EP0172250B1 - Apparat zum tauchhärten von metallrohren - Google Patents

Apparat zum tauchhärten von metallrohren Download PDF

Info

Publication number
EP0172250B1
EP0172250B1 EP19840900872 EP84900872A EP0172250B1 EP 0172250 B1 EP0172250 B1 EP 0172250B1 EP 19840900872 EP19840900872 EP 19840900872 EP 84900872 A EP84900872 A EP 84900872A EP 0172250 B1 EP0172250 B1 EP 0172250B1
Authority
EP
European Patent Office
Prior art keywords
pipe
cooling water
tank
metallic pipe
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840900872
Other languages
English (en)
French (fr)
Other versions
EP0172250A4 (de
EP0172250A1 (de
Inventor
Toshio Ohsimatani
Yukihiro Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of EP0172250A1 publication Critical patent/EP0172250A1/de
Publication of EP0172250A4 publication Critical patent/EP0172250A4/de
Application granted granted Critical
Publication of EP0172250B1 publication Critical patent/EP0172250B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • C21D1/64Quenching devices for bath quenching with circulating liquids
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Definitions

  • This invention relates to an apparatus for carrying out hardening by immersing a heated metallic pipe and a method of cooling the pipe in a water for quenching.
  • a heated steel shaft is inserted and centred between centres and is rotated by a sprocket, thus achieving a mechanical removing of said film of steam on the outer surface of said shaft.
  • This conventional apparatus provides a machine wherein a rotatable triangular carrier body with three surfaces is located in two bearings in a container for the tempering medium on each of which surfaces a pedestal is mounted on which said two driven centres for the workpieces to be hardened are provided.
  • this object is accomplished by a method of cooling a metallic pipe in an immersion hardening apparatus in that during moving downward the metallic pipe into the cooling water said pipe is pressed by holding means with a predetermined holding force and the cooling water is continuously injected from injection means on the inner and outer sides of the pipe.
  • the object of the present invention is further accomplished by a apparatus for immersion hardening of metallic pipe, which apparatus comprises a tank containing cooling water; holding means for pressing a heated metallic pipe from both upper and lower directions and holding the pipe for rotation about its central axis; immersion means for moving the metallic pipe held by said holding means downward from the ambient air above the cooling water into the cooling water; cooling water injection means for injecting cooling water on the inner and outer sides of the metallic pipe in the interior of the tank; and unloading means for receiving the metallic pipe at the end of cooling from said holding means within the tank and conveying the pipe to the outside of the tank.
  • cooling water is kept in substantially agitated state in proximity to the inner and outer surfaces of the metallic pipe, which cooperates with the injection flows from the nozzles to continuously expose the inner and outer surfaces of the metallic pipe to fresh cooling water, preventing the metallic pipe from being covered with a film of steam resulting from boiling of cooling water.
  • the rotation of the metallic pipe allows the removal of heat by cooling water to be uniform throughout the metallic pipe.
  • the points of contact with the rollers are continuously changed because of the rotation of the metallic pipe, preventing the local shielding of the pipe from cooling water by the rollers, which also contributes to uniform hardening throughout the metallic pipe.
  • cooling water is kept substantially agitated in proximity to the inner and outer surfaces of the metallic pipe because of the rotation of the metallic pipe, the cooling water flows injected from the nozzles need not have a high pressure or high velocity in particular, and since the cooling water flows from the nozzles are not required to agitate and fluidize the entire cooling water in the tank, a mechanism for injecting cooling water may be of a smaller size and the power required may be reduced. Moreover, since the heated metallic pipe is immersed in cooling water while being held by the holding means in the apparatus of the invention, the metallic pipe does not undergo a violent shock and is thus free of surface defects.
  • an internal nozzle for injecting cooling water into the interior of the metallic pipe is constructed so as to move up and down in cooperation with the holding means in the apparatus of the invention, then the heated metallic pipe and the internal nozzle are continuously kept in alignment so that cooling water can be injected into the interior of the metallic pipe from the internal nozzle at the same time as the metallic pipe is immersed in cooling water in the tank, and hence, cooling of the metallic pipe can be initiated substantially at the same time on its outer and inner sides, eventually preventing bending and formation of soft spots.
  • a water tank 1 is a rectangular tank which is longer than a metallic pipe to be hardened, for example, a metallic or steel pipe 2, and cooling water 3 is contained in the tank 1.
  • a support beam 4 extending longitudinally of the tank 1, and immersing means 5 is suspended from the support beam 4.
  • the immersing means 5 basically comprises a rotating shaft 6 adapted to be forward and backward rotated (or reciprocally rotated) within the range of a certain angle, and a plurality of arms 7 protruding radially from the rotating shaft 6, and holding means 8 for holding the steel pipe 2 for rotation is provided at the distal end of the arms 7.
  • the holding means 8 includes plural pairs of support rollers 9 on which the steel pipe 2 rests, holding rollers for pressing down the steel pipe 2 (not shown in Fig. 1), and a roller drive 10 for rotating the support rollers 9, the roller drive 10 being provided outside the tank 1 in order to avoid any adverse effect by the cooling water 3.
  • cooling water injection means 11 for injecting cooling water 3 on both the outer and inner surfaces of the steel pipe 2.
  • the hardening apparatus illustrated in Fig. 1 is constructed such that the steel pipe 2 which has been cooled is taken out of the tank 1 to a position opposed to the loading position, and to this end, unloading means 12 is provided on one side (the upper side in Fig. 1) of the tank 1.
  • a loading mechanism for carrying the heated steel pipe 2 to said holding means 8 and a delivery mechanism for delivering the cooled steel pipe 2 from the side of the tank 1 to a given location will be described.
  • a plurality of conveyor rollers 13 having a concave surface are arranged on the other side (the lower side in Fig. 1 and the right side in Fig. 2) of the tank 1
  • a plurality of loading skids 14 are provided on the other side of the tank 1 which extend beyond the upper end of the tank 1 toward the holding means 8, and a plurality of kick-out arms 15 are disposed between the conveyor rollers 13 and the loading skids 14 for transfer purpose.
  • the kick-out arms 15 have a center of rotation at the base end of the loading skids 14 and a free end extending between the conveyor rollers 13.
  • the kick-out arms 15 are constructed such that when rotated counterclockwise in Fig. 2, they take up the steel pipe 2 from the conveyor rollers 13 and cause it to tumble down onto the loading skids 14.
  • a plurality of delivery rollers 16 having the same configuration as the conveyor rollers 13.
  • slant skids 17 straddle beyond the upper end of the tank 1 which cause the cooled steel pipe 2 to tumble down toward the delivery rollers 16.
  • Stops 18 are disposed at the lower end of the slant skids 17 as shown in Fig. 2, and kick-out arms 19 are provided between the lower end of the slant skids 17 at which the stops 18 are disposed and the delivery rollers 16 for transfer purpose.
  • the kick-out arms 19 have a center of rotation on the side of the delivery rollers 16 and a free end extending to the lower end of the slant skids 17.
  • the kick-out arms 19 are thus constructed such that when rotated counterclockwise in Fig. 2, they pick up the steel pipe 2 bearing on the stops 18 and transfer it onto the delivery rollers 16.
  • the rotating shaft 6 which is one of the components of the immersing means 5 is suspended from the support beam 4 to horizontally extend above the tank 1 and longitudinally of the tank 1.
  • Each of the arms 7 which are attached to the rotating shaft 6 at given intervals consists of a lower arm 7a having a free end which will extend horizontally when positioned at the upper limit and an upper arm 7b which is extended above the lower arm 7a.
  • One end (the left end in Figs. 1 and 3) of the rotating shaft 6 is extended outside the tank 1 and connected to a rotational drive 20.
  • the construction of the rotational drive 20 is illustrated in Figs. 3 and 4 As shown in Figs.
  • the one end of the rotating shaft 6 is supported for rotation by a bearing on a base 21 while a radially extending lever 22 is attached to the one end of the rotating shaft 6.
  • the lever 22 has a distal end pivoted to the upper end of a connecting rod 23 which is connected to a crank shaft 24 located adjacent the base 21.
  • the crank shaft 24 is mounted for rotation on another base 25 and connected to a motor 26.
  • the lever 22, connecting rod 23 and crank shaft 24 are coordinated such that when the crank shaft 24 is rotated in a given direction by means of the motor 26, the lever 22 is reciprocally rotated a given angle of ⁇ about the axial center of the rotating shaft 6 via the connecting rod 23.
  • the intermediate portion of the crank shaft 24 makes a circular motion having a radius of R to concomitantly move the connecting rod 23 up and down.
  • the distal end of the lever 22 thus makes a reciprocal motion having a radius of r and an angle of ⁇ , and as a result, the rotating shaft 6, together with the lever 22, makes a reciprocal rotation (forward and backward rotation) within the range of an angle of ⁇ .
  • Each lower arm 7a of the arms 7 has a pair of support rollers 9a and 9b mounted to the upper surface of the free end thereof, which constitute the holding means 8.
  • two roller shafts 9c extend parallel to the rotating shaft 6 so as to interconnect the distal ends of the lower arms 7a at their upper surface.
  • the support rollers 9a and 9b are mounted on the roller shafts 9c at positions corresponding to the distal ends of the lower arms 7a.
  • those support rollers 9a which are located nearer to the loading skids 14 are positioned at a higher level than those support rollers 9b which are located nearer to the rotating shaft 6.
  • the lower arms 7a have kick-out arms 27 mounted on their upper surface and near to the rotating shaft 6 for pushing the steel pipe 2 on the support rollers 9a and 9b beyond the distal end of the lower arms 7a. Therefore, in holding the steel pipe 2 which has tumbled on the loading skids 14 under gravity between a pair of the support rollers 9a and 9b, the kick-out arms 27 serve as stops for preventing the steel pipe 2 from overrunning. In addition, since a line T connecting the centers of the support rollers 9a and 9b is at a given angle of ⁇ toward the kick-out arms 27, the steel pipe 2 is prevented from moving back beyond the support rollers 9a and 9b to the loading skids 14 as a result of reaction of the steel pipe 2 striking the kick-out arms 27.
  • each upper arm 7b of the arms 7 has holding rollers 30 mounted at its distal end through a slide mechanism 28 and a press means 29.
  • the slide mechanism 28 will be first described.
  • a guide plate 31 extending parallel to the rotating shaft 6.
  • a slide block 32 which is allowed to move parallel to the rotating shaft 6 is attached in mating engagement to the upper and lower edges of the guide plate 31.
  • Locking cylinders 33 are attached to the upper and lower sides of the slide block 32 and perpendicular to the guide plate 31, and each cylinder 33 has a piston rod 34 having a recess 35 formed therein and engaged with the edge of the guide plate 31.
  • the press means 29 is based on a variable pressure cylinder 36 which is attached downwardly to the slide block 32 perpendicular to the line T connecting the centers of the support rollers 9a and 9b.
  • the cylinder 36 has a piston rod 37 to the tip of which is mounted a pair of holding rollers 30 through a base plate 38. That is, the holding rollers 30 are mounted on the base plate 38 so as to rotate about their axes parallel to the axes of the above-mentioned support rollers 9a and 9b.
  • numeral 39 designates guide rods which stand upright on the base plate 38 and are engaged for sliding motion in guide bushes 40 attached to the slide block 32.
  • the heated steel pipe 2 is rotated about its central axis and immersed in the cooling water 3 while it is held and clamped from its vertically upper and lower sides by means of the support rollers 9a, 9b and the holding rollers 30.
  • the roller drive 10 for rotating the steel pipe 2 will be described with reference to Figs. 6, 8 and 9.
  • a gear box 41 extending in substantially the same direction as the upper arms 7b.
  • a drive gear 42 and two driven gears 43 and 44 are sequentially arranged from the side of the rotating shaft 6, and these gears 42, 43 and 44 are in meshing corporation via intermediate gears 45 intervening therebetween such that the drive gear 42 and the driven gears 43 and 44 rotate in the same direction.
  • the drive gear 42 is coupled to a motor 46 located outside the tank 1 through universal joints 47 and a propeller shaft 48 while the driven gears 43 and 44 are coupled to the roller shafts 9c and 9c through connecting rotating rods 49 and 49 and universal joints 50, respectively.
  • the connecting rotating rods 49, 49 are at a given angle of ⁇ with respect to the roller shafts 9c, 9c as shown in Fig. 6 such that the gear box 41 may be positioned above the surface of cooling water 3 even when the support rollers 9a and 9b are immersed in cooling water 3 as a result of angular rotation of the rotating shaft 6 as shown in Fig. 9.
  • the upper arm 7b and associated members are omitted in Fig. 6.
  • positioning means 51 is provided for adjusting the position of the holding rollers 30.
  • the positioning means 51 is constructed as shown in Figs. 5 and 7. That is, a horizontal slide guide 52 is attached to the side of the support beam 4 and a slider 53 is mounted for horizontal motion to the slide guide 52.
  • the slider 53 has substantially a plate shape as shown in Figs. 5 and 7 and has a feed nut 54 attached to the rear surface thereof.
  • a feed screw 55 attached horizontally to the side of the support beam 4 is threadably engaged with the feed nut 54.
  • a pair of push arms 56 and 56 are projected from the front surface of the slider 53 which extend to those positions facing the opposite sides of the slide block 32 having the press means 29 attached thereto.
  • the spacing between the push arms 56 and 56 is set to be wider than the width of the slide block 32 so as to leave gaps between the push arms 56 and the slide block 32.
  • the feed screw 55 is connected to a motor 57 through a reduction gear 58, the motor 57 being attached downward to the side of the support beam 4. By actuating the motor 57, the feed screw 55 is rotated to concomitantly move the slider 53 horizontally. Then the push arm 56 pushes the slide block 32 and the holding rollers 30 are moved with the slide block 32, changing the position of the holding rollers 30. Since such positioning of the holding rollers 30 is required only near the end of the steel pipe 2 to be hardened, in the apparatus including eight (8) pairs of holding rollers 30, Nos. 1 to 8 as shown in Fig. 10, for example, the positioning means 51 may be provided in association with the No. 1 holding rollers 30 located at one end of the steel pipe 2 and the two pairs of Nos. 7 and 8 holding rollers 30 located at the other end of the steel pipe 2.
  • the cooling water injection means 11 comprises a plurality of external nozzles 59 for injecting cooling water 3 to the outer surface of the steel pipe 2 in the tank 1, and an internal nozzle 60 for injecting cooling water 3 to the inner surface of the steel pipe 2.
