EP0188994B1 - Process and device for producing a metallic block - Google Patents

Process and device for producing a metallic block Download PDF

Info

Publication number
EP0188994B1
EP0188994B1 EP85730135A EP85730135A EP0188994B1 EP 0188994 B1 EP0188994 B1 EP 0188994B1 EP 85730135 A EP85730135 A EP 85730135A EP 85730135 A EP85730135 A EP 85730135A EP 0188994 B1 EP0188994 B1 EP 0188994B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
starting piece
rotation
axis
boundary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85730135A
Other languages
German (de)
French (fr)
Other versions
EP0188994A1 (en
Inventor
Herbert Dipl.-Ing. Bungeroth
Otto Dipl.-Ing. Wessel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3447557A external-priority patent/DE3447557A1/en
Priority claimed from DE19853517691 external-priority patent/DE3517691A1/en
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0188994A1 publication Critical patent/EP0188994A1/en
Application granted granted Critical
Publication of EP0188994B1 publication Critical patent/EP0188994B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/003Moulding by spraying metal on a surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal

Definitions

  • the invention relates to a method and a device for producing a metallic block, with a solid or hollow profile, by atomizing a molten metal by means of compressed gas and collecting the atomizing particles on a collecting surface.
  • the block forms as a coherent agglomerate of the atomizing particles.
  • Such a block is further processed as a semi-finished product, for example to form wires, tubes or other profiles.
  • Blocks are usually produced by casting in molds and subsequent rolling or by continuous casting.
  • DE-C-810 223 discloses a process for the production of moldings by collecting the atomizing jet, the device used for this also offering the possibility of producing hollow cylinders.
  • An inclined mandrel is provided below the atomizing jet, which is provided with a trigger device which is displaceable on the mandrel and has a starting piece.
  • this known spraying method has one major disadvantage: the rotatable and longitudinally displaceable mandrel must have a surface to which the sprayed particles adhere so that they do not fall off the mandrel during the rotational movement.
  • this has the consequence that the mandrel cannot be pulled out of the hollow cylinder after the spraying process, which is also shrunk when it cools down. If the mandrel is made of a brittle material, e.g. B. ceramics, it must be smashed and its fragments must be removed completely, which is associated with considerable effort.
  • the object of the present invention is to avoid these disadvantages.
  • the invention is based on the assumption that a molten metal is atomized into small particles by a compressed gas in a manner known per se.
  • atomizing particles are collected in a device on a collecting surface, which is subject to both a rotational movement and simultaneously executes a longitudinal movement (in the sense of a withdrawal movement) in the direction of the axis of rotation. It is advisable to set the axis of rotation at an angle that is greater than 90 ° and less than 180 °, inclined to the direction of the atomizing jet. As a result of the rotational movement, the impact zone of the atomizing jet constantly migrates over the collecting surface and forms a layer-by-layer growing agglomerate of coherent atomization particles.
  • the shaping of the surface areas extending in the longitudinal direction of the resulting block is carried out in the sense of free-form by means of the atomizing jet by controlling the movement of the agglomerate and additionally or alternatively with the aid of at least one boundary surface which is held in a fixed manner and which is hit by part of the atomizing jet. without sticking to it.
  • a per se stationary boundary surface is understood to mean an arrangement in which the boundary surface is not moved out of the area of the spray jet; In addition to a rigid arrangement, rotation and oscillating movements (with a short stroke) around a central position are also permitted.
  • the distance of the collecting surface (i.e. the uppermost layer of the atomizing particles) from the atomizing nozzle, which is preferably designed as an annular slot nozzle, is set to a desired value before the atomization begins.
  • the porosity of the block produced can be influenced by changing this distance. The greater the distance, the more the atomization particles have solidified when they hit the collecting surface and deform the less, so that the porosity increases.
  • the rotational movement and the longitudinal movement are regulated as a function of the melt quantity atomized per unit of time so that the distance from the impact zone remains constant on the collecting surface of the atomizing nozzle.
  • this distance during the atomization process it is also possible to specifically change this distance during the atomization process in order to create zones with different structures, that is to say with different density and porosity, in the block.
  • the atomization particles are collected on a starting piece from a surface which is preferably provided with grooves or pins in order to achieve a positive connection with the agglomerate formed from the atomization particles.
  • the atomization particles are collected by the layer deposited during the previous revolution.
  • Smooth surfaces are obtained if stationary boundary surfaces are used, the shape of which is a negative image of the desired inner and / or outer block surface shape.
  • the shaping takes place in such a way that a part of the atomizing jet strikes such a boundary surface without baking on the boundary surface; the remaining part of the atomizing jet strikes the surface of the agglomerate already formed, so that overall a coherent shaped body is formed, the surface shape of which is determined by the boundary surface.
  • the boundary surfaces must be aligned parallel to the direction of withdrawal. In this respect, there is a certain similarity to the shape during continuous casting.
  • the boundary surfaces can completely or partly surround the outer contour of the collecting surface.
  • the boundary surface is in principle kept stationary. However, as already mentioned, this does not necessarily mean a rigid attachment; rather, it is intended to express that the boundary surface is not removed with the resulting block and is so far arranged in a stationary manner. However, it can be advantageous to allow the boundary surface to oscillate around a central position with a small stroke (for example 3 mm) in order to prevent the agglomerate from caking on the boundary surface.
  • This oscillating movement takes place in the direction of the axis of rotation of the collecting surface;
  • it can also be carried out as a rotary movement (e.g. angle 5 - 10 °) around the axis of rotation of the collecting surface.
  • a boundary surface in the form of a mandrel is used for the shaping of the inner surface, which is held in a position which is inherently stationary, that is to say not pulled off together with the agglomerate formed.
  • the mandrel can in turn perform oscillating longitudinal and / or rotary movements (the latter only with a cylindrical inner surface) with respect to the axis of rotation of the collecting surface in order to prevent the agglomerate from sticking.
  • the mandrel the surface of which, insofar as it serves for forming, corresponds to a negative image of the inner surface of the hollow block, must rotate with the agglomerate formed so that the withdrawal movement is not blocked. The removal can be facilitated by making the mandrel slightly conical in the withdrawal direction.
  • a mandrel is advantageously used, the surface of which is cylindrical only in a partial area, namely on the side facing the atomizing jet.
  • the partial lateral surface of this cylinder extends - viewed in cross section from the cylinder axis - over a circular sector with an opening angle of less than 180 °.
  • the remaining surface areas of the mandrel, as far as they are on the side of the agglomerate to be removed, z. B. just be flat (prismatic); they only have to lie within the imaginary cylinder, ie within the cylinder corresponding to the inner surface of the hollow block. This shape prevents the agglomerate that forms from shrinking onto the mandrel.
  • the agglomerate already formed is removed in a continuous withdrawal movement, this withdrawal movement being carried out in a helical manner.
  • the agglomerate is therefore not only pulled off the mandrel in a longitudinal movement, but is also rotated about the longitudinal axis of the mandrel at the same time.
  • the spray jet is directed onto the pushed-on head area of the start-up piece, so that the melt particles combine with this start-up piece. As a result, it is easily possible to transfer the withdrawal movement to the resulting deposit.
  • the start-up piece is beveled conically on the outside in the head area, it may also be useful to provide pins or grooves in this beveled area, which ensure a positive connection of the start-up piece with the deposit produced.
  • This head part of the approach piece should be designed to be easily exchangeable, since it is separated from the hollow cylinder before it is further processed.
  • agglomerate that forms must not adhere to the boundary surfaces, but must slide over these surfaces in the withdrawal movement, it is advantageous to use these surfaces, for. B. to coat with hard metal or ceramic or to vaporize with hard materials (z. B. Titanium nitride, titanium oxide, aluminum oxide). At the very least, they should be hardened and therefore have increased wear resistance so that their roughness remains low for as long as possible. It is also beneficial to cool the boundary surfaces. For this purpose, appropriate cooling channels for the passage of a cooling medium should be provided, especially in areas near the surface.
  • FIG. 1 shows a device for producing blocks of any length with any cross-sectional shape.
  • the starting piece 8 the head of which can be exchanged and the cross section of which corresponds over its entire length to that of the block to be produced, is held by a plurality of rollers 20 pressed by spring force and driven in the longitudinal direction by these.
  • the rollers 20 are themselves mounted in a cage 21 which can be rotated in the housing 22 and which transfers the rotary movement to the starting piece 8.
  • the drives for the rollers 20, the cage 21 and the carriage 17 are not shown.
  • a simultaneous rotary and longitudinal movement can be achieved in blocks 10, provided that they have a circular cross section, in that the axes of the driving rollers 20 are arranged pivotably and are inclined to the longitudinal axis of the starting piece 8.
  • boundary surfaces are used to form the lateral surfaces of the block.
  • the particles of the atomizing jet 6 are collected by the collecting surface 7 of the starting piece 8, which is located in the bush 23 at the beginning of the spraying process.
  • This bushing 23 determines the outer contour of the block 10 and is rotatably mounted (for example by means of ball bearings 24) via a receptacle 19 in the housing 22.
  • an oscillating movement in the direction of the longitudinal axis of the approach piece 8 is advantageously given to the sleeve 23 via the receptacle 19.
  • the drive for this is not shown.
  • the receptacle 19 is arranged fixedly in relation to the housing 22.
  • the starting head 8 executes the rotary and longitudinal movement. It can have any cross-sectional shape, e.g. B. circle or square, and transmits the rotational movement to the bushing 23 receiving the block 10.
  • a rotatable mounting of the bushing 23 is not necessary, since such a block can also rotate in a stationary cylindrical bushing 23.
  • FIG. 2 shows an advantageous embodiment for the production of blocks with a circular cross section.
  • a sleeve 18, which is closed only in the area of incidence of the atomizing jet 6, has the shape of a partial hollow cylinder and is fixed in place with regard to the rotational and longitudinal movement of the starting piece 8.
  • the bushing 18 perform an oscillating movement about its inherently fixed central position, namely as a longitudinal and / or rotational movement with respect to the axis of rotation of the approach piece 8.
  • FIG. 3 the essential components of a device according to the invention for the production of hollow blocks are shown without the trigger device.
  • the atomizing jet 6 strikes a mandrel 27 which is arranged in a stationary manner below the ring slot nozzle 5.
  • the mandrel 27 has a partially cylindrical surface 28 in the region facing the atomizing jet 6, as can be seen in FIG. 5.
  • the partial jacket surface of this cylinder extends in cross-section over an angle of approximately 135 °. In the remaining area, the mandrel 27 is made smaller than the imaginary cylinder belonging to its partial cylinder surface.
  • the removable head piece 25 of a starting piece 8 designed as a cylindrical hollow shaft is pushed onto the mandrel 27.
  • the head piece 25 is fastened to the hollow shaft 8 with a screw 26.
  • the head piece 25 is flattened conically in its end region.
  • the atomization jet 6 strikes the conical region of the head piece 25 and forms the deposit 10 there.
  • the deposit 10 connects to the head piece 25 and is additionally held in a form-fitting manner by the pin 9.
  • the deposit 10 is subject to a continuous helical withdrawal movement.
  • this is transmitted by a trigger device (not shown) via the approach piece 8, 25, 26.
  • the withdrawal movement is taken up directly by the already solidified part of the hollow cylinder.
  • a metallic hollow cylindrical block of "infinite" length is created. Its inner surface is comparatively smooth thanks to the shape of the cylindrical part of the mandrel, while its outer surface has been freely shaped by the atomizing jet 6 and is therefore rough.
  • the extraction device used to produce cylindrical hollow blocks is advantageously one in which the extraction movement is transmitted to the agglomerate to be extracted by means of disks, wheels or rollers, the axis angle setting and speed of which can be regulated.
  • the desired feed per revolution can be set by changing the axis angle, while the speed of the movement can be set by changing the speed. Under otherwise constant conditions, this is decisive for the resulting wall thickness of the hollow cylinder.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung eines metallischen Blockes, mit Voll- oder Hohlprofil, durch Zerstäuben einer Metallschmelze mittels Druckgas und Auffangen der Zerstäubungspartikel auf einer Auffangfläche, Der Block bildet sich als zusammenhängendes Agglomerat der Zerstäubungspartikel. Als Halbzeug wird ein derartiger Block beispielsweise zu Drähten, Rohren oder anderen Profilen weiterverarbeitet.The invention relates to a method and a device for producing a metallic block, with a solid or hollow profile, by atomizing a molten metal by means of compressed gas and collecting the atomizing particles on a collecting surface. The block forms as a coherent agglomerate of the atomizing particles. Such a block is further processed as a semi-finished product, for example to form wires, tubes or other profiles.

Die Herstellung von Blöcken erfolgt üblicherweise durch Gießen in Kokillen und anschließendes Walzen oder auch durch Stranggießen. Aus der DE-C-810 223 ist ein Verfahren zur Herstellung von Formkörpern durch Auffangen des Zerstäubungsstrahles bekannt, wobei die hierzu angewandte Vorrichtung auch die Möglichkeit bietet, Hohlzylinder zu erzeugen. Dabei ist unterhalb des Zerstäubungsstrahles ein schräggestellter Dorn vorgesehen, der mit einer auf dem Dorn verschiebbaren, ein Anfahrstück aufweisenden Abzugsvorrichtung versehen ist.Blocks are usually produced by casting in molds and subsequent rolling or by continuous casting. DE-C-810 223 discloses a process for the production of moldings by collecting the atomizing jet, the device used for this also offering the possibility of producing hollow cylinders. An inclined mandrel is provided below the atomizing jet, which is provided with a trigger device which is displaceable on the mandrel and has a starting piece.

Nach einem aus der DE-PS-2 252 139 bekannten Verfahren werden Formkörper, z. B. flache Scheiben für Schmiedeteile, erzeugt, indem eine Metallschmelze mittels Druckgas zerstäubt wird und die Zerstäubungspartikel in einer Form aufgefangen werden. Das Verfahren hat besondere Vorteile, weil Seigerungen und Gußgefüge in den hergestellten Vorformlingen vermieden werden und daher auch in dieser Hinsicht schwierige Legierungen zu Formteilen verarbeitet werden können. Meist ist mit dieser Vorgehensweise auch eine Verringerung der Zahl der Verformungsstufen bis zum Endprodukt im Vergleich zu einer konventionellen Herstellung verbunden.According to a method known from DE-PS-2 252 139 molded articles, for. B. flat disks for forgings, generated by atomizing a molten metal by means of compressed gas and the atomizing particles are collected in a mold. The process has particular advantages because segregations and cast structures are avoided in the preforms produced and therefore difficult alloys can also be processed into molded parts in this regard. This procedure usually also involves a reduction in the number of deformation stages up to the end product compared to conventional production.

Es wurde auch bereits vorgeschlagen, durch Auffangen der Zerstäubungspartikel in einer zylindrischen Form Blöcke, z. B. für die Rohrherstellung, zu erzeugen. Bei dem bisher bekannten Zerstäubungsverfahren ist jedoch die herstellbare Blocklänge stark begrenzt, da sich bei größeren Längen die Entfernung der Auffangfläche von der Zerstäubungsdüse während des Zerstäubungsvorgangs zu stark ändert und die Bedingungen für die Strömung des Zerstäubungsgases und für die Abkühlung der Zerstäubungspartikel zu ungünstig werden. Daher sind Blöcke, deren Länge mindestens doppelt so groß ist wie ihre charakteristische Querabmessung (z. B. Durchmesser oder Diagonale), nicht oder nur bedingt nach diesem Verfahren herstellbar.It has also already been proposed to block, e.g. B. for pipe production. In the previously known atomization process, however, the block length that can be produced is severely limited, since with longer lengths the distance of the collecting surface from the atomization nozzle changes too much during the atomization process and the conditions for the flow of the atomization gas and for the cooling of the atomization particles become too unfavorable. For this reason, blocks whose length is at least twice as large as their characteristic transverse dimension (e.g. diameter or diagonal) cannot be produced, or only to a limited extent, using this method.

Ferner ist es bekannt, Hohlzylinder, die z. B. in Form von dickwandigen Hohlblöcken als Halbzeuge (Rohrluppen) für die Rohrherstellung benötigt werden, mit unterschiedlichen Wanddicken dadurch herzustellen, daß eine Metallschmelze in kleine Tröpfchen zerstäubt wird und die Zerstäubungspartikel auf einem drehbaren und in Längsrichtung verschiebbaren zylindrischen Dorn aufgefangen werden (GB-PS 1 599 392. Die Dicke der aufgesprühten Schicht, d. h. die Wanddicke des Hohlzylinders ist von der pro Zeiteinheit zerstäubten Schmelzenmenge und von der Geschwindigkeit der Dreh- und Längsbewegung des Dornes abhängig. Die relative Dichte der gesprühten Schicht kann 100 % betragen oder aber auch kleiner sein. Die so hergestellten Hohlzylinder sind für die Warmverarbeitung (z. B. Strangpressen) oder - bei voller Dichte - direkt für die Kaltverarbeitung (z. B. Kaltpilgern) geeignet. Dieses Verfahren bietet gegenüber dem üblichen Weg über das Gießen insbesondere folgende Vorteile:

  • - keine Seigerungen und Entmischungen,
  • - weniger Verformungsschritte erforderlich (Energie- und Werkstoffersparnis),
  • - kein Gußgefüge (bessere Verformbarkeit),
  • - Herstellung "exotischer" Legierungen möglich.
It is also known to hollow cylinders, the z. B. in the form of thick-walled hollow blocks as semifinished products (pipe blanks) for pipe manufacture are required to produce with different wall thicknesses in that a molten metal is atomized into small droplets and the atomizing particles are collected on a rotatable and longitudinally displaceable cylindrical mandrel (GB-PS The thickness of the sprayed layer, ie the wall thickness of the hollow cylinder, depends on the amount of melt atomized per unit of time and on the speed of the rotational and longitudinal movement of the mandrel.The relative density of the sprayed layer can be 100% or less The hollow cylinders produced in this way are suitable for hot processing (e.g. extrusion) or - at full density - directly for cold processing (e.g. cold pilgrims) .This process offers the following advantages over the usual way of casting:
  • - no segregation and segregation,
  • - fewer deformation steps required (energy and material savings),
  • - no cast structure (better deformability),
  • - Production of "exotic" alloys possible.

Dieses bekannte Sprühverfahren hat jedoch einen wesentlichen Nachteil: Der dreh- und längsverschiebbare Dorn muß eine Oberfläche aufweisen, an der die aufgesprühten Partikel haften, damit sie während der Drehbewegung nicht vom Dorn herunterfallen. Dies hat aber zur Folge, daß der Dorn nach dem Sprühvorgang aus dem Hohlzylinder, der beim Erkalten außerdem noch aufgeschrumpft ist, nicht herausgezogen werden kann. Besteht der Dorn aus einem spröden Werkstoff, z. B. Keramik, muß er zertrümmert und müssen seine Bruchstücke restlos entfernt werden, was mit erheblichem Aufwand verbunden ist.However, this known spraying method has one major disadvantage: the rotatable and longitudinally displaceable mandrel must have a surface to which the sprayed particles adhere so that they do not fall off the mandrel during the rotational movement. However, this has the consequence that the mandrel cannot be pulled out of the hollow cylinder after the spraying process, which is also shrunk when it cools down. If the mandrel is made of a brittle material, e.g. B. ceramics, it must be smashed and its fragments must be removed completely, which is associated with considerable effort.

Wenn der Dorn aus z. B. Stahlblech-gebildet ist, besteht die Gefahr, daß er sich durch die hohe Temperatur der auftreffenden Schmelzenpartikel verzieht. Auch hierbei ist seine unbedingt notwendige Entfernung vor der Endbearbeitung eine aufwendige Angelegenheit.If the mandrel from z. B. sheet steel is formed, there is a risk that it warps due to the high temperature of the incident melt particles. Here, too, its absolutely necessary removal before finishing is a complex matter.

Aufgabe der vorliegenden Erfindung ist es, diese Nachteile zu vermeiden.The object of the present invention is to avoid these disadvantages.

Gelöst wird diese Aufgabe erfindungsgemäß durch ein Verfahren mit den Merkmalen des Patentanspruchs 1, wobei vorteilhafte Weiterbildungen dieses Verfahrens in den Unteransprüchen 2 - 12 angegeben sind. Eine für die Durchführung dieses Verfahrens geeignete Vorrichtung ist im Anspruch 13 gekennzeichnet und in den Ansprüchen 14 bis 31 mit ihren vorteilhaften Weiterbildungen dargestellt.This object is achieved according to the invention by a method having the features of patent claim 1, advantageous developments of this method being specified in subclaims 2-12. A device suitable for carrying out this method is characterized in claim 13 and shown in claims 14 to 31 with its advantageous developments.

Die Erfindung geht davon aus, daß eine Metallschmelze in an sich bekannter Weise durch ein Druckgas in kleine Partikel zerstäubt wird.The invention is based on the assumption that a molten metal is atomized into small particles by a compressed gas in a manner known per se.

Diese Zerstäubungspartikel werden in einer Vorrichtung auf einer Auffangfläche aufgefangen, die sowohl einer Drehbewegung unterliegt, als auch gleichzeitig eine Längsbewegung (im Sinne einer Abzugsbewegung) in Richtung der Drehachse ausführt. Es empfiehlt sich, die Drehachse in einem Winkel, der größer als 90° und kleiner als 180° ist, gegenüber der Richtung des Zerstäubungsstrahles geneigt einzustellen. Infolge der Drehbewegung wandert die Auftreffzone des Zerstäubungsstrahles ständig über die Auffangfläche und bildet ein schichtenweise anwachsendes Agglomerat zusammenhängender Zerstäubungspartikel. Die Formung der sich in Längsrichtung des entstehenden Blockes erstreckenden Oberflächenbereiche wird im Sinne eines Freiformens mittels des Zerstäubungsstrahls durch Steuerung der Bewegung des Agglomerates und zusätzlich oder alternativ hierzu mit Hilfe mindestens einer an sich ortsfest gehaltenen Begrenzungsfläche vorgenommen, auf die jeweils ein Teil des Zerstäubungsstrahls trifft, ohne daran zu haften. Unter einer an sich ortsfesten Begrenzungsfläche wird in diesem Zusammenhang eine Anordnung verstanden, bei der die Begrenzungsfläche nicht aus dem Bereich des Sprühstrahls herausbewegt wird; d. h. neben einer starren Anordnung sind auch die Rotation und oszillierende Bewegungen (mit kurzem Hub) um eine Mittellage zugelassen.These atomizing particles are collected in a device on a collecting surface, which is subject to both a rotational movement and simultaneously executes a longitudinal movement (in the sense of a withdrawal movement) in the direction of the axis of rotation. It is advisable to set the axis of rotation at an angle that is greater than 90 ° and less than 180 °, inclined to the direction of the atomizing jet. As a result of the rotational movement, the impact zone of the atomizing jet constantly migrates over the collecting surface and forms a layer-by-layer growing agglomerate of coherent atomization particles. The shaping of the surface areas extending in the longitudinal direction of the resulting block is carried out in the sense of free-form by means of the atomizing jet by controlling the movement of the agglomerate and additionally or alternatively with the aid of at least one boundary surface which is held in a fixed manner and which is hit by part of the atomizing jet. without sticking to it. In this context, a per se stationary boundary surface is understood to mean an arrangement in which the boundary surface is not moved out of the area of the spray jet; In addition to a rigid arrangement, rotation and oscillating movements (with a short stroke) around a central position are also permitted.

Die Entfernung der Auffangfläche (d. h. der jeweils obersten Schicht der Zerstäubungspartikel) von der Zerstäubungsdüse, die vorzugsweise als Ringschlitzdüse ausgebildet ist, wird vor Beginn der Zerstäubung auf einen gewünschten Wert eingestellt. Durch Änderung dieser Entfernung läßt sich die Porosität des hergestellten Blockes beeinflussen. Je größer die Entfernung, umso stärker sind die Zerstäubungspartikel beim Auftreffen auf die Auffangfläche bereits durcherstarrt und verformen sich umso weniger, so daß die Porosität zunimmt.The distance of the collecting surface (i.e. the uppermost layer of the atomizing particles) from the atomizing nozzle, which is preferably designed as an annular slot nozzle, is set to a desired value before the atomization begins. The porosity of the block produced can be influenced by changing this distance. The greater the distance, the more the atomization particles have solidified when they hit the collecting surface and deform the less, so that the porosity increases.

