EP0156334B1 - Méthode et dispositif de simulation (tête artificielle électronique) pour la simulation des caractéristiques de transmission de l'oreille en champ libre - Google Patents

Méthode et dispositif de simulation (tête artificielle électronique) pour la simulation des caractéristiques de transmission de l'oreille en champ libre Download PDF

Info

Publication number
EP0156334B1
EP0156334B1 EP85103441A EP85103441A EP0156334B1 EP 0156334 B1 EP0156334 B1 EP 0156334B1 EP 85103441 A EP85103441 A EP 85103441A EP 85103441 A EP85103441 A EP 85103441A EP 0156334 B1 EP0156334 B1 EP 0156334B1
Authority
EP
European Patent Office
Prior art keywords
pass filters
parameters
ear
elements
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85103441A
Other languages
German (de)
English (en)
Other versions
EP0156334A2 (fr
EP0156334A3 (en
Inventor
Klaus Dr. Genuit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEAD Acoustics GmbH Kopfbezogene Aufnahme und Wiedergabetechnik Messtechnik
Original Assignee
HEAD Acoustics GmbH Kopfbezogene Aufnahme und Wiedergabetechnik Messtechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEAD Acoustics GmbH Kopfbezogene Aufnahme und Wiedergabetechnik Messtechnik filed Critical HEAD Acoustics GmbH Kopfbezogene Aufnahme und Wiedergabetechnik Messtechnik
Priority to AT85103441T priority Critical patent/ATE82812T1/de
Publication of EP0156334A2 publication Critical patent/EP0156334A2/fr
Publication of EP0156334A3 publication Critical patent/EP0156334A3/de
Application granted granted Critical
Publication of EP0156334B1 publication Critical patent/EP0156334B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/60Analogue computers for specific processes, systems or devices, e.g. simulators for living beings, e.g. their nervous systems ; for problems in the medical field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06JHYBRID COMPUTING ARRANGEMENTS
    • G06J1/00Hybrid computing arrangements

Definitions

  • the invention is based on an electroacoustic simulation method according to the preamble of claim 1 and a corresponding device according to the preamble of claim 2.
  • a known device of this type US-A-3 970 787
  • an attempt is made to electronic or electrical in the manner of a directional mixer
  • switching means that represent a suitable mean outer ear transfer function for assumed sound incidence directions.
  • Such a method then also makes it necessary to create a transfer function by measurement for each desired transfer direction, and it is additionally proposed to switch the characteristics of the individual elements, in particular filters, used for the simulation circuits by appropriately selecting the filter sizes, so that, for example, at Rotation of the head of a test subject by a predetermined twist angle of, for example, 10 ° by appropriate changes in the filter properties of the filters involved can then be worked with the transfer function measured for this angular direction.
  • a predetermined twist angle of, for example, 10 ° by appropriate changes in the filter properties of the filters involved can then be worked with the transfer function measured for this angular direction.
  • intermediate values cannot be set, despite the considerable outlay on electrical circuits, since, for understandable reasons, only a finite number of measured transfer functions can be used.
  • outer ear transmission functions in the time domain would consist, for example, in that shock responses measured on test subjects are appropriately averaged and stored for all directions of sound incidence, which initially requires an extremely high storage space requirement, depending on the desired screening.
  • the output signal would be the so-called convolution of the input signal with the two shock responses valid for the respective direction of sound incidence (for the left and right ear).
  • signal processing in real time is practically impossible, since at least the signal processors currently available are only able to carry out such processing with considerable effort.
  • the possibility of performing the so-called Fourier transformation of the input signal with subsequent multiplication of the corresponding transfer functions and reverse transformation is also ruled out.
  • the invention is therefore based on the object to enter new territory here and to create an outer ear simulator as a so-called electronic artificial head, which is capable of a stepless directional adjustment without great effort, taking into account the human outer ear transmission properties, by amount and phase for all frequencies deliver, and which works in spite of the simplified structure with particularly high accuracy, that is, carries out the simulation so that the transmission properties of the electroacoustic equivalent circuit of the outer ear correspond practically identically to those of the human outer ear in free-field sound.
  • the invention solves this problem with the characterizing features of claim 1 and the characterizing features of claim 2 and has the advantage that corresponding ear signals can be generated with little effort in any direction of sound incidence in the free field, which can serve as headphone reproduction. This enables the realization of a natural sound image.
  • the circuit parts necessary for the practical implementation of the outer ear simulator according to the invention are limited to runtimes, simple filters, high and low passes and possibly resonance systems.
  • the parameters required for setting the circuits during operation such as the size of a transit time or the cut-off frequency of a low-pass filter, can be determined directly from physically predetermined geometric dimensions using a model for the analytical description of the outer ear transmission properties. For the various directions of incidence of the sound, only a few filter parameters of the model of the electronic artificial head represented by an electronic circuit change in addition to the transit times.
  • the electronic artificial head generates ear signals familiar to the ear, so that on the one hand the in-head localization is avoided and on the other hand the setting of any hearing event directions is possible.
  • artificial head technology it is possible with the electronic artificial head to spatially correctly mix signals from support microphones with the head-related recording.
  • multi-track recording technology the use of the electronic artificial head enables the signals from individual sound sources to be recoded so that the entire area available to human hearing can be used to generate hearing events when the head is played back.
  • the direction of the hearing event can also be changed during a recording, so that movements of a sound source can be simulated.
  • the loudspeaker compatibility of the electronic artificial head is comparable to artificial head recording systems, since both systems have or approximate free field transmission properties that are equivalent to one another.
  • outer ear simulator according to the invention can also be coupled to an external computer via an interface, so that the individual transmission functions of test subjects or the effect of hearing aids (HDO devices, in-the-ear devices), anomaly of the ear cup or change in the eardrum impedance are electrically simulated can be.
  • the basic idea of the present invention is to divide the physical causes of the outer ear transmission properties by differentiation and tracing back to predetermined, then simplified acoustic elements, for example the upper body, shoulder, head, auricle with cavum conchae cavity, ear canal and eardrum; All of these bodies have different influences on the outer ear transmission properties, depending on the frequency, depending on their geometric dimensions, the resulting transfer function of the outer ear then being composed of the complex superimpositions of the resonances, reflections and diffraction waves caused by all partial bodies.
  • Direction-dependent features are essentially determined by the elements, upper body, shoulder and auricular rim.
  • the basic calculation of such dependencies is possible (using the KIRCHHOFF diffraction integral, derived from the GREEN theorem), but it is unsuitable for a clear representation, but it is used to describe the mean outer ear transmission function and its simulation in a model, as by aimed at the invention is needed.
  • the invention therefore does not approach the solution of the problem empirically, but begins with the consideration and basis of the mathematically effectively determined, complex diffraction and reflection relationships and the resulting transfer functions, which are converted into a (simplified) model by analytical consideration, which can be represented by electrical circuits, whereby, for example, the auricle or head is then represented by the first mathematical consideration of the superposition of several diffraction bodies in the form of certain circuits, with a complex addition of the respective reflected and diffracted sound components simulated by the electrical circuit blocks for the overall outer ear transmission function the corresponding parts or areas of the body.
  • a layer at different levels is taken into account by an additional term (superposition principle).
  • such a transfer function is approximated by a transit time in connection with a resonance system, as follows: where V n corresponds to the amplification, Q n the quality and f on the resonance frequency of the opening n and the parameters of the resonance system - resonance frequency, quality, amplification - are functionally related to the geometric dimensions - radius and depth - of the auricle openings.
  • the invention is therefore based on the knowledge that the external, acoustically effective geometry of a human being has a mathematically at least good approximation to the measured outer ear transfer function. Starting from average geometric dimensions, it is therefore possible in this way to determine an average outer ear transfer function for each direction of sound incidence without additional effort, which in a suitable manner is the one required for human hearing Transmission properties, since all features required for the signal analysis and pattern recognition processes in the ear are taken into account due to the physical connection of the outer ear and its transmission properties. The realization is then possible by the assumption that these mathematically describable physical causes of the outer ear transmission properties can be approximated with a model that is based on systems known from telecommunications (high and low passes, delay elements, resonance elements and the like). This model allows the outer ear transfer function to be approximated for all sound incidence directions directly on the basis of physical parameters by varying a few parameters.
  • the system outer ear with its direction-dependent transmission properties describes in the communications technology sense the frequency-dependent distortions that the sound signals experience depending on the direction of sound incidence during the recoding into ear signals for the message receiver "human hearing".
  • FIG. 3 of the direction-determining part of an outer ear simulator 10 - only one channel - the approximation by circuit blocks for the head area at 10a, for the auricle area at 10b and for the area divided by dash-dotted lines
  • the shoulder and upper body area is shown at 10c.
  • the cut-off frequencies of the high and low passes, the amounts of the transit time and the coefficients are determined directly from the parameters head size, sound incidence direction and position of the ear canal entrance.
  • the table given on the previous page relates to geometric data of six test persons determined by measurement, this data can be used as geometric mean values when referring to the parameters of the individual approximation elements as shown in FIG. 3, and the calculation of the circuit elements.
  • the bet of the averaged geometric parameters can be permanently programmed to emulate mean outer ear transmission functions.
  • the influence of the direction-independent elements of the ear canal and carvum conchae cavity must be determined.
  • the resonance property of this cavity can be approximated very well by bandpass systems in the form of series resonant circuits.
  • the parameters (resonance frequency, quality and amplification) are also functionally related to the geometric dimensions of the cavity.
  • the ear canal can be understood as a tube with a complex firing impedance, the eardrum impedance. To a good approximation, this system is described by a model consisting of transit time, high pass and coefficient.
  • ear signals can be generated via the outputs for the free-field simulation, which correspond to the ear signals of a "middle" test person for the set sound incidence directions.
  • the second output, designated 14b in FIG. 1, -14a is the free-field equalized output - is used to emulate the free-field outer ear transmission functions.
  • the parameters of the circuit parts and - Blocks such as the size of a transit time or cut-off frequency of a low-pass filter or the like, can be determined directly with the aid of a model for the analytical description of the outer ear transmission properties from physically predetermined geometric dimensions, namely from the table given above, with the further, very significant conclusion that by Variation or change of such or in any case predetermined parameters of the circuit blocks here, and as can be understood immediately, completely continuously opens up the possibility of the corresponding ear signals for each direction of sound incidence in the horizontal and median plane to generate, so that with such an electronic artificial head, a system is available which, for any sound incidence directions, corresponds to a free field sound system Headphone playback generated and the realization of a particularly natural, impressive sound. An improvement in transparency is also guaranteed for loudspeaker reproduction analogous to artificial head technology. There are therefore not
  • FIG. 1 which comprises coefficients, low-pass, high-pass, all-pass, bandpass, adder, resonance elements and the like only for one channel combined by circuit blocks, only the runtimes for the different sound incidence directions only change few filter parameters. It is therefore also possible to simulate the transfer function for a sound incidence direction by determining these only a few parameters.
  • the individual circuit blocks are designated in FIG. 1 for the head region with 10a ', for the ear cup and border with 10b' and for the shoulder and upper body with 10c '; an addition element which effects the additive superimposition of the respective complex partial transmission functions bears the reference number 15.
  • the circuit block of the direction-independent part comprises the areas of the ear canal and cavum conchae and is designated by 16.
  • a further advantageous embodiment in the present invention is that all the runtimes occurring in the outer ear model are combined in a basic runtime circuit block 17 which is upstream of the circuit blocks 10a ', 10b' and 10c 'and which represents and implements the required signal delays and runtimes.
  • the present invention draws a digital realization of the high-quality construction Runtimes into consideration, which in principle take place in such a way that all the runtime elements assigned to the respective sub-models or circuit element chains are arranged as shown in FIG. 1, that is to say they are drawn in front of the individual other circuits, which makes it possible to use only one analog / Get by digital implementation.
  • a 16-bit AD / converter is used for the basic runtime block 17, which operates at a sampling rate of 44 kHz, for example, which is sufficiently high.
  • the quantized samples are read into a shift register after the conversion.
  • the delay time is then determined by the time difference between writing and reading out different memory locations, which is controlled by a microprocessor, which is to be explained below and effects central control of the individual elements. Due to the short memory access times, it is possible to read out all memory locations required for runtime simulation (8 runtimes per channel - there are left and right channels) during a sampling period. With a fast DA / converter, the delayed samples can be output again in time-division multiplexing. Based on this concept, only one or two DA / converters (one converter for each channel) are then necessary.
  • the filters and coefficients necessary for the simulation are then preferably implemented with the help of controllable operational amplifiers, which further will be explained below.
  • a digital filter implementation - for example with fast signal processors - is also within the scope of the invention, but it is advisable, at least for the time being, in particular for cost and effort reasons.
  • the electronic artificial head (outer ear simulator) forming the invention is preferably under a central control, which considerably simplifies practical handling;
  • a microprocessor 18 is provided, in which, for example, the values of the averaged geometric parameters can also be permanently programmed, which are required for emulating mean outer ear transmission functions.
  • the corresponding control parameters can then be calculated by the processor 18 and transferred directly to the controllable circuit blocks.
  • outer ear simulator according to the invention to an external computer via an interface; this possibility is denoted by 19 in the more detailed representation of FIG. 4, where, assigned to the microprocessor 18 ', the keypad of an external computer, for example a personal computer, is shown.
  • FIG. 2a shows a free field outer ear transmission function (I) simulated according to the invention - here without upper body simulation - compared to an effective one measured, i.e. empirically determined transfer function, as shown in (II).
  • FIG. 2b shows the simulation of individual acoustically effective parameters, to be referred to as free-field partial outer ear transmission functions, namely for the area of the ear canal at (1), the area of the shoulder and pinna border at (2) and the cavum conchae at (3);
  • the outer ear transfer function (I) of Figure 2a is then composed of these two partial courses.
  • the individual circuit elements of FIG. 3 represent the head, auricle border and shoulder / upper body areas of the circuit blocks of FIG. 1 in more detail, they connect to the basic runtime block 17 realized with digital elements and each contain individual, not yet mentioned addition elements 15a, 15b, 15c, 15d with the end adder 15 'with the output connection 20 leading to the direction-independent elements.
  • the high and low passes and the adders summarizing their output signals.
  • FIG. 4 represents the basic circuit diagram of a possible form of implementation of an outer ear simulator according to the present invention, with a block 21 containing operating and input elements and display elements, assigned to the microprocessor system 18 ', to which a central time control 22 is also assigned or contained in it.
  • the microprocessor influences the parameters of, for example, eight analog circuit channels 24 present here, which operate with their outputs on the summation element 15 ′′.
  • the analog circuit channels 24 contain first and third order low and high pass filters 24a, 24b, bandpasses 24c and so-called coefficient elements 24d with a gain of - 1 ... + 1.
  • the delay elements for the respective channels are realized as digital delay lines and arranged for this purpose so that only an AD / conversion to a digitization block 26 connected downstream of an input low-pass filter 25 is required.
  • the quantized samples are read into a freely addressable memory 27 (delay memory RAM).
  • the delay times that result between reading in and reading out the samples at different storage locations determine the time difference, the length of the register being determined by the maximum necessary delay time. Since a memory access is very short compared to the already mentioned sampling rate of preferably 44 kHz, all the sampling values necessary for the simulation of the different transit times can be read out in succession during a sampling period.
  • the right channel area for example, is also designated 30a, and an associated left channel area is designated 30b;
  • a low-pass filter 31a, 31b is also connected downstream of the adder elements 15 ', the right ear signal at the output 32a of the low-pass filter 31a and the left ear signal at the output 32b of the low-pass filter 31b.
  • FIG. 5 A possible embodiment of a circuit element which can be designed as a low-pass filter or high-pass filter of the 1st order is shown in FIG. 5; the filter is constructed with the aid of a so-called "Operational Transconductance Amplifier - OTA" 33, which is connected as a controllable resistor, in which the forward steepness (transconductance) is the reciprocal of the gain and can be set with the aid of an externally fed direct current I St.
  • the transfer function of either a low pass or a high pass results for the overall arrangement.
  • a normal operational amplifier 34 is still connected downstream of the OTA 33; the control current results from the lower circuit part, the control voltage U St being fed to an operational amplifier 35 and reaching the OTA 33 via an FET transistor 36 at the output; only a capacitor C on the feedback branch and the resistors R3 and R4 in the input circuit for the inverting connection are essential to a feedback line 37.
  • a limit frequency proportional to the control current I St then results in the case of such a circuit, for example from the following formula Overall, such a circuit of FIG. 5 results in a voltage-controlled low-pass / high-pass filter element.
  • the circuit in FIG. 6 is a block diagram of an interface circuit for generating the control voltages U St , which can be taken off at the output 38 of the circuit and are required for the parameter setting of the filters and coefficient elements.
  • the microprocessor 18 '(FIG. 4) writes the parameter data word via a data bus line 39 into a data register 40. At its outputs, the data word is converted into a voltage by a digital / analog converter 41 with a downstream current-voltage converter 42 for example 0 ... -10 V implemented.
  • sample + hold circuit 45 consists only of a storage capacitor C and a very high-resistance voltage follower 46 as an operational amplifier. If the capacitor C is charged, the channel is switched off again with an inhibit signal which is output by the address register 43. The whole process runs in the the same way cyclically for all other channels. In this way, the voltages across the holding capacitors C are refreshed in each case.
  • An existing decoding logic 47 generates the loading pulses for the two registers 43 and 40 with the aid of address bus input lines 48 and control bus input lines 49 from the microprocessor system 18 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Physiology (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)
  • Prostheses (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)
  • Headphones And Earphones (AREA)
  • Telephone Set Structure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Claims (12)

  1. Procédé de simulation électro-acoustique pour simuler les propriétés de transmission de l'oreille externe humaine dans le cas d'une émission de son en champ libre, par exemple par le montage en série et en parallèle de filtres passe-haut (24b), passe-bas (24a), passe-tout, passe-basses, de systèmes résonnants (24c), d'additionneurs (15'') et de circuits électriques réalisant des temps de parcours (24d) et qui, sur la base d'un modèle comprenant au moins l'un des éléments tête et pavillon de l'oreille, simulent chaque élément par approximation, chaque fois avec des fonctions complexes de transfert d'oreille externe, en amplitude et en phase et dont les paramètres des circuits électriques sont transmis par un calculateur (18') à ces circuits pour les commander, procédé caractérisé en ce qu'on calcule les paramètres à partir des dimensions géométriques prédéterminées de manière physique de l'oreille externe humaine pour des directions d'incidence de son quelconques à l'aide d'un calculateur.
  2. Dispositif de copie électro-acoustique des propriétés de transfert correspondant à l'oreille externe humaine en cas d'émission de son en champ libre, dispositif qui comporte des circuits électriques tels que par exemple des circuits électriques branchés en série et en parallèle avec des filtres passe haut (24b) et des filtres passe bas (24a), des filtres passe tout, des filtres passe basse, des systèmes résonnants (24c), des additionneurs (15'') et des circuits de temps de parcours (24d), et qui sur la base d'un modèle comprenant au moins les éléments tête et pavillon de l'oreille copient chaque élément par approximation, en amplitude et en phase par des fonctions de transfert complexes de l'oreille externe, dispositif comportant également un calculateur (18') qui transmet les paramètres aux circuits électriques pour les commander, caractérisé en ce que le calculateur comporte des moyens calculant les paramètres à partir des dimensions géométriques prédéterminées de manière physique de l'oreille externe humaine pour des directions d'incidence de son, quelconques.
  3. Dispositif selon la revendication 2, caractérisé en ce que les circuits électriques sont décomposés en une partie dépendante de la direction (12) et une partie indépendante de la direction (13) reliée à la précédente, et les temps de parcours sont extraits des éléments de circuit de la partie dépendante de la direction et sont associés à un bloc de temps de parcours de base (17) en amont.
  4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que les circuits électriques comportent chaque fois un nombre prédéterminé d'éléments de circuit, distincts (filtres passe-haut (24b), filtres passe-bas (24a), filtres passe-bande (24c), éléments de coefficient (24d)) suivant le modèle, selon un nombre prédéterminé et un montage en parallèle ou en série, circuits correspondant à la zone de la tête (10a), à la zone périphérique du pavillon de l'oreille (10b) et à la zone de l'épaule et du buste (10c), et dont les sorties sont reliées par des éléments d'addition (15a, 15b, 15c, 15d) et sont raccordées à un élément d'addition final (15') auquel est reliée la zone partielle de circuit (16) comprenant le canal de l'oreille et le limaçon (cavum conchae).
  5. Dispositif selon l'une des revendications 2 à 4, caractérisé en ce que les paramètres des différents éléments de circuit (filtres passe-haut (24b), filtres passe-bas (24a), filtres passe-bande (24c), éléments de coefficient (24d), temps de parcours) sont définis à partir des dimensions géométriques moyennes prédéterminées de manière physique, et en ce qu'au moins certains éléments de circuit comportent des dispositifs de réglage des paramètres pour générer en continu les signaux d'oreille correspondants en champ libre suivant chaque direction d'incidence de son.
  6. Dispositif selon l'une des revendications 2 à 5, caractérisé en ce qu'il comporte des lignes de retard numériques pour représenter les temps de retard (temps de parcours de base).
  7. Dispositif selon la revendication 6, caractérisé en ce que pour former des temps de parcours numériques, il est prévu uniquement un convertisseur analogique/numérique (26) à partir duquel on inscrit les valeurs de détection quantifiées du signal d'entrée analogique dans un registre à décalage (27) de façon que les différences de temps qui apparaissent entre l'inscription et la lecture des valeurs de détection aux différents emplacements de mémoire définissent les temps de retard respectifs.
  8. Dispositif selon la revendication 6 ou 7, caractérisé en ce que le registre à décalage est une mémoire de temporisation adressable librement (mémoire vive RAM 27).
  9. Dispositif selon une ou plusieurs des revendications 2 à 8, caractérisé en ce que pour régler les différents paramètres de commande des différents éléments de circuit des blocs de circuit respectifs, il est prévu un circuit central de commande et de mémoire (système à microprocesseur 18) qui reçoit de l'extérieur les directions d'incidence de son, souhaitées pour déterminer les paramètres de commande.
  10. Dispositif selon l'une des revendications 2 à 9, caractérisé en ce qu'une commande de déroulement de temps (22), centrale est associée au système à microprocesseur (18') qui commande le déroulement de la numérisation des signaux d'entrée analogiques qui lui sont appliqués et définit la différence de temps pour générer les temps de parcours dans la mémoire de retard ainsi que la récupération des signaux et enfin commande un multiplexeur de signal (29) en aval de manière que les différents canaux (24) comportant les éléments de circuit dans la partie de circuit analogique en aval reçoivent les temps de parcours qui leur sont respectivement attribués.
  11. Dispositif selon l'une des revendications 2 à 10, caractérisé par un filtre passe-bas/passe-haut, commandé en tension, avec une fréquence limite réglable (fg) qui reçoit une tension de commande pour modifier ses propriétés de transfert.
  12. Dispositif selon l'une des revendications 2 à 11, caractérisé par un dispositif commandé par un microprocesseur (18') pour générer les tensions de commande fournies aux éléments de circuit respectifs pour déterminer les paramètres, avec un registre d'adresses et un registre de données (43, 40), un convertisseur numérique/analogique (41) en aval et un multiplexeur (44) commandé par un registre d'adresses (43) qui fournit la tension de commande de sortie respective à un circuit d'échantillonnage et de maintien (45) respectif associé à chaque élément de circuit.
EP85103441A 1984-03-27 1985-03-23 Méthode et dispositif de simulation (tête artificielle électronique) pour la simulation des caractéristiques de transmission de l'oreille en champ libre Expired - Lifetime EP0156334B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85103441T ATE82812T1 (de) 1984-03-27 1985-03-23 Simulationsverfahren und vorrichtung (elektronischer kunstkopf) zur nachbildung der uebertragungseigenschaften des menschlichen aussenohrs bei freifeldbeschallung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3411235 1984-03-27
DE3411235 1984-03-27
DE19853509358 DE3509358A1 (de) 1984-03-27 1985-03-15 Simulationsverfahren und vorrichtung (elektronischer kunstkopf) zur nachbildung der uebertragungseigenschaften des menschlichen aussenohrs bei freifeldbeschallung
DE3509358 1985-03-15

Publications (3)

Publication Number Publication Date
EP0156334A2 EP0156334A2 (fr) 1985-10-02
EP0156334A3 EP0156334A3 (en) 1988-01-27
EP0156334B1 true EP0156334B1 (fr) 1992-11-25

Family

ID=25819754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85103441A Expired - Lifetime EP0156334B1 (fr) 1984-03-27 1985-03-23 Méthode et dispositif de simulation (tête artificielle électronique) pour la simulation des caractéristiques de transmission de l'oreille en champ libre

Country Status (8)

Country Link
US (1) US4672569A (fr)
EP (1) EP0156334B1 (fr)
AT (1) ATE82812T1 (fr)
AU (1) AU573493B2 (fr)
BR (1) BR8501394A (fr)
CA (1) CA1237192A (fr)
DE (2) DE3509358A1 (fr)
DK (1) DK134285A (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709397C2 (de) * 1987-03-21 1997-10-09 Head Acoustics Gmbh Verfahren zur Filterung von Schallsignalen
EP0349599B2 (fr) * 1987-05-11 1995-12-06 Jay Management Trust Prothese auditive paradoxale
DE3737873C2 (de) * 1987-11-07 1994-02-24 Head Acoustics Gmbh Verwendung von Hörsprechgarnituren zur Verbesserung der Sprachverständlichkeit in störschallerfüllter Umgebung
DE3922118A1 (de) * 1989-07-05 1991-01-17 Koenig Florian Voll-richtungsvariable aussenohr-individualanpassung in der kopfbezogenen stereo-tonuebertragung
US5751817A (en) * 1996-12-30 1998-05-12 Brungart; Douglas S. Simplified analog virtual externalization for stereophonic audio
FR2851877B1 (fr) * 2003-02-28 2005-05-13 Procede de mesure de fonctions de transfert acoustiques associees a la morphologie d'un individu
US7680289B2 (en) * 2003-11-04 2010-03-16 Texas Instruments Incorporated Binaural sound localization using a formant-type cascade of resonators and anti-resonators
DE10361954B4 (de) * 2003-12-23 2007-08-30 Oliver Klammt Hörsystem und Verfahren zur Einstellung eines solchen, Verfahren zur Erkennung von charakteristischen Schallspektren, sowie entsprechende Computerprogramme und entsprechende computerlesbare Speichermedien
TWI521927B (zh) 2007-01-09 2016-02-11 皇家飛利浦電子股份有限公司 無線通信系統

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294909A (en) * 1962-12-19 1966-12-27 William F Caldwell Electronic analog ear
US3432618A (en) * 1965-07-12 1969-03-11 Santa Rita Technology Inc Method and system of analyzing the inner ear
US3570143A (en) * 1968-11-08 1971-03-16 Nasa Waveform simulator
US3970787A (en) * 1974-02-11 1976-07-20 Massachusetts Institute Of Technology Auditorium simulator and the like employing different pinna filters for headphone listening
US4105864A (en) * 1975-07-17 1978-08-08 Teledyne Industries, Inc. Stereo and spaciousness reverberation system using random access memory and multiplex
US4316060A (en) * 1980-01-04 1982-02-16 Dbx, Inc. Equalizing system
DE3264784D1 (en) * 1981-10-20 1985-08-22 Craigwell Ind Ltd Improvements in or relating to hearing aids
US4581758A (en) * 1983-11-04 1986-04-08 At&T Bell Laboratories Acoustic direction identification system

Also Published As

Publication number Publication date
EP0156334A2 (fr) 1985-10-02
AU573493B2 (en) 1988-06-09
DK134285D0 (da) 1985-03-25
CA1237192A (fr) 1988-05-24
DK134285A (da) 1985-09-28
BR8501394A (pt) 1985-11-26
AU4043085A (en) 1985-10-03
DE3586850D1 (de) 1993-01-07
US4672569A (en) 1987-06-09
EP0156334A3 (en) 1988-01-27
ATE82812T1 (de) 1992-12-15
DE3509358A1 (de) 1985-11-14

Similar Documents

Publication Publication Date Title
DE69726262T2 (de) Tonaufnahme- und -wiedergabesysteme
DE69522971T2 (de) Binaurale Synthese, kopfbezogene Übertragungsfunktion, und ihre Verwendung
DE68922885T2 (de) Verfahren und Vorrichtung zur Schallbilderzeugung.
DE3850417T2 (de) Vorrichtung und Verfahren zur dreidimensionalen Schalldarstellung unter Verwendung einer bionischen Emulation der menschlichen binauralen Schallortung.
DE60304358T2 (de) Verfahren zur verarbeitung von audiodateien und erfassungsvorrichtung zur anwendung davon
DE2244162C3 (de) «system
DE69930447T2 (de) Verarbeitungssystem zur Schallbildlocalisierung von Audiosignalen für linkes und rechtes Ohr
DE69433258T2 (de) Raumklangsignalverarbeitungsvorrichtung
DE4328620C1 (de) Verfahren zur Simulation eines Raum- und/oder Klangeindrucks
DE69714782T2 (de) Mehrkanal-audioverbesserungssystem zur verwendung in aufzeichnung und wiedergabe und verfahren zu seiner herstellung
DE69415665T2 (de) Verfahren und gerät zur stereophonen wiedergabe
DE69417571T2 (de) Vorrichtung zur verarbeitung von binauralen signalen
AT394650B (de) Elektroakustische anordnung zur wiedergabe stereophoner binauraler audiosignale ueber kopfhoerer
EP0156334B1 (fr) Méthode et dispositif de simulation (tête artificielle électronique) pour la simulation des caractéristiques de transmission de l'oreille en champ libre
DE112006002548T5 (de) Vorrichtung und Verfahren zur Wiedergabe von virtuellem Zweikanal-Ton
DE2344259C3 (de) Mehrkanalsystem zur Aufnahme und Wiedergabe stereofoner Darbietungen
DE3512155C2 (fr)
DE19847689B4 (de) Vorrichtung und Verfahren zur dreidimensionalen Tonwiedergabe
EP0025509B1 (fr) Procédé de transmission stéréophonique et moyens pour la mise en oeuvre de ce procédé
DE3737873C2 (de) Verwendung von Hörsprechgarnituren zur Verbesserung der Sprachverständlichkeit in störschallerfüllter Umgebung
DE2023377C3 (de) Verfahren zur räumlichen Wiedergabe von Schallsignalen und Anordnung zu seiner Durchfuhrung
DE19628261A1 (de) Verfahren und Vorrichtung zum elektronischen Einbetten von Richtungseinsätzen bei Zweikanal-Ton
DE4440451C2 (de) Richtungssteller für zweikanalige Stereofonie
DE19514105A1 (de) Kopfhörer-Raumklanganpassungsschaltung
DE3332694C2 (de) Verfahren zum dreidimensional stereophonen Aufnehmen von Schallsignalen und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEAD STEREO GMBH , KOPFBEZOGENE AUFNAHME- UND WIED

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880722

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEAD ACOUSTICS GMBH KOPFBEZOGENE AUFNAHME- UND WIE

17Q First examination report despatched

Effective date: 19891221

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEAD ACOUSTICS GMBH KOPFBEZOGENE AUFNAHME- UND WIE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921125

Ref country code: NL

Effective date: 19921125

REF Corresponds to:

Ref document number: 82812

Country of ref document: AT

Date of ref document: 19921215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3586850

Country of ref document: DE

Date of ref document: 19930107

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930331

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930317

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950406

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960325

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: HEAD ACOUSTICS G.M.B.H. KOPFBEZOGENE AUFNAHME- UN

Effective date: 19960331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970305

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970319

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970324

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980406

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101