EP0139310B1 - Verfahren zur Erzeugung von flüssigem, kohlenstoffhaltigem Eisen aus Eisenschwamm - Google Patents

Verfahren zur Erzeugung von flüssigem, kohlenstoffhaltigem Eisen aus Eisenschwamm Download PDF

Info

Publication number
EP0139310B1
EP0139310B1 EP84201106A EP84201106A EP0139310B1 EP 0139310 B1 EP0139310 B1 EP 0139310B1 EP 84201106 A EP84201106 A EP 84201106A EP 84201106 A EP84201106 A EP 84201106A EP 0139310 B1 EP0139310 B1 EP 0139310B1
Authority
EP
European Patent Office
Prior art keywords
iron
carbon
electrical energy
sponge iron
arc furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84201106A
Other languages
English (en)
French (fr)
Other versions
EP0139310A1 (de
Inventor
Lothar Formanek
Martin Hirsch
Wolfram Dr. Schnabel
Harry Dr. Serbent
Klaus Dietrich Fritzsche
Heribert Koenig
Gero Dr. Rath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
GEA Group AG
Original Assignee
Metallgesellschaft AG
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG, Mannesmann AG filed Critical Metallgesellschaft AG
Publication of EP0139310A1 publication Critical patent/EP0139310A1/de
Application granted granted Critical
Publication of EP0139310B1 publication Critical patent/EP0139310B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/958Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures with concurrent production of iron and other desired nonmetallic product, e.g. energy, fertilizer

Definitions

  • the invention relates to a process for the production of liquid, carbon-containing iron with about 1.8 to 2.5% C by direct reduction of iron oxide-containing materials by means of solid carbon-containing reducing agents to sponge iron and melting of sponge iron in an electric reduction furnace, or for the production of liquid steel by direct reduction from materials containing iron oxide using solid carbon-containing reducing agents to sponge iron and melting of sponge iron in an electric reduction furnace.
  • arc furnaces is to be understood as directly heated arc furnaces in which the heating is carried out by electric arcs burning between the electrodes and the metallic insert or the steel bath. For this reason, a process for melting iron sponge in electric reduction furnaces was developed.
  • electroreduction furnaces is understood to mean furnaces in which electrodes are preferably immersed either in an open or half-covered slag bath or in a standing Möller column and in which the energy conversion takes place mainly through resistance heating in the slag bath.
  • the melting of sponge iron in electric reduction furnaces is e.g. B. described in «Stahl und Eisen 97 (1977), pages 7-17. These processes are primarily designed to replace the electric arc furnace, i.e. H. for the production of steel with carbon contents up to approximately 1%.
  • the sponge iron used has carbon contents of over 1%, i.e. H. it comes from a direct reduction with gaseous, CO-containing reducing agents.
  • the lower grain size of the iron sponge used is 6 mm and the metallization is about 90%.
  • An iron sponge with a higher carbon content and good metallurgical properties is used as the input material.
  • the electrical energy is taken from a network.
  • Direct reduction using solid carbon-containing reducing agents produces an iron sponge that contains considerably less carbon.
  • the carbon content is generally less than 0.5%.
  • part of the sponge iron with poorer metallurgical properties i.e. H. with less metallization and / or smaller grain size.
  • melting this sponge iron with poorer metallurgical properties causes difficulties and may require additional costs.
  • the invention has for its object to melt the sponge iron produced by direct reduction with solid carbon-containing reducing agents, and in particular the resulting portion with poorer metallurgical properties, in a simple and economical manner.
  • the sensible heat and the latent heat of the direct reduction exhaust gas released by post-combustion are used to generate steam, and the steam is used to generate electrical energy which is conducted into the electric reduction furnace.
  • the carbon-containing iron is a carbon unsaturated iron with about 1.8 to 2.5% C. Because of the reaction kinetics it cannot be saturated with carbon. A corresponding amount of carbon is added to the furnace to achieve this carbon content. Short-term fluctuations in the amount of electrical energy generated do not interfere because the electric reduction furnace with variable power consumption can be operated. In the event of long-term fluctuations, regulation can be carried out using the amount of sponge iron used.
  • the electric reduction furnace can be used when hot.
  • the iron produced can be cast, granulated or processed further in liquid form.
  • the direct reduction takes place in particular in a rotary kiln, but can also be done in other ways, e.g. B. in the circulating fluidized bed using fine-grained ores.
  • the discharge material is processed by sieving and magnetic separation. It can be carried out as a hot or cold preparation.
  • the following fractions can occur during processing: coarse sponge iron, fine-grained sponge iron, excess carbon, ash and desulfurizing agent.
  • the processing enables a precisely metered addition of the carbon required in the electric reduction furnace.
  • the separated carbon excess can be used for this, in particular one which is of good quality, i. H. the ash and sulfur content is relatively low.
  • the excess carbon can also be returned to direct reduction or used for other purposes.
  • the hot combustion gases in the combustion unit can be generated by burning coal.
  • the separated carbon excess of the direct reduction can be used as carbon.
  • carbon with poor metallurgical properties - such as a high ash and sulfur content - can be used easily and effectively in this way.
  • the combustion is preferably carried out in a circulating fluidized bed.
  • Such processes are described in DE-AS 2,539,546, US Pat. No. 4,165,717, DE-OS 2,624,302, US Pat. No. 4,111,158.
  • the generation of the electrical energy from the hot combustion gases can be carried out together with the generation of energy from the Exhaust gas of the direct reduction or separately from this.
  • the blowing into steel takes place by means of oxygen-containing gases, preferably technically pure oxygen, in a converter.
  • oxygen-containing gases preferably technically pure oxygen
  • the sponge iron with better metallurgical properties which is obtained after processing, is preferably used as the coolant.
  • the sponge iron with poorer metallurgical properties is melted down with optimal utilization of the heat content of the exhaust gas of the direct reduction, and the sponge iron with better metallurgical properties is used to produce steel.
  • the system is very flexible. Excess sponge iron with good metallurgical properties can still be used for other purposes. Part of the electrical energy generated can be used to generate oxygen.
  • a preferred embodiment consists in that the carbon-containing iron produced in the electric reduction furnace is carburized.
  • the carburization is expediently carried out in a pan with the addition of carbon.
  • the iron is overheated in the electric reduction furnace to such an extent that it reaches the carburizing stage at a temperature which is approximately 150 ° C. above the liquidus line.
  • Excess carbon from the direct reduction can be used as carbon.
  • the carburization can take place up to a C content of up to about 4%.
  • a preferred embodiment consists in that the temperature and / or the content of combustible components of the exhaust gas of the direct reduction is increased in order to increase the amount of electrical energy generated.
  • the temperature and / or the content of combustible constituents are increased via the values required for direct reduction. This can be done by using coal with a high volatile content, which is not used in direct reduction, or by using larger amounts of coal. As a result, a larger part of the sponge iron can be melted down.
  • a preferred embodiment is that the exhaust gas from the electric reduction furnace is used to generate electrical energy.
  • a preferred embodiment is that the exhaust gas from the converter is used to generate electrical energy.
  • One embodiment is that the additional amount of electrical energy generated is controlled so that the entire sponge iron is processed into steel. If e.g. B. the electrical energy generated with exhaust gas is sufficient for melting 50% of the sponge iron into liquid carbon-containing iron with about 1.8 to 2.5% C and for blowing this iron into steel another 20% of the sponge iron is required as a coolant 30% iron sponge as the remainder. Then so much additional electrical energy is generated that of the remaining 30% iron sponge, such an amount is melted into hot metal that the other remainder needs as a coolant when blown into steel. As a result, the entire sponge iron can be melted into a high-quality end product and processed.
  • a preferred embodiment is that the blowing into steel takes place with the addition of energy sources.
  • the energy sources can be introduced into the blowing unit in the solid, gaseous or liquid state, for. B. in the form of fine-grained coal in the bath.
  • the heat required is largely generated by burning carbon in the bathroom. If the carbon introduced with the feedstocks is not sufficient to cover the required amount of heat, the missing amount of heat can be directly and economically introduced by primary energy.
  • the system is made very flexible by the addition of the energy sources, since a correspondingly larger amount of sponge iron and / or scrap can be entered into the blower unit by adding the energy sources. Fluctuations in power generation can be absorbed in the same way. This control option is available both for blowing a part of the sponge iron and the entire sponge iron into steel.
  • the oxygen can also be generated by means of a steam turbine, which is connected directly to the compressor.
  • the oxygen generated can be stored and used as a buffer for operational fluctuations.
  • Gas turbines can also be used to generate electricity.
  • the invention is illustrated by a figure.
  • the feed 2 consisting of iron ore, coal and aggregates, is charged in the rotary kiln 1.
  • the reduced material 3 is placed in the preparation 4, which consists of sieving and magnetic separation. To simplify matters, only one output is shown for each product.
  • the sponge iron with poorer metallurgical properties 5 is charged into the electric reduction furnace 6.
  • the exhaust gas 7 of the rotary kiln 1 is fed into the electrical power generation 8, which consists of afterburning, steam generation and power generation. Electrical energy 9 is conducted into the electric reduction furnace 6.
  • the carbon-containing iron 10 produced is carburized in the carburization 11, which consists of a pan.
  • the carburized iron 12 is charged into the converter 13 and blown into steel 15 with the addition of sponge iron with good metallurgical properties 14 as a coolant.
  • the exhaust gas 16 of the electric reduction furnace 6 and the exhaust gas 17 of the converter 13 are also conducted into the electrical power generation 8.
  • the excess carbon-containing material with good metallurgical properties 18a, 18b, 18c separated in the treatment 4 is partly charged into the electric reduction furnace 6, partly into the carburization 11 and partly into the rotary kiln 1. Ash and desulfurizing agent are removed from treatment 4 as outlets 19.
  • the excess carbon-containing material with poor metallurgical properties 20 is passed into the combustion 21, which consists of a circulating fluidized bed and into which further carbon-containing material 22 is passed.
  • the hot combustion gases 23 are conducted into the electrical energy generation 8.
  • Electrical energy 24 is conducted into the oxygen generation 25.
  • the oxygen 26 is inserted into the converter 13. Missing electrical energy can be drawn from a network 27. Instead of the excess carbon-containing material 18a, 18b, 18c, other carbon can also be used. If the carbon-containing iron 10 or the carburized iron 12 is not blown into steel, it is cast or granulated over 10 a or
  • energy sources can be introduced via line, z. B. fine-grained coal can be blown into the bath.
  • the advantages of the invention are that the iron sponge obtained in the direct reduction with solid, carbon-containing reducing agents, which contains a relatively low carbon content, can be melted down with optimum use of the heat content of the exhaust gases.
  • the portion of the sponge iron that has poorer metallurgical properties can be processed into an intermediate product that can be used without restriction.
  • An integrated process without external energy or with cheaply produced external energy is possible.
  • the process can be operated very variably.
  • the entire sponge iron can be processed into a valuable raw material with a significantly smaller volume and problem-free properties with regard to transport and storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Blast Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung von flüssigem, kohlenstoffhaltigem Eisen mit etwa 1,8 bis 2,5 % C durch Direktreduktion von eisenoxidhaltigen Materialien mittels fester kohlenstoffhaltiger Reduktionsmittel zu Eisenschwamm und Einschmelzen von Eisenschwamm in einem Elektroreduktionsofen, oder zur Herstellung von flüssigem Stahl durch Direktreduktion von eisenoxidhaltigen Materialien mittels fester kohlenstoffhaltiger Reduktionsmittel zu Eisenschwamm und Einschmelzen von Eisenschwamm in einem Elektroreduktionsofen.
  • Das Einschmelzen von Eisenschwamm in Elektrolichtbogenöfen führt zu Schwierigkeiten, insbesondere wenn der Lichtbogenofen ausschließlich mit Eisenschwamm beschickt wird. Unter dem Ausdruck « Lichtbogenöfen » sind direktbeheizte Lichtbogenöfen zu verstehen, bei denen die Beheizung durch zwischen den Elektroden und dem metallischen Einsatz bzw. dem Stahlbad brennende elektrische Lichtbögen erfolgt. Aus diesem Grunde wurde ein Verfahren zum Einschmelzen von Eisenschwamm in Elektroreduktionsöfen entwickelt. Unter dem Ausdruck Elektroreduktionsöfen sind Öfen zu verstehen, bei denen Elektroden entweder vorzugsweise in ein offenes oder halbgedecktes Schlackenbad oder in eine stehende Möller-Säule eintauchen und in denen der Energieumsatz hauptsächlich durch Widerstandserwärmung im Schlackenbad erfolgt.
  • Das Einschmelzen von Eisenschwamm in Elektroreduktionsöfen ist z. B. beschrieben in « Stahl und Eisen 97 (1977), Seiten 7-17. Diese Verfahren sind in erster Linie als Ersatz für den Elektrolichtbogenofen konzipiert, d. h. für die Herstellung von Stahl mit Kohlenstoffgehalten bis zu etwa 1 %. Der eingesetzte Eisenschwamm hat Kohlenstoffgehalte von über 1 %, d. h. er stammt aus einer Direktreduktion mit gasförmigen, COhaltigen Reduktionsmitteln. Als untere Korngröße des eingesetzten Eisenschwamms werden 6 mm angeführt und die Metallisierung beträgt etwa 90 %. Als Einsatzgut wird also ein Eisenschwamm mit höherem Kohlenstoffgehalt und guten metallurgischen Eigenschaften verwendet. Die elektrische Energie wird aus einem Netz entnommen.
  • Bei der Direktreduktion mittels fester kohlenstoffhaltiger Reduktionsmittel fällt ein Eisenschwamm an, der beträchtlich weniger Kohlenstoff enthält. Der Kohlenstoffgehalt liegt im allgemeinen unter 0,5 %. Außerdem fällt auch ein Teil des Eisenschwamms mit schlechteren metallurgischen Eigenschaften, d. h. mit geringerer Metalli- sier.ung und/oder kleinerer Korngröße an. Insbesondere das Einschmelzen dieses Eisenschwamms mit schlechteren metallurgischen Eigenschaften bereitet Schwierigkeiten und erfordert eventuell zusätzliche Kosten.
  • Aus der EP-A-0 117 928 ist es nach Art. 54(3) bekannt, Stahl durch Einschmelzen von Eisenschwamm im Lichtbogenofen zu erzeugen, wobei ein Teil des Eisenschwammes in einem Elektroreduktionsofen zu flüssigem, kohlenstoffhaltigem Eisen eingeschmolzen wird, das kohlenstoffhaltige Eisen als Bad in den Lichtbogenofen chargiert wird, der andere Eisenschwamm auf diesem Bad im Lichtbogenofen umgesetzt wird, und der Elektroreduktionsofen in Abhängigkeit von den durch den Lichtbogenofen bedingten elektrischen Lastaufnahme-Schwankungen so geregelt wird, daß eine praktisch gleichbleibende Belastung des elektrischen Netzes resultiert.
  • Der Erfindung liegt die Aufgabe zugrunde, den durch Direktreduktion mit festen kohlenstoffhaltigen Reduktionsmitteln erzeugten Eisenschwamm, und insbesondere den dabei anfallenden Anteil mit schlechteren metallurgischen Eigenschaften, in möglichst einfacher und wirtschaftlicher Weise einzuschmelzen.
  • Die Lösung dieser Aufgabe erfolgt bei der Herstellung von kohlenstoffhaltigen Eisen erfindungsgemäß dadurch, daß
    • a) das Austragsmaterial der Direktreduktion in einer Magnetscheidung in Eisenschwamm mit höherer Metallisierung und/oder größerer Korngröße und Eisenschwamm mit geringerer Metallisierung und/oder kleinerer Korngröße und überschüssigen Kohlenstoff enthaltendes unmagnetisches Material getrennt wird,
    • b) das Abgas der Direktreduktion nachverbrannt und zur Erzeugung von elektrischer Energie benutzt wird,
    • c) heiße Verbrennungsgase in einem Verbrennungsaggregat erzeugt und zur Erzeugung von zusätzlicher elektrischer Energie benutzt werden,
    • d) mindestens ein Teil des kohlenstoffhaltigen unmagnetischen Materials gemäß (a) in das Verbrennungsaggregat gemäß (c) chargiert werden,
    • e) der Eisenschwamm gemäß (a) gänzlich in einem Elektroreduktionsofen eingeschmolzen wird,
    • f) die Summe der gemäß (b) und (c) erzeugten Mengen an elektrischer Energie mindestens der Menge an elektrischer Energie entspricht, die zum Einschmelzen des Eisenschwammes in flüssiges kohlenstoffhaltiges Eisen gemäß (e) notwendig ist und diese notwendige Menge an elektrischer Energie in den Elektroreduktionsofen geleitet wird.
  • Die fühlbare Wärme und die durch Nachverbrennung freigesetzte latente Wärme des Abgases der Direktreduktion werden zur Erzeugung von Dampf verwendet, und mit dem Dampf wird elektrische Energie erzeugt, die in den Elektroreduktionsofen geleitet wird. Das kohlenstoffhaltige Eisen ist ein an Kohlenstoff ungesättigtes Eisen mit etwa 1,8 bis 2,5 % C. Aus Gründen der Reaktionskinetik kann es nicht mit Kohlenstoff gesättigt werden. Zur Erzielung dieses Kohlenstoffgehaltes wird eine entsprechende Menge Kohlenstoff in den Ofen zugesetzt. Kurzzeitige Schwankungen in der Menge der erzeugten elektrischen Energie stören nicht, da der Elektroreduktionsofen mit variabler Leistungsaufnahme betrieben werden kann. Bei längerzeitigen Schwankungen kann eine Regelung durch die Menge des eingesetzten Eisenschwamms erfolgen.
  • Der Einsatz in den Elektroreduktionsofen kann in heißem Zustand erfolgen. Das erzeugte Eisen kann vergossen, granuliert oder flüssig weiterverarbeitet werden. Die Direktreduktion erfolgt insbesondere im Drehrohrofen, kann aber auch auf andere Weise erfolgen, z. B. in der zirkulierenden Wirbelschicht unter Einsatz feinkörniger Erze.
  • Die Aufbereitung des Austragsmaterials erfolgt durch Siebung und Magnetscheidung. Sie kann als heiße oder kalte Aufbereitung durchgeführt werden. Folgende Fraktionen können bei der Aufbereitung anfallen : grober Eisenschwamm, feinkörniger Eisenschwamm, Überschußkohlenstoff, Asche und Entschwefelungsmittel. Durch die Aufbereitung ist eine genau dosierte Zugabe des im Elektroreduktionsofen erforderlichen Kohlenstoffs möglich. Dazu kann der abgetrennte Kohlenstoffüberschuß verwendet werden, insbesondere solcher, der gute Qualität hat, d. h. dessen Gehalt an Asche und Schwefel relativ niedrig ist. Der Kohlenstoffüberschuß kann auch in die Direktreduktion zurückgeführt oder anderen Zwecken zugeführt werden. Die heißen Verbrennungsgase in dem Verbrennungsaggregat können durch Verbrennung von Kohlen erzeugt werden. Als Kohlenstoff kann der abgetrennte Kohlenstoffüberschuß der Direktreduktion verwendet werden. Insbesondere der Kohlenstoff mit schlechten metallurgischen Eigenschaften - wie hoher Asche- und Schwefelgehalt - kann auf diese Weise problemlos und nutzbringend verwendet werden. Weiterhin können billige Kohlen, aber auch Gas oder 01 verwendet werden. Die Verbrennung erfolgt vorzugsweise in einer zirkulierenden Wirbelschicht. Solche Verfahren sind beschrieben in der DE-AS 2 539 546, US-PS 4 165 717, DE-OS 2 624 302, US-PS 4 111 158. Die Erzeugung der elektrischen Energie aus den heißen Verbrennungsgasen kann gemeinsam mit der Energieerzeugung aus dem Abgas der Direktreduktion oder getrennt von dieser erfolgen.
  • Die Lösung der oben genannten Aufgabe erfolgt bei der Herstellung von Stahl erfindungsgemäß dadurch, daß
    • a) das Austragsmaterial der Direktreduktion in einer Magnetscheidung in Eisenschwamm mit höherer Metallisierung und/oder größerer Korngröße und Eisenschwamm mit geringerer Metallisierung und/oder kleinerer Korngröße und überschüssigen Kohlenstoff enthaltendes unmagnetisches Material getrennt wird,
    • b) das Abgas der Direktreduktion nachverbrannt und zur Erzeugung von elektrischer Energie benutzt wird,
    • c) heiße Verbrennungsgase in einem Verbrennungsaggregat erzeugt und zur Erzeugung von zusätzlicher elektrischer Energie benutzt werden,
    • d) mindestens ein Teil des kohlenstoffhaltigen unmagnetischen Materials gemäß (a) in das Verbrennungsaggregat gemäß (c) chargiert werden,
    • e) ein Teil des Eisenschwammes gemäß (a) in einem Elektroreduktionsofen zu kohlenstoffhaltigen Eisen mit etwa 1,8 bis 2,5 % C eingeschmolzen wird und der andere Teil des Eisenschwammes mit höherer Metallisierung und/oder größerer Korngröße als Kühlmittel beim Verblasen des kohlenstoffhaltigen Eisens mit etwa 1,8 bis 2,5 % C zu Stahl zugesetzt wird,
    • f) die Summe der gemäß (b) und (c) erzeugten Mengen an elektrischer Energie mindestens der Menge an elektrischer Energie entspricht, die zum Einschmelzen des Eisenschwammes in flüssiges kohlenstoffhaltiges Eisen gemäß (e) notwendig ist und diese notwendige Menge an elektrischer Energie in den Elektroreduktionsofen geleitet wird.
  • Das Verblasen zu Stahl erfolgt mittels sauerstoffhaltiger Gase, vorzugsweise technisch reinem Sauerstoff, in einem Konverter. Vorzugsweise wird als Kühlmittel der Eisenschwamm mit besseren metallurgischen Eigenschaften eingesetzt, der nach der Aufbereitung anfällt. Auf diese Weise wird der Eisenschwamm mit schlechteren metallurgischen Eigenschaften unter optimaler Ausnutzung des Wärmeinhaltes des Abgases der Direktreduktion eingeschmolzen und der Eisenschwamm mit besseren metallurgischen Eigenschaften zur Erzeugung von Stahl verwendet. Das System ist sehr flexibel. Überschüssiger Eisenschwamm mit guten metallurgischen Eigenschaften kann weiterhin für andere Zwecke verwendet werden. Ein Teil der erzeugten elektrischen Energie kann zur Erzeugung von Sauerstoff verwendet werden.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß das im Elektroreduktionsofen erzeugte kohlenstoffhaltige Eisen aufgekohlt wird. Die Aufkohlung erfolgt zweckmäßigerweise in einer Pfanne unter Zugabe von Kohlenstoff. Dazu wird das Eisen im Elektroreduktionsofen soweit überhitzt, daß es mit einer Temperatur in die Aufkohlungsstufe gelangt, die etwa 150 °C über der Liquiduslinie liegt. Als Kohlenstoff kann abgetrennter Überschußkohlenstoff aus der Direktreduktion verwendet werden. Die Aufkohlung kann auf einen C-Gehalt bis zu etwa 4% erfolgen.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Temperatur und/oder der Gehalt an brennbaren Bestandteilen des Abgases der Direktreduktion zur Steigerung der erzeugten Menge an elektrischer Energie erhöht wird. Die Erhöhung der Temperatur und/oder des Gehaltes an brennbaren Bestandteilen erfolgt über die für die Direktreduktion erforderlichen Werte. Dies kann durch Einsatz von Kohle mit hohem Gehalt an flüchtigen Bestandteilen erfolgen, die nicht in der Direktreduktion ausgenutzt werden, oder durch den Einsatz von größeren Mengen an Kohle. Dadurch kann ein größerer Teil des Eisenschwamms eingeschmolzen werden.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß das Abgas des Elektroreduktionsofens zur Erzeugung elektrischer Energie verwendet wird.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß das Abgas des Konverters zur Erzeugung elektrischer Energie verwendet wird.
  • Eine Ausgestaltung besteht darin, daß die zusätzlich erzeugte Menge an elektrischer Energie so geregelt wird, daß der gesamte Eisenschwamm zu Stahl verarbeitet wird. Wenn z. B. die mit Abgas erzeugte elektrische Energie für das Einschmelzen von 50 % des Eisenschwamms zu flüssigem kohlenstoffhaltigem Eisen mit etwa 1,8 bis 2,5 % C ausreicht und zum Verblasen dieses Eisens zu Stahl weitere 20 % des Eisenschwamms als Kühlmittel benötigt werden, verbleiben 30 % Eisenschwamm als Rest. Dann wird soviel zusätzliche elektrische Energie erzeugt, daß von den restlichen 30 % Eisenschwamm eine solche Menge zu hot metal eingeschmolzen wird, die beim Verblasen zu Stahl den anderen Rest als Kühlmittel benötigt. Dadurch kann der gesamte Eisenschwamm in ein hochwertiges Endprodukt eingeschmolzen und verarbeitet werden.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß das Verblasen zu Stahl unter Zusatz von Energieträgern erfolgt. Die Energieträger können im festen, gasförmigen oder flüssigem Zustand in das Verblaseaggregat eingebracht werden, z. B. in Form von feinkörniger Kohle in das Bad eingeblasen werden. Beim Verblasen wird die erforderliche Wärme weitgehend durch Verbrennung von Kohlenstoff im Bad erzeugt. Wenn der mit den Einsatzstoffen eingebrachte Kohlenstoff nicht zur Deckung der erforderlichen Wärmemenge ausreicht, kann auf diese Weise die fehlende Wärmemenge direkt durch Primärenergie in wirtschaftlicher Weise eingebracht werden. Durch die Zugabe der Energieträger wird das System sehr flexibel gemacht, da durch die Zugabe der Energieträger in das Verblaseaggregat eine entsprechend größere Menge an Eisenschwamm und/oder Schrott eingegeben werden kann. In der gleichen Weise können Schwankungen in der Stromerzeugung aufgefangen werden. Diese Regelmöglichkeit besteht sowohl bei der Verblasung eines Teiles des Eisenschwammes als auch des gesamten Eisenschwamms zu Stahl.
  • Der Sauerstoff kann auch mittels einer Dampfturbine erzeugt werden, die direkt an den Kompressor angeschlossen ist. Der erzeugte Sauerstoff kann gespeichert werden und als Puffer für Betriebsschwankungen genutzt werden. Für die Stromerzeugung ist auch der Einsatz von Gasturbinen möglich.
  • Die Erfindung wird anhand einer Figur näher erläutert.
  • In den Drehrohrofen 1.wird die Beschickung 2, bestehend aus Eisenerz, Kohle und Zuschlägen, chargiert. Das reduzierte Material 3 wird in die Aufbereitung 4 gegeben, die aus Siebung und Magnetscheidung besteht. Zur Vereinfachung ist für jedes Produkt jeweils nur ein Ausgang dargestellt. Der Eisenschwamm mit schlechteren metallurgischen Eigenschaften 5 wird in den Elektroreduktionsofen 6 chargiert. Das Abgas 7 des Drehrohrofens 1 wird in die elektrische Energieerzeugung 8 geleitet, die aus Nachverbrennung, Dampferzeugung und Stromerzeugung besteht. Elektrische Energie 9 wird in den Elektroreduktionsofen 6 geleitet. Das erzeugte kohlenstoffhaltige Eisen 10 wird in der Aufkohlung 11, die aus einer Pfanne besteht, aufgekohlt. Das aufgekohlte Eisen 12 wird in den Konverter 13 chargiert und unter Zusatz von Eisenschwamm mit guten metallurgischen Eigenschaften 14 als Kühlmittel zu Stahl 15 verblasen. Das Abgas 16 des Elektroreduktionsofens 6 und das Abgas 17 des Konverters 13 werden ebenfalls in die elektrische Energieerzeugung 8 geleitet. Das in der Aufbereitung 4 abgetrennte überschüssige kohlenstoffhaltige Material mit guten metallurgischen Eigenschaften 18a, 18b, 18c wird zum Teil in den Elektroreduktionsofen 6, zum Teil in die Aufkohlung 11 und zum Teil in den Drehrohrofen 1 chargiert. Asche und Entschwefelungsmittel werden als Abgänge 19 aus der Aufbereitung 4 abgeführt. Das überschüssige kohlenstoffhaltige Material mit schlechten metallurgischen Eigenschaften 20 wird in die Verbrennung 21 geleitet, die aus einer zirkulierenden Wirbelschicht besteht und in die weiteres kohlenstoffhaltiges Material 22 geleitet wird. Die heißen Verbrennungsgase 23 werden in die elektrische Energierzeugung 8 geleitet. Elektrische Energie 24 wird in die Sauerstofferzeugung 25 geleitet. Der Sauerstoff 26 wird in den Konverter 13 eingesetzt. Aus einem Netz 27 kann fehlende elektrische Energie entnommen werden. Anstelle des überschüssigen kohlenstoffhaltigen Materials 18a, 18b, 18c kann auch anderer Kohlenstoff eingesetzt werden. Wenn das kohlenstoffhaltige Eisen 10 oder das aufgekohlte Eisen 12 nicht zu Stahl verblasen wird, wird es über 10 a bzw. 12 a vergossen oder granuliert.
  • In den Konverter 13 können über Leitung 28 Energieträger eingebracht werden, z. B. feinkörnige Kohle in das Bad eingeblasen werden.
  • Die Vorteile der Erfindung bestehen darin, daß der bei der Direktreduktion mit festen, kohlenstoffhaltigen Reduktionsmitteln anfallende Eisenschwamm, der einen relativ geringen Gehalt an Kohlenstoff enthält, unter optimaler Ausnutzung des Wärmeinhaltes der Abgase eingeschmolzen werden kann. Insbesondere kann der Anteil des Eisenschwammes, der schlechtere metallurgische Eigenschaften aufweist, in ein unbeschränkt verwendbares Vorprodukt verarbeitet werden. Es ist ein integrierter Prozeß ohne Fremdenergie oder mit billig erzeugter Fremdenergie möglich. Das Verfahren kann sehr variabel betrieben werden. Der gesamte Eisenschwamm kann in ein wertvolles Vormaterial mit wesentlich geringerem Volumen und problemlosen Eigenschaften im Hinblick auf Transport und Lagerung verarbeitet werden.

Claims (8)

1. Verfahren zur Herstellung von flüssigem, kohlenstoffhaltigen Eisen mit etwa 1,8 bis 2,5 % C durch Direktreduktion von eisenoxidhaltigen Materialen mittels fester kohlenstoffhaltiger Reduktionsmittel zu Eisenschwamm und Einschmelzen von Eisenschwamm in einem Elektroreduktionsofen, wobei
a) das Austragsmaterial der Direktreduktion in einer Magnetscheidung in Eisenschwamm mit höherer Metallisierung und/oder größerer Korngröße und Eisenschwamm mit geringerer Metallisierung und/oder kleinerer Korngröße und überschüssigen Kohlenstoff enthaltendes unmagnetisches Material getrennt wird,
b) das Abgas der Direktreduktion nachverbrannt und zur Erzeugung von elektrischer Energie benutzt wird,
c) heiße Verbrennungsgase in einem Verbrennungsaggregat erzeugt und zur Erzeugung von zusätzlicher elektrischer Energie benutzt werden,
d) mindestens ein Teil des kohlenstoffhaltigen unmagnetischen Materials gemäß (a) in das Verbrennungsaggregat gemäß (c) chargiert werden,
e) der Eisenschwamm gemäß (a) gänzlich in einem Elektroreduktionsofen eingeschmolzen wird,
f) die Summe der gemäß (b) und (c) erzeugten Mengen an elektrischer Energie mindestens der Menge an elektrischer Energie entspricht, die zum Einschmelzen des Eisenschwammes in flüssiges kohlenstoffhaltiges Eisen gemäß (e) notwendig ist und diese notwendige Menge an elektrischer Energie in den Elektroreduktionsofen geleitet wird.
2. Verfahren zur Herstellung von flüssigen Stahl durch Direktreduktion von eisenoxidhaltigen Materialien mittels fester kohlenstoffhaltiger Reduktionsmittel zu Eisenschwamm und Einschmelzen von Eisenschwamm in einem Elektroreduktionsofen, wobei
.a) das Austragsmaterial der Direktreduktion in einer Magnetscheidung in Eisenschwamm mit höherer Metallisierung und/oder größerer Korngröße und Eisenschwamm mit geringerer Metallisierung und/oder kleinerer Korngröße und überschüssigen Kohlenstoff enthaltendes unmagnetisches Material getrennt wird,
b) das Abgas der Direktreduktion nachverbrannt und zur Erzeugung von elektrischer Energie benutzt wird,
c) heiße Verbrennungsgase in einem Verbrennungsaggregat erzeugt und zur Erzeugung von zusätzlicher elektrischer Energie benutzt werden,
d) mindestens ein Teil des kohlenstoffhaltigen unmagnetischen Materials gemäß (a) in das Verbrennungsaggregat gemäß (c) chargiert werden,
e) ein Teil des Eisenschwammes gemäß (a) in einem Elektroreduktionsofen zu kohlenstoffhaltigem Eisen mit etwa 1,8 bis 2,5 % C eingeschmolzen wird und der andere Teile des Eisenschwammes mit höherer Metallisierung und/oder größerer Korngröße als Kühlmedium beim Verblasen des kohlenstoffhaltigen Eisens mit etwa 1,8 bis 2,5 % C zu Stahl zugesetzt wird,
f) die Summe der gemäß (b) und (c) erzeugten Mengen an elektrischer Energie mindestens der Menge an elektrischer Energie entspricht, die zum Einschmelzen des Eisenschwammes in flüssiges kohlenstoffhaltiges Eisen gemäß (e) notwendig ist und diese notwendige Menge an elektrischer Energie in den Elektroreduktionsofen geleitet wird.
3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß das im Elektroreduktionsofen erzeugte kohlenstoffhaltige Eisen aufgekohlt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Temperatur und/oder der Gehalt an brennbaren Bestandteilen des Abgases der Direktreduktion zur Steigerung der erzeugten Menge an elektrischer Energie erhöht wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Abgas des Elektroreduktionsofens zur Erzeugung elektrischer Energie verwendet wird.
6. Verfahren nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß das Abgas des Konverters zur Erzeugung elektrischer Energie verwendet wird.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die zusätzlich erzeugte Menge an elektrischer Energie so geregelt wird, daß der gesamte Eisenschwamm zu Stahl verarbeitet wird.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß das Verblasen zu Stahl unter Zusatz von Energieträgern erfolgt.
EP84201106A 1983-08-25 1984-07-28 Verfahren zur Erzeugung von flüssigem, kohlenstoffhaltigem Eisen aus Eisenschwamm Expired EP0139310B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3330625 1983-08-25
DE3330625 1983-08-25
DE19833334221 DE3334221A1 (de) 1983-08-25 1983-09-22 Verfahren zur erzeugung von fluessigem, kohlenstoffhaltigem eisen aus eisenschwamm
DE3334221 1983-09-22

Publications (2)

Publication Number Publication Date
EP0139310A1 EP0139310A1 (de) 1985-05-02
EP0139310B1 true EP0139310B1 (de) 1988-10-19

Family

ID=25813456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84201106A Expired EP0139310B1 (de) 1983-08-25 1984-07-28 Verfahren zur Erzeugung von flüssigem, kohlenstoffhaltigem Eisen aus Eisenschwamm

Country Status (12)

Country Link
US (1) US4551172A (de)
EP (1) EP0139310B1 (de)
JP (1) JPH0680167B2 (de)
AU (1) AU564718B2 (de)
BR (1) BR8404219A (de)
CA (1) CA1224336A (de)
DE (2) DE3334221A1 (de)
ES (1) ES8504943A1 (de)
GR (1) GR80186B (de)
ID (1) ID807B (de)
PH (1) PH21947A (de)
TR (1) TR22714A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061261A2 (de) 2009-11-19 2011-05-26 Sms Siemag Ag Verfahren und vorrichtung zur verminderung des metallurgischen energiebedarfs von geschlossenen elektrischen schmelz- und/oder reduktionsöfen
MD4422C1 (ro) * 2009-03-18 2016-12-31 Rafic Boulos DAOU Instalaţie şi procedeu de producere a oţelului, şi procedeu de utilizare a energiei electrice generate în procesul de producere a oţelului

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3428782A1 (de) * 1984-08-04 1986-02-13 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur erzeugung von eisenschwamm
AT387038B (de) * 1986-11-25 1988-11-25 Voest Alpine Ag Verfahren und anlage zur gewinnung von elektrischer energie neben der herstellung von fluessigem roheisen
GB8706077D0 (en) * 1987-03-13 1987-04-15 Boc Group Plc Power generation
US5064174A (en) * 1989-10-16 1991-11-12 Northern States Power Company Apparatus for production of energy and iron materials, including steel
US5055131A (en) * 1987-08-31 1991-10-08 Northern States Power Company Cogeneration process for production of energy and iron materials
EP0377636A1 (de) * 1987-08-31 1990-07-18 Northern States Power Company Kogeneratives verfahren zur erzeugung von energie und zur herstellung von eisen einschliesslich stahl
US5045112A (en) * 1988-02-08 1991-09-03 Northern States Power Company Cogeneration process for production of energy and iron materials, including steel
US5066325A (en) * 1987-08-31 1991-11-19 Northern States Power Company Cogeneration process for production of energy and iron materials, including steel
US5124008A (en) * 1990-06-22 1992-06-23 Solv-Ex Corporation Method of extraction of valuable minerals and precious metals from oil sands ore bodies and other related ore bodies
JPH09202909A (ja) * 1996-01-26 1997-08-05 Nippon Steel Corp 溶融還元設備ならびに操業方法
US5810905A (en) * 1996-10-07 1998-09-22 Cleveland Cliffs Iron Company Process for making pig iron
JPH10195513A (ja) * 1996-12-27 1998-07-28 Kobe Steel Ltd 金属鉄の製法
DE102009001646B3 (de) * 2009-03-18 2010-07-22 Daou, Rafic Boulos, Bdadoun Stahlerzeugungseinrichtung
DE102020116425A1 (de) 2020-06-22 2021-12-23 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
CN115652012B (zh) * 2022-09-08 2024-05-07 中冶赛迪工程技术股份有限公司 一种氢基竖炉产海绵铁的渗碳冷却与煤气利用方法、***及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3300867A1 (de) * 1983-01-13 1984-07-19 Mannesmann AG, 4000 Düsseldorf Verfahren zur erzeugung von stahl durch einschmelzen von eisenschwamm im lichtbogenofen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU35901A1 (de) *
US1338439A (en) * 1918-07-19 1920-04-27 Guyon F Greenwood Metallurgical method and apparatus
US1407372A (en) * 1918-08-10 1922-02-21 Walter E F Bradley Reduction of ores
US1902089A (en) * 1927-07-25 1933-03-21 William P Deppe Process of mineral reduction and metal extraction
US2292305A (en) * 1941-10-27 1942-08-04 Alfred M Thomsen Iron sulphide metallurgy
US3224871A (en) * 1961-02-24 1965-12-21 Elektrokemisk As Process of preheating ores for reduction in smelting furnace
US3052533A (en) * 1961-03-27 1962-09-04 Alfred M Thomsen Process for the direct reduction of iron
GB958731A (en) * 1962-06-29 1964-05-27 Ass Elect Ind Means for supplying heated air to blast furnaces
CA848890A (en) * 1967-07-08 1970-08-11 Whigham William Production of iron and steel
AT303780B (de) * 1968-06-24 1972-12-11 Guenter Heitmann Dipl Ing Verfahren und Vorrichtung zur Erzeugung von Eisenschwamm aus oxydischen Eisenerzen
DE2033197A1 (de) * 1970-07-04 1972-01-20 Puhlmann P Verfahren und Vorrichtung von für die Weiterverarbeitung bestimmten Metallen bzw. Metallegierungen, insbesondere Stahl, oder Verbindungen dieser Metalle mit anderen Elementen, z. B. Metalloxyden, oder sonstigen schmelzbaren Erden oder Stoffen mit Hilfe des Elektro-Lichtbogenofens
US3888658A (en) * 1970-11-02 1975-06-10 Westinghouse Electric Corp Process for the direct reduction of iron ore to steel
DD100017A5 (de) * 1971-11-01 1973-09-05
DE2628972C2 (de) * 1976-06-28 1983-12-01 Paderwerk Gebr. Benteler, 4794 Schloss Neuhaus Verfahren zur kontinuierlichen Erzeugung von Stahl
US4094665A (en) * 1977-05-13 1978-06-13 Stora Kopparbergs Bergslags Ab Method for simultaneous combined production of electrical energy and crude iron
DE2734961B2 (de) * 1977-08-03 1980-02-28 Gottfried Bischoff Bau Kompl. Gasreinigungs- Und Wasserrueckkuehlanlagen Gmbh & Co Kg, 4300 Essen Konverteranlage für das Frischen von Stahl aus Roheisen
US4244732A (en) * 1979-03-27 1981-01-13 Kaiser Engineers, Inc. Manufacture of steel from ores containing high phosphorous and other undesirable constituents
BR8200062A (pt) * 1981-01-15 1982-10-26 Asea Ltd Processo de recuperacao de energia a partir de corrente de gas residual de vaso de processamento metalurgico e instalacao para producao de ferro ou aco pelo dito processo
JPS58185703A (ja) * 1982-04-21 1983-10-29 Nippon Steel Corp 電気炉による製鉄方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3300867A1 (de) * 1983-01-13 1984-07-19 Mannesmann AG, 4000 Düsseldorf Verfahren zur erzeugung von stahl durch einschmelzen von eisenschwamm im lichtbogenofen
EP0117928A1 (de) * 1983-01-13 1984-09-12 Metallgesellschaft Ag Verfahren zur Erzeugung von Stahl durch Einschmelzen von Eisenschwamm im Lichtbogenofen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4422C1 (ro) * 2009-03-18 2016-12-31 Rafic Boulos DAOU Instalaţie şi procedeu de producere a oţelului, şi procedeu de utilizare a energiei electrice generate în procesul de producere a oţelului
WO2011061261A2 (de) 2009-11-19 2011-05-26 Sms Siemag Ag Verfahren und vorrichtung zur verminderung des metallurgischen energiebedarfs von geschlossenen elektrischen schmelz- und/oder reduktionsöfen
DE102009053920A1 (de) 2009-11-19 2011-05-26 Sms Siemag Ag Verfahren und Vorrichtung zur Verminderung des metallurgischen Energiebedarfs von geschlossenen elektrischen Schmelz- und/oder Reduktionsöfen

Also Published As

Publication number Publication date
BR8404219A (pt) 1985-07-23
US4551172A (en) 1985-11-05
DE3334221A1 (de) 1985-03-14
AU564718B2 (en) 1987-08-20
DE3474690D1 (en) 1988-11-24
PH21947A (en) 1988-04-15
AU3238884A (en) 1985-02-28
EP0139310A1 (de) 1985-05-02
JPS60116706A (ja) 1985-06-24
JPH0680167B2 (ja) 1994-10-12
GR80186B (en) 1985-01-02
TR22714A (tr) 1988-04-28
ID807B (id) 1996-07-11
ES535324A0 (es) 1985-05-01
CA1224336A (en) 1987-07-21
ES8504943A1 (es) 1985-05-01

Similar Documents

Publication Publication Date Title
EP0139310B1 (de) Verfahren zur Erzeugung von flüssigem, kohlenstoffhaltigem Eisen aus Eisenschwamm
EP0657549B1 (de) Verfahren zum Herstellen einer Eisenschmelze
EP0236802B1 (de) Verfahren zur Schmelzreduktion von Eisenerzen
DE3513732C2 (de)
DE69927837T2 (de) Verfahren und vorrichtung zur herstellung von metallen und metalllegierungen
DE2723857A1 (de) Verfahren und vorrichtung zur stahlherstellung
DE3042239A1 (de) Verfahren zur herstellung von rostfreiem stahl
US3862834A (en) Method for producing steel
DE2403780C3 (de) Verfahren zum Verhütten von Metalloxyd
DE69130959T2 (de) Kontinuierliche Herstellung von Eisen-Kohlenstoff-Legierung aus Eisenkarbid
EP0117928B1 (de) Verfahren zur Erzeugung von Stahl durch Einschmelzen von Eisenschwamm im Lichtbogenofen
DE2939859C2 (de) Verfahren zur Stahlherstellung
DE3905486A1 (de) Schmelzofen und beschickungsverfahren fuer denselben
DE4041689A1 (de) Verfahren und anlage zum herstellen von stahl aus eisenhaltigen metalloxiden
DE102020116425A1 (de) Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
DE2351171A1 (de) Verfahren zur stahlerzeugung
WO2023030956A1 (de) Verfahren zur herstellung einer eisenschmelze
DE69425190T2 (de) Verfahren zur Herstellung von geschmolzenem Stahl aus Kohlenstoffenreichem eisenhaltigen Material
DE102022118640A1 (de) Verfahren zur Herstellung einer Eisenschmelze in einem elektrischen Einschmelzer
WO2022090390A1 (de) Stahlherstellung aus eisenschmelze
EP0115756A1 (de) Verfahren und Einrichtung zur Herstellung von Metallen, insbesondere von flüssigem Roheisen, Stahlvormaterial oder Ferrolegierungen
EP0117318A1 (de) Verfahren zum kontinuierlichen Einschmelzen von Eisenschwamm
EP0189368B1 (de) Verfahren zur Herstellung von Roheisen
DE2340174C2 (de) Verfahren zur Herstellung von Roh-Ferronickel mit hohem Nickelgehalt
EP0010647B1 (de) Verfahren und Vorrichtung zur Herstellung von Stahl aus Eisenerzstaub durch direkte Reduktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851025

17Q First examination report despatched

Effective date: 19870115

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB LU

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB LU

REF Corresponds to:

Ref document number: 3474690

Country of ref document: DE

Date of ref document: 19881124

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Free format text: 5216, PAGE 575

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920720

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920811

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930611

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930728

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940731

Year of fee payment: 11

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950728