EP0184517B1 - Verfahren und Anlagen für das katalytische Kracken von Kohlenwasserstoffeinsätzen - Google Patents

Verfahren und Anlagen für das katalytische Kracken von Kohlenwasserstoffeinsätzen Download PDF

Info

Publication number
EP0184517B1
EP0184517B1 EP85402416A EP85402416A EP0184517B1 EP 0184517 B1 EP0184517 B1 EP 0184517B1 EP 85402416 A EP85402416 A EP 85402416A EP 85402416 A EP85402416 A EP 85402416A EP 0184517 B1 EP0184517 B1 EP 0184517B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
gas
regeneration
stage
stripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85402416A
Other languages
English (en)
French (fr)
Other versions
EP0184517A1 (de
Inventor
Jean-Louis Mauleon
Jean-Bernard Sigaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Marketing Services SA
Original Assignee
Compagnie Francaise de Raffinage SA
Compagnie de Raffinage et de Distribution Total France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Francaise de Raffinage SA, Compagnie de Raffinage et de Distribution Total France SA filed Critical Compagnie Francaise de Raffinage SA
Publication of EP0184517A1 publication Critical patent/EP0184517A1/de
Application granted granted Critical
Publication of EP0184517B1 publication Critical patent/EP0184517B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to catalytic cracking of hydrocarbon charges. It relates more particularly to improvements made to the regeneration of the spent catalyst of such a process, with a view to the use of "load elevators" shorter than those of the prior art.
  • the most commonly used process for this purpose is the so-called fluid catalytic cracking process (in English, Fluid Catalytic Cracking, or FCC process).
  • FCC process Fluid Catalytic Cracking
  • the hydrocarbon charge is simultaneously vaporized and brought into contact at high temperature with a cracking catalyst, which is kept in suspension in the vapors of the charge. After the desired molecular weight range has been reached by cracking, with a corresponding lowering of the boiling points, the catalyst is separated from the products obtained.
  • the catalyst of the FCC process and the charge to be treated are injected under pressure and at a high temperature at the base of a column known as "charge elevator", which technicians often designate by the English term “riser”. .
  • charge elevator which technicians often designate by the English term “riser”.
  • At the top of the column is generally arranged a tank concentric with the elevator.
  • a ballistic separation system such as a cyclone, in which the spent catalyst is separated from the cracked charge.
  • This is evacuated at the top of said tank, after passing through cyclones, to reduce the entrainment of dust, while the recovered catalyst particles encounter a stripping gas such as water vapor, injected for example annularly at the base of said tank, before being evacuated to a regenerator.
  • Combustion air is injected, for example annularly, at the base of the regenerator, while at the top of the latter are provided cyclones making it possible to separate the combustion gas from the particles of regenerated catalyst.
  • This is evacuated to the bottom of the regenerator and recycled to the base of the elevator or "riser", where the charge is usually injected at a temperature between 80 ° C and 400 ° C and under a pressure ranging from 0 , 7.10 5 to 3.5.10 5 Relative Pascals.
  • the amount of coke present on the catalyst at the entrance to the regeneration zone as well as the regeneration mode will determine the final temperature reached in the regeneration zone, since the calories from the combustion of the coke serve both, heat losses, to heat the regeneration fluid (air and / or oxygen) and are shared between the combustion gases and the catalyst particles. Under operating conditions, the quantity of coke produced in the cracking unit will therefore be substantially constant, if the thermal equilibrium is not modified by external constraints.
  • This quantity of coke is linked to the difference Delta coke between the quantities of coke present on the catalyst at the entry of the regeneration zone and at the exit of this zone by the following relation:
  • Coke produced ⁇ coke x C / 0, where C / 0 denotes the mass ratio of the catalyst and the charge brought into contact with it at the inlet of the reaction zone.
  • T reactor the difference between the regeneration temperature, T r gg generation . and the temperature at the outlet of the reaction section, T reactor , is given by the following relation: where TI denotes the efficiency of the exchange of combustion heat with the catalyst, AH the heat of combustion of coke and Cp the specific heat of the catalyst.
  • WO-A-82/04061 thus describes an FCC process comprising, compared to the conventional process, an additional stripping step by desorption of the catalyst, comprised between the usual stripping step and the regeneration step.
  • the desorption is carried out using gases originating from the regenerator and whose temperature is at least 100 ° F (38 ° C) higher than that of the catalyst to be desorbed.
  • the desorbed catalyst is then introduced above the level of the fluidized bed into the first stage of the regenerator.
  • This additional stripping step makes it possible to separate some of the metals deposited on the catalyst during the reaction and, the gases being hot enough to desorb hydrocarbons with high boiling point, the residual water vapor and hydrogen will necessarily be desorbed .
  • the gas coming from the regenerator is introduced against the current into the stripping device by desorption, while the catalyst is brought to the degenerator by gravity.
  • ratio 8 that is to say the mass ratio of the catalyst in contact with the load at the inlet of the riser "riser", in order to improve the contact of the feed and the catalyst and increase the conversion of the feed, by bringing the latter in the presence of a greater number of active sites of the catalyst.
  • the Applicant has established that effective desorption of the products entrained by the spent catalyst grains, prior to their regeneration, contributes to obtaining these results.
  • the stripping of the used catalyst aims to displace by a gas, usually steam, the hydrocarbons entrained in the voids separating the catalyst grains and, to a certain extent, the lighter hydrocarbons adsorbed on the surface in the pores of the catalyst. It is known, in fact, that a poorly stripped catalyst before its regeneration has a higher Acoke and a hydrogen concentration on the deposited coke greater than 7% by weight.
  • the present invention provides for carrying out, after the conventional stripping of the catalyst, a desorption of the products entrained by the spent catalyst at a temperature at least 25 ° C higher than that of the particles of catalyst having just undergone a stripping.
  • This desorption will advantageously be carried out by injection of combustion gases coming from the regenerator (s) in the current of the catalyst flow. This injection also makes it possible to bring this catalyst to the height required for feeding the regenerator or regenerators, which makes it possible to use a shorter load lifter than in the prior art.
  • the subject of the present invention is therefore, in a process for the catalytic cracking in the fluid state of a hydrocarbon charge, comprising a phase of contacting in an upward flow in an elevator, under cracking conditions, of said said charge and particles of a cracked catalyst, a phase of separation of the spent catalyst and the cracked charge, downstream of the upper end of said riser, a phase of stripping of the spent catalyst using an injected gas against the flow of this catalyst, a phase of regeneration of said catalyst under conditions of combustion of the coke deposited on it, and a phase of recycling of the regenerated catalyst to the supply of said elevator, the improvement consisting in that, after having undergone said stripping and before being subjected to said regeneration, said catalyst is subjected to a desorption by a gas injected cocurrently with the catalyst at a temperature at least 25 ° C higher than the particle temperature s of catalyst having just undergone said stripping phase, and the resulting mixture is injected into the fluidized part of the regeneration zone which is located above the dense fluidized bed.
  • the gas used for the desorption phase may be an inert gas or water vapor, but, in a preferred embodiment of the invention, use will be made of the gases originating from the regeneration of the catalyst, which have l advantage of being at a higher temperature than the catalyst to be regenerated, either alone or in mixture with steam.
  • the invention also relates to a catalytic cracking device in the fluid state of hydrocarbon charges, comprising a riser type column, means arranged at the base of said elevator for supplying the latter under pressure with a hydrocarbon charge and particles of a cracking catalyst, a means of stripping by a gas of spent catalyst particles in a chamber disposed at the top of said elevator, concentrically thereto, this stripping gas being injected into this chamber countercurrent with particles of spent catalyst, at least one unit for regenerating said catalyst by combustion of the coke deposited thereon, and means for recycling the regenerated catalyst to said supply means, said device being characterized in that it comprises, between said means of stripping and said regeneration unit, a means of desorption by a second gas of the products entrained by the particles of the catalyst, this means of desorption being such that ue the second gas is injected under pressure into the flow of co-current catalyst particles thereof, and that the resulting mixture of spent catalyst and gas is injected into the fluidized part of the regeneration zone which is located above the dense fluid
  • Said desorption means will advantageously be placed in the device at a level lower than that of said regeneration unit, said gas thus injected co-current then also serving as carrier gas for said particles, which allows the use of an elevator short.
  • the desorption gas may or may not be identical to the stripping gas.
  • it will be constituted at least in part by the gases coming from the regeneration unit.
  • a desorption means provides the catalyst particles with additional driving pressure, which makes it possible to diversify the positioning of the different units of the cracking device, in particular the elevator and the regenerator. It also improves the qualities of the stripping, in particular if the gases coming from the regeneration unit are used as injection gas, which have a higher temperature of about 25 and if possible about 100 ° C. that at which stripping is carried out, which makes it possible to appreciably reduce the Acoke and to limit the latter to the reaction Acoke, with the consequence of a less release of heat on regeneration and a less degraded and more stable catalyst. We can thus reduce the length of the elevator and / or process heavier loads. Finally, it is possible to better control and regularize the supply of spent catalyst to the regenerator, with the advantage of being able to control its temperature by limiting hot spots, which preserves the stability of the catalyst, and thus to obtain a better regenerated catalyst and therefore more active.
  • the length of the elevator must be emphasized. It makes it possible, on the one hand, to obtain better selectivity in cracked products of the gasoline type and light distillates, on the other hand, to raise the temperature of the elevator without increased production of gas and even with a reduction in Acoke. A better conversion of the charge is therefore obtained, with a better octane number of the resulting products and it is possible to process heavier charges which are more difficult to crack. A reduced height lift also lends itself to ultra-short residence times of the load.
  • the invention applies equally to cracking assemblies comprising two regeneration units in series as to those comprising a single regeneration unit.
  • the device for cracking by the FCC process shown in FIG. 1 is of a type known per se. It essentially comprises a column 1 known as a charge riser, or else a "riser", supplied at its base, by line 2, with the charge to be treated and, via line 3, with particles of a cracking catalyst.
  • Column 1 opens at its apex in an enclosure 4 which is concentric with it and in which, on the one hand, the separation of the cracked charge takes place and, on the other hand, the stripping of the spent catalyst.
  • the treated charge is separated in a cyclone 5, which is housed in the enclosure 4, at the top of which a discharge line 6 of the cracked charge is provided, while the spent catalyst particles are discharged at the base of the enclosure 4.
  • a line 7 supplies stripping gas, generally water vapor, to injectors 8 regularly arranged at the base of enclosure 4. Stripping is therefore preferably carried out in a dense medium against the current of the catalyst.
  • the spent catalyst particles thus stripped are evacuated at the base of the enclosure 4 to a regenerator 9 via a conduit 10, on which is provided a control valve 11.
  • the regenerator 9 the coke deposited on the particles of the catalyst are burnt using air, injected at the base of the regenerator by a line 12, which feeds injectors 13 regularly spaced.
  • the particles of the treated catalyst entrained by the combustion gas are separated by cyclones 14, from which the combustion gas is evacuated by a line 15, while the particles of catalyst are discharged towards the base of the regenerator 9, from where they are recycled through line 3, fitted with a control valve 16, to the supply of elevator 1.
  • FIG. 2 represents a device according to the invention, in which the members already described in relation to FIG. 1 are designated by the same reference numbers assigned to the index '.
  • the conduit 10 ' through which the spent catalyst particles are discharged from the enclosure 4' disposed at the upper end of the elevator 1 ', does not open directly into the regenerator 9', but present here a vertical portion 101, communicating through a portion 102 with the regenerator 9 ', and connected by an elbow to the lower end of the conduit 10'.
  • the base of the duct 101 is supplied with a desorption gas by a line 18.
  • this desorption gas can be constituted by a mixture of steam, brought to the line 18 by the line 19, and of effluent gas from the regenerator 9 ′, derived from line 15 ′ to line 18 by line 20, equipped with the pump 21.
  • the desorption of the catalyst particles is carried out co-current in the vertical part 101 , that the resulting mixture of spent catalyst and gas is injected into the fluidized part of the regeneration zone which is located above the dense fluidized bed, thus allowing good separation of the gases and the grains of catalyst, and that the gas of desorption acts as a carrier gas to raise the particles to the regenerator.
  • the enclosure 4 ′ will not be at a sufficient height so that the spent catalyst particles can, by simple gravity, feed the regenerator 9 and, after regeneration, be recycled to the supply of the elevator 1 ′ .
  • the desorption gas injected at a temperature at least 25 ° C higher than that of the catalyst, enters via line 18 in the section of conduit 101 and therefore advantageously exerts a suitable desorption and a thrust on the particles of spent catalyst for route them to the regenerator.
  • FIGS 3 and 4 illustrate two other forms of implementation of the catalytic cracking method according to the invention, in which a two-stage regeneration enclosure is used.
  • the members already described in relation to Figures 1 and 2 are designated by the same reference numbers, assigned the indices a and b, respectively.
  • the regenerator 9a is in an upward flow and comprises two stages 91a and 91b.
  • the spent catalyst which has already undergone stripping in the enclosure 4a is conveyed by line 10a, the vertical section of pipe 101a and the horizontal section 102c to the lower stage 91a of the regenerator.
  • a desorption gas is injected under pressure through line 18a at the bottom of the vertical section 101a; this desorption gas comprises a mixture of combustion gases coming from the regeneration enclosure, supplied by line 20a, and optionally steam, supplied by line 19a.
  • the base of the first combustion stage 91a is supplied with air by the line 12a and the air is distributed by regularly spaced injectors 13a.
  • cyclones 14a separate the combustion gas from the partially regenerated catalyst particles.
  • the combustion gas is conveyed to line 20a by a line 115, fitted with a valve 116, making it possible to divert part of the gas flow to a line 117.
  • the particles of the catalyst having undergone a first regeneration treatment are then transferred to the second stage 91b of the regenerator by the central duct 110a, supplied with air by the line 11a.
  • the base of the stage 91b is also supplied with air by the line 112a and by the injectors 113a.
  • the particles of the regenerated catalyst are discharged laterally in a buffer enclosure 118a and are recycled through the conduit 3a to the supply of the elevator 1a.
  • the combustion gases discharged to the upper part of stage 91b are treated in an external cyclone 119a, at the base of which the particles of the catalyst are returned by the conduit 120a to stage 91a, while the combustion gases are discharged by lines 121a and 20a to line 18a.
  • a safety valve 122a is provided on line 121a and a valve 123a makes it possible to divert part of the gas to a line 124a.
  • the embodiment of FIG. 4 also includes a two-stage regenerator 9b 92a and 92b with downward flow.
  • the catalyst already stripped in the enclosure 4b is conveyed by the conduit 10b, the vertical section 101b and the horizontal section 102b to the upper floor 92b.
  • Desorption gas is injected under pressure into the lower part of the vertical duct 101b via a line 18b.
  • This stripping gas can consist of a mixture of water vapor, supplied by line 19b, and combustion gas, coming from regenerator 9b by line 20b.
  • Air is injected at the base of stage 92b through line 112b and injectors 113b.
  • Cyclones 14b separate the suspended particles from the combustion gas, which is evacuated by a line 121b, on which a valve 123b makes it possible to divert part of the combustion gas to a line 124b.
  • the particles treated in the first stage 92b are conveyed by gravity through the conduit 125 to the lower stage 92a of the regenerator, at the base of which air is injected via the line 112b and the injectors 113b.
  • the combustion gas is evacuated to an external cyclone 119b, from where the catalyst particles are returned by the conduit 120b to stage 92a, while the gas is evacuated by line 115b to line 20b.
  • a valve 116b makes it possible to divert part of the gas to an auxiliary line 117b.
  • the regenerated catalyst is evacuated from the base of stage 92a via line 3b and recycled to the supply of elevator 1b.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Claims (9)

