EP0132494A2 - Electrodeposited composite coating - Google Patents

Electrodeposited composite coating Download PDF

Info

Publication number
EP0132494A2
EP0132494A2 EP84102203A EP84102203A EP0132494A2 EP 0132494 A2 EP0132494 A2 EP 0132494A2 EP 84102203 A EP84102203 A EP 84102203A EP 84102203 A EP84102203 A EP 84102203A EP 0132494 A2 EP0132494 A2 EP 0132494A2
Authority
EP
European Patent Office
Prior art keywords
disperse phase
dispersion layer
wear
layer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84102203A
Other languages
German (de)
French (fr)
Other versions
EP0132494B1 (en
EP0132494A3 (en
Inventor
Martin Dr. Rer. Nat. Thoma
Paul Dipl.-Ing. Bünger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Priority to AT84102203T priority Critical patent/ATE32108T1/en
Publication of EP0132494A2 publication Critical patent/EP0132494A2/en
Publication of EP0132494A3 publication Critical patent/EP0132494A3/en
Application granted granted Critical
Publication of EP0132494B1 publication Critical patent/EP0132494B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the invention relates to an electrodeposited dispersion layer 'with a cobalt matrix and a non-metallic disperse phase and a method for producing such a layer.
  • the object of the present invention is to provide a generic dispersion layer which offers even higher resistance to fretting corrosion than previously known dispersion layers, specifically in a temperature range which, if possible, includes temperatures from 200 to 300 ° C.
  • the layer should be easy to produce in terms of process technology, be easily heat-treatable and be usable for higher temperatures without a reaction of the matrix metal Co with the embedded solid.
  • the object is achieved in that, in the case of a generic dispersion layer, the disperse phase consists of Cr 2 0 3 particles. Cr 2 0 3 is resistant to oxidation, temperature and reaction to cobalt.
  • the best results with regard to fretting corrosion could be achieved if the installation rate of the disperse phase is 20 to 50%, preferably 30%, by volume of the layer material.
  • the particle size of the chromium oxide particles should be less than 10 ⁇ m, preferably between 3 and 6 ⁇ m.
  • the invention relates to a process for preparing a marked Dis above - persions slaughter, in which in a cobalt ion-containing electrolyte, the disperse phase is suspended.
  • a method is characterized in that the electrolyte has a pH value of 4.5 to 4.9 and at a temperature of 40 to 60 ° C preferably 50 ° C and a current density of 1 A / dm 'to 6 A. / dm 2 , preferably 3.5 A / dm 2 is deposited.
  • the method according to the invention best results were achieved both in terms of the homogeneity of the deposited layer and in terms of the adhesive strength.
  • the electrolyte should preferably be an aqueous solution of the following composition:
  • the method according to the invention undergoes further development in that the electrolytically deposited dispersion layer is subjected to such a heat treatment which brings about an oxidation of the matrix.
  • the oxidation of the cobalt to Co304 / Co0 is influenced by the Cr 2 0 3 present (embedded). In contrast to the oxidation of pure Co, these oxide layers are thinner and adhere well. This can increase the adhesive strength of the oxide layer in particular.
  • the heat treatment is preferably carried out at a temperature of 500 ° C. to 700 ° C. and for a period of 7 to 9 hours. Within these limits, the optimal conditions are 600 ° C and a duration of 8 hours.
  • the invention relates to a pair of components that is subject to wear, in particular to friction corrosion, the components of which are made of a base material such as a nickel-based alloy (e.g. Inconel 100, C 263, Nimonic 80) or a titanium-based alloy z. B. 6% Al, 5% Zr, 0.8% Mo, 0.2% Si, balance Ti or chrome or chrome-nickel steels.
  • a nickel-based alloy e.g. Inconel 100, C 263, Nimonic 80
  • Ti chrome or chrome-nickel steels.
  • the frictional corrosion behavior of such a component pairing is improved accordingly in that one of the component surfaces is provided with a dispersion layer, as disclosed in patent claims 1 to 3 and / or 8. It has been shown that the use of a Co / Cr 2 O 3 dispersion layer according to the invention on only one component also reduces the wear of the uncoated component to a minimum.
  • the frictional wear is shown in mm 3 as a function of the temperature load in ° C. Both curves shown apply to the frictional wear of the dispersion layer against the dispersion layer.
  • the solid curve shows an example with a dispersion layer made of Co / Cr 3 C 2
  • the dashed curve which is much lower, especially in a temperature range below 400 ° C, refers to dispersion layers Co / Cr 2 O 3 .
  • This comparison shows that, especially in the range from 200 to 300 ° C., the wear values for the dispersion layers according to the invention are only 1/5 to 1/10 of the wear values for previously known Co / Cr3C2 layers.
  • the curve for the Co / Cr 3 C 2 dispersion layer is taken from the magazine Kobalt, 1973, issue 3, page 5, picture 4.
  • the diagram shown in Fig. 2 is the comparison of the fretting an uncoated component pairing of the material Nimonic 80 with a mating component, is coated in the one of the component surfaces with the inventive dispersion layer Co / Cr 2 0 3. Again the wear is shown in mm 3 , the temperature load in ° C.
  • the upper solid curve applies to the frictional wear of the uncoated component pairing. Of the dashed curves, which are very close to each other, the upper indicates the wear of the Co / Cr 2 0 3 coating, the lower the wear of the uncoated component surface made of Nimonic 80.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A wear and tear protection is achieved by a galvanically deposited coating on at least one of two structural components cooperating in a wear zone. The coating is a dispersion layer having a cobalt matrix and chromic oxide (Cr2O3) particles embedded in the cobalt matrix. The protective layer is produced with the aid of an electrolytic dispersion bath in which the chromic oxide particles are dispersed.

Description

Die Erfindung bezieht sich auf eine galvanisch abgeschiedene Dispersionsschicht'mit einer Kobaltmatrix und einer nichtmetallischen dispersen Phase und auf ein Verfahren zur Herstellung einer solchen Schicht.The invention relates to an electrodeposited dispersion layer 'with a cobalt matrix and a non-metallic disperse phase and a method for producing such a layer.

Aus der GB-PS 13 58 538 sind Schichten der vorgenannten Gattung bekannt, bei denen in eine Kobaltmatrix Hartstoffphasen, wie z. B. Chromkarbid, Wolframkarbid oder Siliziumkarbid eingelagert sind. Es hat sich gezeigt, daß diese Dispersionsschichten als Verschleißschutzschichten auf temperaturbelasteten Teilen geeignet sind, weil sie große Härte aufweisen und weil die elektrochemische Abscheidung die Beschichtung auch kompliziert geformter Werkstücke zuläßt. Bei einem Vergleichstest zeigte das System Kobalt/Chromkarbid in einem Temperaturbereich von etwa 400 °C bis 600 °C besonders niedrige Verschleißwerte infolge Reibkorrosion. Nachteile dieses vorbekannten Verbundsystems aus einer Kobaltmatrix und einer Chromkarbidphase sind darin zu sehen, daß sich bei einer der galvanischen Abscheidung nachfolgenden Wärmebehandlung zur Erzielung einer Diffusion das Chromkarbid zersetzt und ein komplexes Chrom-Kobalt-Karbid entsteht. Weiterhin ist die Verarbeitung von Chromkarbid schwierig, weil es ein relativ hohes spezifisches Gewicht hat und deshalb besondere Maßnahmen verlangt, um es im Elektrolyten in Suspension zu halten und weil es relativ gut elektrisch leitend ist und daher dendritsches Wachstum in der abgeschiedenen Schicht entsteht.From GB-PS 13 58 538 layers of the aforementioned type are known, in which hard material phases such as in a cobalt matrix. B. chromium carbide, tungsten carbide or silicon carbide are embedded. It has been shown that these dispersion layers are suitable as wear protection layers on parts subject to high temperatures, because they have great hardness and because electrochemical deposition permits the coating of workpieces of complex shapes. In a comparative test, the cobalt / chromium carbide system showed particularly low wear values due to fretting corrosion in a temperature range of around 400 ° C to 600 ° C. Disadvantages of this previously known composite system consisting of a cobalt matrix and a chromium carbide phase can be seen in the fact that one which follows the galvanic deposition Heat treatment to achieve diffusion decomposes the chromium carbide and creates a complex chromium-cobalt-carbide. Furthermore, the processing of chromium carbide is difficult because it has a relatively high specific weight and therefore requires special measures to keep it in suspension in the electrolyte and because it is relatively good electrical conductor and therefore dendritic growth occurs in the deposited layer.

Aufgabe der vorliegenden Erfindung ist es, eine gattungsgemäße Dispersionsschicht zu schaffen, die noch höheren Widerstand gegen Reibkorrosion bietet als vorbekannte Dispersionsschichten und zwar in einem Temperaturbereich, der möglichst schon Temperaturen ab 200 bis 300 °C einschließt. Dabei soll die Schicht verfahrenstechnisch einfach herstellbar sein, problemlos einer Wärmebehandlung unterziel.bar sein und für höhere Temperaturen einsetzbarsein, ohne daß eine Reaktion des Matrixmetalls Co mit dem eingelagerten Feststoff stattfindet.The object of the present invention is to provide a generic dispersion layer which offers even higher resistance to fretting corrosion than previously known dispersion layers, specifically in a temperature range which, if possible, includes temperatures from 200 to 300 ° C. The layer should be easy to produce in terms of process technology, be easily heat-treatable and be usable for higher temperatures without a reaction of the matrix metal Co with the embedded solid.

Erfindungsgemäß wird die gestellte Aufgabe dadurch gelöst, daß bei einer gattungsgemäßen Dispersionsschicht die disperse Phase aus Cr203-Partikeln besteht. Cr203 ist oxidationsbeständig, temperaturbeständig und gegenüber Cobalt reaktionsbeständig.According to the invention, the object is achieved in that, in the case of a generic dispersion layer, the disperse phase consists of Cr 2 0 3 particles. Cr 2 0 3 is resistant to oxidation, temperature and reaction to cobalt.

In Reibkorrosionstestskonnte nachgewiesen werden, daß die erfindungsgemäße Dispersionsschicht unter denselben Versuchsbedingungen noch erheblich geringerem Verschleiß unterliegt als bislang bekannte galvanische KobaltChromkarbid-Verbundschichten. Besonders vorteilhaft ist dabei, daß die hohe Verschleißbeständigkeit bereits bei Temperaturen von 300 °C beginnt,.wogegen vergleichbare Werte mit dem Verbundsystem Kobalt/Chromkarbid erst ab 400 °C erreichbar sind. Schließlich bietet das Verbundsystem Kobalt/Chromoxid verfahrenstechnische Vorteile, indem Chromoxid ein relativ niedriges spezifisches Gewicht aufweist und dadurch leicht im Elektrolyten zu suspendieren ist und indem Chromoxid darüber hinaus aufgrund seines hohen spezifischen Widerstands eindeutig als elektrisch nichtleitend anzusprechen ist, wodurch der Einbaumechanismus verändert wird. Es bilden sich keine dentritischen Auswachsungen (wie bei Cr3C2 möglich).Fretting corrosion tests have shown that under the same test conditions the dispersion layer according to the invention is subject to considerably less wear than previously known galvanic cobalt-chromium carbide composite layers. It is particularly advantageous that the high wear resistance begins at temperatures of 300 ° C, whereas comparable values can only be achieved with the cobalt / chromium carbide system from 400 ° C. After all, that offers Cobalt / chromium oxide composite process technology advantages, in that chromium oxide has a relatively low specific weight and is therefore easy to suspend in the electrolyte, and in addition, because of its high specific resistance, chromium oxide is clearly to be addressed as electrically non-conductive, which changes the installation mechanism. No dentritic outgrowths form (as is possible with Cr 3 C 2 ).

Beste Ergebnisse im Hinblick auf Reibkorrosion konnten erzielt werden, wenn die Einbaurate der dispersen Phase 20 bis 50 %, vorzugsweise 30 % Vol. des Schichtmaterials beträgt. Die Partikelgröße der Chromoxidpartikel soll dabei unter 10 um, vorzugsweise zwischen 3 und 6 µm liegen.The best results with regard to fretting corrosion could be achieved if the installation rate of the disperse phase is 20 to 50%, preferably 30%, by volume of the layer material. The particle size of the chromium oxide particles should be less than 10 μm, preferably between 3 and 6 μm.

Im weiteren bezieht sich die Erfindung auf ein Verfahren zur Herstellung einer vorstehend gekennzeichneten Dis- persionsschicht, bei dem in einem kobaltionenhaltigen Elektrolyten die disperse Phase suspendiert ist. Erfindungsgemäß ist ein solches Verfahren dadurch gekennzeichnet, daß der Elektrolyt einen PH-Wert von 4,5 bis 4,9 aufweist und bei einer Temperatur von 40 bis 60 °C vorzugsweise 50 °C und einer Stromdichte von 1 A/dm' bis 6 A/dm2, vorzugsweise 3,5 A/dm2 abgeschieden wird. Mit dem erfindungsgemäßen Verfahren konnten sowohl, was die Homogenität der abgeschiedenen Schicht als auch was die Haftfestigkeit anlangt, beste Ergebnisse erzielt werden.Furthermore, the invention relates to a process for preparing a marked Dis above - persionsschicht, in which in a cobalt ion-containing electrolyte, the disperse phase is suspended. According to the invention, such a method is characterized in that the electrolyte has a pH value of 4.5 to 4.9 and at a temperature of 40 to 60 ° C preferably 50 ° C and a current density of 1 A / dm 'to 6 A. / dm 2 , preferably 3.5 A / dm 2 is deposited. With the method according to the invention, best results were achieved both in terms of the homogeneity of the deposited layer and in terms of the adhesive strength.

Vorzugsweise soll der Elektrolyt eine wässrige Lösung folgender Zusammensetzung sein:

Figure imgb0001
Eine Weiterbildung erfährt das erfindungsgemäße Verfahren dadurch, daß die elektrolytisch abgeschiedene Dispersionsschicht einer solchen Wärmebehandlung unterzogen wird, die eine Oxidation der Matrix bewirkt. Die Oxidation des Cobalts zu Co304/Co0 wird durch das vorhandene (eingelagerte)Cr203 beeinfluBt. Im Gegensatz zur Oxidation von reinem Co sind diese Oxidschichten dünner und gut haftend. Hierdurch kann insbesondere die Haftfestigkeit der Oxidschicht erhöht werden. Vorzugsweise erfolgt die Wärmebehandlung bei einer Temperatur von 500 °C bis 700 °C und einer Dauer von 7 bis 9 Stunden. Innerhalb dieser Grenzen liegen die optimalen Bedingungen bei 600 °C und einer Dauer von 8 Stunden.The electrolyte should preferably be an aqueous solution of the following composition:
Figure imgb0001
The method according to the invention undergoes further development in that the electrolytically deposited dispersion layer is subjected to such a heat treatment which brings about an oxidation of the matrix. The oxidation of the cobalt to Co304 / Co0 is influenced by the Cr 2 0 3 present (embedded). In contrast to the oxidation of pure Co, these oxide layers are thinner and adhere well. This can increase the adhesive strength of the oxide layer in particular. The heat treatment is preferably carried out at a temperature of 500 ° C. to 700 ° C. and for a period of 7 to 9 hours. Within these limits, the optimal conditions are 600 ° C and a duration of 8 hours.

Beste Ergebnisse im Hinblick auf Beständigkeit gegen Reibkorrosion können bei Bauteilen für thermische Turbomaschinen erzielt werden, die nach dem erfindungsgemäßen Verfahren mit einer Verschleißschutzschicht in einer Schichtdicke von 10 bis 300 um beschichtet werden.The best results with regard to resistance to fretting corrosion can be achieved with components for thermal turbomachinery which are coated with a wear protection layer in a layer thickness of 10 to 300 μm by the method according to the invention.

Im weiteren bezieht sich die Erfindung auf eine auf Verschleiß, insbesondere auf Reibkorossion beanspruchte Bauteilpaarung, deren Bauteile aus einem Grundwerkstoff wie einer Nickelbasislegierung (z. B. Inconel 100, C 263, Nimonic 80) oder einer Titanbasislegierung z. B. 6 % Al, 5 % Zr, 0,8 % Mo, 0,2 % Si, Rest Ti oder Chrom- oder Chrom-Nickel-Stählen bestehen. Erfindungsgemäß wird das Reibkorrosionsverhalten einer solchen Bauteilpaarung dadurch entsprechend verbessert, daß eine der Bauteiloberflächen mit einer Dispersionsschicht, wie sie in den Patentansprüchen 1 bis 3 und/oder 8 offenbart ist, versehen ist. Es hat sich gezeigt, daß die Anwendung einer erfindungsgemäßen Co/Cr203-Dispersionsschicht auf nur einem Bauteil auch den Verschleiß des nicht beschichteten Bauteils auf ein Minimum reduziert.Furthermore, the invention relates to a pair of components that is subject to wear, in particular to friction corrosion, the components of which are made of a base material such as a nickel-based alloy (e.g. Inconel 100, C 263, Nimonic 80) or a titanium-based alloy z. B. 6% Al, 5% Zr, 0.8% Mo, 0.2% Si, balance Ti or chrome or chrome-nickel steels. According to the invention, the frictional corrosion behavior of such a component pairing is improved accordingly in that one of the component surfaces is provided with a dispersion layer, as disclosed in patent claims 1 to 3 and / or 8. It has been shown that the use of a Co / Cr 2 O 3 dispersion layer according to the invention on only one component also reduces the wear of the uncoated component to a minimum.

Anhand der beigefügten Zeichnungen wird die Verschleißschutzwirkung erfindungsgemäßer Dispersionsschichten dargestellt. In den Zeichnungen zeigt

  • Fig. 1 einen Vergleich des Verschleißverhaltens einer Bauteilpaarung, bei der beide Bauteiloberflächen mit Dispersionsschichten versehen sind, in einem Fall mit einer Co/Cr203-Dispersionsschicht, im anderen Fall mit einer Co/Cr3C2-Dispersionsschicht, .
  • Fig. 2 einen Vergleich des Verschleißverhaltens einer Bauteilpaarung des Grundwerkstoffs Nimonic 80 in einem Fall unbeschichtet, in den beiden anderen Fällen mit einer Bauteiloberfläche mit einer erfindungsgemäßen Dispersionsschicht versehen.
The wear protection effect of dispersion layers according to the invention is illustrated with the aid of the accompanying drawings. In the drawings shows
  • 1 shows a comparison of the wear behavior of a component pairing, in which both component surfaces are provided with dispersion layers, in one case with a Co / Cr 2 O 3 dispersion layer, in the other case with a Co / Cr 3 C 2 dispersion layer.
  • 2 shows a comparison of the wear behavior of a component pairing of the base material Nimonic 80 in one case uncoated, in the other two cases provided with a component surface with a dispersion layer according to the invention.

Bei dem in Fig. 1 dargestellten Diagramm ist der Reibverschleiß in mm3 in Abhängigkeit von der Temperaturbelastung in °C dargestellt. Beide eingezeichnete Kurvenzüge gelten für den Reibverschleiß Dispersionsschicht gegen Dispersionsschicht. Die durchgezogene Kurve zeigt ein Beispiel mit einer Dispersionsschicht aus Co/Cr3C2, während die vor allem in einem Temperaturbereich unterhalb 400 °C sehr viel niedriger liegende strichlierte Kurve sich auf _ Dispersionsschichten Co/Cr2O3 bezieht. Aus dieser Vergleichsdarstellung ergibt sich, daß vor allem im Bereich von 200 bis 300 °C die Verschleißwerte für die erfindungsgemäßen Dispersionsschichten nur 1/5 bis 1/10 der Verschleißwerte für vorbekannte Co/Cr3C2-Schichten betragen. Der Kurvenzug für die Co/Cr3C2-Dispersionsschicht ist aus der Zeitschrift Kobalt, 1973, Heft 3, Seite 5, Bild 4, übernommen.In the diagram shown in FIG. 1, the frictional wear is shown in mm 3 as a function of the temperature load in ° C. Both curves shown apply to the frictional wear of the dispersion layer against the dispersion layer. The solid curve shows an example with a dispersion layer made of Co / Cr 3 C 2 , while the dashed curve, which is much lower, especially in a temperature range below 400 ° C, refers to dispersion layers Co / Cr 2 O 3 . This comparison shows that, especially in the range from 200 to 300 ° C., the wear values for the dispersion layers according to the invention are only 1/5 to 1/10 of the wear values for previously known Co / Cr3C2 layers. The curve for the Co / Cr 3 C 2 dispersion layer is taken from the magazine Kobalt, 1973, issue 3, page 5, picture 4.

Das in Fig. 2 dargestellte Diagramm dient dem Vergleich des Reibverschleisses einer unbeschichteten Bauteilpaarung aus dem Werkstoff Nimonic 80 mit einer Bauteilpaarung, bei der eine der Bauteiloberflächen mit der erfindungsgemäßen Dispersionsschicht Co/Cr203 beschichtet ist. Es ist wiederum der Verschleiß in mm3, die Temperaturbelastung in °C aufgetragen. Die obere durchgezogene Kurve gilt für den Reibverschleiß der unbeschichteten Bauteilpaarung. Von den strichlierten Kurven, die sehr nahe beieinander liegen, gibt die obere den Verschleiß der Co/Cr203-Beschichtung an, die untere den Verschleiß der unbeschichteten Bauteiloberfläche aus Nimonic 80.The diagram shown in Fig. 2 is the comparison of the fretting an uncoated component pairing of the material Nimonic 80 with a mating component, is coated in the one of the component surfaces with the inventive dispersion layer Co / Cr 2 0 3. Again the wear is shown in mm 3 , the temperature load in ° C. The upper solid curve applies to the frictional wear of the uncoated component pairing. Of the dashed curves, which are very close to each other, the upper indicates the wear of the Co / Cr 2 0 3 coating, the lower the wear of the uncoated component surface made of Nimonic 80.

Claims (9)

1. Galvanisch abgeschiedene Dispersionsschicht mit einer Kobaltmatrix und einer nichtmetallischen dispersen Phase, dadurch gekennzeichnet, daß die disperse Phase aus Cr203-Partikeln besteht.1. Galvanically deposited dispersion layer with a cobalt matrix and a non-metallic disperse phase, characterized in that the disperse phase consists of Cr 2 0 3 particles. 2. Dispersionsschicht nach Anspruch 1, dadurch gekennzeichnet, daß die Einbaurate der dispersen Phase 20 % bis 50 %, vorzugsweise 30 % Vol. des Schichtmaterials beträgt.2. Dispersion layer according to claim 1, characterized in that the installation rate of the disperse phase is 20% to 50%, preferably 30% vol. Of the layer material. 3. Dispersionsschicht nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß die Partikelgröße der dispersen Phase unter 10 µm vorzugsweise bei 3 bis 6 µm liegt.3. Dispersion layer according to claim 1 or claim 2, characterized in that the particle size of the disperse phase is below 10 microns, preferably 3 to 6 microns. 4. Verfahren zur Herstellung einer Dispersionsschicht nach den Ansprüchen 1 bis 3, bei dem in einem kobaltionenhaltigen Elektrolyten die disperse Phase suspendiert ist, dadurch gekennzeichnet, daß der Elektrolyt einen PH-Wert von 4,5 bis 4,9 aufweist und bei einer Temperatur von 40 bis 60 °C vorzugsweise 50 °C und einer Stromdichte von 1 A/dm' bis 6 A/dm2, vorzugsweise 3,5 A/dm' abgeschieden wird.4. A method for producing a dispersion layer according to claims 1 to 3, in which the disperse phase is suspended in an electrolyte containing cobalt ions, characterized in that the electrolyte has a pH of 4.5 to 4.9 and at a temperature of 40 to 60 ° C, preferably 50 ° C and a current density of 1 A / dm 'to 6 A / dm 2 , preferably 3.5 A / dm' is deposited. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Elektrolyt eine wässrige Lösung folgender Zusammensetzung ist:
Figure imgb0002
5. The method according to claim 4, characterized in that the electrolyte is an aqueous solution of the following composition:
Figure imgb0002
6. Verfahren nach den Ansprüchen 4 und 5, dadurch gekennzeichnet, daß die elektrolytisch abgeschiedene Schicht einer solchen Wärmebehandlung unterzogen wird, die eine gezielte Oxidation der Matrix bewirkt.6. The method according to claims 4 and 5, characterized in that the electrodeposited layer is subjected to such a heat treatment which causes a targeted oxidation of the matrix. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Wärmebehandlung bei einer Temperatur von 500 °C bis 700 °C und einer Dauer von 7 bis 9 Stunden stattfindet.7. The method according to claim 6, characterized in that the heat treatment takes place at a temperature of 500 ° C to 700 ° C and a duration of 7 to 9 hours. 8. Bauteil einer thermischen Turbomaschine mit einer Verschleißschutzschicht nach den Ansprüchen 1 bis 3, in einer Schichtdicke von 10 bis 300 µm.8. component of a thermal turbomachine with a wear protection layer according to claims 1 to 3, in a layer thickness of 10 to 300 microns. 9. Auf Verschleiß insbesondere auf Reibkorrosion beanspruchte Bauteilpaarung, deren Bauteile aus einem Grundwerkstoff wie Ni-Basislegierung (z. B. Inconel 100, C 263, Nimonic 80) oder Ti-Basislegierung (z. B. der Zusammensetzung 6 % Al, 5 % Zr, 0,8 % Mo, 0,2 % Si, Rest Ti) bestehen, dadurch gekennzeichnet, daß eine der Bauteiloberflächen mit einer Dispersionsschicht nach den Ansprüchen 1 bis 3 und/oder 8 versehen ist.9. Pair of components subject to wear, particularly to fretting corrosion, whose components are made of a base material such as Ni-based alloy (e.g. Inconel 100, C 263, Nimonic 80) or Ti-based alloy (e.g. the composition 6% Al, 5% Zr, 0.8% Mo, 0.2% Si, balance Ti), characterized in that one of the component surfaces is provided with a dispersion layer according to Claims 1 to 3 and / or 8.
EP84102203A 1983-07-29 1984-03-01 Electrodeposited composite coating Expired EP0132494B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84102203T ATE32108T1 (en) 1983-07-29 1984-03-01 ELECTROPLATED DISPERSION COATING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3327346A DE3327346C2 (en) 1983-07-29 1983-07-29 Process for the production of a wear protection layer and its use
DE3327346 1983-07-29

Publications (3)

Publication Number Publication Date
EP0132494A2 true EP0132494A2 (en) 1985-02-13
EP0132494A3 EP0132494A3 (en) 1985-04-03
EP0132494B1 EP0132494B1 (en) 1988-01-20

Family

ID=6205207

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84102203A Expired EP0132494B1 (en) 1983-07-29 1984-03-01 Electrodeposited composite coating

Country Status (5)

Country Link
US (2) US4598016A (en)
EP (1) EP0132494B1 (en)
JP (1) JPS6039200A (en)
AT (1) ATE32108T1 (en)
DE (2) DE3327346C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826734A (en) * 1988-03-03 1989-05-02 Union Carbide Corporation Tungsten carbide-cobalt coatings for various articles
US5120707A (en) * 1989-05-22 1992-06-09 Allied-Signal, Inc. Superconducting ceramics by electrodeposition of metals with embedment of particulate matter, followed by oxidation
ZA952222B (en) * 1994-03-17 1995-12-14 Sherritt Inc Low friction cobalt based coatings for titanium
GB9414858D0 (en) * 1994-07-22 1994-09-14 Baj Coatings Ltd Protective coating
GB9414859D0 (en) * 1994-07-22 1994-09-14 Baj Coatings Ltd Protective coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265472A (en) * 1967-11-29 1972-03-01
GB1336146A (en) * 1971-05-28 1973-11-07 Canning & Co Ltd W Cobalt electrodeposition
GB1358538A (en) * 1971-06-08 1974-07-03 Bristol Aerojet Ltd Electrodeposited composite coatings

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3061525A (en) * 1959-06-22 1962-10-30 Platecraft Of America Inc Method for electroforming and coating
NL275167A (en) * 1962-02-23
NL279109A (en) * 1962-05-30
US3393067A (en) * 1964-12-18 1968-07-16 Fansteel Metallurgical Corp Process for producing alloys containing chromium and dispersed refractory metal oxide particles
US3753667A (en) * 1968-01-16 1973-08-21 Gen Am Transport Articles having electroless metal coatings incorporating wear-resisting particles therein
US3895923A (en) * 1969-12-30 1975-07-22 Texas Instruments Inc High strength metal carbonitrided composite article
DE2313104C3 (en) * 1973-03-16 1982-02-18 Heyes, Josef, Dr.phil., 4000 Düsseldorf Process for applying a firmly adhering layer of non-metallic substances to an electrically conductive base
US4305792A (en) * 1977-12-21 1981-12-15 Bristol Aerojet Limited Processes for the electrodeposition of composite coatings
US4222828A (en) * 1978-06-06 1980-09-16 Akzo N.V. Process for electro-codepositing inorganic particles and a metal on a surface
US4470897A (en) * 1983-09-20 1984-09-11 Bethlehem Steel Corp. Method of electroplating a corrosion-resistant zinc-containing deposit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1265472A (en) * 1967-11-29 1972-03-01
GB1336146A (en) * 1971-05-28 1973-11-07 Canning & Co Ltd W Cobalt electrodeposition
GB1358538A (en) * 1971-06-08 1974-07-03 Bristol Aerojet Ltd Electrodeposited composite coatings

Also Published As

Publication number Publication date
EP0132494B1 (en) 1988-01-20
JPS6039200A (en) 1985-02-28
DE3327346A1 (en) 1985-02-14
US4599148A (en) 1986-07-08
EP0132494A3 (en) 1985-04-03
JPS6362598B2 (en) 1988-12-02
DE3468909D1 (en) 1988-02-25
ATE32108T1 (en) 1988-02-15
US4598016A (en) 1986-07-01
DE3327346C2 (en) 1986-03-27

Similar Documents

Publication Publication Date Title
DE3535548C2 (en) Coated article and method of making a coating of an article
DE2907179C2 (en)
DE2520192A1 (en) HEAT-RESISTANT NICOCRALY COATINGS
DE3023576A1 (en) HEAT-TREATED SINGLE-CRYSTAL SUPER ALLOY ITEM AND METHOD FOR PRODUCING THE SAME
DE69533933T2 (en) Oxidation-resistant component based on a titanium alloy substrate
DE2605289A1 (en) ALLOY WITH IMPROVED RESISTANCE TO THE ENVIRONMENT
DE1496928A1 (en) Process for covering objects with a decorative bright nickel chrome covering
EP0341456B1 (en) Process for electrolytically depositing a metal layer resisting corrosion by hot gases
EP2851455B1 (en) Method of electroplating wear-resistant coating
DE3123833C2 (en) Process for controlling the composition of electrodeposited nickel-cobalt alloys
EP0132494A2 (en) Electrodeposited composite coating
DE3519307A1 (en) SILICONIC WEAR-RESISTANT ALLOY COATINGS
DE7434875U (en) ELECTRODE FOR USE IN AN ELECTROCHEMICAL PROCESS
EP0018432A1 (en) Metallic article provided with a wear and corrosion resistant protective coating of tungsten carbide
DE3515742C2 (en)
DE2608637C3 (en) Process for making alloys
EP0984082A1 (en) Process for coating of workpieces
DE10251902B4 (en) Process for coating a substrate and coated article
DE2443885C3 (en) Process for the surface treatment of iron alloys by galvanic deposition of a copper-tin alloy and subsequent thermal diffusion treatment
DE2502275A1 (en) COATED, COMPOUND CARBIDES AND THE METHOD OF MANUFACTURING THEM
DE2438997A1 (en) COVER AND ITEMS COVERED WITH IT
WO1988009402A1 (en) Process for manufacturing protective coatings against oxidative and hot gas corrosion
DE3504186A1 (en) Electrolytic water bath and process for depositing a nickel-phosphorus alloy
DE3428316A1 (en) Powder-metallurgical product made from a nickel-based superalloy
WO2023041670A1 (en) Chromium-indium, chromium-bismuth and chromium-antimony coatings, method for the production and use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19851002

17Q First examination report despatched

Effective date: 19861017

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 32108

Country of ref document: AT

Date of ref document: 19880215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3468909

Country of ref document: DE

Date of ref document: 19880225

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84102203.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950316

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950322

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950331

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19950525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

BERE Be: lapsed

Owner name: MTU MOTOREN- UND TURBINEN-UNION MUNCHEN G.M.B.H.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

EUG Se: european patent has lapsed

Ref document number: 84102203.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030314

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20040229

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20