which has a cloverleaf-like cross section.
  • the ends of the three tubes arranged in bundles next to one another are cut off obliquely on the circumferential side facing away from the other two pipes, and inserted with the obliquely cut off areas in the funnel in such a way that the funnel covers the obliquely cut off circumferential sides, i.e. the funnel replaces the cut-off wall part of the pipe ends.
  • the nozzle-shaped constriction is formed because the wall parts of the pipe ends that extend into the funnel form conical pipe elements together with the opposite wall part of the funnel.
  • a total of six exhaust pipes 1 to 6 are arranged on the exhaust side of a six-cylinder in-line engine, not shown, each of which is assigned to a cylinder.
  • These outlet pipes 1 to 6 have the same length as possible and are combined into two groups, such that the outlet pipes 1 to 3 are brought together in a further exhaust pipe 7 and the outlet pipes 4 to 6 are brought together in a further exhaust pipe 8.
  • the total cross-sectional area of the exhaust pipes 1 to 3 or 4 to 6 of each group is approximately twice as large as the cross-sectional area of the respectively assigned exhaust pipe 7 or 8.
  • the further exhaust pipes 7 and 8 are in turn brought together in a common exhaust pipe 9, the cross-sectional area of which corresponds approximately to the cross-sectional area of each of the further exhaust pipes 7 and 8, i.e. the total cross-sectional area of the secondary exhaust pipes 7 and 8 is approximately twice as large as the cross-sectional area of the common exhaust pipe 9.
  • the common exhaust pipe 9 can bifurcate in its further course and open into a front silencer 10, which is followed by a rear silencer 11, front silencer 10 and rear silencer 11 being connected to one another via double pipes and the rear silencer being opened to the atmosphere via a double pipe.
  • This embodiment is shown in the upper right section of FIG. 1.
  • the common exhaust pipe 9 can also open into the front silencer 10 ', which in turn is connected via a simple pipe to the rear silencer 11', which in this case is connected to the atmosphere via a simple exhaust pipe.
  • a catalytic converter chamber 12 is arranged, in which the exhaust gases flow through a catalytic converter and, at least in part, are broken down into their elementary components.
  • the catalyst chamber 12 is then in turn followed by a rear silencer 11 ′′, which in turn is connected to the atmosphere via an end pipe.
  • the engine is controlled by means of a lambda probe 13, in particular with regard to the mixing ratio of the supplied fuel with air and the ignition times.
  • the lambda probe 13 is arranged on a corresponding bore in the common exhaust pipe 9. This ensures that the lambda probe 13 is acted upon by the exhaust gases of all cylinders. This is all the more so as a corresponding acceleration of the exhaust gas flow occurs due to the overall cross section of the exhaust line decreasing from the exhaust pipes 1 to 6 via the further exhaust pipes 7 and 8 and the common exhaust pipe 9, and the increased flow rates thus promote intensive mixing of the exhaust gases.
  • the lambda probe 13 is only a relatively short distance from the engine along the flow path of the exhaust gases and is accordingly acted upon by exhaust gases of relatively high temperature, as is favorable for optimal functioning of the lambda probe 13.
  • the catalytic converter or the catalytic converter chamber 12 accommodating it can be arranged at a greater distance from the engine in order to avoid the catalytic converter being overheated when the engine is operating at full load, in particular when operating at full load and at low speed.
  • the invention thus enables optimal placement of both the lambda probe 13 and the catalyst.
  • the back pressure generated by the catalytic converter due to its throttling effect in the exhaust line is largely compensated by the fact that - as already mentioned - the pressure of the exhaust gases corresponding to the narrowing of the cross-section of the exhaust line from the exhaust pipes 1 to 6 via the exhaust pipes 7 and 8 and the common exhaust pipe 9 gradually decreases, with a corresponding increase in flow velocity.
  • FIG. 2 correspond to the embodiments according to FIG. 1 in all essential points.
  • Fig. 2 only the case of a four-cylinder in-line engine is shown, in which according to the number of cylinders only four exhaust pipes 1 to 4 are to be arranged. It is spatially easily possible to take into account the firing order of the cylinders of the engine, for example by exhaust pipes 1 and 4 or exhaust pipes 2 and 3 each opening into one of the exhaust pipes 7 and 8, for example if the first, fourth, second and third cylinders are fired in succession. Otherwise, the explanations and explanations for FIG. 1 apply analogously to FIG. 2.
  • Figures 1 and 2 is shown by dashed lines, arranged within the tubes wall parts 14 that the mouth areas of the exhaust pipes 1 to 6 or the mouth areas of the further exhaust pipes 7 and 8 according to a preferred embodiment of the invention in the exhaust gas flow direction like a nozzle can or should be narrowed.
  • the exhaust pipe 107 corresponds, for example, to a section of the outgoing exhaust pipe 7 in FIGS. 1 or 2, while the exhaust pipe 108 with its area 108 'is a section of the outgoing exhaust pipe 8 in FIGS. 1 and 2 and with its area 108 "is a section of the common area Exhaust pipe 9 forms in Figures 1 and 2.
  • the pipe 108 which is made in one piece by bringing the pipes 107 and 108 together, has between its regions 108 'and 108 "an opening 109 which extends over approximately half the circumference. Following the opening 109, the circumferential wall of the pipe is on the side facing the exhaust gas flow direction of the opening 109 is pressed inward to form an inclined surface 110, which in the example shown forms an angle of approximately 20 ° with the tube axis. In plan view, the inclined surface 110 has approximately the shape of an ellipse half.
  • the merged with the pipe 108 end of the pipe 107 is cut obliquely on its side facing the pipe 108, approximately at an angle of likewise 20 °, to the pipe axis, such that an edge 111 is formed, the contour of which when viewed in the direction of the arrow VI has approximately the same shape as the edge of the inclined surface 110 and the edges 109 "of the opening 109 which continue this edge.
  • the end of the tube 107 is cut bluntly to form an edge 112 which adjoins the edge 109 ' Opening 109 fits.
  • the edges 111 and 112 of the pipe 107 are welded to the edges of the inclined surface 110 and the adjoining opening edges 109 "and 109 '.
  • the inclined surface 110 thus narrows both of the above-mentioned in the area where pipes 107 and 108 are brought together Pipes in the same way.
  • the construction shown is characterized by high stability because one of the tubes is made in one piece.
  • a funnel 100 is arranged to bring together three pipes, the downstream end of which (on the right in FIG. 5) has a cross section corresponding to the exhaust gas line, not shown below.
  • the funnel widens with a cloverleaf-like cross section, such that the cloverleaf cross section at the end of the funnel corresponds to the cross section of three bundled tubes, of which only tubes 101 and 102 are visible in FIG. 5.
  • Each of these tubes is cut obliquely at its ends, similar to tube 107 in FIG. 3, on the circumferential side facing away from the other two tubes. This allows the tubes 101 and 102 to be pushed into the funnel 100 accordingly and welded to the same and to one another.
  • the funnel thus covers the respective obliquely cut circumferential side of the tubes 101 and 102.
  • the wall regions of the tubes 101 and 102 protruding into the funnel 100 together with the associated “cloverleaf” segment of the funnel 100 each form a nozzle which narrows in the flow direction, so that the exhaust gas flow coming from each of the tubes 101 and 102 before being combined with the Exhaust gas flows of the other pipes is accelerated accordingly.
  • a fastening flange is arranged on the funnel 100.
  • other fastening elements can optionally also be used for connection to further exhaust pipes.
  • a part of the outgoing exhaust pipe can also be connected directly to the funnel 100.
  • articulated connections or bellows connections can also be arranged if the exhaust parts are to be movable relative to one another.
  • an exhaust pipe elbow In a six-cylinder engine with a displacement of approximately 2500 cm 3 , an exhaust pipe elbow according to the invention has the following dimensions, for example:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

  • Die Erfindung betrifft einen Abgasrohrkrümmer für zumindest vierzylindrige Verbrennungsmotoren mit interner Verbrennung mit jeweils einem Zylinder zugeordneten Auslaßrohren, die gruppenweise in zugeordnete weiterführende Abgasrohre zusammengeführt sind, welche ihrerseits in ein zu einem Abgasschalldämpfer führendes gemeinsames Abgasrohr münden, wobei alle Auslaßrohre ebenso wie die weiterführenden Abgasrohre je untereinander gleiche Länge aufweisen.
  • Aus der US-A-35 45 414 ist ein entsprechender Abgasrohrkrümmer für einen Vierzylinder-Boxermotor bekannt. Dieser Druckschrift sind jedoch keinerlei Maßnahmen dafür zu entnehmen, wie ein derartiger Abgasrohrkrümmer im Hinblick auf eine - inzwischen - erwünschte Kombination mit einer Katalysator-Anordnung zur Abgasreinigung strömungsmäßig optimiert sein sollte.
  • Die DE-A-33 14 839 zeigt einen Abgasrohrkrümmer für Vierzylinder-Reihenmotoren mit etwa gleich langen Auslaßrohren, die jeweils paarweise in weiterführende Abgasrohre zusammengeführt sind. Dabei mündet eines der Abgasrohre seitlich in das andere Abgasrohr, welches dementsprechend stromabwärts der Mündung des einen Abgasrohres ein gemeinsames Abgasrohr bildet. Somit sind die Rohrlängen der weiterführenden Abgasrohre zwischen den Zusammenführungen der Auslaßrohre und der Mündung des einen Abgasrohres in das andere Abgasrohr ungleich lang.
  • Darüber hinaus ist vorgesehen, daß der Durchmesser jedes weiterführenden Abgasrohres etwa 80% der Summe der Durchmesser der der in das jeweilige weiterführende Abgasrohr zusammengeführten Auslaßrohre ist. Wenn davon ausgegangen wird, daß die Auslaßrohre in üblicher Weise untereinander gleiche Durchmesser d besitzen, so beträgt der Durchmesser D eines weiterführenden Abgasrohres
    Figure imgb0001
  • Dementsprechend besitzen die weiterführenden Abgasrohre jeweils eine Querschnittsfläche F, wobei gilt
    Figure imgb0002
  • Die Querschnittsfläche eines weiterführenden Abgasrohres ist also deutlich größer als die Gesamtquerschnittsfläche der jeweils in ein weiterführendes Abgasrohr zusammengeführten Auslaßrohre, denn die Gesamtquerschnittsfläche zweier Auslaßrohre beträgt 2 π d2.
  • Dieser bekannte Abgasrohrkrümmer führt bei Kombination mit einem Katalysator zu unter Umständen beträchtlichen Leistungseinbußen des Motors.
  • Aufgabe der Erfindung ist es nun, einen Abgasrohrkrümmer zu schaffen, welcher auch bei Kombination mit einer üblichen Katalysator-Anordnung eine etwa gleiche Leistungsausbeute ermöglicht, wie sie bei bisherigen Abgasrohrkrümmern nur ohne Anordnung einer Katalysator-Anordnung möglich ist.
  • Diese Aufgabe wird bei einem Abgasrohrkrümmer der oben angegeben Art dadurch gelöst, daß die Gesamtquerschnittsfläche der Auslaßrohre größer als die Gesamtquerschnittsfläche der weiterführenden Abgasrohre ist, deren Gesamtquerschnittsfläche wiederum größer als diejenige des gemeinsamen Abgasrohres ist, und daß die Auslaßrohre mit düsenartig verengten Mündungen in die weiterführenden Abgasrohre zusammengeführt sind, welche ihrerseits mit düsenartig verengten Mündungen in das gemeinsame Abgasrohr münden.
  • Durch die stufenweise Verengung des der gesamten Abgasmenge zur Verfügung stehenden Strömungsquerschnittes wird innerhalb des erfindungsgemäßen Abgasrohrkrümmers eine stufenweise Beschleunigung des Abgasstromes bei entsprechend stufenweiser Druckverminderung erreicht. Dieses Druckgefälle wirkt im Sinne einer Verminderung des der Abgasströmung entgegengesetzten Strömungswiderstandes bzw. -druckes, derart, daß der vom Katalysator verursachte, unvermeidliche Leistungsverlust kompensiert wird. Aufgrund der düsenartig verengten Mündungen der Auslaßrohre sowie der weiterführenden Abgasrohre vereinigen sich die aus den Auslaßrohren kommenden Abgasströme im jeweils weiterführenden Abgasrohr bzw. die aus den weiterführenden Abgasrohren in das gemeinsame Abgasrohr zusammenströmenden Abgasströme mit erhöhter Geschwindigkeit, welche bereits der mittleren Strömungsgeschwindigkeit in den weiterführenden Abgasrohre bzw. im gemeinsamen Abgasrohr entspricht bzw. angenähert ist. Dadurch wird die Bildung eines erhöhten Staudruckes im Bereich der Rohrzusammenführungen vermieden. Außerdem wird eine besonders gute Durchmengung der einzelnen zusammengeführten Abgasströme miteinander erreicht.
  • Aufgrund der beschriebenen strömungstechnischen Optimierung des erfindungsgemäßen Abgasrohrkrümmers lassen sich bei Motoren, deren Abgase zur Schadstoffverminderung katalytisch zerlegt werden, ohne weiteres etwa gleiche Leistungen erzielen, wie bei Motoren ohne Katalysator im Auspuffstrang. Aufgrund der guten Durchmengung der zusammengeführten Abgasströme entsteht ein weitestgehend homogenes Abgasgemisch, dessen Zusammensetzung ohne weiteres mit einer einzigen Meßsonde (Lambda-Sonde) vor der Katalysatoranordnung überwacht werden kann.
  • Zweckmäßigerweise sind die Auslaßrohre des Motors bzw. jeweils einer Zylinderreihe desselben zu jeweils zwei Gruppen zusammengefaßt, wobei die beiden zugeordneten weiterführenden Abgasrohre in das dem Motor bzw. der Zylinderreihe zugeordnete gemeinsame Abgasrohr zusammengeführt sind.
  • Hinsichtlich der Querschnittsflächen der Rohre ist es vorteilhaft, wenn die Gesamtquerschnittsflächen einer Gruppe der Auslaßrohre etwa der 1,5 bis 2,5fachen Querschnittsfläche des dieser Gruppe zugeordneten weiterführenden Abgasrohres und die Querschnittsfläche des gemeinsamen Abgasrohres etwa einem Drittel bis Dreiviertel der Gesamtquerschnittsfläche der darin mündenden weiterführenden Abgasrohre entspricht.
  • Im Falle von sechs Auslaßrohren, welche in zwei Gruppen in zwei weiterführende Abgasrohre zusammengeführt sind, ist eine Anordnung besonders bevorzugt, bei der die Auslaßrohre insgesamt etwa die 1,6fache Gesamtquerschnittsfläche der weiterführenden Abgasrohre und letztere zusammen etwa die 2fache Querschnittsfläche des gemeinsamen Abgasrohres besitzen. Damit kann ein günstiger Drehmomentverlauf des Motors erreicht werden, insbesondere auch bei geringen Drehzahlen.
  • Die Auslaßrohre sollen bevorzugt etwa die doppelte Länge der weiterführenden Abgasrohre besitzen. Die Länge des gemeinsamen Abgasrohres kann etwa der Länge der weiterführenden Abgasrohre entsprechen. Gebenenfalls kann jedoch das gemeinsame Abgasrohr auch länger sein. Eine kürkere Abmessung des gemeinsamen Abgasrohres ist grundsätzlich auch möglich, jedoch muß dann unter Umständen eine relativ geringe Vermengung der aus den weiterführenden Abgasrohre kommenden Abgasströmungen in Kauf genommen werden.
  • Bei sechs Auslaßrohren, die in zwei Gruppen in zwei weiterführenden Abgasrohre zusammengeführt sind, liegt das Verhältnis von Länge eines Auslaßrohres zur Länge eines weiterführenden Abgasrohres besonders bevorzugt bei ca. 6:2,5.
  • Das Verhältnis der Längen der weiterführenden Abgasrohre und des gemeinsamen Abgasrohres kann bei ca. 5:4 liegen.
  • Ein besonderer Vorzug der Erfindung liegt darin, daß das gemeinsame Abgasrohr eine Lambda-Sonde aufnehmen kann, wie sie zur Steuerung des Motors bei Abgasreinigung mittels Katalysatoren üblich ist. Auf diese Weise wird die Lambda-Sonde in einem Bereich des Abgasstranges mit geringem Querschnitt angeordnet und von den gesamten Abgasen des Motors bzw. einer Zylinderreihe beaufschlagt. Es wird also sicher verhindert, daß ein Teil des Abgasstromes bzw. die Abgase einzelner Zylinder die Lambda-Sonde umgehen können.
  • In diesem Zusammenhang ist eine Anordnung besonders zweckmässig, bei der die Lambda-Sonde im Bereich der Mündung des gemeinsamen Abgasrohres in eine Katalysatorkammer angeordnet ist. Denn hier haben die Abgase einen besonders guten Durchmischungsgrad erreicht. Darüber hinaus bewirkt die hohe Strömungsgeschwindigkeit der Abgase, daß in der Umgebund der Lambda-Sonde ein ständiger Gasaustausch erfolgt.
  • Im übrigen wird mit der Anordnung der Lambda-Sonde vor der Katalysatorkammer berücksichtigt, daß für die Lambda-Sonde höhere Abgastemperaturen vorteilhaft sind, als sie in der nachgeschalteten Kammer herrschen.
  • Im Hinblick auf eine hohe Standfestigkeit des Abgasrohrkrümmers ist es zweckmässig, wenn derselbe als Blechteil ausgebildet bzw. aus Blechteilen zusammengesetzt ist. Gegenüber einer an sich grundsätzlich möglichen Ausführung als Gußteil wird damit eine höhere Widerstandsfähigkeit gegen mechanische Schwingungen erreicht. Im übrigen lassen sich die Abmessungen von Blechteilen vergleichsweise leicht ändern, so daß gegebenenfalls bei Änderung des jeweiligen Motors eine Abstimmung des Auspuffsystemes ohne überhöhte Kosten vorgenommen werden kann.
  • Die Zusammenführung von zwei Abgasrohren in ein Abgasrohr wird vorzugsweise derart vorgenommen, daß das eine Abgasrohr über die Rohrzusammenführung hinaus durchlaufend in das nachgeschaltete Abgasrohr übergeht und das andere Abgasrohr seitlich schräg angeschlossen ist, indem am ersten Rohr eine um etwa den halben Umfang herumgezogene Öffnung angeordnet und die in Achsrichtung dieses Rohres auf der einen - stromaufwärts liegenden - Seite der Öffnung anschließende Rohrwandung unter Bildung einer zur Rohrachse schrägen Fläche, deren Grundriß einer Ellipsenhälfte ähnelt, eingedrückt ist, und indem das andere Rohr mit seinem auf der einen Umfangshälfte stumpf und der anderen Umfangshälfte schräg zur Rohrachse abgeschnittenen Ende an das erste Rohr angeschweißt ist, wobei der schräg abgeschnittene Rand am ellipsenförmigen Schrägflächenrand und an den diesen Rand verlängernden Öffnungsrändern und der stumpf abgeschnittene Rand an dem der Schrägfläche gegenüberliegenden Öffnungsrand verschweißt ist.
  • Dabei sollen die Schnittebene des schrägen Schnittes sowie die Achse des anderen Rohres einen etwa gleichen Winkel bilden wie die Schrägfläche sowie die Achse des einen Rohres, so daß die Rohrachsen ein zur Schrägfläche etwa symmetrisches V bilden.
  • Die beschriebene Ausbildung ermöglicht durch das einstückig durchlaufend angeordnete eine Rohr eine besonders hohe Stabilität. Gleichzeitig wird durch die dargestellte Ausbildung der Schrägfläche zusammen mit dem dargestellten Anschluß des anderen Rohres die Ausbildung der düsenförmigen Verengungen für die ineinandermündenden Abgasströme in konstruktiv besonders einfacher Weise gewährleistet.
  • Bei der Zusammenführung der Enden von drei Rohren in ein weiterführendes Rohr wird vorzugsweise ein Trichterteil angeordnet, dessen eines Ende einen dem weiterführenden Rohr entsprechenden Querschnitt und dessen anderes Ende kleeblattartigen Querschnitt aufweist. Die bündelartig nebeneinander angeordneten Enden der drei Rohre werden auf der jeweils von den beiden anderen Rohren abgewandten Umfangsseite schräg abgeschnitten sowie mit den schräg abgeschnittenen Bereichen in den Trichter derart eingesetzt, daß der Trichter die schräg abgeschnittenen Umfangsseiten abdeckt, d.h. der Trichter ersetzt den abgeschnittenen Wandungsteil der Rohrenden. Auch hier wird wiederum die düsenförmige Verengung ausgebildet, weil die in den Trichter hinein erstreckten Wandungsteile der Rohrenden zusammen mit dem jeweils gegenüberliegenden Wandungsteil des Trichters konusartige Rohrelemente bilden.
  • Im übrigen wird bezüglich bevorzugter Merkmale der Erfindung auf die Unteransprüche sowie die nachfolgende Beschreibung der Erfindung anhand der Zeichnung verwiesen, in der besonders bevorzugte Ausführungsformen dargestellt sind. Dabei zeigen
    • Fig. 1 in schematisierter Form einen erfindungsgemäßen Abgasrohrkrümmer für einen Sechszylinder-Reihenmotor,
    • Fig. 2 einen entsprechenden Abgasrohrkrümmer für einen Vierzylinder-Reihenmotor,
    • Fig. 3 eine Draufsicht auf die Zusammenführung zweier Abgasrohre,
    • Fig. 4 eine Draufsicht auf das in Fig. 3 untere Abgasrohr entsprechend dem Pfeil IV in Fig. 3,
    • Fig. 5 eine Zusammenführung dreier Rohre und
    • Fig. 6 eine Ansicht des zur Zusammenführung der drei Rohre dienenden Trichters entsprechend dem Pfeil VI in Fig. 5.
  • Nach Fig. 1 sind auf der Auslaßseite eines nicht dargestellten Sechs-Zylinder-Reihenmotors insgesamt sechs Auslaßrohre 1 bis 6 angeordnet, von denen jedes jeweils einem Zylinder zugeordnet ist. Diese Auslaßrohre 1 bis 6 besitzen möglichst gleiche Länge und sind zu zwei Gruppen zusammengefaßt, derart, daß die Auslaßrohre 1 bis 3 in ein weiterführendes Abgasrohr 7 und die Auslaßrohre 4 bis 6 in ein weiterführendes Abgasrohr 8 zusammengeführt sind. Dabei ist die Gesamtquerschnittsfläche der Abgasrohre 1 bis 3 bzw. 4 bis 6 jeder Gruppe etwa doppelt so groß wie die Querschnittsfläche des jeweils zugeordneten Abgasrohres 7 bzw. 8.
  • Die weiterführenden Abgasrohre 7 und 8 sind ihrerseits in ein gemeinsames Abgasrohr 9 zusammengeführt, dessen Querschnittsfläche etwa der Querschnittsfläche jedes der weiterführenden Abgasrohre 7 bzw. 8 entspricht, d.h. die Gesamtquerschnittsfläche der weiterführenden Abgasrohre 7 und 8 ist etwa doppelt so groß wie die Querschnittsfläche des gemeinsamen Abgasrohres 9.
  • In der Fig. 1 sind nun verschiedene Möglichkeiten für die an das gemeinsame Abgasrohr 9 anschließenden Elemente des Auspuffstranges dargestellt.
  • So kann sich das gemeinsame Abgasrohr 9 in seinem weiteren Verlauf wieder aufgabeln und in einen Vorschalldämpfer 10 münden, dem ein Nachschalldämpfer 11 nachgeordnet ist, wobei Vorschalldämpfer 10 und Nachschalldämpfer 11 über Doppelrohre miteinander verbunden sind und der Nachschalldämpfer über ein Doppelrohr zur Atmosphäre hin geöffnet ist. Diese Ausführungsform ist im oberen rechten Abschnitt der Fig. 1 dargestellt.
  • Stattdessen kann das gemeinsame Abgasrohr 9 auch ohne Aufgabelung in den Vorschalldämpfer 10' münden, der seinerseits über ein einfaches Rohr mit dem Nachschalldämpfer 11' verbunden ist, welcher in diesem Falle über ein einfaches Abgasendrohr mit der Atmosphäre verbunden ist.
  • Im Hinblick auf bestehende bzw. zukünftige Umweltschutzbestimmungen ist es erwünscht, die Schadstoffe in den Abgasen durch katalytische Zerlegung zu beseitigen. In diesem Falle ist statt der Vorschalldämpfer 10 bzw. 10' eine Katalysatorkammer 12 angeordnet, in der die Abgase durch einen Katalysator strömen und dabei, zumindest teilweise, in ihre elementaren Bestandteile zerlegt werden. Der Katalysatorkammer 12 ist dann wiederum ein Nachschalldämpfer 11" nachgeschaltet, welcher seinerseits über ein Endrohr mit der Atmosphäre verbunden ist.
  • Grundsätzlich ist es möglich, anstelle der in Fig. 1 rechts unten dargestellten Anordnung, bei der das gemeinsame Abgasrohr 9 ohne Aufgabelung in die Katalysatorkammer 12 einmündet, auch eine Aufgabelung des gemeinsamen Abgasrohres 9 vorzusehen, so daß die Gabelrohrabschnitte in separate Katalysatorkammern, welche in einem gemeinsamen Gehäuse angeordnet sein können, einmünden. In letzterem Falle sind dann die beiden parallel geschalteten Katalysatorkammern zweckmäßigerweise über ein Doppelrohr mit einem gemeinsamen Nachschalldämpfer bzw. mit separaten Nachschalldämpfern verbunden, die wiederum in einem gemeinsamen Gehäuse untergebracht sein können.
  • Für den Katalysatorbetrieb ist zweckmäßig, daß der Motor mittels einer Lambda-Sonde 13 gesteuert wird, insbesondere hinsichtlich des Mischungsverhältnisses des zugeführten Treibstoffes mit Luft sowie der Zündzeitpunkte. Die Lambda-Sonde 13 ist bei der erfindungsgemäßen Anordnung an einer entsprechenden Bohrung im gemeinsamen Abgasrohr 9 angeordnet. Damit ist sicher gewährleistet, daß die Lambda-Sonde 13 von den Abgasen aller Zylinder beaufschlagt wird. Dies gilt um so mehr, als aufgrund des von den Auslaßrohren 1 bis 6 über die weiterführenden Abgasrohre 7 und 8 sowie das gemeinsame Abgasrohr 9 hin abnehmenden Gesamtquerschnittes des Auspuffstranges eine entsprechende Beschleunigung derAbgasströmung auftritt und die damit erhöhten Strömungsgeschwindigkeiten eine intensive Durchmischung der Abgase begünstigen.
  • Darüber hinaus ist vorteilhaft, daß die Lambda-Sonde 13 längs des Strömungsweges der Abgase nur einen relativ geringen Abstand vom Motor aufweist und dementsprechend von Abgasen relativ hoher Temperatur beaufschlagt wird, wie es für eine optimale Funktion der Lambda-Sonde 13 günstig ist.
  • Dagegen kann der Katalysator bzw. die ihn aufnehmende Katalysatorkammer 12 in größerem Abstand vom Motor angeordnet werden, um zu vermeiden, daß der Katalysator bei Vollastbetrieb des Motors, insbesondere bei Vollastbetrieb und geringer Drehzahl, überhitzt wird.
  • Die Erfindung ermöglicht also eine optimale Plazierung sowohl der Lambda-Sonde 13 als auch des Katalysators. Darüber hinaus wird der vom Katalysator aufgrund seiner Drosselwirkung im Auspuffstrang erzeugte Gegendruck dadurch weitestgehend kompensiert, daß - wie bereits erwähnt - der Druck der Auspuffgase entsprechend der Querschnittsverengung des Auspuffstranges von den Auslaßrohren 1 bis 6 über die weiterführenden Abgasrohre 7 und 8 und das gemeinsame Abgasrohr 9 stufenweise abnimmt, bei gleichzeitiger entsprechender Erhöhung der Strömungsgeschwindigkeit.
  • Die in Fig. 2 dargestellten Ausführungsformen stimmen mit den Ausführungsformen nach Fig. 1 in allen wesentlichen Punkten überein. In Fig. 2 ist lediglich der Fall eines Vierzylinder-Reihenmotors dargestellt, bei dem entsprechend der Zylinderzahl lediglich vier Auslaßrohre 1 bis 4 anzuordnen sind. Dabei ist es räumlich ohne weiteres möglich, die Zündfolge der Zylinder des Motors zu berücksichtigen, indem beispielsweise die Auslaßrohre 1 und 4 bzw. die Auslaßrohre 2 und 3 jeweils in eines der weiterführenden Abgasrohre 7 und 8 münden, wenn beispielsweise der erste, vierte, zweite und dritte Zylinder nacheinander gezündet werden. Im übrigen gelten die Ausführungen und Erläuterungen zu Fig. 1 sinngemäß auch zu Fig. 2.
  • In den Figuren 1 und 2 ist durch strichliert dargestellte, innerhalb der Rohre angeordnete Wandungsteile 14 verdeutlicht, daß die Mündungsgbereiche der Auslaßrohre 1 bis 6 bzw. die Mündungsbereiche der weiterführenden Abgasrohre 7 und 8 gemäß einer bevorzugten Ausführungsform der Erfindung in Abgasströmungsrichtung nach Art einer Düse konisch verengt sein können bzw. sollen.
  • In den nachfolgenden Figuren 3 bis 6 werden nun konstruktiv bevorzugte Möglichkeiten dargestellt, die entsprechenden düsenförmigen Mündungsbereiche im Bereich der Rohrzusammenführungen durch Blechteile zu verwirklichen.
  • In der Fig. 3 ist die Zusammenführung zweier Abgasrohre 107 und 108 dargestellt. Dabei entspricht das Abgasrohr 107 beispielsweise einem Teilstück des weiterführenden Abgasrohres 7 in den Figuren 1 oder 2, während das Abgasrohr 108 mit seinem Bereich 108' ein Teilstück des weiterführenden Abgasrohres 8 in den Figuren 1 und 2 und mit seinem Bereich 108" einen Teilbereich des gemeinsamen Abgasrohres 9 in den Figuren 1 und 2 bildet.
  • Das über die Zusammenführung der Rohre 107 und 108 einstückig durchgeführte Rohr 108 besitzt zwischen seinen Bereichen 108' und 108" eine über etwa den halben Umfang erstreckte Öffnung 109. Im Anschluß an die Öffnung 109 ist die Umfangswandung des Rohres auf der entgegen der Abgasströmungsrichtung weisenden Seite der Öffnung 109 unter Bildung einer Schrägfläche 110 einwärts gedrückt, welche zur Rohrachse im dargestellten Beispiel einen Winkel von ca. 20° bildet. In Draufsicht besitzt die Schrägfläche 110 etwa die Form einer EIlipsenhälfte.
  • Das mit dem Rohr 108 zusammengeführte Ende des Rohres 107 ist auf seiner dem Rohr 108 zugewandten Seite schräg, etwa unter einem Winkel von ebenfalls 20°, zur Rohrachse abgeschnitten, derart, daß ein Rand 111 gebildet wird, dessen Kontur bei Blickrichtung entsprechend dem Pfeil VI ungefähr gleiche Form wie der Rand der Schrägfläche 110 sowie die diesen Rand fortsetzenden Ränder 109" der Öffnung 109 hat. Auf der dem Rand 111 gegenüberliegenden Umfangshälfte ist das Ende des Rohres 107 stumpf unter Bildung eines Randes 112 abgeschnitten, welcher an den Rand 109' der Öffnung 109 paßt.
  • Zur Verbindung der Rohre 107 und 108 sind die Ränder 111 und 112 des Rohres 107 mit den Rändern der Schrägfläche 110 sowie den daran anschließenden Öffnungsrändern 109" und 109' verschweißt. Die Schrägfläche 110 verengt also im Bereich der Zusammenführung der Rohre 107 und 108 beide genannten Rohre in gleicher Weise.
  • Neben der einfachen Herstellbarkeit zeichnet sich die dargestellte Konstruktion durch eine hohe Stabilität aus, weil eines der Rohre einstückig durchgeführt ist.
  • Zur Zusammenführung dreier Rohre ist gemäß den Figuren 5 und 6 ein Trichter 100 angeordnet, dessen stromabwärts liegendes eine Ende (in Fig. 5 rechts) einen der nachfolgenden nicht dargestellten Abgasleitung entsprechenden Querschnitt aufweist. Zum anderen Ende hin erweitert sich der Trichter mit einem kleeblattartigen Querschnitt, derart, daß der Kleeblatt-Querschnitt am Trichterende dem Querschnitt dreier gebündelter Rohre entspricht, von denen in Fig. 5 nur die Rohre 101 und 102 sichtbar sind. Jedes dieser Rohre ist an seinen Enden ähnlich wie das Rohr 107 in Fig. 3 schräg abgeschnitten, und zwar auf der jeweils von den beiden anderen Rohren abgewandten Umfangsseite. Damit lassen sich die Rohre 101 und 102 entsprechend weit in den Trichter 100 einschieben und mit demselben sowie untereinander verschweißen.
  • Der Trichter überdeckt somit die jeweils schräg aufgeschnittene Umfangsseite der Rohre 101 und 102.
  • Gleichzeitig bilden die in den Trichter 100 hereinragenden Wandungsbereiche der Rohre 101 und 102 zusammen mit dem zugehörigen «Kleeblatt»-Segment des Trichters 100 jeweils eine sich in Strömungsrichtung verengende Düse, so daß die aus jedem der Rohre 101 und 102 kommende Abgasströmung vor Zusammenführung mit den Abgasströmen der anderen Rohre entsprechend beschleunigt wird.
  • Im Beispiel der Fig. 5 ist am Trichter 100 ein Befestigungsflansch angeordnet. Stattdessen können gegebenenfalls auch andere Befestigungselemente zur Verbindung mit weiteren Abgasrohren dienen. Gegebenenfalls kann ein Teil des weiterführenden Abgasrohres auch unmittelbar mit dem Trichter 100 verbunden sein. Im übrigen können gegebenenfalls auch gelenkige Verbindungen bzw. Balg-Verbindungen angeordnet sein, wenn eine Beweglichkeit von Auspuffteilen relativ zueinander gewährleistet sein soll.
  • Bei einem Sechszylindermotor mit etwa 2500 cm3 Hubraum hat ein erfindungsgemäßer Abgasrohrkrümmer beispielsweise folgende Maße:
    Figure imgb0003

Claims (14)

1. Abgasrohrkrümmer für zumindest vierzylindrige Verbrennungsmotoren mit interner Verbrennung mit jeweils einem Zylinder zugeordneten Auslaßrohren (1 bis 6), die gruppenweise in zugeordnete weiterführende Abgasrohre (7,8) zusammengeführt sind, welche ihrerseits in ein zu einem Abgasschalldämpfer (10 bis 12) führendes gemeinsames Abgasrohr (9) münden, wobei alle Auslaßrohre (1 bis 6) ebenso wie die weiterführenden Abgasrohre (7,8) je untereinander gleiche Länge aufweisen, dadurch gekennzeichnet, daß die Gesamtquerschnittsfläche der Auslaßrohre (1 bis 6) größer als die Gesamtquerschnittsfläche der Weiterführenden Abgasrohre (7,8) ist, deren Gesamtquerschnittsfläche wiederum größer als diejenige des gemeinsamen Abgasrohres (9) ist, und daß die Auslaßrohre (1 bis 6) mit düsenartig verengten Mündungen in die weiterführenden Abgasrohre (7,8) zusammengeführt sind, welche ihrerseits mit düsenartig verengten Mündungen in das gemeinsame Abgasrohr (9) münden.
2. Abgasrohrkrümmer nach Anspruch 1, dadurch gekennzeichnet, daß die Auslaßrohre (1 bis 6) zumindest einer Zylinderreihe des Motors zu jeweils zwei Gruppen zusammengefaßt und die beiden zugeordneten weiterführenden Abgasrohre (7,8) in das der Zylinderreihe zugeordnete gemeinsame Abgasrohr (9) zusammengeführt sind.
3. Abgasrohr krümmer nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Gesamtquerschnittsfläche einer Gruppe der Auslaßrohre (1 bis 3, 4 bis 6; 1 und 4, 2 und 3) etwa der 1, bis 2,5fachen Querschnittsfläche des dieser Gruppe zugeordneten weiterführenden Abgasrohres (7,8) und die Gesamtquerschnittsfläche des gemeinsamen Abgasrohres (9) etwa einem Drittel bis Dreiviertel der Gesamtquerschnittsfläche der darin mündenden weiterführenden Abgasrohre (7,8) entspricht.
4. Abgasrohrkrümmer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei sechs Auslaßrohren (1 bis 6), die in zwei Gruppen (1 bis 3, 4 bis 6) in zwei weiterführende Abgasrohre (7,8) zusammengeführt sind, die Auslaßrohre ( bis 6) insgesamt etwa die 1,6fache Gesamtquerschnittsfläche der weiterführenden Abgasrohre (7,8) und letztere zusammen etwa die 2fache Querschnittsfläche des gemeinsamen Abgasrohres (9) besitzen.
5. Abgasrohrkrümmer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Auslaßrohre (1 bis 6) zumindest etwa die doppelte Länge der weiterführenden Abgasrohre (7,8), gemessen von der Mündung der Auslaßrohre in das jeweilige weiterführende Abgasrohr bis zu dessen Mündung in das gemeinsame Abgasrohr (9), besitzen.
6. Abgasrohrkrümmer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die weiterführenden Abgasrohre (7,8) vergleichbare Länge wie das gemeinsame Abgasrohr (9) besitzen.
7. Abgasrohrkrümmer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß bei sechs Auslaßrohren (1 bis 6), die in zwei Gruppen (1 bis 3, 4 bis 6) in zwei weiterführende Abgasrohre (7,8) zusammengeführt sind, das Verhältnis von Länge eines Auslaßrohres zur Länge eines weiterführenden Abgasrohres bei etwa 6:2,5 liegt.
8. Abgasrohrkrümmer nach Anspruch 7, dadurch gekennzeichnet, daß das Verhältnis der Längen der weiterführenden Abgasrohre (7,8) und des gemeinsamen Abgasrohres (9) bei 5:4 liegt.
9. Abgasrohrkrümmer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das gemeinsame Abgasrohr (9) eine Lambda-Sonde (13) aufnimmt und die Abgase in eine Kammer (12) mit Katalysator zur katalytischen Verlegung der Abgase leitet.
10. Abgasrohrkrümmer nach Anspruch 9, dadurch gekennzeichnet, daß die Lambda-Sonde im Bereich der Mündung des gemeinsamen Abgasrohres (9) in den Abgasschalldämpfer bzw. eine Katalysatorkammer angeordnet ist.
11. Abgasrohrkrümmer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das gemeinsame Abgasrohr (9), die darin mündenden weiterführenden Abgasrohre (7,8) sowie die diesen zugeordneten Auslaßrohre (1 bis 6) als Blechteil bzw. Blechteile ausgebildet sind.
12. Abgasrohrkrümmer, nach Anspruch 11, dadurch gekennzeichnet, daß zur Zusammenführung zweier - weiterführender - Abgasrohre (107, 108) das eine Abgasrohr (108) einstückig durchlaufend in das nachgeschaltete - gemeinsame - Abgasrohr übergeht und das andere - weiterführende - Abgasrohr (107) seitlich schräg angeschlossen ist, indem am ersten Rohr (108) eine um etwa den halben Umfang herumgezogene Öffnung angeordnet und die Achsrichtung dieses Rohres auf der einen Seite der Öffnung anschließende Rohrwandung unter Bildung einer zur Rohrachse schrägen Fläche, deren Grundriß einer Ellipsenhälfte ähnelt, eingedrückt ist, und indem das andere Rohr (107) mit seinem auf der einen Umfangshälfte stumpf und auf der anderen Umfangshälfte schräg zur Rohrachse abgeschnittenen Ende an das erste Rohr (108) angeschweißt ist, wobei der schräg abgeschnittene Rand am ellipsenartigen Schrägflächenrand sowie an den diesen Rand verlängernden Öffnungsrändern und der stumpf abgeschnittene Rand an dem der Schrägfläche gegenüberliegenden Öffnungsrand verschweißt ist.
13. Abgasrohrkrümmer nach Anspruch 12, dadurch gekennzeichnet, daß die Schnittebene des schrägen Schnittes sowie die Achse des anderen Rohres (107) einen etwa gleichen Winkel bilden wie die Schrägfläche sowie die Achse des einen Rohres (108).
14. Abgasrohrkrümmer, nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß zur Zusammenführung der Enden von drei Rohren (101 bis 103) in ein - weiterführendes - Rohr ein Trichterteil (100), dessen eines Ende einen dem weiterführenden Rohr entsprechenden Querschnitt und dessen anderes Ende kleeblattartigen Querschnitt aufweist, angeordnet ist und die bündelartig nebeneinander angeordneten Enden der drei Rohre (101 bis 103) auf der jeweils von den beiden anderen Rohren abgewandten Umfangsseite schräg abgeschnitten sowie mit den schräg abgeschnittenen Bereichen in den Trichter (100) derart eingesetzt sind, daß der Trichter (100) die schräg abgeschnittenen Umfangsseiten abdeckt.
EP86101304A 1985-02-22 1986-01-31 Abgasrohrkrümmer Expired EP0192995B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86101304T ATE41041T1 (de) 1985-02-22 1986-01-31 Abgasrohrkruemmer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3506183 1985-02-22
DE19853506183 DE3506183A1 (de) 1985-02-22 1985-02-22 Abgasrohrkruemmer

Publications (2)

Publication Number Publication Date
EP0192995A1 EP0192995A1 (de) 1986-09-03
EP0192995B1 true EP0192995B1 (de) 1989-03-01

Family

ID=6263261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86101304A Expired EP0192995B1 (de) 1985-02-22 1986-01-31 Abgasrohrkrümmer

Country Status (3)

Country Link
EP (1) EP0192995B1 (de)
AT (1) ATE41041T1 (de)
DE (2) DE3506183A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835965A (en) * 1987-05-21 1989-06-06 Outboard Marine Corporation "Y" equal length exhaust system for two-cycle engines
DE3828599A1 (de) * 1988-08-23 1990-03-08 Bayerische Motoren Werke Ag Abgasanlage einer mehrzylindrigen brennkraftmaschine
DE3838148C1 (en) * 1988-11-10 1990-03-29 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De Exhaust line for a spark ignition internal combustion engine
DE4218834C2 (de) * 1992-06-09 1996-11-28 Opel Adam Ag Abgasanlage für einen Verbrennungsmotor
DE4228372C2 (de) * 1992-08-26 1994-08-25 Zeuna Staerker Kg Rohrverzweigung, Verfahren zu ihrer Herstellung und Vorrichtung hierfür
DE9407812U1 (de) * 1994-05-11 1994-07-21 Zeuna-Stärker GmbH & Co KG, 86154 Augsburg Rohrzusammenführung und Vorrichtung zu ihrer Herstellung
DE59510283D1 (de) * 1995-02-24 2002-08-22 Volkswagen Ag Rohrkrümmer für eine Brennkraftmaschine
DE19722725A1 (de) 1997-05-30 1998-12-03 Zeuna Staerker Kg Rohrzusammenführung
JP6361638B2 (ja) 2015-11-25 2018-07-25 マツダ株式会社 多気筒エンジンの排気装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077071A (en) * 1960-04-28 1963-02-12 Nordberg Manufacturing Co Exhaust system for turbocharged engine
US3507301A (en) * 1966-04-21 1970-04-21 Robert H Larson Collector and method of making the same
US3545414A (en) * 1969-05-21 1970-12-08 Modern Tube Bending & Mfg Exhaust header
US4197704A (en) * 1976-06-11 1980-04-15 Honda Giken Kogyo Kabushiki Kaisha Exhaust manifold for internal combustion engine
JPS6011217B2 (ja) * 1977-11-14 1985-03-23 トヨタ自動車株式会社 内燃機関の基本空燃,比調整用装置
DE3314839C2 (de) * 1983-04-23 1986-10-16 Werner 8510 Fürth Pedack Krümmer-Einrichtung

Also Published As

Publication number Publication date
ATE41041T1 (de) 1989-03-15
DE3506183A1 (de) 1986-08-28
EP0192995A1 (de) 1986-09-03
DE3662213D1 (en) 1989-04-06

Similar Documents

Publication Publication Date Title
DE2154155C2 (de) Abgasanlage für eine Brennkraftmaschine
DE60114128T2 (de) Abgaskrümmer einer Brennkraftmaschine
DE4006438C2 (de) Abgasanlage für einen Viertakt-Vierzylindermotor
DE60200835T2 (de) Sekundärluftzuführung in das abgassystem eines verbrennungsmotors
EP1357267A2 (de) Abgasanlage für einen Dieselmotor und zugehöriger Schalldämpfer
EP0955453A2 (de) Abgaskrümmer
EP0192995B1 (de) Abgasrohrkrümmer
DE4209155C2 (de) Auspuffsystem für einen Verbrennungsmotor
DE3151130A1 (de) Abgasschalldaempfer fuer einen zweitakt-zweizylinder-boxermotor einer kettensaege
DE10144015A1 (de) Abgasanlage für mehrzylindrige Verbrennungsmotoren
EP1457647A1 (de) Abgasanlage einer Brennkraftmaschine
EP1044325B1 (de) Sauganlage für eine verbrennungsluftversorgung einer brennkraftmaschine
DE2640035A1 (de) Auspuffvorrichtung fuer verbrennungskraftmaschinen zum absaugen von sekundaerluft
DE2721314B2 (de) Kastenförmige Tragkonstruktion für einen Turbolader einer Brennkraftmaschine
DE10002240B4 (de) Vorrichtung zum Erzeugen eines obertonreichen sportlichen Auspuffgeräusches
DE10008458B4 (de) Abgassystem für ein Motorrad
DE102004050934B4 (de) Einlaßkrümmer
DE1035973B (de) Abgasschalldaempfungsanlage fuer Mehrzylinder-Brennkraftmaschinen
DE19645619A1 (de) Abgasleitungssystem zum Abführen von Abgas aus einem Verbrennungsmotor
DE2549427C3 (de) Abgaseinrichtung fur eine sauerstoffreiche Abgase abgebende Brennkraftmaschine
DE2733302A1 (de) Abgaskasten fuer mehrzylinder-brennkraftmaschinen, insbesondere fuer kraftfahrzeuge
DE3137453A1 (de) Ansauganordnung fuer eine brennkraftmaschine
DE3314839C2 (de) Krümmer-Einrichtung
DE4416251C1 (de) Auslaßkanal an einer Brennkraftmaschine
DE2736466B2 (de) Saugrohranlage für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19861004

17Q First examination report despatched

Effective date: 19870515

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 41041

Country of ref document: AT

Date of ref document: 19890315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3662213

Country of ref document: DE

Date of ref document: 19890406

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940114

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940125

Year of fee payment: 9

Ref country code: AT

Payment date: 19940125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940216

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86101304.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950131

Ref country code: GB

Effective date: 19950131

Ref country code: CH

Effective date: 19950131

Ref country code: AT

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

EUG Se: european patent has lapsed

Ref document number: 86101304.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050131