Zur Erzeugung von Blöcken mit einer einheitlichen Gefügeausbildung werden in bevorzugter Ausführung des Verfahrens, damit die Fluglänge der Zerstäubungspartikel und somit im wesentlichen ihre Abkühlbedingungen konstant bleiben, die Drehbewegung und die Längsbewegung in Abhängigkeit von der pro Zeiteinheit zerstäubten Schmelzenmenge so geregelt, daß die Entfernung der Auftreffzone auf der Auffangfläche von der Zerstäubungsdüse konstant bleibt. Es ist aber auch möglich, diese Entfernung während des Zerstäubungsvorgangs gezielt zu verändern, um im Block Zonen mit unterschiedlichem Gefüge, also mit unterschiedlicher Dichte und Porosität zu erzeugen.In order to produce blocks with a uniform microstructure, in a preferred embodiment of the method, so that the flight length of the atomizing particles and thus essentially their cooling conditions remain constant, the rotational movement and the longitudinal movement are regulated as a function of the melt quantity atomized per unit of time so that the distance from the impact zone remains constant on the collecting surface of the atomizing nozzle. However, it is also possible to specifically change this distance during the atomization process in order to create zones with different structures, that is to say with different density and porosity, in the block.

Bei Beginn des Zerstäubungsvorganges werden die Zerstäubungspartikel auf einem Anfahrstück von einer Fläche aufgefangen, die vorzugsweise mit Nuten oder Zapfen versehen ist, um eine formschlüssige Verbindung mit dem aus den Zerstäubungspartikeln gebildeten Agglomerat zu erzielen. Im weiteren Verlauf des Zerstäubungsvorgapges werden die Zerstäubungspartikel von der bei der vorigen Umdrehung niedergeschlagenen Schicht aufgefangen.At the beginning of the atomization process, the atomization particles are collected on a starting piece from a surface which is preferably provided with grooves or pins in order to achieve a positive connection with the agglomerate formed from the atomization particles. In the further course of the atomization pre-gap, the atomization particles are collected by the layer deposited during the previous revolution.

Glatte Oberflächen ergeben sich, wenn ortsfest gehaltene Begrenzungsflächen verwendet werden, deren Gestalt ein Negativbild der jeweils gewünschten inneren und/oder äußeren Blockoberflächenform ist. Die Formung erfolgt in der Weise, daß jeweils ein Teil des Zerstäubungsstrahles auf eine solche Begrenzungsfläche trifft, ohne an der Begrenzungsfläche anzubacken; der übrige Teil des Zerstäubungsstrahles trifft auf die Oberfläche des bereits gebildeten Agglomerates, so daß insgesamt ein zusammenhängender Formkörper entsteht, dessen Oberflächenform durch die Begrenzungsfläche bestimmt wird. Damit das Abziehen des Agglomerates nicht gestört wird, sind die Begrenzungsflächen parallel zur Abzugsrichtung auszurichten. Insoweit besteht eine gewisse Ähnlichkeit zur Formgebung beim Stranggießen.Smooth surfaces are obtained if stationary boundary surfaces are used, the shape of which is a negative image of the desired inner and / or outer block surface shape. The shaping takes place in such a way that a part of the atomizing jet strikes such a boundary surface without baking on the boundary surface; the remaining part of the atomizing jet strikes the surface of the agglomerate already formed, so that overall a coherent shaped body is formed, the surface shape of which is determined by the boundary surface. To ensure that the agglomerate is not disturbed, the boundary surfaces must be aligned parallel to the direction of withdrawal. In this respect, there is a certain similarity to the shape during continuous casting.

Die Begrenzungsflächen können die Außenkontur der Auffangfläche ganz oder teilweise außen umgeben. Zur Herstellung zylindrischer Blöcke bietet sich beispielsweise die Verwendung einer Teilfläche eines Zylinderinnenmantels an. Wesentlich in jedem Fall ist, daß die Begrenzungsfläche im Prinzip ortsfest gehalten wird. Das bedeutet aber, wie bereits erwähnt, nicht unbedingt eine starre Befestigung; vielmehr soll damit ausgedrückt werden, daß die Begrenzungsfläche nicht mit dem entstehenden Block abgezogen wird und insoweit ortsfest angeordnet ist. Es kann jedoch vorteilhaft sein, die Begrenzungsfläche mit geringem Hub (z. B. 3 mm) um eine Mittellage oszillieren zu lassen, um ein Anbacken des Agglomerates an der Begrenzungsfläche zu verhindern. Diese oszillierende Bewegung erfolgt in Richtung der Drehachse der Auffangfläche; bei der Herstellung zylindrischer Blöcke kann sie auch als Drehbewegung (z. B. Winkel 5 - 10°) um die Drehachse der Auffangfläche ausgeführt werden. Mit dem erfindungsgemäßen Verfahren lassen sich nicht nur Blöcke beliebiger Querschnittsform mit Vollprofil herstellen, sondern auch Blöcke mit Hohlprofil. Hierbei wird für die Formung der Innenoberfläche eine Begrenzungsfläche in Form eines Dornes verwendet, der in einer an sich ortsfesten Lage gehalten, also nicht zusammen mit dem entstehenden Agglomerat abgezogen wird. Der Dorn kann aber wiederum oszillierende Längs- und/oder Drehbewegungen (letzteres nur bei zylindrischer Innenoberfläche) bezüglich der Drehachse der Auffangfläche ausführen, um ein Anbacken des Agglomerates zu verhindern. Bei der Herstellung von Blöcken mit nichtzylindrischer Innenoberfläche muß sich der Dorn, dessen Oberfläche, soweit diese zur Formung dient, einem Negativbild der Innenoberfläche des Hohlblockes entspricht, mit dem gebildeten Agglomerat mitdrehen, damit die Abzugsbewegung nicht blockiert wird. Das Abziehen kann dadurch erleichtert werden, daß der Dorn in Abzugsrichtung leicht konisch ausgeführt wird. Bei der Herstellung von hohlen Blöcken mit zylindrischen Innenoberflächen wird vorteilhaft ein Dorn verwendet, dessen Oberfläche lediglich in einem Teilbereich, und zwar auf der dem Zerstäubungsstrahl zugewandten Seite zylindrisch ausgebildet ist. Die Teilmantelfläche dieses Zylinders erstreckt sich - im Querschnitt von der Zylinderachse aus gesehen - über einen Kreissektor mit einem Öffnungswinkel von weniger als 180°. Die übrigen Oberflächenbereiche des Dornes können, soweit sie auf der Seite des abzuziehenden Agglomerates liegen, z. B. ebenflächig (prismatisch) ausgeführt sein; sie müssen nur innerhalb des gedachten Zylinders liegen, also innerhalb des der Innenoberfläche des Hohlblockes entsprechenden Zylinders. Durch diese Formgebung wird verhindert, daß das sich bildende Agglomerat auf den Dorn aufschrumpfen kann.The boundary surfaces can completely or partly surround the outer contour of the collecting surface. For the production of cylindrical blocks, for example, the use of a partial surface of an inner cylinder jacket is appropriate. It is essential in any case that the boundary surface is in principle kept stationary. However, as already mentioned, this does not necessarily mean a rigid attachment; rather, it is intended to express that the boundary surface is not removed with the resulting block and is so far arranged in a stationary manner. However, it can be advantageous to allow the boundary surface to oscillate around a central position with a small stroke (for example 3 mm) in order to prevent the agglomerate from caking on the boundary surface. This oscillating movement takes place in the direction of the axis of rotation of the collecting surface; When producing cylindrical blocks, it can also be carried out as a rotary movement (e.g. angle 5 - 10 °) around the axis of rotation of the collecting surface. Not only blocks of any cross-sectional shape with a full profile can be produced with the method according to the invention, but also blocks with a hollow profile. Here, a boundary surface in the form of a mandrel is used for the shaping of the inner surface, which is held in a position which is inherently stationary, that is to say not pulled off together with the agglomerate formed. However, the mandrel can in turn perform oscillating longitudinal and / or rotary movements (the latter only with a cylindrical inner surface) with respect to the axis of rotation of the collecting surface in order to prevent the agglomerate from sticking. When producing blocks with a non-cylindrical inner surface, the mandrel, the surface of which, insofar as it serves for forming, corresponds to a negative image of the inner surface of the hollow block, must rotate with the agglomerate formed so that the withdrawal movement is not blocked. The removal can be facilitated by making the mandrel slightly conical in the withdrawal direction. In the production of hollow blocks with cylindrical inner surfaces, a mandrel is advantageously used, the surface of which is cylindrical only in a partial area, namely on the side facing the atomizing jet. The partial lateral surface of this cylinder extends - viewed in cross section from the cylinder axis - over a circular sector with an opening angle of less than 180 °. The remaining surface areas of the mandrel, as far as they are on the side of the agglomerate to be removed, z. B. just be flat (prismatic); they only have to lie within the imaginary cylinder, ie within the cylinder corresponding to the inner surface of the hollow block. This shape prevents the agglomerate that forms from shrinking onto the mandrel.

Während der Zerstäubungsstrahl auf den zylindrischen Teil des Dornes trifft, wird das bereits gebildete Agglomerat in einer kontinuierlichen Abzugsbewegung entfernt, wobei diese Abzugsbewegung schraubenlinienförmig durchgeführt wird. Das Agglomerat wird also nicht nur in einer Längsbewegung von dem Dorn abgezogen, sondern dabei gleichzeitig auch um die Längsachse des Dornes gedreht.While the atomizing jet hits the cylindrical part of the mandrel, the agglomerate already formed is removed in a continuous withdrawal movement, this withdrawal movement being carried out in a helical manner. The agglomerate is therefore not only pulled off the mandrel in a longitudinal movement, but is also rotated about the longitudinal axis of the mandrel at the same time.

Auf diese Weise wird ein beständiges "Wachsen" des metallischen Hohlzylinders gewährleistet, weil der Sprühstrahl stets auf den bereits erstarrten Kopfteil der Ablagerung auftrifft und sich mit diesem verbindet. Um das Anfahren des Prozesses zu erleichtern, empfiehlt es sich, zu Beginn der Verfahrens auf den Dorn von außen ein im wesentlichen zylindrisches Anfahrstück zu schieben, das zunächst als Auffangfläche dient. Im Außendurchmesser sollte es dem Außendurchmesser des Hohlzylinders entsprechen. Um das Aufschieben auf den Dorn zu ermöglichen, ist das Anfahrstück zumindest an einem Ende rohrförmig ausgebildet, wobei der Innendurchmesser des Rohres dem Innendurchmesser des zu erzeugenden Hohlzylinders entspricht. Der Sprühstrahl wird zu Beginn des Verfahrens auf den aufgeschobenen Kopfbereich des Anfahrstückes gerichtet, so daß sich die Schmelzenpartikel mit diesem Anfahrstück verbinden. Dadurch ist es ohne weiteres möglich, die Abzugsbewegung auf die entstehende Ablagerung zu übertragen.In this way, a constant "waxing" of the hollow metal cylinder is ensured because the spray jet always strikes the already solidified head part of the deposit and connects to it. To make it easier to start the process, it is advisable to slide an essentially cylindrical approach piece onto the mandrel from the outside at the start of the process, which initially serves as a collecting surface. The outside diameter should correspond to the outside diameter of the hollow cylinder. In order to enable it to be pushed onto the mandrel, the approach piece is tubular at least at one end, the inside diameter of the tube corresponding to the inside diameter of the hollow cylinder to be produced. At the beginning of the process, the spray jet is directed onto the pushed-on head area of the start-up piece, so that the melt particles combine with this start-up piece. As a result, it is easily possible to transfer the withdrawal movement to the resulting deposit.

Vorteilhaft wird das Anfahrstück im Kopfbereich außen konisch angeschrägt, wobei es weiterhin nützlich sein kann, in diesem angeschrägten Bereich Zapfen oder Nuten vorzusehen, die eine formschlüssige Verbindung des Anfahrstückes mit der erzeugten Ablagerung sicherstellen. Dieser Kopfteil des Anfahrstücks sollte leicht auswechselbar gestaltet werden, da er vor der Weiterverarbeitung des Hohlzylinders von diesem abgetrennt wird.Advantageously, the start-up piece is beveled conically on the outside in the head area, it may also be useful to provide pins or grooves in this beveled area, which ensure a positive connection of the start-up piece with the deposit produced. This head part of the approach piece should be designed to be easily exchangeable, since it is separated from the hollow cylinder before it is further processed.

Da das sich bildende Agglomerat nicht an den Begrenzungsflächen anhaften darf, sondern in der Abzugsbewegung über diese Flächen gleiten muß, ist es von Vorteil, diese Flächen z. B. mit Hartmetall oder mit Keramik zu beschichten oder auch mit Hartstoffen (z. B. Titannitrid, Titanoxid, Aluminiumoxid) zu bedampfen. Zumindest sollten sie gehärtet sein und dadurch eine erhöhte Verschleißfestigkeit besitzen, damit ihre Rauhigkeit möglichst lange niedrig bleibt. Förderlich ist es auch, die Begrenzungsflächen zu kühlen. Hierzu sollten insbesondere in oberflächennahen Bereichen entsprechende Kühlkanäle zur Durchleitung eines Kühlmediums vorgesehen werden.Since the agglomerate that forms must not adhere to the boundary surfaces, but must slide over these surfaces in the withdrawal movement, it is advantageous to use these surfaces, for. B. to coat with hard metal or ceramic or to vaporize with hard materials (z. B. Titanium nitride, titanium oxide, aluminum oxide). At the very least, they should be hardened and therefore have increased wear resistance so that their roughness remains low for as long as possible. It is also beneficial to cool the boundary surfaces. For this purpose, appropriate cooling channels for the passage of a cooling medium should be provided, especially in areas near the surface.

Im folgenden soll die Erfindung anhand der Beispiele in den Figuren 1 - 5 näher erläutert werden. Es zeigen:

  • Fig. 1 einen Schnitt durch einen Teil einer Zerstäubungsanlage mit Rollenabzug und in Begrenzungswänden geführter Auffangfläche,
  • Fig. 2 einen Schnitt durch einen Teil einer Zerstäubungsanlage mit in einer Zylindermantelteilfläche geführter Auffangfläche,
  • Fig. 3 einen Schnitt durch eine erfindungsgemäße Anlage zur Herstellung von zylindrischen Hohlblöcken,
  • Fig. 4 einen Schnitt gemäß Linie A - A in Fig. 3.
The invention will be explained in more detail below with reference to the examples in FIGS. 1-5. Show it:
  • 1 shows a section through part of an atomization system with a roller take-off and a collecting surface guided in boundary walls,
  • 2 shows a section through part of an atomization system with a collecting surface guided in a partial cylinder jacket surface,
  • 3 shows a section through an installation according to the invention for the production of cylindrical hollow blocks,
  • 4 shows a section along line AA in FIG. 3.

In Figur 1 ist eine Vorrichtung zur Herstellung beliebig langer Blöcke mit beliebiger Querschnittsform gezeigt. Das Anfahrstück 8, dessen Kopf auswechselbar ist und dessen Querschnitt über seiner ganzen Länge dem des zu erzeugenden Blockes entspricht, wird von mehreren durch Federkraft angedrückten Rollen 20 gehalten und von diesen in Längsrichtung angetrieben.FIG. 1 shows a device for producing blocks of any length with any cross-sectional shape. The starting piece 8, the head of which can be exchanged and the cross section of which corresponds over its entire length to that of the block to be produced, is held by a plurality of rollers 20 pressed by spring force and driven in the longitudinal direction by these.

Die Rollen 20 sind selbst in einem im Gehäuse 22 drehbaren Käfig 21 gelagert, der die Drehbewegung auf das Anfahrstück 8 überträgt. Die Antriebe für die Rollen 20, den Käfig 21 und den Schlitten 17 sind nicht dargestellt. Eine gleichzeitige Dreh- und Längsbewegung kann bei Blöcken 10, sofern diese einen kreisförmigen Querschnitt haben, auch dadurch erreicht werden, daß die Achsen der antreibenden Rollen 20 schwenkbar angeordnet und schräg zur Längsachse des Anfahrstücks 8 angestellt werden.The rollers 20 are themselves mounted in a cage 21 which can be rotated in the housing 22 and which transfers the rotary movement to the starting piece 8. The drives for the rollers 20, the cage 21 and the carriage 17 are not shown. A simultaneous rotary and longitudinal movement can be achieved in blocks 10, provided that they have a circular cross section, in that the axes of the driving rollers 20 are arranged pivotably and are inclined to the longitudinal axis of the starting piece 8.

In der Figur 1 werden zur Formung der Mantelflächen des Blockes Begrenzungsflächen (Büchse 23) benutzt. Die Partikel des Zerstäubungsstrahles 6 werden von der Auffangfläche 7 des Anfahrstückes 8 aufgefangen, das sich zu Beginn des Sprühvorgangs in der Büchse 23 befindet. Diese Büchse 23 bestimmt die äußere Kontur des Blockes 10 und ist drehbar (z. B. mittels Kugellager 24) über eine Aufnahme 19 im Gehäuse 22 gelagert.In FIG. 1, boundary surfaces (bushing 23) are used to form the lateral surfaces of the block. The particles of the atomizing jet 6 are collected by the collecting surface 7 of the starting piece 8, which is located in the bush 23 at the beginning of the spraying process. This bushing 23 determines the outer contour of the block 10 and is rotatably mounted (for example by means of ball bearings 24) via a receptacle 19 in the housing 22.

Um ein Anbacken der Zerstäubungspartikel an der Innenwand der Büchse 23 zu verhindern, wird vorteilhaft eine oszillierende Bewegung in Richtung der Längsachse des Anfahrstücks 8 über die Aufnahme 19 auf die Büchse 23 gegeben. Der Antrieb hierfür ist nicht dargestellt. Abgesehen von der oszillierenden Bewegung ist die Aufnahme 19 gegenüber dem Gehäuse 22 feststehend angeordnet. Der Anfahrkopf 8 führt die Dreh- und Längsbewegung aus. Er kann eine beliebige Querschnittsform, z. B. Kreis oder Quadrat, aufweisen und überträgt die Drehbewegung auf die den Block 10 aufnehmende Büchse 23. Bei einem Block mit Kreisquerschnitt ist eine drehbare Lagerung der Büchse 23 nicht erforderlich, da ein derartiger Block sich auch in einer feststehenden zylindrischen Büchse 23 drehen kann.In order to prevent caking of the atomizing particles on the inner wall of the sleeve 23, an oscillating movement in the direction of the longitudinal axis of the approach piece 8 is advantageously given to the sleeve 23 via the receptacle 19. The drive for this is not shown. Apart from the oscillating movement, the receptacle 19 is arranged fixedly in relation to the housing 22. The starting head 8 executes the rotary and longitudinal movement. It can have any cross-sectional shape, e.g. B. circle or square, and transmits the rotational movement to the bushing 23 receiving the block 10. In a block with a circular cross-section, a rotatable mounting of the bushing 23 is not necessary, since such a block can also rotate in a stationary cylindrical bushing 23.

Eine vorteilhafte Ausführungsform zur Herstellung von Blöcken mit Kreisquerschnitt zeigt Figur 2. In diesem Fall genügt es, für das Auffangen des Zerstäubungsstrahles 6 und das Formen des Blockes 10 als Begrenzungsfläche eine nur im Auftreffbereich des Zerstäubungsstrahles 6 geschlossene Büchse 18 einzusetzen, die die Form eines Teilhohlzylinders hat und im Hinblick auf die Dreh- und Längsbewegung des Anfahrstücks 8 ortsfest angebracht ist. Es kann wiederum vorteilhaft, sein, die Büchse 18 eine oszillierende Bewegung um ihre an sich ortsfeste Mittellage ausführen zu lassen, und zwar als Längs- und /oder Drehbewegung bezüglich der Drehachse des Anfahrstücks 8.FIG. 2 shows an advantageous embodiment for the production of blocks with a circular cross section. In this case, it is sufficient to catch the atomizing jet 6 and to shape the To use block 10 as the boundary surface, a sleeve 18, which is closed only in the area of incidence of the atomizing jet 6, has the shape of a partial hollow cylinder and is fixed in place with regard to the rotational and longitudinal movement of the starting piece 8. It can again be advantageous to have the bushing 18 perform an oscillating movement about its inherently fixed central position, namely as a longitudinal and / or rotational movement with respect to the axis of rotation of the approach piece 8.

In Figur 3 sind die wesentlichen Bestandteile einer erfindungsgemäßen Vorrichtung zur Herstellung von Hohlblöcken allerdings ohne die Abzugsvorrichtung dargestellt. Der Zerstäubugsstrahl 6 trifft auf einen unterhalb der Ringschlitzdüse 5 ortsfest angeordneten Dorn 27 auf. Der Dorn 27 besitzt in dem dem Zerstäubungsstrahl 6 zugewandten Bereich, wie aus Fig. 5 hervorgeht, eine teilweise zylindrische Oberfläche 28. Die Mantelteilfläche dieses Zylinders erstreckt sich im Querschnitt gesehen über einen Winkel von etwa 135°. Im übrigen Bereich ist der Dorn 27 kleiner ausgebildet als der gedachte zu seiner Zylinderteilmantelfläche gehörige Zylinder.In Figure 3, the essential components of a device according to the invention for the production of hollow blocks are shown without the trigger device. The atomizing jet 6 strikes a mandrel 27 which is arranged in a stationary manner below the ring slot nozzle 5. The mandrel 27 has a partially cylindrical surface 28 in the region facing the atomizing jet 6, as can be seen in FIG. 5. The partial jacket surface of this cylinder extends in cross-section over an angle of approximately 135 °. In the remaining area, the mandrel 27 is made smaller than the imaginary cylinder belonging to its partial cylinder surface.

Der Dorn 27, dessen Winkelstellung a zum Zerstäubungsstrahl 6 mit Hilfe einer nicht dargestellten Vorrichtung eingestellt werden kann, ist insbesondere im oberflächennahen Bereich von Kühlkanälen 29 durchzogen. Auf den Dorn 27 ist das abnehmbare Kopfstück 25 eines als zylindrische Hohlwelle ausgebildeten Anfahrstücks 8 aufgeschoben. Das Kopfstück 25 ist mit einer Schraube 26 an der Hohlwelle 8 befestigt. In seinem Endbereich ist das Kopfstück 25 konisch abgeflacht.The mandrel 27, whose angular position a with respect to the atomizing jet 6 can be set with the aid of a device (not shown), is traversed by cooling channels 29 in particular in the region near the surface. The removable head piece 25 of a starting piece 8 designed as a cylindrical hollow shaft is pushed onto the mandrel 27. The head piece 25 is fastened to the hollow shaft 8 with a screw 26. The head piece 25 is flattened conically in its end region.

Zu Beginn des Zerstäubungsprozesses trifft der Zerstäubungsstrahl 6 auf den konischen Bereich des Kopfstückes 25 und bildet dort die Ablagerung 10. Die Ablagerung 10 verbindet sich mit dem Kopfstück 25 und wird zusätzlich durch den Zapfen 9 formschlüssig gehalten. Während des gesamten Zerstäubungsprozesses unterliegt die Ablagerung 10 einer kontinuierlichen schraubenlinienförmigen Abzugsbewegung. Zu Beginn des Verfahrens wird diese durch eine nicht dargestellte Abzugsvorrichtung über das Anfahrstück 8, 25, 26 übertragen. Im weiteren Verlauf wird die Abzugsbewegung unmittelbar von dem bereits erstarrten Teil des Hohlzylinders aufgenommen. Auf diese Weise entsteht ein metallischer hohlzylindrischer Block "unendlicher" Länge. Seine Innenoberfläche ist dank der Formgebung durch den zylindrischen Teil des Dornes vergleichsweise glatt, während seine Außenoberfläche durch den Zerstäubungsstrahl 6 frei geformt wurde und daher rauh ist.At the beginning of the atomization process, the atomization jet 6 strikes the conical region of the head piece 25 and forms the deposit 10 there. The deposit 10 connects to the head piece 25 and is additionally held in a form-fitting manner by the pin 9. During the entire atomization process, the deposit 10 is subject to a continuous helical withdrawal movement. At the beginning of the method, this is transmitted by a trigger device (not shown) via the approach piece 8, 25, 26. In the further course, the withdrawal movement is taken up directly by the already solidified part of the hollow cylinder. In this way, a metallic hollow cylindrical block of "infinite" length is created. Its inner surface is comparatively smooth thanks to the shape of the cylindrical part of the mandrel, while its outer surface has been freely shaped by the atomizing jet 6 and is therefore rough.

Als Abzugsvorrichtung wird zur Herstellung zylindrischer Hohlblöcke mit Vorteil eine solche verwendet, bei der die Abzugsbewegung durch Scheiben, Räder oder Walzen, deren Achswinkeleinstellung und Drehzahl regelbar sind, auf das abzuziehende Agglomerat übertragen wird. Durch Veränderung des Achswinkels kann der pro Umdrehung gewünschte Vorschub eingestellt werden, während durch Änderung der Drehzahl die Geschwindigkeit der Bewegung eingestellt wird. Diese ist bei sonst konstanten Bedingungen bestimmend für die entstehende Wanddicke des Hohlzylinders.The extraction device used to produce cylindrical hollow blocks is advantageously one in which the extraction movement is transmitted to the agglomerate to be extracted by means of disks, wheels or rollers, the axis angle setting and speed of which can be regulated. The desired feed per revolution can be set by changing the axis angle, while the speed of the movement can be set by changing the speed. Under otherwise constant conditions, this is decisive for the resulting wall thickness of the hollow cylinder.

Claims (31)

1. A process for the production of a metal block having a solid or hollow section, the length of which amounts to at least double its characteristic transverse dimension (e.g. diameter or diagonal), by atomising a metal melt by means of gas under pressure and collecting the atomised particles on a collecting surface, where the impact zone of the atomised jet of the metal melt is conducted uniformly over the collecting surface during the atomisation with constant rotation of the impact surface about an axis of rotation so as to form layer-by-layer a cohesive agglomerate, where the direction of the atomised jet is set at an angle of between 90' and 180° relative to the axis of rotation, where furthermore only at the beginning of the process is a starting piece used as collecting surface and the agglomerate forming (at the beginning of the process together with the starting piece) is continuously withdrawn in the direction of the axis of rotation, and where the surface regions of the block being formed which extend in the longitudinal direction are shaped at least partially by a boundary surface arranged essentially parallel to the axis of rotation,
characterised in that the boundary surface is maintained stationary relative to the withdrawal movement and that the agglomerate is withdrawn during the atomisation by sliding over the boundary surface.
2. A process as claimed in Claim 1, characterised in that the distance between the atomising nozzle and the impact zone is maintained constant.
3. A process as claimed in one of Claims 1 or 2, characterised in that in order to form layers of the atomised particles which are as uniform as possible, the collecting surface is moved in pendulum movements approximately at right angles to the direction of the atomised jet during the atomisation.
4. A process as claimed in one of Claims 1 to 3, characrerised in that in order to form a cylindrical solid section, the boundary surface which closely surrounds the collecting surface is cylindrical and is rotated with the starting piece and/or the agglomerate.
5. A process as claimed in Claim 4, characterised in that the boundary surface is only a part surface of the outer surface of a cylinder and is maintained stationary in relation to the rotation of the starting piece and/or the agglomerate.
6. A process as claimed in one of Claims 1 to 3, characterised in that in order to form a hollow block the atomisation is directed towards a boundary surface which is in the form of a mandrel and whose outer surface corresponds to the inner surface of the hollow block.
7. A process as claimed in Claim 6, characterised in that during the atomisation, the mandrel is rotated together with the agglomerate about its longitudinal axis.
8. A process as claimed in Claim 6, characterised in that in order to form a cylindrical hollow block, a mandrel is used which has a cylindrical shape only on the side facing towards the atomised jet and which is not rotated with the collecting surface during the atomisation.
9. A process as claimed in one of Claims 6 to 8, characterised in that at the beginning of the process, a hollow starting piece is applied on the mandrel, the inner surface of the starting piece corresponding, at least at the applied end, to that of the block which is to be formed, and that at the commencement of the withdrawal movement the spray jet first strikes the applied part of the starting piece.
10. A process as claimed in Claim 1 or one of Claims 4 to 9, characterised in that during the atomisation the boundary surface executes an oscillatory longitudinal movement in the direction of the axis of rotation of the collecting surface.
11. A process as claimed in one of Claims 5 or 8, characterised in that during the atomisation the boundary surface executes an oscillatory rotational movement around the axis of rotation of the collecting surface.
12. A process as claimed in Claim 1 or one of Claims 4 to 11, characterised in that the boundary surface is cooled.
13. Apparatus for carrying out the process claimed in Claim 1 comprising a device for the gas atomisation of a metal melt and a collecting surface for the atomised particles which can be rotated by a motor and which is arranged beneath the atomising nozzle viewed in the atomising direction, where the collecting surface, which is surrounded at least partially by a boundary surface extending essentially parallel to its axis of rotation, is arranged on a starting piece at the beginning of the atomisation and the starting piece and/or the agglomerate formed during the atomisation can be retracted in the direction of the axis of rotation by means of a drive, and where the axis of rotation is inclined relative to the atomising direction of the nozzle at an angle which is greater than 90° and smaller than 180°, characterised in that the boundary surface (18, 23, 28) is arranged so as to be stationary relative to the retracting movement, that it is mounted to slide in relation to the starting piece (8, 25) and has a surface to which the agglomerate does not adhere.
14. Apparatus as claimed in Claim 13, characterised in that the inclination of the axis of rotation of the starting piece (8) can be adjusted by a pivoting device (16).
15. Apparatus as claimed in one of Claims 13 or 14, characterised in that the starting piece (8) can be moved at right angles to the atomising direction by means of a slide (17).
16. Apparatus as claimed in Claim 15, characterised in that the boundary surface (23) is mounted so as to be rotatable together with the starting piece.
17. Apparatus as claimed in Claim 15, characterised in that the starting piece (8) which has a circular cross-section at its head, is surrounded only in a sub-zone by the boundary surface (18) which has the shape of a part of the inner surface of a cylinder.
18. Apparatus as claimed in one of Claims 13 to 17, characterised in that, in order to form a hollow block, in the region of the atomised jet (6) of the nozzle (5), a mandrel (27) is arranged as boundary surface, where the outer surface of the mandrel corresponds at least in sub-zones to the inner surface of the block which is to be formed and where the outer surface can be slightly conical as a deviation from the geometrically ideal shape.
19. Apparatus as claimed in Claim 18, characterised in that the mandrel (27) is rotatable about the axis of rotation of the starting piece (8).
20. Apparatus as claimed in Claim 18, characterized in that the mandrel (27) has an essentially cylindrical outer surface (28) and is arranged so as to be stationary in contrast to the rotatable starting piece (8).
21. Apparatus as claimed in Claim 20, characterised in that the surface of the mandrel (27) is cylindrical only on the side facing towards the atomised jet (6), where the partial surface area (28) of the cylinder - viewed in cross-section - extends over a circular sector with an open angle of less than 180° and the remaining parts of the surface of the mandrel (27) are located inside the imaginary cylinder.
22. Apparatus as claimed in one of Claims 18 to 21, characterised in that the attachment of the mandrel (27) is adjustable in order to set the angle a between the longitudinal axis of the mandrel (27) and the central axis of the atomised jet (6).
23. Apparatus as claimed in one of Claims 13 to 22, characterized in that the boundary surface (18, 23), or the mandrel (27), can be set in an oscillatory longitudinal movement in the direction of the axis of rotation of the starting piece (8) by an oscillator.
24. Apparatus as claimed in one of Claims 17, 20 or 21, characterised in that the mandrel (27), or the cylindrical boundary surface (18), can be set in an oscillatory rotary movement about the axis of rotation of the starting piece (8) by an oscillator.
25. Apparatus as claimed in one of Claims 13 to 24, characterised in that the mandrel (27), or the boundary surface (18, 23), is traversed by channels (29) for the passage of a cooling medium.
26. Apparatus as claimed in one of Claims 13 to 25, characterized in that the mandrel (27), or the boundary surface (18, 23), is hardened.
27. Apparatus as claimed in one of Claims 13 to 25, characterized in that hard materials (e.g. titanium nitride, titanium oxide, aluminium oxide) are vaporised on to the mandrel (27), or the boundary surface (18, 23).
28. Apparatus as claimed in one of Claims 13 to 25, characterized in that the mandrel (27), or the boundary surface (18, 23), is coated with ceramic, or hard metal.
29. Apparatus as claimed in one of Claims 13 to 28, characterised in that the head (25) of the starting piece (8) is exchangeable.
30. Apparatus as claimed in one of Claims 13 to 29, characterized in that the drive for the retraction movement of the starting piece (8) is a roller drive (20).
31. Apparatus as claimed in Claim 30, characterized in that the axes of rotation of the rollers (20) are pivotable.
EP85730135A 1984-12-21 1985-10-02 Process and device for producing a metallic block Expired EP0188994B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3447557A DE3447557A1 (en) 1984-12-21 1984-12-21 Process and apparatus for the production of a hollow cylinder by atomising a metal melt
DE3447557 1984-12-21
DE3517691 1985-05-14
DE19853517691 DE3517691A1 (en) 1985-05-14 1985-05-14 Process and apparatus for the production of a metallic block

Publications (2)

Publication Number Publication Date
EP0188994A1 EP0188994A1 (en) 1986-07-30
EP0188994B1 true EP0188994B1 (en) 1989-07-12

Family

ID=25827824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85730135A Expired EP0188994B1 (en) 1984-12-21 1985-10-02 Process and device for producing a metallic block

Country Status (3)

Country Link
US (1) US4697631A (en)
EP (1) EP0188994B1 (en)
DE (1) DE3571466D1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225732B1 (en) * 1985-11-12 1992-01-22 Osprey Metals Limited Production of spray deposits
DE3617833C1 (en) * 1986-05-27 1987-09-03 Mannesmann Ag Process for the production of rotationally symmetrical hollow bodies
GB8629373D0 (en) * 1986-12-09 1987-01-21 Alcan Int Ltd Billet/tube
BE1000691A7 (en) * 1987-07-14 1989-03-14 Centre Rech Metallurgique Manufacturing method and multi cylinder cylinder obtained.
WO1989012115A1 (en) * 1988-06-06 1989-12-14 Osprey Metals Limited Spray deposition
DE3905873C1 (en) * 1989-02-03 1990-02-08 Mannesmann Ag, 4000 Duesseldorf, De
SG80596A1 (en) * 1998-08-04 2001-05-22 Nat Iniversity Of Singapore Metastable aluminium-titanium materials
US6496529B1 (en) 2000-11-15 2002-12-17 Ati Properties, Inc. Refining and casting apparatus and method
US8891583B2 (en) * 2000-11-15 2014-11-18 Ati Properties, Inc. Refining and casting apparatus and method
FI20021835A0 (en) * 2002-10-16 2002-10-16 Valtion Teknillinen Hot forming steels for injection molding of mold inserts
CN1304149C (en) * 2002-10-16 2007-03-14 天津理工学院 Composite material jet shaping center mixing spray nozzles
KR100644359B1 (en) 2004-06-04 2006-11-10 한성석 A apparatus for manufacturing metal deposition
US7350558B2 (en) * 2004-10-22 2008-04-01 Grigoriy Grinberg Method of venting a spray metal mold
US7521652B2 (en) * 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
US8748773B2 (en) * 2007-03-30 2014-06-10 Ati Properties, Inc. Ion plasma electron emitters for a melting furnace
JP5690586B2 (en) 2007-03-30 2015-03-25 エイティーアイ・プロパティーズ・インコーポレーテッド Melting furnace including wire discharge ion plasma electron emitter
US7798199B2 (en) 2007-12-04 2010-09-21 Ati Properties, Inc. Casting apparatus and method
US20100155985A1 (en) 2008-12-18 2010-06-24 3D Systems, Incorporated Apparatus and Method for Cooling Part Cake in Laser Sintering
US20100242843A1 (en) 2009-03-24 2010-09-30 Peretti Michael W High temperature additive manufacturing systems for making near net shape airfoils leading edge protection, and tooling systems therewith
US8747956B2 (en) 2011-08-11 2014-06-10 Ati Properties, Inc. Processes, systems, and apparatus for forming products from atomized metals and alloys
US8652707B2 (en) 2011-09-01 2014-02-18 Watt Fuel Cell Corp. Process for producing tubular ceramic structures of non-circular cross section
CN102676974A (en) * 2012-06-11 2012-09-19 山东理工大学 Thermal spraying galvanizing method of thin plate
CN103243324B (en) * 2013-05-23 2015-08-26 沈阳航空航天大学 The preparation method of the metallurgical jet direct forming of a kind of multi-degree of freedom numerical control and equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE810223C (en) * 1949-04-14 1951-08-06 Deutsche Edelstahlwerke Ag Process for the production of metallic moldings
US4066117A (en) * 1975-10-28 1978-01-03 The International Nickel Company, Inc. Spray casting of gas atomized molten metal to produce high density ingots
GB1599392A (en) * 1978-05-31 1981-09-30 Osprey Metals Ltd Method and apparatus for producing workable spray deposits
CA1188481A (en) * 1982-12-15 1985-06-11 Atsumi Ohno Continuous metal casting
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Also Published As

Publication number Publication date
EP0188994A1 (en) 1986-07-30
US4697631A (en) 1987-10-06
DE3571466D1 (en) 1989-08-17

Similar Documents

Publication Publication Date Title
EP0188994B1 (en) Process and device for producing a metallic block
DE2252139C3 (en) PROCESS FOR MANUFACTURING PRECISION MOLDED BODIES FROM METAL OR AN ALLOY BY SPRAYING
DE4106964C2 (en) Device and method for producing molded skins and plastic bodies
DE2537103A1 (en) METHOD AND DEVICE FOR MANUFACTURING SPRAYED METAL BODIES
DE3127348C2 (en) Method for cooling a cast strand in an arc continuous caster
CH348241A (en) Continuous casting process and machine for its implementation
DE3306142C2 (en) Process for producing a two-phase or multi-phase metallic material
EP0156760B1 (en) Process and apparatus for the manufacturing of hot-working tools
DE3617833C1 (en) Process for the production of rotationally symmetrical hollow bodies
DE3927854C2 (en) Method for producing an inner lining of a cavity and alloy for producing this inner lining
DE2719710A1 (en) METHOD OF CASTING CONTINUOUS FEEDS WITH CALCER ROLLER AND DEVICE FOR CARRYING OUT THE METHOD
DE2606600C3 (en) Metallurgical mold, process for its manufacture and device for carrying out the process
EP2024654B1 (en) Method for the production of a rolling bearing component
EP0767760B2 (en) Method of producing glass mouldings in a press, and a press particularly suitable for use with the method
DE2811116A1 (en) METHOD AND DEVICE FOR SPIN CASTING
DE2823330C2 (en)
DE817636C (en) Centrifugal casting process
DE3447557A1 (en) Process and apparatus for the production of a hollow cylinder by atomising a metal melt
EP0594633B1 (en) Process and device for producing metal strip and laminates
DE2434850C3 (en) Process for the manufacture of tubular blanks
DE960126C (en) Process for the continuous casting of hollow bodies of any length, in particular pipes
DE2263268B2 (en) METHOD OF MANUFACTURING ALUMINUM LEAD ALLOYS
DE1924418A1 (en) Method and device for manufacturing metal products
DE3517691A1 (en) Process and apparatus for the production of a metallic block
DE2024500C3 (en) Method and device for the manufacture of objects from molten ceramic mass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19860710

17Q First examination report despatched

Effective date: 19870728

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3571466

Country of ref document: DE

Date of ref document: 19890817

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930913

Year of fee payment: 9

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85730135.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950914

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950922

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951114

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961003

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 85730135.2