1. Verfahren zum katalytischen Kracken einer Charge von Kohlenwasserstoffen im Fließbett, bei welchem die Charge und Partikel eines Krackkatalysators in einem Elevator unter Krackbedingungen im aufsteigenden Strom miteinander in Berührung gebracht und der gebrauchte Katalysator und die gekrackte Charge stromabwärts vom oberen Ende des Elevators voneinander getrennt werden und der gebrauchte Katalysator mit einem im Gegenstrom zum Katalysator eingeblasenen Gas gestrippt, dann unter Bedingungen, bei denen der auf dem Katalysator abgelagerte Koks verbrennt, regeneriert und schließlich im Kreislauf wieder in den Elevator eingespeist wird, dadurch gekennzeichnet, daß der Katalysator nach dem Strippen und vor dem Regenerieren mit einem im Gleichstrom mit dem Katalysator eingeblasenen Gas bei einer Temperatur, welche um wenigstens 25° C höher als die Temperatur der vom Strippen kommenden Katalysatorpartikel ist, desorbiert und das resultierende Gemisch aus gebrauchtem Katalysator und Gas in den fluidisierten Teil der Regenerationszone eingeblasen wird, welcher sich über dem dichten Fließbett befindet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Desorptionsgas wenigstens teilweise aus Gasen besteht, welche vom Regenerieren herrühren.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Desorptionsgas unter einem Druck steht, der dazu ausreicht, daß es als Elevatorgas dienen kann, um den Katalysator zu dem Regenerator oder den Regeneratoren zu heben.
4. Vorrichtung zum katalytischen Kracken von Kohlenwasserstoffchargen im Fließbett mit einer Kolonne (1') vom Elevatortyp, am Fuße des Elevators angeordneten Mitteln zum Speisen desselben unter Druck mit einer Charge von Kohlenwasserstoffen und Partikeln eines Krackkatalysators, einem Mittel (7', 8') zum Strippen der gebrauchten Katalysatorpartikel in einem am Kopf des Elevators konzentrisch zu letzterem angeordneten Raum (4') mit einem Gas, welches in den Raum im Gegenstrom zu den gebrauchten Katalysatorpartikeln eingeblasen wird, mindestens einer Einheit (9') zum Regenerieren des Katalysators durch Verbrennen des auf demselben abgelagerten Kokses und Mitteln (3') zur Rückführung des regenerierten Katalysators zu den Speisemitteln, dadurch gekennzeichnet, daß zwischen dem Strippermittel und der Regeneratoreinheit ein Mittel (101/102) zum Desorbieren der Katalysatorpartikel mit einem zweiten Gas vorgesehen ist, wobei dieses Desorptionsmittel derart ist, daß das zweite Strippgas unter Druck in den Strom der Katalysatorpartikel im Gleichstrom mit denselben eingeblasen wird, und daß das resultierende Katalysator/Gas-Gemisch in den Teil der Regenerationszone eingeblasen wird, welcher sich über dem dichten Fließbett befindet.
5. Vorrichtung nach Anspruch 4, wobei die die Regeneratoreinheit (9') einstufig ausgebildet ist, dadurch gekennzeichnet, daß das Desorptionsgas stromaufwärts von der Einheit in einen vertikalen Abschnitt (101) der Speiseleitung für gebrauchten Katalysator der Regeneratoreinheit eingeblasen wird.
6. Vorrichtung nach Anspruch 5, gekennzeichnet, durch eine Speiseleitung (18) für zweites Strippgas, welche an die Leitung (15') zum Abzug der Verbrennungsgase aus der Regeneratoreinheit (9') angeschlossen ist.
7. Vorrichtung nach Anspruch 4, wobei die Regeneratoreinheit (9a; 9b) zwei Stufen (91a, 91b; 92b, 92a) zur degeneration im aufsteigenden bzw. im fallenden Strom aufweist, dadurch gekennzeichnet, daß das Desorptionsgas stromaufwärts von der stromaufwärts gelegenen Stufe (91a; 92b) der Einheit in einen vertikalen Abschnitt (101a; 101b) der Speiseleitung für gebrauchten Katalysator der degeneratoreinheit eingeblasen wird.
8. Vorrichtung nach Anspruch 7, gekennzeichnet durch eine Speiseleitung (18a; 18b) für Desorptionsgas, welche an die Leitung (20a; 20b) zum Abzug der Verbrennungsgase aus der stromaufwärts gelegenen Stufe (91 a; 92b) und/oder aus der stromabwärts gelegenen Stufe (91 b; 92a) der Regeneratoreinheit angeschlossen ist.
9. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Reaktionsteil des Elevators (1') eine Höhe zwischen 1 m und 30 m aufweist.
EP85402416A 1984-12-07 1985-12-04 Verfahren und Anlagen für das katalytische Kracken von Kohlenwasserstoffeinsätzen Expired EP0184517B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8418706 1984-12-07
FR8418706A FR2574422B1 (fr) 1984-12-07 1984-12-07 Perfectionnements aux procedes et dispositifs pour le craquage catalytique a l'etat fluide de charges d'hydrocarbures

Publications (2)

Publication Number Publication Date
EP0184517A1 EP0184517A1 (de) 1986-06-11
EP0184517B1 true EP0184517B1 (de) 1988-05-18

Family

ID=9310352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85402416A Expired EP0184517B1 (de) 1984-12-07 1985-12-04 Verfahren und Anlagen für das katalytische Kracken von Kohlenwasserstoffeinsätzen

Country Status (5)

Country Link
EP (1) EP0184517B1 (de)
CN (1) CN1006895B (de)
DE (1) DE3562780D1 (de)
FR (1) FR2574422B1 (de)
ZA (1) ZA859374B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057389A1 (fr) 2011-10-20 2013-04-25 IFP Energies Nouvelles Procédé de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre
WO2014096602A1 (fr) 2012-12-18 2014-06-26 IFP Energies Nouvelles Procédé de raffinage d'une charge hydrocarbonée lourde mettant en oeuvre un des désasphaltage sélectif

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2624762B1 (fr) * 1987-12-21 1990-06-08 Total France Procede et dispositif de regeneration de catalyseur en lit fluidise
FR2624877B1 (fr) * 1987-12-22 1992-01-10 Inst Francais Du Petrole Procede et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide
US5264115A (en) * 1987-12-30 1993-11-23 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for fluidized bed hydrocarbon conversion
FR2627187B1 (fr) * 1988-02-15 1993-01-22 Inst Francais Du Petrole Procede de craquage a l'etat fluide d'une charge d'hydrocarbures
US4973398A (en) * 1988-05-25 1990-11-27 Mobil Oil Corp. Method of FCC spent catalyst stripping for improved efficiency and reduced hydrocarbon flow to regenerator
US5584986A (en) * 1993-03-19 1996-12-17 Bar-Co Processes Joint Venture Fluidized process for improved stripping and/or cooling of particulate spent solids, and reduction of sulfur oxide emissions
CN1056543C (zh) * 1996-08-20 2000-09-20 中国石油化工总公司 催化裂化提升管反应器
CN1109091C (zh) * 1997-12-23 2003-05-21 中国石油化工集团公司 重油流化催化裂化重叠式两段再生技术
CN1078492C (zh) * 1998-09-25 2002-01-30 清华大学 用于强放热反应过程密相循环流化床反应器
CN1087647C (zh) * 1998-12-25 2002-07-17 中国石油化工集团公司 液固移动床反应器
FR2791354B1 (fr) 1999-03-25 2003-06-13 Inst Francais Du Petrole Procede de conversion de fractions lourdes petrolieres comprenant une etape d'hydroconversion en lits bouillonnants et une etape d'hydrotraitement
CN102276402B (zh) * 2010-06-11 2013-12-04 中国石油化工股份有限公司 生产低碳烯烃的组合反应装置
FR2983866B1 (fr) 2011-12-07 2015-01-16 Ifp Energies Now Procede d'hydroconversion de charges petrolieres en lits fixes pour la production de fiouls a basse teneur en soufre
FR3000097B1 (fr) 2012-12-20 2014-12-26 Ifp Energies Now Procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
FR3000098B1 (fr) 2012-12-20 2014-12-26 IFP Energies Nouvelles Procede avec separation de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre
CN107271352B (zh) * 2017-06-30 2019-12-31 上海理工大学 一种颗粒温度和颗粒运动同步测量装置和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843460A (en) * 1953-04-07 1958-07-15 Standard Oil Dev Co Contacting of gases with fluidized solids
BE535572A (de) * 1954-02-09
GB1293168A (en) * 1969-12-08 1972-10-18 Exxon Research Engineering Co Two-stage countercurrent catalyst regenerator
EP0078795A1 (de) * 1981-05-13 1983-05-18 Ashland Oil, Inc. Strippen von kohlenwasserstoffen aus dem katalysator mit verbrennungsgasen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057389A1 (fr) 2011-10-20 2013-04-25 IFP Energies Nouvelles Procédé de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre
WO2014096602A1 (fr) 2012-12-18 2014-06-26 IFP Energies Nouvelles Procédé de raffinage d'une charge hydrocarbonée lourde mettant en oeuvre un des désasphaltage sélectif

Also Published As

Publication number Publication date
EP0184517A1 (de) 1986-06-11
FR2574422B1 (fr) 1988-01-08
DE3562780D1 (en) 1988-06-23
CN1006895B (zh) 1990-02-21
ZA859374B (en) 1986-09-24
FR2574422A1 (fr) 1986-06-13
CN85108854A (zh) 1986-05-10

Similar Documents

Publication Publication Date Title
EP0184517B1 (de) Verfahren und Anlagen für das katalytische Kracken von Kohlenwasserstoffeinsätzen
EP0208609B2 (de) Verfahren und Einrichtung für das katalytische Kracken von Kohlenwasserstoffen mit Kontrolle der Reaktionstemperatur
EP0322274B1 (de) Verfahren und Einrichtung für das Regenerieren von Katalysatoren in einer Wirbelschicht
CA2052520C (fr) Procede et dispositif de craquage catalytique en lit fluide a courant descendant
EP0332536B1 (de) Verfahren und Vorrichtung zum Regenerieren eines Katalysators in einem Fliessbett
EP0191695B1 (de) Verfahren und Einrichtung für die Injektion von Katalysator in ein katalytisches Wirbelschichtkrackverfahren, insbesondere von schweren Einsätzen
CA1259577A (fr) Procede et appareil pour craquage catalytique en lit fluide
EP1170355B1 (de) Verfahren und Einrichtung zum Cracken von Kohlenwasserstoffen in zwei aufeinanderfolgenden Reaktionstufen
EP0323297A1 (de) Wirbelschichtverfahren zur Kohlenwasserstoffumwandlung
EP0485259B1 (de) Verfahren und Einrichtung für Homogenisierung in ein röhrenformige Kohlenwasserstoff-Krackreaktor mit Wirbelbett von feste Teilchen, von das Gemisch von diese Teilchen und die zu behandeln Kohlenwasserstoffen
FR2659346A1 (fr) Procede de craquage avec oligomerisation ou trimerisation des olefines presentes dans les effluents.
EP0489726B1 (de) Verfahren und einrichtung zum dampfkracken von kohlenwasserstoffen in der wirbelschichtphase
EP0874880B1 (de) Fluidkatalytisch krackverfahren und -einrichtung fur kohlenwasserstoffeinsätze
EP0663434A1 (de) Fluidkatalytisch Krachverfahren für Kohlenwasserstoffeinsätze, insbesondere Einsätze mit hoher basischen Stickstoffgehalten
EP0282371A1 (de) Verfahren und Vorrichtung für das katalytische Kracken von Kohlenwasserstoffeinsätzen
EP2366760A1 (de) Verfahren zum katalytischen Cracken mit feiner Kontrolle des Restgehalts an Koks auf dem Katalysator nach Regenerierung
EP0573316B1 (de) Verfahren und Einrichtung zum katalytischen Kracken in zwei aufeinanderfolgenden Reaktionszonen
EP0536054B1 (de) Verbesserungen an Vorrichtungen für das katalytische Wirbelschichtkracken von Kohlenwasserstoffeinsätzen
CA2250342A1 (fr) Procede et dispositif de vaporisation selective des charges d'hydrocarbures en craquage catalytique
EP0322276A1 (de) Verfahren und Einrichtung für das katalytische Kracken von schweren Einsätze, die eine zweite Wirbelschichtabstreifzone enthalten
EP0265347A1 (de) Verfahren und Vorrichtung für die katalytische Wirbelschichtspaltung von Kohlenwasserstoffeinsätzen
FR2658833A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures.
FR2617860A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures
FR2629467A1 (fr) Procede de craquage a l'etat fluide d'une charge d'hydrocarbures
FR2633848A1 (fr) Procede et dispositif de regeneration d'un catalyseur use avec echange thermique en lit fluidise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19860929

17Q First examination report despatched

Effective date: 19870827

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 3562780

Country of ref document: DE

Date of ref document: 19880623

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMPAGNIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL F

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: COMPAGNIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL FRANCE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
BECN Be: change of holder's name

Effective date: 19880518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19891115

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19891206

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19891212

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891222

Year of fee payment: 5

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19901231

Ref country code: CH

Effective date: 19901231

Ref country code: BE

Effective date: 19901231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901231

Year of fee payment: 6

BERE Be: lapsed

Owner name: CIE DE RAFFINAGE ET DE DISTRIBUTION TOTAL FRANCE

Effective date: 19901231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011228

Year of fee payment: 17

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021204

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST