EP0150364B1 - X-ray diagnostic installation with an x-ray tube - Google Patents

X-ray diagnostic installation with an x-ray tube Download PDF

Info

Publication number
EP0150364B1
EP0150364B1 EP84115065A EP84115065A EP0150364B1 EP 0150364 B1 EP0150364 B1 EP 0150364B1 EP 84115065 A EP84115065 A EP 84115065A EP 84115065 A EP84115065 A EP 84115065A EP 0150364 B1 EP0150364 B1 EP 0150364B1
Authority
EP
European Patent Office
Prior art keywords
electron beam
anode
ray
focus
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84115065A
Other languages
German (de)
French (fr)
Other versions
EP0150364A3 (en
EP0150364A2 (en
Inventor
Ernst Dr. Ammann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0150364A2 publication Critical patent/EP0150364A2/en
Publication of EP0150364A3 publication Critical patent/EP0150364A3/en
Application granted granted Critical
Publication of EP0150364B1 publication Critical patent/EP0150364B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/045Electrodes for controlling the current of the cathode ray, e.g. control grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control

Definitions

  • the invention relates to an X-ray diagnostic device according to the preamble of patent claim 1.
  • the requirement is that the X-ray tube current can be changed very quickly.
  • this change results in a relatively long delay time, which is not always acceptable.
  • a rapid change in the x-ray tube current is possible if a control grid is provided between the cathode and the anode of the x-ray tube.
  • the focus must have a predetermined shape and size, on the one hand precluding overloading the anode of the x-ray tube, but on the other hand not exceeding a blurring of the x-ray image given by the focus dimensions. For this purpose, it is known to provide a line focus that is generated on the inclined anode path of the X-ray tube.
  • a method for operating an X-ray tube which has a planar anode, in which the electron beam is deflected on the anode.
  • the anode is designed as a transmission anode. Due to the overall concept, the known X-ray tube is not suitable for use in medical technology.
  • the invention has for its object to provide an X-ray diagnostic device of the type mentioned in such a way that the shape and size of the focus area on the anode can be easily adapted to the respective requirements.
  • a fine electron beam can be generated, the beam current strength of which can be changed quickly with the aid of a control electrode.
  • the electron beam is deflected electronically over a predetermined focus range. In this way it is possible to scan an area which corresponds to the known line focus with the aid of an electron beam. This scanning process accordingly allows the focus size of a line focus to be changed in length and width.
  • the focus size can also be varied in steps or continuously in length and / or width. This means that an optimal focus size with maximum tube utilization can be selected depending on the respective examination method or the object to be examined.
  • a further development of the invention consists in that the intensity of the electron beam during the deflection is adjusted according to a predetermined function.
  • a predetermined function e.g. B. a focus with Gaussian intensity distribution can be realized.
  • the intensity can also be set depending on the object.
  • radiation detectors can be provided which are used to record the actual value of the respective radiation intensity.
  • the cathode 1 shows an X-ray tube, a cathode 1 and an anode 2, which is formed by a rotating anode plate. With the aid of focusing electrodes 3, the cathode 1 emits a filament-shaped electron beam 4 which strikes the focal spot path 5 of the anode 2.
  • the electron beam 4 can be deflected in two mutually perpendicular directions by deflection electrodes 6, 7, which are connected to control voltage generators 8.
  • the cathode 1 is supplied by a heating voltage generator 10.
  • the heating voltage generator 10 and the control voltage generators 8, 9 are connected to a programmer 11 which receives information about the desired focus size and shape at an input 12, about the power per square millimeter on the anode 2 at an input 13 and about the intensity distribution in focus at the input 14 are supplied.
  • An on-off signal is also fed to an input 15.
  • the electron beam 4 is deflected at the start of an on signal at the input 15, corresponding to the signals at the inputs 12 to 14, so that it scans a predetermined focus area.
  • this scanning can take place in a meandering manner in the x and y directions.
  • the sampling frequency for the focus area can be constant or variable. It can be determined depending on the object and / or depending on the selected examination method. This makes it possible to To optimally adapt the shape and size of the focus area to the respective requirements.
  • the intensity distribution in the focus can be fixed, but also variable.
  • FIG. 3 shows the time profile of the voltage Ux at the deflection electrodes 6 for the focus shape according to FIG. 2 and
  • FIG. 4 shows the time profile of the voltage Uy for the focus shape according to FIG. 2 at the deflection electrodes 7.
  • curve a shows the time profile of the voltage at a control grid 16, which determines the intensity of the electron beam 4 in the event that this intensity is constant during the period T, during which an X-ray image is taken.
  • the curve b shows a variable intensity curve, the z. B. can be selected depending on the object and is determined by the signal at input 14.
  • FIG. 1 shows the focus area 17 scanned by the electron beam 4 on the anode 2, which is shown in broken lines in FIG.
  • This focus area can be scanned once during the recording time, as can be seen from FIGS. 2 to 5. Multiple scans are also possible.
  • This facility also allows, for. B. for stereo operation with a single cathode to generate two foci on the anode side.

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

Die Erfindung betrifft eine Röntgendiagnostikeinrichtung gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to an X-ray diagnostic device according to the preamble of patent claim 1.

In der Praxis wird die Forderung gestellt, daß der Röntgenröhrenstrom sehr schnell geändert werden kann. Prinzipiell ist eine Änderung des Röntgenröhrenstromes über die Heizleistung möglich. Diese Änderung bedingt jedoch eine relativ große Verzögerungszeit, die nicht immer akzeptierbar ist. Eine schnelle Änderung des Röntgenröhrenstromes ist möglich, wenn ein Steuergitter zwischen der Kathode und der Anode der Röntgenröhre vorgesehen wird. Dabei muß der Fokus eine vorbestimmte Form und Größe haben, aufgrund der einerseits eine Überlastung der Anode der Röntgenröhre ausgeschlossen, andererseits aber auch eine durch die Fokusabmessungen gegebene Unschärfe des Röntgenbildes nicht überschritten wird. Hierzu ist es bekannt, einen Strichfokus vorzusehen, der auf der schräggestellen Anodenbahn der Röntgenröhre erzeugt wird.In practice, the requirement is that the X-ray tube current can be changed very quickly. In principle, it is possible to change the X-ray tube current via the heating power. However, this change results in a relatively long delay time, which is not always acceptable. A rapid change in the x-ray tube current is possible if a control grid is provided between the cathode and the anode of the x-ray tube. The focus must have a predetermined shape and size, on the one hand precluding overloading the anode of the x-ray tube, but on the other hand not exceeding a blurring of the x-ray image given by the focus dimensions. For this purpose, it is known to provide a line focus that is generated on the inclined anode path of the X-ray tube.

Durch die GB-A-2 044489 ist es bei einem Computertomographen bereits bekannt, den Elektronenstrahl von der Kathode zur Anode so abzulenken, daß der Auftreffpunkt des Elektronenstrahles auf der Anode eine vorbestimmte Bahn beschreibt. Diese Bahn kann jedoch nicht an die jeweiligen Erfordernisse angepaßt werden.From GB-A-2 044489 it is already known in a computer tomograph to deflect the electron beam from the cathode to the anode in such a way that the point of impact of the electron beam on the anode describes a predetermined path. However, this path cannot be adapted to the respective requirements.

Durch die DE-B-1 177 257 ist ein Verfahren zum Betrieb einer Röntgenröhre bekannt, die eine flächenhafte Anode aufweist, bei dem der Elektronenstrahl auf der Anode abgelenkt wird. Die Anode ist dabei als Durchstrahlanode ausgebildet. Aufgrund der Gesamtkonzeption eignet sich die bekannte Röntgenröhre nicht zur Anwendung in der medizinischen Technik.From DE-B-1 177 257 a method for operating an X-ray tube is known which has a planar anode, in which the electron beam is deflected on the anode. The anode is designed as a transmission anode. Due to the overall concept, the known X-ray tube is not suitable for use in medical technology.

Der Erfindung liegt die Aufgabe zugrunde, eine Röntgendiagnostikeinrichtung der eingangs genannten Art so auszubilden, daß die Form und Größe des Fokusbereiches auf der Anode in einfacher Weise den jeweiligen Erfordernissen angepaßt werden kann.The invention has for its object to provide an X-ray diagnostic device of the type mentioned in such a way that the shape and size of the focus area on the anode can be easily adapted to the respective requirements.

Diese Aufgabe ist erfindungsgemäß durch die im kennzeichnenden Teil des Patentanspruches 1 angegebene Ausbildung gelöst. Bei der erfindungsgemäßen Röntgendiagnostikeinrichtung kann ein feiner Elektronenstrahl erzeugt werden, dessen Strahlstromstärke mit Hilfe einer Steuerelektrode schnell verändert werden kann. Zur Verhinderung einer Überlastung der Anode der Röntgenröhre aufgrund eines relativ kleinen Auftreffpunktes des Elektronenstrahles wird dieser elektronisch über einen vorbestimmten Fokusbereich abgelenkt. Auf diese Weise ist es möglich, einen Bereich, der dem bekannten Strichfokus entspricht, mit Hilfe eines Elektronenstrahles abzutasten. Dieser Abtastvorgang erlaubt demgemäß eine Veränderung der Fokusgröße eines Strichfokus in Länge und Breite. Auch läßt sich eine dieser beiden Dimensionen verändern, so daß bei verschieden großen Anodenwinkeln dieselbe Fokusgröße bei konstant gehaltener Leistung pro Quadratmillimeter im Anodenmaterial ermöglicht wird. Die Fokusgröße kann auch in Stufen oder kontinuierlich in Länge und/oder Breite variiert werden. Dadurch ist eine optimale Fokusgröße bei maximaler Röhrenauslastung abhängig von der jeweiligen Untersuchungsmethode oder dem zu untersuchenden Objekt wählbar.This object is achieved by the training specified in the characterizing part of claim 1. With the X-ray diagnostic device according to the invention, a fine electron beam can be generated, the beam current strength of which can be changed quickly with the aid of a control electrode. To prevent overloading the anode of the x-ray tube due to a relatively small point of impact of the electron beam, the electron beam is deflected electronically over a predetermined focus range. In this way it is possible to scan an area which corresponds to the known line focus with the aid of an electron beam. This scanning process accordingly allows the focus size of a line focus to be changed in length and width. It is also possible to change one of these two dimensions so that the same focus size is made possible with anode angles of different sizes while the power per square millimeter in the anode material is kept constant. The focus size can also be varied in steps or continuously in length and / or width. This means that an optimal focus size with maximum tube utilization can be selected depending on the respective examination method or the object to be examined.

Eine Weiterbildung der Erfindung besteht darin, daß die Intensität des Elektronenstrahles bei der Ablenkung entsprechend einer vorbestimmten Funktion eingestellt wird. Auf diese Weise ist z. B. ein Fokus mit Gauß'scher Intensitätsverteilung realisierbar. Die Einstellung der Intensität ist auch objektabhängig möglich. Hierzu können Strahlendetektoren vorgesehen sein, die zur Istwerterfassung der jeweiligen Strahlenintensität dienen.A further development of the invention consists in that the intensity of the electron beam during the deflection is adjusted according to a predetermined function. In this way, e.g. B. a focus with Gaussian intensity distribution can be realized. The intensity can also be set depending on the object. For this purpose, radiation detectors can be provided which are used to record the actual value of the respective radiation intensity.

Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert. Es zeigen:

  • Fig. 1 eine Röntgendiagnostikeinrichtung nach der Erfindung,
  • Fig. 2 eine Fokusform der Röntgendiagnostikeinrichtung gemäß Figur 1, und
  • Fig. 3 bis 5 Kurven zur Erläuterung der Figuren 1 und 2.
The invention is explained below with reference to an embodiment shown in the drawing. Show it:
  • 1 shows an X-ray diagnostic device according to the invention,
  • FIG. 2 shows a focus form of the X-ray diagnostic device according to FIG. 1, and
  • 3 to 5 curves to explain Figures 1 and 2.

In der Figur 1 sind von einer Röntgenröhre eine Kathode 1 und eine Anode 2 dargestellt, die von einem rotierenden Anodenteller gebildet ist. Die Kathode 1 sendet mit Hilfe von Fokussierungselektroden 3 einen fadenförmigen Elektronenstrahl 4 aus, der auf der Brennfleckbahn 5 der Anode 2 auftrifft. Der Elektronenstrahl 4 ist durch Ablenkelektroden 6, 7 in zwei zueinander senkrechten Richtungen ablenkbar, die an Steuerspannungsgeneratoren 8, angeschlossen sind. Die Kathode 1 wird von einem Heizspannungsgenerator 10 versorgt. Der Heizspannungsgenerator 10 und die Steuerspannungsgeneratoren 8, 9 sind an einem Programmgeber 11 angeschlossen, dem Informationen über die gewünschte Fokusgröße und Form an einem Eingang 12, über die Leistung pro Quadratmillimeter auf der Anode 2 an einem Eingang 13 und über die Intensitätsverteilung im Fokus am Eingang 14 zugeführt werden. Ferner wird einem Eingang 15 ein Ein-Aus-Signal zugeführt.1 shows an X-ray tube, a cathode 1 and an anode 2, which is formed by a rotating anode plate. With the aid of focusing electrodes 3, the cathode 1 emits a filament-shaped electron beam 4 which strikes the focal spot path 5 of the anode 2. The electron beam 4 can be deflected in two mutually perpendicular directions by deflection electrodes 6, 7, which are connected to control voltage generators 8. The cathode 1 is supplied by a heating voltage generator 10. The heating voltage generator 10 and the control voltage generators 8, 9 are connected to a programmer 11 which receives information about the desired focus size and shape at an input 12, about the power per square millimeter on the anode 2 at an input 13 and about the intensity distribution in focus at the input 14 are supplied. An on-off signal is also fed to an input 15.

Für die Durchführung einer Röntgenaufnahme wird beim Beginn eines Ein-Signales am Eingang 15, den Signalen an den Eingängen 12 bis 14 entsprechend der Elektronenstrahl 4 so abgelenkt, daß er einen vorgegebenen Fokusbereich abtastet. Diese Abtastung kann beispielsweise gemäß Figur 2 in x- und y-Richtung mäanderförmig erfolgen. Die Abtastfrequenz für den Fokusbereich kann dabei konstant oder variabel sein. Sie kann objektabhängig und/oder in Abhängigkeit von dem gewählten Untersuchungsverfahren festgelegt werden. Dadurch ist es möglich, die Form und Größe des Fokusbereiches optimal den jeweiligen Erfordernissen anzupassen. Die Intensitätsverteilung im Fokus kann fest, aber auch variabel sein.To carry out an X-ray recording, the electron beam 4 is deflected at the start of an on signal at the input 15, corresponding to the signals at the inputs 12 to 14, so that it scans a predetermined focus area. According to FIG. 2, this scanning can take place in a meandering manner in the x and y directions. The sampling frequency for the focus area can be constant or variable. It can be determined depending on the object and / or depending on the selected examination method. This makes it possible to To optimally adapt the shape and size of the focus area to the respective requirements. The intensity distribution in the focus can be fixed, but also variable.

Die Figur 3 zeigt für die Fokusform gemäß Figur 2 den zeitlichen Verlauf der Spannung Ux an den Ablenkelektroden 6 und die Figur 4 den zeitlichen Verlauf der Spannung Uy für die Fokusform gemäß Figur 2 an den Ablenkelektroden 7.FIG. 3 shows the time profile of the voltage Ux at the deflection electrodes 6 for the focus shape according to FIG. 2 and FIG. 4 shows the time profile of the voltage Uy for the focus shape according to FIG. 2 at the deflection electrodes 7.

In der Figur 5 zeigt die Kurve a den zeitlichen Verlauf der Spannung an einem Steuergitter 16, das die Intensität des Elektronenstrahles 4 festlegt für den Fall, daß diese Intensität während der Periodendauer T, während der eine Röntgenaufnahme angefertigt wird, konstant ist. Die Kurve b zeigt dabei einen variablen Intensitätsverlauf, der z. B. objektabhängig gewählt werden kann und durch das Signal am Eingang 14 festgelegt ist.In FIG. 5, curve a shows the time profile of the voltage at a control grid 16, which determines the intensity of the electron beam 4 in the event that this intensity is constant during the period T, during which an X-ray image is taken. The curve b shows a variable intensity curve, the z. B. can be selected depending on the object and is determined by the signal at input 14.

Die Figur 1 zeigt den vom Elektronenstrahl 4 auf der Anode 2 abgetasteten Fokusbereich 17, der in der Figur 2 gestrichelt dargestellt ist. Dieser Fokusbereich kann während der Aufnahmezeit einmal abgetastet werden, wie sich dies aus den Figuren 2 bis 5 ergibt. Es ist aber auch eine mehrmalige Abtastung möglich.FIG. 1 shows the focus area 17 scanned by the electron beam 4 on the anode 2, which is shown in broken lines in FIG. This focus area can be scanned once during the recording time, as can be seen from FIGS. 2 to 5. Multiple scans are also possible.

Diese Einrichtung erlaubt es auch, z. B. für Stereo-Betrieb mit einer einzigen Kathode zwei Fokusse anodenseitig zu erzeugen.This facility also allows, for. B. for stereo operation with a single cathode to generate two foci on the anode side.

Claims (3)

1. X-ray diagnostic apparatus comprising an X-ray tube with a cathode (1 focusing means (3) for the electron beam (4) and a rotating anode (2), deflecting means (6, 7) being provided for the electron beam (4), connected to a control circuit (8, 9,11) designed such that the point of impact of the electron beam (4) on the anode (2) describes a predetermined path, characterised in that the path of the point of impact of the electron beam (4) is adjustable within a specific focus range (17) on the anode (2).
2. X-ray diagnostic apparatus as claimed in Claim 1, characterised in that the deflection frequency for the electron beam (4) is selected such that a focus range (17) on the anode (2) is fully scanned at least once during the recording time.
3. X-ray diagnostic apparatus as claimed in Claim 1 or 2, characterised in that the intensity of the electron beam (4) is set in accordance with a predetermined function during the deflection process.
EP84115065A 1984-01-19 1984-12-10 X-ray diagnostic installation with an x-ray tube Expired EP0150364B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3401749 1984-01-19
DE19843401749 DE3401749A1 (en) 1984-01-19 1984-01-19 X-RAY DIAGNOSTIC DEVICE WITH AN X-RAY TUBE

Publications (3)

Publication Number Publication Date
EP0150364A2 EP0150364A2 (en) 1985-08-07
EP0150364A3 EP0150364A3 (en) 1985-09-04
EP0150364B1 true EP0150364B1 (en) 1988-04-06

Family

ID=6225360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84115065A Expired EP0150364B1 (en) 1984-01-19 1984-12-10 X-ray diagnostic installation with an x-ray tube

Country Status (4)

Country Link
US (1) US4748650A (en)
EP (1) EP0150364B1 (en)
JP (1) JPS60132000U (en)
DE (2) DE3401749A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5029195A (en) * 1985-08-13 1991-07-02 Michael Danos Apparatus and methods of producing an optimal high intensity x-ray beam
EP0269927B1 (en) * 1986-11-25 1993-05-05 Siemens Aktiengesellschaft Computerized tomography apparatus
FR2644931A1 (en) * 1989-03-24 1990-09-28 Gen Electric Cgr SCANNING X-RAY TUBE WITH DEFLECTION PLATES
IL91119A0 (en) * 1989-07-26 1990-03-19 Elscint Ltd Arrangement for controlling focal spot position in x-ray tubes
DE4124294C2 (en) * 1991-07-22 1997-03-20 Siemens Ag Method for operating an X-ray tube and use of the method
US5581591A (en) * 1992-01-06 1996-12-03 Picker International, Inc. Focal spot motion control for rotating housing and anode/stationary cathode X-ray tubes
DE19509516C1 (en) * 1995-03-20 1996-09-26 Medixtec Gmbh Medizinische Ger Microfocus X-ray device
DE19810346C1 (en) * 1998-03-10 1999-10-07 Siemens Ag Rotary anode X=ray tube
DE19820243A1 (en) 1998-05-06 1999-11-11 Siemens Ag X=ray tube with variable sized X=ray focal spot and focus switching
DE19832972A1 (en) 1998-07-22 2000-01-27 Siemens Ag X-ray source for computer tomography device
US6236713B1 (en) * 1998-10-27 2001-05-22 Litton Systems, Inc. X-ray tube providing variable imaging spot size
DE19903872C2 (en) * 1999-02-01 2000-11-23 Siemens Ag X-ray tube with spring focus for enlarged resolution
GB9906886D0 (en) * 1999-03-26 1999-05-19 Bede Scient Instr Ltd Method and apparatus for prolonging the life of an X-ray target
GB2350891B (en) * 1999-06-12 2001-04-18 Medical Res Council X-ray beam position monitors
US6771735B2 (en) 2001-11-07 2004-08-03 Kla-Tencor Technologies Corporation Method and apparatus for improved x-ray reflection measurement
US6839405B2 (en) * 2002-05-31 2005-01-04 Siemens Medical Solutions Usa, Inc. System and method for electronic shaping of X-ray beams
DE10224292A1 (en) * 2002-05-31 2003-12-11 Philips Intellectual Property X-ray tube
DE102005041923A1 (en) * 2005-09-03 2007-03-08 Comet Gmbh Device for generating X-ray or XUV radiation
GB2438439A (en) * 2006-05-27 2007-11-28 X Tek Systems Ltd An automatic x-ray inspection system
US20080095317A1 (en) * 2006-10-17 2008-04-24 General Electric Company Method and apparatus for focusing and deflecting the electron beam of an x-ray device
JP5426089B2 (en) * 2007-12-25 2014-02-26 株式会社東芝 X-ray tube and X-ray CT apparatus
DE102008046288B4 (en) * 2008-09-08 2010-12-09 Siemens Aktiengesellschaft Electron beam control of an X-ray source with two or more electron beams
CN102473574B (en) * 2009-08-13 2017-12-29 皇家飞利浦电子股份有限公司 The X-ray tube deflected with independent x and z dynamic focal spots
US8401151B2 (en) * 2009-12-16 2013-03-19 General Electric Company X-ray tube for microsecond X-ray intensity switching
US20120275562A1 (en) * 2010-01-08 2012-11-01 Koninklijke Philips Electronics N.V. X-ray tube with a combined x- and y- focal spot deflection method
US8320521B2 (en) * 2010-09-30 2012-11-27 General Electric Company Method and system for operating an electron beam system
US9748070B1 (en) 2014-09-17 2017-08-29 Bruker Jv Israel Ltd. X-ray tube anode
US11282668B2 (en) * 2016-03-31 2022-03-22 Nano-X Imaging Ltd. X-ray tube and a controller thereof
US11302508B2 (en) 2018-11-08 2022-04-12 Bruker Technologies Ltd. X-ray tube

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1177257B (en) * 1961-10-31 1964-09-03 Licentia Gmbh Process for operating a high-performance x-ray tube with a large-area transmission anode
JPS5435078B1 (en) * 1970-07-30 1979-10-31
JPS52100891A (en) * 1976-02-19 1977-08-24 Nippon Telegr & Teleph Corp <Ntt> X ray generation method and its device
NL7803065A (en) * 1977-03-23 1978-09-26 High Voltage Engineering Corp RONTE GENERATOR FOR TRANSAXIAL TOMOGRAPHY.
GB1604252A (en) * 1977-06-03 1981-12-09 Emi Ltd X-ray generating arrangements
GB2044489B (en) * 1979-03-21 1983-01-12 Emi Ltd X-ray tube arrangements
DE2932042A1 (en) * 1979-08-07 1981-02-26 Siemens Ag X=ray tube with rotating anode and fixed optical focal point - has material focal point moving on spherical surface in turn pivoting about axis
US4426722A (en) * 1981-03-12 1984-01-17 Bell Telephone Laboratories, Incorporated X-Ray microbeam generator

Also Published As

Publication number Publication date
JPS60132000U (en) 1985-09-03
US4748650A (en) 1988-05-31
EP0150364A3 (en) 1985-09-04
EP0150364A2 (en) 1985-08-07
DE3401749A1 (en) 1985-08-01
DE3470361D1 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
EP0150364B1 (en) X-ray diagnostic installation with an x-ray tube
DE883938C (en) Electron discharge device
DE19510048C2 (en) X-ray tube
EP0466956A1 (en) Tomography apparatus
DE2364142B2 (en) Device for generating x-rays with a deflection device for generating a scanning movement of an electron beam generating the x-rays
DE2459091C3 (en) Beam generating system of a cathode ray tube
DE19739839B4 (en) A cathode cup assembly for an x-ray tube and method for assembling a cathode cup assembly
DE1937482B2 (en) Microbeam probe
DE3045013C2 (en)
DE3412715A1 (en) ELECTRON MICROSCOPE
DE911737C (en) Storing image transmission tubes, the mosaic electrode of which is scanned with slow electrons
DE2723462C2 (en) X-ray diagnostic device for transverse slice images
DE2821597A1 (en) USE OF A SYSTEM FOR GENERATING A FLAT ELECTRON BEAM WITH PURELY ELECTROSTATIC FOCUSING IN AN X-RAY TUBE
EP0360906A1 (en) X-ray image intensifier
DE3543598C2 (en)
DE2433999C2 (en) Scanning corpuscular beam device
DE2652273C2 (en) Method for the pictorial representation of a diffraction image in a transmission scanning corpuscular beam microscope
DE2521591C3 (en) Method and arrangement for correcting distortions of a charged carrier beam
DE2438234B2 (en) Electrode assembly for multi-jet generator systems and method for operating this assembly
DE3228816A1 (en) Method of X-ray tomography for representing a body section image
DE2720514A1 (en) METHOD OF RADIATING CIRCULAR CYLINDRICAL OBJECTS WITH ACCELERATED ELECTRONS
DE2620725C3 (en) Circuit arrangement for television camera tubes
DE1523085A1 (en) Electromagnetic mass spectrometer
EP0361266A2 (en) X-ray image intensifier
DE2835978B2 (en) Energy analyzer for analyzing the energy of charged particles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR LI

AK Designated contracting states

Designated state(s): CH DE FR LI

17P Request for examination filed

Effective date: 19850925

17Q First examination report despatched

Effective date: 19870114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REF Corresponds to:

Ref document number: 3470361

Country of ref document: DE

Date of ref document: 19880511

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890223

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890323

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19891231

Ref country code: CH

Effective date: 19891231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST