EP0341456B1 - Process for electrolytically depositing a metal layer resisting corrosion by hot gases - Google Patents

Process for electrolytically depositing a metal layer resisting corrosion by hot gases Download PDF

Info

Publication number
EP0341456B1
EP0341456B1 EP89106922A EP89106922A EP0341456B1 EP 0341456 B1 EP0341456 B1 EP 0341456B1 EP 89106922 A EP89106922 A EP 89106922A EP 89106922 A EP89106922 A EP 89106922A EP 0341456 B1 EP0341456 B1 EP 0341456B1
Authority
EP
European Patent Office
Prior art keywords
suspension
process according
powder
alloy powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89106922A
Other languages
German (de)
French (fr)
Other versions
EP0341456A2 (en
EP0341456A3 (en
Inventor
Monika Dr. Bindl
Paul Bünger
Josef Linska
Martin Dr. Thoma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0341456A2 publication Critical patent/EP0341456A2/en
Publication of EP0341456A3 publication Critical patent/EP0341456A3/en
Application granted granted Critical
Publication of EP0341456B1 publication Critical patent/EP0341456B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials

Definitions

  • the invention relates to a method for producing galvanically deposited hot gas corrosion layers according to the preamble of patent claim 1.
  • Metal layers consisting of an MCrAlY alloy have proven particularly suitable for this.
  • M stands for either nickel, cobalt or an alloy of the two. In special cases, iron can also be used.
  • the coated surface protecting effect is based on the fact that CrAl forms oxides at high temperatures (Cr2O3, Al2O3), which serve as protective films against further oxidation.
  • the alloys usually consist of approx. 15 - 25% Cr, 10 - 15% Al, 0.2 - 0.5% Y, balance M (each weight percent).
  • the share of Aluminum and chrome should be as high as possible so that the protective effect due to the oxide formation works properly.
  • Thermal spraying or PVD physical vapor deposition
  • PVD physical vapor deposition
  • the disadvantage of these application processes is above all the high process costs. Attempts have therefore been made to apply the protective layers by means of dispersion coating, since this would make it possible to achieve a considerably more economical procedure.
  • there were a number of disadvantages With conventional dispersion coating processes, only low installation rates of the suspension powder in the metal matrix could be achieved. These are in the range of 20 vol.%, Which means that the required high Cr and Al content cannot be achieved and the layer quality therefore remains inadequate. Shares of over 40 vol.% would be desirable in order to achieve the same layer quality as with PVD or plasma spraying.
  • the layers produced according to the invention are notable for an installation rate of up to 45% by volume, as a result of which the same layer quality can be achieved as with the known coating processes.
  • the production costs of the layers according to the invention are advantageously considerably lower. For example, compared to thermal spray coatings by a factor of 10.
  • the coating process is then followed by a heat treatment under vacuum for diffusion annealing, as a result of which alloying begins and a layer quality identical to the known spraying processes can be achieved.
  • the low suspension concentration of less than 100 g / l advantageously allows the use of uncomplicated, conventional dispersion separation techniques, which means that the effort, particularly with regard to series production, is considerably less than, for example, drum technology, which involves bath concentrations of at least 600 g / l is working.
  • a suspension concentration of 40-60 g / l proved to be particularly advantageous for achieving a high installation rate.
  • the shape and other properties of the suspension powder are considered to be immaterial.
  • powder particles of spherical shape and passivated surface allow considerably higher installation rates than conventional, in particular ground, powders.
  • the suspension concentration can be considerably reduced while the layer quality is increased at the same time.
  • a uniform layer structure is possible, in particular, through the passivation of the particle surface. This is due to the fact that a particle deposited on the substrate is non-conductive and therefore does not cause a negative change in the surrounding field line course. This advantageously enables undisturbed embedding and over-coating of the particle by means of matrix material. In a preferred development of the invention, this suspension concentration is between 40 and 60 g / l. This results in a particularly uniform layer structure.
  • CrAlY is preferably used as the metal powder, since the layer that can be achieved in this way has known good corrosion protection properties.
  • one or more of the following alloys can alternatively be used as powder: CrAlHf, CrAlYHf, CrAlTa, CrAlYTa, CrNiAl, CrCoAl, CrAlSi, CrAl, MoCrSi.
  • a particularly simple and cost-saving production of the suspension powder results since it is produced by spraying according to the invention.
  • favorable values for the particle diameter and the extent of the surface passivation can be set by setting the atomization parameters or the ambient gas atmosphere.
  • a particle size between 1 and 15 ⁇ m is usually selected.
  • the suspension is preferably kept distributed in the electrolyte by introduction of air, pumping around and / or stirring devices. In this way, according to the invention, the process is simplified compared to a drum arrangement with good mixing at the same time.
  • a co-electrolyte with 480 g / l CoSO4, 35 g / l H3BO3 and 20 g / l NaCl is given, with a pH between 4.5 and 4.7 is set.
  • a CrAlY suspension with spherical, passivated powder particles with a particle size of ⁇ 10 ⁇ m was added until a concentration of 100 g / l of the suspension resulted.
  • the turbine blades to be coated were then connected to the cathode and immersed in the bath.
  • a direct current of current density 2 A / dm 2 was set until a layer thickness of approximately 100 ⁇ m was achieved.
  • the turbine blades were then removed and a cross-section of one of them was made (FIG. 1).
  • An installation rate of about 45 vol.% Was found with a very even layer structure.
  • the turbine blades are then subjected to a temperature of 1050 ° C. in vacuo for 50 h. This results in an alloy formation, by which one of the known methods (PVD, thermal Spray) identical layer is produced.
  • 2a shows an element distribution image of chromium of a Co-CrAlY-coated sample immediately after the deposition.
  • 2b shows the chrome element distribution image after the heat treatment.
  • a CrAlY powder with a particle size ⁇ 10 .mu.m in a concentration of 300 g / l was added to the same electrolyte, the powder having been prepared by milling under organic liquid.
  • a micrograph (cross-section) of the layer obtained here is shown in FIG. 3, an installation rate of 15% by volume being achievable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Filtering Materials (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Gas Separation By Absorption (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung galvanisch abgeschiedener Heißgaskorrosionsschichten gemäß Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing galvanically deposited hot gas corrosion layers according to the preamble of patent claim 1.

Im Gasturbinenbau gehen die Bestrebungen dahin, das Verhalten thermisch hochbelasteter Bauteile, insbesondere der Turbinenschaufeln der ersten Turbinenstufe durch Aufbringung hochwertiger Korrosionsschutzschichten weiter zu verbessern. Hierzu erwiesen sich Metallschichten als besonders geeignet, die aus einer MCrAlY-Legierung bestehen. Dabei steht M entweder für Nickel, Kobalt oder eine Legierung der beiden. In besonderen Fällen kann auch Eisen zur Anwendung gelangen.In gas turbine construction, efforts are being made to further improve the behavior of thermally highly stressed components, in particular the turbine blades of the first turbine stage, by applying high-quality corrosion protection layers. Metal layers consisting of an MCrAlY alloy have proven particularly suitable for this. M stands for either nickel, cobalt or an alloy of the two. In special cases, iron can also be used.

Der die beschichtete Fläche schützende Effekt beruht auf dem Umstand, daß CrAl bei den hohen vorkommenden Temperaturen Oxide bildet (Cr₂O₃, Al₂O₃), die als Schutzfilme vor weiterer Oxidation dienen.The coated surface protecting effect is based on the fact that CrAl forms oxides at high temperatures (Cr₂O₃, Al₂O₃), which serve as protective films against further oxidation.

Die Legierungen bestehen üblicherweise aus ca. 15 - 25 % Cr, 10 - 15 % Al, 0,2 - 0,5 % Y, Rest M (jeweils Gewichtsprozent). Der Anteil von Aluminium und Chrom sollte dabei so hoch wie möglich liegen, damit der Schutzeffekt durch die Oxidbildung ausreichend funktioniert. Als Aufbringverfahren eignen sich das thermische Spritzen oder das PVD-Verfahren (physical vapour deposition), da hierdurch der erforderliche hohe Anteil von CrAlY in der Schicht erzielbar ist. Nachteilig bei diesen Aufbringverfahren wirken sich vor allem die hohen Verfahrenskosten aus. Es wurden deshalb Versuche unternommen, mittels Dispersionsbeschichtung die Schutzschichten aufzubringen, da hierdurch eine erheblich wirtschaftlichere Verfahrensweise erzielbar wäre. Dabei ergaben sich jedoch eine Reihe von Nachteilen. So ließen sich mit herkömmlichen Dispersionsbeschichtungsverfahren nur geringe Einbauraten des Suspensionspulvers in der Metallmatrix erzielen. Diese liegen im Bereich von 20 Vol. %, wodurch der erforderliche hohe Cr und Al-Anteil nicht erzielbar ist und somit die Schichtqualität unzureichend bleibt. Wünschenswert wären Anteile von über 40 Vol. %, um die gleiche Schichtqualität wie bei PVD oder Plasmaspritzverfahren zu erzielen.The alloys usually consist of approx. 15 - 25% Cr, 10 - 15% Al, 0.2 - 0.5% Y, balance M (each weight percent). The share of Aluminum and chrome should be as high as possible so that the protective effect due to the oxide formation works properly. Thermal spraying or PVD (physical vapor deposition) are suitable as the application method, since this enables the required high proportion of CrAlY in the layer to be achieved. The disadvantage of these application processes is above all the high process costs. Attempts have therefore been made to apply the protective layers by means of dispersion coating, since this would make it possible to achieve a considerably more economical procedure. However, there were a number of disadvantages. With conventional dispersion coating processes, only low installation rates of the suspension powder in the metal matrix could be achieved. These are in the range of 20 vol.%, Which means that the required high Cr and Al content cannot be achieved and the layer quality therefore remains inadequate. Shares of over 40 vol.% Would be desirable in order to achieve the same layer quality as with PVD or plasma spraying.

Aus "Transactions of the Institute of Metal Finishing", Band G3, Nr. 3-4 (1985) S. 115-119, ist ein Trommelbeschichtungsverfahren bekannt, das eine erhöhte Einbaurate von Partikeln in eine galvanisch abgeschiedene Matrix bis 28 Gew % bei neidrigen Partikel konzentrationen in der Trommel (zwischen 5 und 40 g/l) erreicht.From "Transactions of the Institute of Metal Finishing", Volume G3, No. 3-4 (1985) pp. 115-119, a drum coating method is known which increases the rate of incorporation of particles in an electrodeposited matrix up to 28% by weight in the case of envious ones Particle concentrations in the drum (between 5 and 40 g / l) reached.

In der Zeitschrift "Plating and Surface Finishing" vom Oktober 1986 ist auf Seite 42 ein Verfahren beschrieben, das diese Nachteile beseitigen soll. Bei diesem Verfahren rotiert eine suspensionsgefüllte Trommel mit teilweise porösen Wandungen und innen angebrachten Substraten in einem Elektrolytbad. Wenngleich hierbei relativ hohe Einbauraten erzielbar sind, zeigt sich jedoch der Nachteil, daß die Schicht sehr unregelmäßig ist. Insbesondere zeigen sich erhebliche warzige Abscheidungen, und bei Beschichtung von Turbinenschaufeln eine unregelmäßige Beschichtung, d. h., an den Schaufelkanten ist die Schicht dicker als in der Blattmitte. Diese nachteilige Wirkung ließe sich theoretisch durch die Montage von Blenden verhindern, da dies jedoch zu einem Kurzschluß führen würde, muß diese Maßnahme ausscheiden. Schließlich ist das Beschichtungsverfahren sehr zeitraubend und eignet sich daher wirtschaftlich nicht für den Serienbetrieb.In the magazine "Plating and Surface Finishing" from October 1986, page 42 describes a process which is intended to eliminate these disadvantages. In this process, a suspension-filled drum with partially porous walls and internally attached substrates rotates in an electrolyte bath. Although relatively high installation rates can be achieved here, there is the disadvantage that the layer is very irregular. In particular, there are considerable warty deposits, and when coating turbine blades, an irregular coating, ie the layer at the blade edges is thicker than in the middle of the blade. Theoretically, this disadvantageous effect could be prevented by installing panels, but since this would lead to a short circuit, this measure must be eliminated. After all, the coating process is very time-consuming and is therefore not economically suitable for series production.

Ein weiterer wesentlicher Nachteil herkömmlicher Dispersionsbeschichtungen ist es, daß häufig ein sehr poröser Schichtaufbau und rauhe, mit Dendriten besetzte Oberflächen anzutreffen sind.Another major disadvantage of conventional dispersion coatings is that a very porous layer structure and rough surfaces covered with dendrites are often encountered.

Aufgabe der Erfindung ist es daher, diese Nachteile zu vermeiden und ein Dispersionsbeschichtungsverfahren der gattungsgemäßen Art anzugeben, bei dem unter geringem Verfahrensaufwand eine gleichmäßige, qualitativ hochwertige Heißgaskorrosionsschicht erzielbar ist, die eine Einbaurate von über 40 Vol. % des Suspensionspulvers in der Metallmatrix aufweist.It is therefore an object of the invention to avoid these disadvantages and to provide a dispersion coating process of the generic type in which a uniform, high-quality hot gas corrosion layer can be achieved with little outlay on the process and which has an installation rate of over 40% by volume of the suspension powder in the metal matrix.

Erfindungsgemäß wird die Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildung der Erfindung ergeben sich aus den Unteransprüchen.According to the invention the object is achieved with the features of claim 1. Advantageous further developments of the invention result from the subclaims.

Die erfindungsgemäß hergestellten Schichten zeichnen sich durch eine Einbaurate von bis zu 45 Vol. % aus, wodurch sich die gleiche Schichtgüte, wie mit den bekannten Beschichtungsverfahren erzielen läßt. Hingegen sind die Herstellungskosten der erfindungsgemäßen Schichten vorteilhafterweise erheblich geringer. Beispielsweise gegenüber thermischen Spritzschichten um den Faktor 10.The layers produced according to the invention are notable for an installation rate of up to 45% by volume, as a result of which the same layer quality can be achieved as with the known coating processes. In contrast, the production costs of the layers according to the invention are advantageously considerably lower. For example, compared to thermal spray coatings by a factor of 10.

Dem Beschichtungsverfahren folgt anschließend eine Wärmebehandlung unter Vakuum zum Diffusionsglühen, wodurch eine Legierungsbildung einsetzt, und eine zu den bekannten Spritzverfahren identische Schichtqualität erzielbar ist.The coating process is then followed by a heat treatment under vacuum for diffusion annealing, as a result of which alloying begins and a layer quality identical to the known spraying processes can be achieved.

Die niedrige Suspensionskonzentration von unter 100 g/l erlaubt vorteilhafterweise den Einsatz unkomplizierter, konventioneller Dispersionsabscheidetechniken, wodurch der Aufwand, insbesondere im Hinblick auf die Serienfertigung erheblich geringer ist als beispielsweise bei der Trommeltechnik, die mit Badkonzentrationen von mindestens 600 g/l arbeitet.The low suspension concentration of less than 100 g / l advantageously allows the use of uncomplicated, conventional dispersion separation techniques, which means that the effort, particularly with regard to series production, is considerably less than, for example, drum technology, which involves bath concentrations of at least 600 g / l is working.

Besonders vorteilhaft erwies sich eine Suspensionskonzentration von 40 - 60 g/l zur Erzielung einer hohen Einbaurate.A suspension concentration of 40-60 g / l proved to be particularly advantageous for achieving a high installation rate.

Im Stand der Technik wird die Form und sonstige Beschaffenheit des Suspensionspulvers als unwesentlich angesehen. Demgegenüber wurde überraschenderweise herausgefunden, daß Pulverpartikel kugeliger Gestalt und passivierter Oberfläche erheblich höhere Einbauraten zulassen als herkömmliche, insbesondere gemahlene Pulver. Hierdurch läßt sich die Suspensionskonzentration bei gleichzeitiger Steigerung der Schichtqualität erheblich senken.In the prior art, the shape and other properties of the suspension powder are considered to be immaterial. In contrast, it has surprisingly been found that powder particles of spherical shape and passivated surface allow considerably higher installation rates than conventional, in particular ground, powders. As a result, the suspension concentration can be considerably reduced while the layer quality is increased at the same time.

Insbesondere durch die Passivierung der Partikeloberfläche ist ein gleichmäßiger Schichtaufbau möglich. Dies ist darauf zurückzuführen, daß ein auf dem Substrat angelagerter Partikel nichtleitend ist und daher keine negative Veränderung des umgebenden Feldlinienverlaufs bewirkt. Hierdurch ist vorteilhafterweise eine ungestörte Einbettung und Überbeschichtung des Partikels durch Matrix-Material möglich. In bevorzugter Weiterbildung der Erfindung liegt diese Suspensionskonzentration zwischen 40 und 60 g/l vor. Hierbei ergibt sich ein besonders gleichmäßiger Schichtaufbau.A uniform layer structure is possible, in particular, through the passivation of the particle surface. This is due to the fact that a particle deposited on the substrate is non-conductive and therefore does not cause a negative change in the surrounding field line course. This advantageously enables undisturbed embedding and over-coating of the particle by means of matrix material. In a preferred development of the invention, this suspension concentration is between 40 and 60 g / l. This results in a particularly uniform layer structure.

Vorzugsweise wird als Metallpulver CrAlY verwendet, da die hierdurch erzielbare Schicht bekannt gute Korrosionsschutzeigenschaft aufweist. Im Falle anderer Anforderungen an die Schichteigenschaften, insbesondere hinsichtlich Haftfestigkeit oder Beständigkeit gegenüber besonderen Gaszusammensetzungen (Schwefelkorrosion, Vanadiumkorrosion) sind jedoch alternativ eine oder mehrere der folgenden Legierungen als Pulver einsetzbar: CrAlHf, CrAlYHf, CrAlTa, CrAlYTa, CrNiAl, CrCoAl, CrAlSi, CrAl, MoCrSi.CrAlY is preferably used as the metal powder, since the layer that can be achieved in this way has known good corrosion protection properties. In the case of other requirements for the layer properties, particularly with regard to adhesive strength or resistance to special gas compositions (sulfur corrosion, vanadium corrosion), one or more of the following alloys can alternatively be used as powder: CrAlHf, CrAlYHf, CrAlTa, CrAlYTa, CrNiAl, CrCoAl, CrAlSi, CrAl, MoCrSi.

Eine besonders einfache und kostensparende Herstellung des Suspensionspulvers ergibt sich, da dieses gemäß der Erfindung mittels Verdüsung hergestellt ist. Hierdurch lassen sich durch Einstellung der Verdüsungsparameter bzw. der Umgebungsgasatmosphäre günstige Werte für den Partikeldurchmesser und den Umfang der Oberflächenpassivierung einstellen. Üblicherweise wird eine Partikelgröße zwischen 1 und 15 um gewählt.A particularly simple and cost-saving production of the suspension powder results since it is produced by spraying according to the invention. In this way, favorable values for the particle diameter and the extent of the surface passivation can be set by setting the atomization parameters or the ambient gas atmosphere. A particle size between 1 and 15 μm is usually selected.

Vorzugsweise wird die Suspension durch Lufteinleitung, Umpumpen und/oder Rührvorrichtungen im Elektrolyten verteilt gehalten. Hierdurch wird erfindungsgemäß gegenüber einer Trommelanordnung eine Vereinfachung des Verfahrens bei gleichzeitig guter Durchmischung erzielt.The suspension is preferably kept distributed in the electrolyte by introduction of air, pumping around and / or stirring devices. In this way, according to the invention, the process is simplified compared to a drum arrangement with good mixing at the same time.

Beispiel 1:Example 1:

In einer Dispersionsbeschichtungsanlage wird ein Co-Elektrolyt mit 480 g/l CoSO₄, 35 g/l H₃BO₃ und 20 g/l NaCl gegeben, wobei ein pH-Wert zwischen 4,5 und 4,7 eingestellt wird. Eine CrAlY-Suspension mit kugelförmigen, passivierten Pulverpartikeln einer Partikelgröße < 10 um wurde dazugegeben, bis sich eine Konzentration von 100 g/l der Suspension ergab. Anschließend wurden die zu beschichtenden Turbinenschaufeln mit der Kathode verbunden und in das Bad eingetaucht. Ein elektrischer Gleichstrom der Stromdichte 2 A/dm² wurde eingestellt, bis eine Schichtdicke von etwa 100 um erzielt war. Anschließend wurden die Turbinenschaufeln entnommen und bei einer von ihnen ein Querschliffbild angefertigt (Fig. 1). Dabei ließ sich eine Einbaurate von etwa 45 Vol. % bei sehr gleichmäßigem Schichtaufbau feststellen.In a dispersion coating system, a co-electrolyte with 480 g / l CoSO₄, 35 g / l H₃BO₃ and 20 g / l NaCl is given, with a pH between 4.5 and 4.7 is set. A CrAlY suspension with spherical, passivated powder particles with a particle size of <10 μm was added until a concentration of 100 g / l of the suspension resulted. The turbine blades to be coated were then connected to the cathode and immersed in the bath. A direct current of current density 2 A / dm 2 was set until a layer thickness of approximately 100 μm was achieved. The turbine blades were then removed and a cross-section of one of them was made (FIG. 1). An installation rate of about 45 vol.% Was found with a very even layer structure.

Anschließend werden die Turbinenschaufeln für 50 h einer Temperatur von 1050 °C im Vakuum unterzogen. Hierdurch wird eine Legierungsbildung bewirkt, durch die eine zu bekannten Verfahren (PVD, thermisches Spritzen) identische Schicht hergestellt wird. Fig. 2a zeigt ein Elementverteilungsbild von Chrom einer Co-CrAlY-beschichteten Probe unmittelbar nach dem Abscheiden. Fig. 2b zeigt das Chrom Elementverteilungsbild nach der Wärmebehandlung.The turbine blades are then subjected to a temperature of 1050 ° C. in vacuo for 50 h. This results in an alloy formation, by which one of the known methods (PVD, thermal Spray) identical layer is produced. 2a shows an element distribution image of chromium of a Co-CrAlY-coated sample immediately after the deposition. 2b shows the chrome element distribution image after the heat treatment.

Beispiel 2:Example 2:

Zu Vergleichszwecken wurde in dem gleichen Elektrolyten ein CrAlY-Pulver einer Partikelgröße < 10 um in einer Konzentration von 300 g/l gegeben, wobei das Pulver mittels Mahlen unter organischer Flüssigkeit hergestellt worden war. Ein Schliffbild (Querschliff) der hierbei erzielten Schicht ist in Fig. 3 gezeigt, wobei eine Einbaurate von 15 Vol. % erzielbar war.For comparison purposes, a CrAlY powder with a particle size <10 .mu.m in a concentration of 300 g / l was added to the same electrolyte, the powder having been prepared by milling under organic liquid. A micrograph (cross-section) of the layer obtained here is shown in FIG. 3, an installation rate of 15% by volume being achievable.

Beispiel 3:Example 3:

In ein Co-Elektrolytbad gleicher Zusammensetzungen (Zusammensetzung wie in den Beispielen 1 und 2) wurde eine Rotationstrommel gemäß der im Artikel "Plating and surface Finishing" Oktober 86, Seite 42 offenbarten Ausführungen gebracht und mit CrAlY-Pulver kugeliger Form in einer Konzentration von 5700 g/l gegeben. Das Pulver wies eine Partikelgröße < 10 um auf. In Fig. 4 ist dargestellt, daß zwar eine hohe Einbaurate von 35 Vol. % erzielbar war, jedoch eine sehr unregelmäßige Abscheidung mit warzenhaften Auswüchsen erfolgt war. Weiterhin war die Beschichtungsdicke an den Kanten erheblich größer als im Mittelbereich der Schaufel.In a co-electrolyte bath of the same compositions (composition as in Examples 1 and 2), a rotary drum was placed in accordance with the statements disclosed in the article "Plating and surface finishing" October 86, page 42 and with CrAlY powder spherical in a concentration of 5700 g / l given. The powder had a particle size <10 µm. 4 shows that although a high installation rate of 35% by volume could be achieved, a very irregular separation with wart-like outgrowths had taken place. Furthermore, the coating thickness at the edges was considerably greater than in the middle area of the blade.

Claims (6)

  1. Process for the generation of galvanically deposited layers to prevent hot gas corrosion with metal alloy particles incorporated in a cobalt and/or nickel matrix, wherein a suspension of metal alloy powder containing chromium and/or aluminium is added to a drumless electrolyte bath containing the matrix material, wherein the metal alloy powder is a chromium or aluminium alloy, and, after the depositing of the cobalt and/or nickel layer with the incorporated alloy particles, a heat treatment is performed to form the alloy, and wherein the metal alloy powder is produced in spherical form and with a passivated surface by means of atomisers, and a suspension concentration between 40 g/l and 100 g/l is maintained.
  2. Process according to Claim 1, characterised in that the suspension concentration is 40 to 60 g/l.
  3. Process according to Claim 1 and 2, characterised in that the alloy powder is CrAlY.
  4. Process according to Claims 1 to 3, characterised in that the alloy powder is CrAlHf, CrAlYHf, CrAlTa or CrAlYTa.
  5. Process according to one or more of Claims 1 to 4, characterised in that the metal powder is put in suspension by means of blowing in air, by pumping or by agitation.
  6. Process according to Claims 1 to 5, characterised in that the heat treatment is performed at a temperature in the range of from 900 to 1000°C.
EP89106922A 1988-05-10 1989-04-18 Process for electrolytically depositing a metal layer resisting corrosion by hot gases Expired - Lifetime EP0341456B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3815976A DE3815976A1 (en) 1988-05-10 1988-05-10 METHOD FOR PRODUCING GALVANICALLY SEPARATED HOT GAS CORROSION LAYERS
DE3815976 1988-05-10
DE3935957A DE3935957C1 (en) 1988-05-10 1989-10-27

Publications (3)

Publication Number Publication Date
EP0341456A2 EP0341456A2 (en) 1989-11-15
EP0341456A3 EP0341456A3 (en) 1990-05-30
EP0341456B1 true EP0341456B1 (en) 1994-11-30

Family

ID=39427740

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89106922A Expired - Lifetime EP0341456B1 (en) 1988-05-10 1989-04-18 Process for electrolytically depositing a metal layer resisting corrosion by hot gases
EP90120273A Expired - Lifetime EP0424863B1 (en) 1988-05-10 1990-10-23 Process for electrolytically depositing a metal layer resisting corrosion by hot gases

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP90120273A Expired - Lifetime EP0424863B1 (en) 1988-05-10 1990-10-23 Process for electrolytically depositing a metal layer resisting corrosion by hot gases

Country Status (5)

Country Link
US (2) US4895625A (en)
EP (2) EP0341456B1 (en)
JP (2) JP2713458B2 (en)
DE (2) DE3815976A1 (en)
ES (1) ES2086348T3 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3815976A1 (en) * 1988-05-10 1989-11-23 Mtu Muenchen Gmbh METHOD FOR PRODUCING GALVANICALLY SEPARATED HOT GAS CORROSION LAYERS
GB2254338B (en) * 1988-07-29 1993-02-03 Baj Ltd Improvements relating to the production of coatings
JP2949605B2 (en) * 1991-09-20 1999-09-20 株式会社日立製作所 Alloy-coated gas turbine blade and method of manufacturing the same
GB9414859D0 (en) * 1994-07-22 1994-09-14 Baj Coatings Ltd Protective coating
US5613705A (en) * 1995-03-24 1997-03-25 Morton International, Inc. Airbag inflator having a housing protected from high-temperature reactive generated gases
DE10251902B4 (en) * 2002-11-07 2009-05-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for coating a substrate and coated article
EP1428982B1 (en) * 2002-12-06 2009-02-04 ALSTOM Technology Ltd A method of depositing a local MCrAIY-coating
DE10259361A1 (en) * 2002-12-18 2004-07-08 Siemens Ag Method and device for filling material separations on a surface
US7309412B2 (en) * 2003-04-11 2007-12-18 Lynntech, Inc. Compositions and coatings including quasicrystals
EP1533398B1 (en) * 2003-10-24 2011-08-31 Siemens Aktiengesellschaft Process for producing an electrolyte ready for use out of waste products containing metal ions
WO2006017327A2 (en) * 2004-07-13 2006-02-16 University Of New Hampshire Electrocodeposition of lead free tin alloys
EP2119805A1 (en) * 2008-05-15 2009-11-18 Siemens Aktiengesellschaft Method for manufacturing an optimized adhesive layer through partial evaporation of the adhesive layer
DE102011100100A1 (en) * 2011-04-29 2012-10-31 Air Liquide Deutschland Gmbh Method for treating a line component
DE102013218687A1 (en) 2013-09-18 2015-04-02 MTU Aero Engines AG Galvanized wear protection coating and method therefor
CN105598655A (en) * 2016-03-02 2016-05-25 华北水利水电大学 Method for strengthening surface of metal turbine runner blade through combination of electric spark deposition and welding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2014189B (en) * 1977-12-21 1982-06-09 Bristol Aerojet Ltd Processes for the electrodeposition of composite coatings
IT1224259B (en) * 1984-10-05 1990-10-04 Baj Ltd IMPROVEMENT IN METAL PROTECTIVE COATINGS AND PREPARATION PROCEDURE
GB2182055B (en) * 1985-10-28 1989-10-18 Baj Ltd Improvements relating to electrodeposited coatings
DE3815976A1 (en) * 1988-05-10 1989-11-23 Mtu Muenchen Gmbh METHOD FOR PRODUCING GALVANICALLY SEPARATED HOT GAS CORROSION LAYERS
GB8818069D0 (en) * 1988-07-29 1988-09-28 Baj Ltd Improvements relating to electrodeposited coatings

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Plating and Surface Finishing, Oktober 1986, Seiten 42-46, J. Honey et al. "Electrodeposits for High-Temperature Corrosion Resistance" *
R.S. Sajfullin "Betriebspraxis Dispersionsschichten", Berlin 1978, Seite 25, Bild 8 *
Schriftenreihe Praxis-Forum 20/89, G. Lausmann "Neue Anwendungen von Nickel- Dispersions- und Chromschichten im Motorenbau" *

Also Published As

Publication number Publication date
DE3815976C2 (en) 1990-02-15
DE3815976A1 (en) 1989-11-23
ES2086348T3 (en) 1996-07-01
JPH0364497A (en) 1991-03-19
US4895625A (en) 1990-01-23
EP0341456A2 (en) 1989-11-15
EP0341456A3 (en) 1990-05-30
DE3935957C1 (en) 1991-02-21
US5064510A (en) 1991-11-12
EP0424863B1 (en) 1996-04-17
EP0424863A1 (en) 1991-05-02
JP2713458B2 (en) 1998-02-16
JP3027600B2 (en) 2000-04-04
JPH03173798A (en) 1991-07-29

Similar Documents

Publication Publication Date Title
EP0341456B1 (en) Process for electrolytically depositing a metal layer resisting corrosion by hot gases
DE3535548C2 (en) Coated article and method of making a coating of an article
DE2431448B2 (en) PROCESS FOR COATING A SUBSTRATE WITH A NITRIDE OR CARBIDE OF TITANIUM OR ZIRCONIUM BY REACTIVE EVAPORATION
DE3426201C2 (en)
DE19807636C1 (en) Process for producing a corrosion and oxidation resistant slip layer
EP0663964B1 (en) Protection of chromium-steel substrates against corrosive and erosive attack at temperatures up to about 500 degrees celsius
DE2118212A1 (en)
DE3010608A1 (en) COATING COMPOSITION FOR NICKEL, COBALT AND IRON CONTAINING SUPER ALLOY AND SUPER ALLOY COMPONENT
DE3110358C2 (en) Powder coating agent and method for applying surface coatings
DE2801016A1 (en) ITEM MADE OF A SUPER ALLOY THAT IS PROVIDED WITH AN OXIDATION AND CORROSION-RESISTANT COATING BY FLAME SPRAYING, AND THE PROCESS FOR THE PRODUCTION OF IT
DE2327250A1 (en) PROCESS FOR MANUFACTURING A METALLURGIC SEALED COVER
DE3030961A1 (en) COMPONENTS OF SUPER ALLOYS WITH AN OXIDATION AND / OR SULFIDATION RESISTANT COATING AND COMPOSITION OF SUCH A COATING.
CH657872A5 (en) COMPOSITE PRODUCT MADE OF AT LEAST TWO SUPER ALLOYS.
EP2796588B1 (en) Method for producing a high temperature protective coating
EP3320127B1 (en) Contour-following protective coating for compressor components of gas turbines
EP1260602A1 (en) Process for producing a thermally insulating coating system on a metallic substrate
CH616960A5 (en) Components resistant to high-temperature corrosion.
EP2851455A1 (en) Electroplated wear-resistant coating and method for the same
DE3907625C1 (en)
EP1097249A1 (en) Method for producing a plating for a metal component
EP2607515A2 (en) Diffusion coating method and chromium layer produced according to the method
EP0316388B1 (en) Process for manufacturing protective coatings against oxidative and hot gas corrosion
EP1532286A1 (en) Component protected against corrosion and method for the production thereof and device for carrying out said method
CH672798A5 (en)
EP1624093A1 (en) Coating of substrates of light metals or light metal alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19901116

17Q First examination report despatched

Effective date: 19920701

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: THOMA, MARTIN, DR.

Inventor name: BUENGER, PAUL

Inventor name: LINSKA, JOSEF

Inventor name: BINDL, MONIKA, DR.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950304

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050411

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050412

Year of fee payment: 17

Ref country code: SE

Payment date: 20050412

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060430

Year of fee payment: 18

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070418