  • the external nozzles 59 will first be described. Since the steel pipe 2 held in place by the support rollers 9a, 9b and the holding rollers 30 are arcuately turned down from the ambient air into cooling water 3 as the arm means 7 are rotated with the rotating shaft 6, a plurality of external nozzles 59 are arranged on opposite sides of the turn-down path of the steel pipe 2 so as to face the steel pipe 2. The arrangement of the external nozzles 59 is shown by dotted lines in Fig. 2. These external nozzles 59 are communicated with a feed water pipe not shown.
  • the internal nozzle 60 is designed to rotate with the above-mentioned rotating shaft 6 such that it can inject cooling water 3 into the interior of the steel pipe 2 at the same time as the steel pipe 2 is immersed in cooling water 3. More specifically, as shown in Fig. 11, a nozzle supporting arm 61 is projected from the end of the rotating shaft 6 like the lower arms 7a. The internal nozzle 60 is removably attached to the free end of the nozzle supporting arm 61 such that the internal nozzle 60 may be aligned with the steel pipe 2 on the support rollers 9a, 9b. A construction for feeding cooling water 3 to the internal nozzle 60 is described below.
  • a rigid pipe 62 for feed water is positioned outside the tank 1 on an extension of the rotating shaft 6 and in alignment with the rotating shaft 6, and a connecting pipe 63 which is bent twice like a crank is connected to the end of the feed water pipe 62 through a rotary joint 64.
  • the crank-shaped connecting pipe 63 is bent at a position inside the tank 1 and the other end thereof is removably connected to the internal nozzle 60.
  • a feed water hose 65 is connected to the rear end of the feed water pipe 62.
  • the cooling water to be injected from the internal nozzle 60 are preferably under considerably high pressure, and cooling water is preferably injected from the internal nozzle 60 to the inner surface of the steel pipe 2 at the same time as the steel pipe 2 is immersed in cooling water 3 in the tank 1, in order to concurrently initiate cooling on the outer and inner sides of the pipe. Since sudden injection of cooling water may have adverse effects such as water hammering, the system is constructed such that cooling water is continuously injected from the internal nozzle 60.
  • a baffle 66 is disposed above the surface of cooling water 3 and between the internal nozzle 60 and the steel pipe 2 on the support rollers 9a, 9b as shown in Fig. 10.
  • the internal nozzle 60 there is also prepared another nozzle designed such that the axis of its tip portion is offset from the axis of its rear portion to be connected to the connecting pipe 63 as shown by broken lines in Fig. 12.
  • the nozzle may be replaced by the other internal nozzle having an offset tip portion so as to align the nozzle with the steel pipe.
  • the unloading means 12 for unloading the cooled steel pipe 2 from the tank 1 will be described with reference to Fig. 2.
  • the unloading means 12 includes catch arms 67 for receiving the steel pipe 2 from the holding means 8 in the tank 1, conveyor units 68 for taking the steel pipe 2 from within the cooling water 3 to above the tank 1, and underwater skids 69 for transferring the steel pipe 2 from the catch arms 67 to the conveyor units 68.
  • the catch arm 67 is located within the tank 1 so that it may be reciprocally swung between a position proximate to the lower limit of the holding means 8 and a lower position.
  • the conveyor unit 68 includes an endless chain 70 having a plurality of hooks 71 attached thereto at given intervals and is obliquely extended from the center of the bottom of the tank 1 toward the upper end of the afore-mentioned slant skid 17.
  • the underwater skid 69 is inclined downward from a position slightly below the upper limit of the catch arm 67 toward the conveyor unit 68.
  • the rotating shaft 6 is rotated to position the lower and upper arms 7a and 7b at their upper limits shown by solid lines in Fig. 2 and the holding rollers 30 are upwardly withdrawn by the cylinder 36.
  • the steel pipe 2 which has been heated to a predetermined temperature is transported to the side of the tank 1 by means of the conveyor rollers 13, and transferred therefrom onto the loading skids 14 by rotating the kick-out arms 15 for transfer counterclockwise as viewed in Fig. 2 to hold up the pipe from the conveyor rollers 13.
  • the steel pipe 2 trundles along the loading skids 14 onto the support rollers 9.
  • the steel pipe 2 comes in collision with the kick-out arms 27 attached to the lower arms 7a, which prevents the pipe from overrunning, and since the support rollers 9a on the side of the loading skids 14 are set at a somewhat higher level, the steel pipe 2 is also prevented from trundling back to the loading skids 14 beyond the support rollers 9 by the reaction of collision with the kick-out arms 27.
  • the steel pipe 2 becomes stationary on the support rollers 9, the steel pipe 2 is retained between the support rollers 9 and the holding rollers 30 by lowering the holding rollers 30.
  • the holding force by the holding rollers 30 is adjusted to be relatively low (for example, on the order of 100 kg) in order to prevent deformation of the steel pipe 2.
  • the steel pipe 2 While being retained in this way, the steel pipe 2 is rotated about its axis by rotating the support rollers 9 by means of the roller drive 10. Cooling water is continuously injected from the external and internal nozzles 59 and 60.
  • the baffle 66 shields the steel pipe 2 from the internal nozzle 60 above the surface of the cooling water 3 in the tank 1, preventing the steel pipe 2 from being cooled on its inner surface before it is immersed in the cooling water 3 in the tank 1 as well as preventing any adverse effect by water hammering caused by starting suddenly and vigorously injecting cooling water through the internal nozzle 60 or the like.
  • the gear box 41 for transmitting a rotational force to the support rollers 9 is placed at a higher level than the lower arms 7a, the gear box 41 is never immersed in the cooling water 3 even after the support rollers 9 are lowered below the surface of cooling water 3. Since the steel pipe 2 and the internal nozzle 60 are lowered below the baffle 66 at the same time as the steel pipe 2 begins immersing in cooling water 3 in the tank 1 in this way, the cooling water is injected into the inner side of the steel pipe 2 from the internal nozzle 60, and consequently, the steel pipe 2 begins to be cooled from both its inner and outer sides substantially at the same time. The steel pipe 2 is eventually lowered to the position shown by broken lines in Fig.
  • cooling water is injected to the outer surface of the pipe from the external nozzles 59, cooling water is continuously injected to the interior of the pipe from the internal nozzle 60, and the steel pipe 2 itself is being rotated about its axis so that cooling water 3 flows in vigorously agitated state in essence in proximity to the inner and outer surfaces of the steel pipe 2, allowing the entire steel pipe 2 to be rapidly and uniformly cooled without an obstruction by steam resulting from boiling of cooling water 3. Since the steel pipe 2 is rotating, the steel pipe 2 comes in contact with the rollers 9 and 30 at continuously varying points thereof, preventing soft spots from being formed due to the local delay of cooling rate.
  • the cooling water 3 can be substantially fully agitated and fluidized without particularly increasing the injection pressure of the cooling water injection means 11, succeeding in reducing the power consumption and the size of the cooling water injection means 11.
  • the steel pipe 2 While the steel pipe 2 is being cooled as described above, the steel pipe 2 is reduced in temperature and increased in hardness, and hence, a force applied by the holding rollers 30 to hold the steel pipe 2 in a stable manner is now preferably increased to about 500 kg, for example. It is also preferable to change the direction of rotation of the support rollers 9 at given intervals because when the axes of the support rollers 9 and the holding rollers 30 are not parallel to the steel pipe 2, the steel pipe 2 can be axially moved back and forth, eventually leading to more uniform cooling.
  • the holding rollers 30 are moved up by means of the cylinder 36 to cancel the retention of the steel pipe, and then the kick-out arms 27 pivoted to the lower arms 7a kick the steel pipe 2 toward the catch arms 67 to place the steel pipe 2 on the catch arms 67. Thereafter, the rotating shaft 6 is rotated in the reverse direction as opposed to the previous process to return the arms 7 with the support rollers 9 and the holding rollers 30 to the original upper limit where the rollers are ready for reception of a subsequent steel pipe 2.
  • the catch arms 67 are rotated counterclockwise in Fig.
  • the steel pipe 2 to transfer the steel pipe onto the underwater skids 69 and the steel pipe 2 trundles on the underwater skids 69 toward the conveyor units 68. Since the conveyor units 68 continue to operate in the direction of an arrow in Fig. 2, the steel pipe 2 is conveyed from the underwater skids 69 to above the water surface and then onto the slant skids 17. The steel pipe 2 which has been hardened is placed on the slant skids 17, once stopped by collision with the stops 18, and thereafter, transfered onto the delivery rollers 16 by means of the kick-out arms 19, for delivery to the destined location.
  • the steel pipe 2 is not dropped from a high level and does not undergo a violent shock during a series of operations as mentioned above, the formation of surface defects on the steel pipe 2 can be substantially completely avoided.
  • the holding rollers 30 are relocated in the following manner.
  • the locking cylinder 33 shown in Fig. 5 is operated to release the slide block 32.
  • the motor 57 is actuated to rotate the feed screw 55 to move the slider 53 to the right or left, and the corresponding push arm 56 urges the slide block 32 to relocate the holding rollers 30.
  • the locking cylinder 33 is actuated to bring the slide block 32 in close contact with the guide plate 31 to lock the slide block 32 while the slider 53 is slightly moved reversely to leave gaps between the push arms 56 and the slide block 32. Then, galling between the slide block 32 and the push arms 56 is prevented from occurring when the slide block 32 is rotated with the rotating shaft 6 and the upper arm 7b.
  • the apparatus of the invention is useful in carrying out hardening of metallic pipes such as steel pipes and the like, particularly in carrying out hardening of seamless steel pipes of small and intermediate diameters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Claims (16)

  1. Verfahren zum Kühlen eines Rohrs in einer Vorrichtung zum Tauchhärten, die einen Kühlwasser enthaltenden Behälter, Taucheinrichtungen, um das Metallrohr aus der Umgebungsatmosphäre abwärts in das Kühlwasser zu bewegen, Halteeinrichtungen, um auf ein erhitztes Metallrohr sowohl von oberen als auch unteren Richtungen einen Preßdruck auszuüben und das Rohr für eine Drehung um seine Längsachse zu halten, Kühlwasser-Spritzeinrichtungen zum Spritzen von Kühlwasser an die inneren sowie äußeren Seiten des Metallrohrs im Inneren des Behälters und Austrageinrichtungen zum Empfangen des Metallrohrs am Ende des Kühlens von den genannten Halteeinrichtungen innerhalb des Behälters umfaßt,
    dadurch gekennzeichnet, daß während der Abwärtsbewegung des Metallrohrs in das Kühlwasser

    das besagte Rohr (2) durch die genannten Halteeinrichtungen (8) mit einer vorbestimmten Haltekraft gepreßt und

    das Kühlwasser kontinuierlich von den Spritzeinrichtungen (11) an die inneren sowie äußeren Seiten des Rohrs (2) gespritzt wird.
  2. Verfahren zum Kühlen eines Rohrs nach Anspruch 1, dadurch gekennzeichnet, daß die Haltekraft während der Abwärtsbewegung des Rohrs (2) in den Behälter höher ist als die durch die Halteeinrichtungen (8) in der Umgebungsatmosphäre aufgebrachte Haltekraft.
  3. Verfahren zum Kühlen eines Rohrs nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Rohr (2) während des Eintauchens in den Behälter (1) gedreht wird.
  4. Verfahren zum Kühlen eines Rohrs nach Anspruch 3, dadurch gekennzeichnet, daß die Drehrichtung mit bestimmten Intervallen geändert wird.
  5. Verfahren zum Kühlen eines Rohrs nach irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rohr (2) während des Eintauchens axial bewegt wird.
  6. Vorrichtung zum Tauchhärten eines Metallrohrs, die einen Kühlwasser enthaltenden Behälter, Taucheinrichtungen, um das Metallrohr aus der Umgebungsatmosphäre abwärts in das Kühlwasser zu bewegen, Halteeinrichtungen, um auf ein erhitztes Metallrohr sowohl von oberen als auch unteren Richtungen einen Preßdruck auszuüben und das Rohr für eine Drehung um seine Längsachse zu halten, Kühlwasser-Spritzeinrichtungen zum Spritzen von Kühlwasser an die inneren sowie äußeren Seiten des Metallrohrs im Inneren des Behälters und Austrageinrichtungen zum Empfangen des Metallrohrs am Ende des Kühlens von den genannten Halteeinrichtungen innerhalb des Behälters umfaßt,
    dadurch gekennzeichnet, daß

    die genannten Halteeinrichtungen (8) in Übereinstimmung mit dem besagten Rohr (2) innerhalb des Behälters (1) bewegbar sind,

    eine Mehrzahl von äußeren Düsen (59) an gegenüberliegenden Seiten der Bahn, längs welcher das Metallrohr (2) abwärts in den Behälter (1) bewegt wird, angeordnet sind,

    eine Innendüse (60) an einem Düsentragarm (61), welcher mit den erwähnten Taucheinrichtungen abwärts bewegt werden kann, derart angebracht ist, daß diese Innendüse (60) mit der Längsachse des Stahlrohrs (2) ausgerichtet ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die genannten Halteeinrichtungen (8) mehrere Paare von in einer Reihe in der Achsrichtung des Metallrohrs (2) angeordneten Stützrollen (9; 9a, 9b), einen die Stützrollen (9; 9a, 9b) in einer gemeinsamen Richtung drehenden Rollenantrieb (10), eine Mehrzahl von Halterollen (30), die für eine Vertikalbewegung oberhalb eines jeden Paares von Stützrollen (9; 9a, 9b) angeordnet sind, und Preßeinrichtungen (29), um die genannten Halterollen (30) gegen das Metallrohr (2) auf den besagten Stützrollen (9; 9a, 9b) zu pressen, umfassen.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die genannten Taucheinrichtungen eine oberhalb des erwähnten Behälters (1) sowie parallel zu dem Metallrohr (2) angeordnete drehende Welle (6), einen Drehantrieb (20), um diese drehende Welle (6) innerhalb des Bereichs eines bestimmten Winkels hin- und herzudrehen, sowie eine Merzahl von an der besagten drehenden Welle (6) befestigten und von dieser Welle radial sich erstreckenden Armen (7), an deren freiem Ende die genannten Halteeinrichtungen angebracht sind, umfassen.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der erwähnte Arm (7) einen oberhalb des besagten Behälters (1) angeordneten sowie in einer Position zum Empfang des Metallrohrs (2) oberhalb des besagten Behälters (1) bereitstehenden unteren Arm (7a) und einen oberhalb dieses unteren Arms (7a) angeordneten oberen Arm (7b) umfaßt, daß die Stützrollen (9; 9a, 9b), auf welchen das Metallrohr (2) ruht, am freien Ende des genannten unteren Arms (7a) angebracht sind und daß die erwähnten Preßeinrichtungen (29) am genannten oberen Arm (7b) angebaut sind.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die an der oberen Seite des freien Endes des genannten unteren Arms (7a) angebrachten Stützrollen (9; 9a, 9b) zwei nahe beieinander angeordnete Rollen (9a, 9b) sind, die zu einem Drehen um eine zu der erwähnten drehenden Welle (6) parallele Achse imstande sind, und daß die eine (9b) der besagten beiden Rollen, die näher zur erwähnten drehenden Welle (6) liegt, auf einem niedrigeren Niveau als die andere Rolle (9a) angeordnet ist.
  11. Vorrichtung nach irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erwähnten Kühlwasser-Spritzeinrichtungen ein kurbelförmiges Verbindungsrohr (63), an dem die besagte Innendüse (60) befestigt ist,und einen Wasserzuleitungsschlauch (65), der mit dem genannten Verbindungsrohr durch ein Drehgelenk (64) verbunden ist, enthalten, wobei der besagte Wasserzuleitungsschlauch (65) auf einer Verlängerung der erwähnten drehenden Welle (6) derart angeordnet ist, daß der Wasserzuleitungsschlauch (65) mit der drehenden Welle (6) fluchtet.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die besagte Innendüse (60) lösbar an dem erwähnten Verbindungsrohr (63) und dem genannten Düsentragarm (61) angebracht ist.
  13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die besagte Innendüse (60) ein Mundstück hat, dessen Mittelachse zur Mittelachse eines rückwärtigen Teils versetzt ist.
  14. Vorrichtung nach irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Mundstück der besagten Innendüse (60) sowie dem Metallrohr (2) auf den erwähnten Stützrollen (9; 9a, 9b) ein Abstand mit einer bestimmten Abmessung belassen ist und eine Abschirmplatte (66) oberhalb des Spiegels des Kühlwassers (3) in dem genannten Behälter (1) angeordnet ist, um zwischen das Mundstück der besagten Innendüse (60) und das Metallrohr (2) zu treten.
  15. Vorrichtung nach irgendeinem der Ansprüche 7 bis 14, dadurch gekennzeichnet, daß die erwähnten mehreren Paare von Halterollen (30) mit bestimmten Intervallen in der Achsrichtung des Metallrohrs (2) angeordnet und Einstelleinrichtungen (51) vorgesehen sind, um diejenigen der erwähnten Halterollen (30), die wenigstens einem Ende des Metallrohrs (2) in der Achsrichtung des Metallrohrs (2) entsprechen, zu bewegen.
  16. Vorrichtung nach irgendeinem der Ansprüche 8 bis 15, dadurch gekennzeichnet, daß der erwähnte Rollenantrieb einen am einen Ende der genannten drehenden Welle (6) angebrachten sowie in derselben Richtung wie der besagte Arm sich erstreckenden Getriebekasten umfaßt, daß Antriebszahnräder und getriebene Räder im Inneren des genannten Getriebekastens aufgenommen sind sowie um ihre zu der erwähnten drehenden Welle (6) parallelen Achsen drehen, daß außerhalb des besagten Behälters (1) ein mit den genannten Antriebsrädern durch Kardangelenke verbundener Motor angeordnet ist, daß sich die Rollenwellen parallel zu der genannten drehenden Welle erstrecken sowie die besagten Stützrollen an diesen Rollenwellen befestigt sind und daß drehende/verbindende Stäbe die erwähnten Rollenwellen mit den genannten getriebenen Rädern durch andere Kardangelenke koppeln.
EP19840900872 1984-02-17 1984-02-17 Apparat zum tauchhärten von metallrohren Expired EP0172250B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1984/000049 WO1985003726A1 (en) 1984-02-17 1984-02-17 Apparatus for dip-hardening metal pipe

Publications (3)

Publication Number Publication Date
EP0172250A1 EP0172250A1 (de) 1986-02-26
EP0172250A4 EP0172250A4 (de) 1987-08-24
EP0172250B1 true EP0172250B1 (de) 1992-05-06

Family

ID=13818243

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840900872 Expired EP0172250B1 (de) 1984-02-17 1984-02-17 Apparat zum tauchhärten von metallrohren

Country Status (3)

Country Link
EP (1) EP0172250B1 (de)
DE (1) DE3485709D1 (de)
WO (1) WO1985003726A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9200504A (pt) * 1992-02-14 1993-08-17 Mannesmann Sa Equipamento e processo para temperar tubos de aco
US5626693A (en) * 1995-07-19 1997-05-06 Neturen Co., Ltd. Method and apparatus for quenching a tubular workpiece
EP1055737B1 (de) * 1999-05-07 2004-04-14 Ermat Vorrichtung zum Drehen von zylindrischen Stäben während eines Abschreckverfahrens
CN106636597B (zh) * 2016-12-25 2018-03-20 重庆润跃机械有限公司 齿轮淬火处理装置
IT201700025512A1 (it) * 2017-03-08 2018-09-08 Gf Elti S R L Apparecchiatura per il supporto e la rotazione, attorno al loro asse, di corpi a conformazione allungata, particolarmente per il supporto e la rotazione di tubi in metallo durante il loro raffreddamento nell'esecuzione di trattamenti termici.
IT201700025495A1 (it) * 2017-03-08 2018-09-08 Gf Elti S R L Apparecchiatura per il supporto di tubi in metallo durante la loro immersione in vasche di raffreddamento nell'esecuzione di trattamenti termici.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1245799A (en) * 1967-11-27 1971-09-08 Ilse Wewer Shaft tempering and straightening machine and a method of straightening workpieces
JPS5383910A (en) * 1976-12-29 1978-07-24 Nippon Steel Corp Immersion cooling apparatus for high temperatus matallic pipe
JPS6020448B2 (ja) * 1981-05-06 1985-05-22 日本鋼管株式会社 鋼管の焼入装置
DE3225846C2 (de) * 1982-07-07 1984-05-17 Eisenhütte Prinz Rudolph, Zweigniederlassung der Salzgitter Maschinen und Anlagen AG, 4408 Dülmen Vorrichtung zum Abschrecken der Innen- und Außenoberfläche von Rohren im Ölbad
JPS5923819A (ja) * 1982-07-30 1984-02-07 Kawasaki Steel Corp 管材の冷却方法
JPS6039733B2 (ja) * 1982-08-19 1985-09-07 川崎製鉄株式会社 鋼管浸漬焼入装置における管内面冷却水噴射時期決め装置

Also Published As

Publication number Publication date
WO1985003726A1 (en) 1985-08-29
EP0172250A4 (de) 1987-08-24
EP0172250A1 (de) 1986-02-26
DE3485709D1 (de) 1992-06-11

Similar Documents

Publication Publication Date Title
EP0172250B1 (de) Apparat zum tauchhärten von metallrohren
US3626641A (en) Continuous cleaning apparatus
CA1223724A (en) Apparatus for immersion hardening metallic pipe
US3854707A (en) Apparatus for inductively heating and quench hardening surfaces on a crankshaft
US3306426A (en) Rotary conveyor apparatus
JPS5827342B2 (ja) チヨウシヤクブツタイノヒフクホウホウオヨビソウチ
JP2009161787A (ja) サイジングプレス用熱処理設備
US3207286A (en) Vial loading apparatus
KR900008965B1 (ko) 금속관의 침지소입장치
CN115570099A (zh) 锻件加热用自动上料机构
JPS6186178A (ja) 工作物を清掃するための方法及び装置
US3909314A (en) Method for inductively heating and quench hardening surfaces on a crankshaft
JPS5938331A (ja) 鋼管の浸漬焼入方法
JPS5831890Y2 (ja) 管状部材酸洗設備における管状部材洗浄装置
JPS6028688Y2 (ja) 鋼管浸漬焼入装置における鋼管回転駆動ロ−ラ
JP4392982B2 (ja) コンロッドの連続式ショットピ−ニング設備及び専用治具
JPS6028687Y2 (ja) 鋼管浸漬焼入装置における管内面冷却装置
JPS60125327A (ja) 管材の回転焼入方法
JPS5938330A (ja) 鋼管の浸漬焼入方法および装置
KR100430056B1 (ko) 자동 탄 이송장치
GB2123040A (en) Method of and apparatus for chilling and hardening heated pipes
JPS5935627A (ja) 鋼管浸漬焼入装置における管内面冷却水噴射時期決め装置
JPS60262917A (ja) 鋼管焼入れ装置
US3139170A (en) Blasting machine loader
JP2001335839A (ja) 温間鍛造用ビレットヒータ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19851014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 19870824

17Q First examination report despatched

Effective date: 19890224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3485709

Country of ref document: DE

Date of ref document: 19920611

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980817

Year of fee payment: 15

Ref country code: FR

Payment date: 19980817

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980824

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST