EP0131544A1 - Electrically conductive filling agent - Google Patents

Electrically conductive filling agent Download PDF

Info

Publication number
EP0131544A1
EP0131544A1 EP84810326A EP84810326A EP0131544A1 EP 0131544 A1 EP0131544 A1 EP 0131544A1 EP 84810326 A EP84810326 A EP 84810326A EP 84810326 A EP84810326 A EP 84810326A EP 0131544 A1 EP0131544 A1 EP 0131544A1
Authority
EP
European Patent Office
Prior art keywords
electrically conductive
conductive filler
phthalocyanine
filler according
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84810326A
Other languages
German (de)
French (fr)
Other versions
EP0131544B1 (en
Inventor
Fridolin Dr. Bäbler
Kurt Dr. Munk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Priority to AT84810326T priority Critical patent/ATE31993T1/en
Publication of EP0131544A1 publication Critical patent/EP0131544A1/en
Application granted granted Critical
Publication of EP0131544B1 publication Critical patent/EP0131544B1/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the invention relates thus electrically conductive filler, obtainable by pyrolysing a mixture of at least one metal p hthalocyanin and at least one inorganic filler.
  • Suitable metal phthalocyanines are, for example, copper, iron, nickel, aluminum, cobalt, manganese, tin, silicon, germanium, lead, titanium, chromium, uranium, magnesium, vanadium, molybdenum or zinc phthalocyanine, mixtures of two or more different metal phthalocyanines also being possible.
  • the metal phthalocyanines can also be mixed with metal-free phthalocyanines.
  • metal phthalocyanines substituted with sulfonic acid, sulfonamide, sulfoester, alkyl, aryl, aryl ether or thioether residues can be used in fine or coarse form.
  • the metal phthalocyanine used is preferably copper, nickel, cobalt or iron phthalocyanine, but very preferably copper phthalocyanine, for economic reasons in particular the crude ⁇ -form of copper phthalocyanine.
  • Suitable inorganic fillers are in particular glass, quartz, clay minerals, feldspar, silicates, carbonates, rock flour, clay, oxides or sulfates, which can be synthetic or natural materials, such as e.g. Quartz powder, mica, talc, feldspar, perlite, basalt, asbestos, slate flour, kaolin, wollastonite, chalk powder, dolomite, gypsum, lava, magnesium carbonate, heavy spar, bentone, silicic acid airgel, lithopone, diatoms, metal oxides such as magnesium, aluminum, titanium , Zinc, iron, boron, nickel, chromium, zirconium, vanadium, tin, cobalt, antimony, bismuth or manganese oxides, as well as their mixed oxides, also metal sulfides such as zinc, silver or cadmium sulfide , Glass powder, glass balls, glass fibers, silicon carbide or cristobalite.
  • the fillers mentioned can be
  • Aluminum oxide, wollastonite, titanium dioxide, mica, iron oxide or quartz, in particular finely divided quartz, are preferably used as fillers.
  • electrically conductive fillers in which the inorganic filler is crystalline or amorphous quartz with a particle size of 0.01 to 1000 ⁇ m, preferably 2 to 200 ⁇ m.
  • the electrically conductive fillers can be prepared by intimately mixing the pigment to be pyrolyzed and the inorganic filler dry or in an aqueous suspension, optionally with grinding, and then, if working in an aqueous suspension, filtering and drying. If necessary, the inorganic filler can be added during the synthesis of the metal phthalocyanine.
  • the pigment to be pyrolyzed are preferably used per 100 parts by weight of dry starting mixture.
  • the mixture of inorganic filler and metal phthalocyanine thus obtained is then pyrolyzed, the inorganic filler being coated with pyrolyzed pigment.
  • the pyrolysis can be carried out at 0.5 to 20 bar, preferably at normal pressure in air, inert gas, in air with increased oxygen content or in hydrogen gas. Pressure, gas and temperature increase as a function of time are usually chosen so that the pigment is as high as possible
  • Air or nitrogen are particularly suitable as the gas.
  • the pyrolysis takes place at temperatures of 650 to 2500 ° C, preferably 800 - 1200 ° C.
  • temperatures 650 to 2500 ° C, preferably 800 - 1200 ° C.
  • heating a 1: 1 mixture of quartz powder / Cu phthalocyanine in air to 1050 ° C (at normal pressure) gives a product consisting of approx. 61% by weight of silicon dioxide, 30% by weight of carbon, 6.4% by weight.
  • the electrical conductivity at room temperature is approximately 10 ⁇ -1 cm -1 .
  • the pyrolysis product is obtained in continuous or loose, dark gray to black solid mass and is usually broken and pulverized.
  • the electrically conductive fillers according to the invention are particularly suitable for incorporation into high-molecular organic or inorganic material.
  • Suitable high-molecular organic materials are e.g. Cellulose ethers and esters, such as ethyl cellulose, acetyl cellulose, nitrocellulose, polyamides, copolyamides, polyethers and polyether amides, polyurethanes or polyesters, natural resins or synthetic resins, in particular urea and melamine / formaldehyde resins, epoxy resins, alkyd resins, phenoplasts, polyacetals, polyvinyl alcohols, polyvinyl -stearate, -benzoate, -maleate, polyvinyl butyral, polyallyl phthalate, polyallyl melamine and their copolymers, polyphenyl oxides, polysulfones, halogen-containing vinyl polymers such as polyvinyl chloride, polyvinylidene chloride, polyvin
  • the high molecular weight compounds mentioned can exist as plastic masses, melts or solutions.
  • the electrically conductive fillers can be added to the high molecular weight organic material by the methods customary in industry, before or during shaping, or as a dispersion or in the form of preparations. Depending on the intended use, other substances can be added, e.g. Light stabilizers, heat stabilizers, plasticizers, binders, pigments and / or dyes, carbon black, flame retardants or other fillers.
  • the electrically conductive filler according to the invention is preferably used in an amount of 0.5 to 70, preferably 15 to 60 percent by weight (per total mixture).
  • the additives can also be added before or during the polymerization.
  • Epoxy resins which are hardened with dicarboxylic acid anhydrides are preferably used as resin / hardener components,
  • the electrically conductive fillers according to the invention can be incorporated, e.g. Cement, concrete, glasses, ceramic materials, inorganic polymers, such as polysilicic acid or polyphosphoric acid derivatives, mentioned alone or in a mixture with organic polymers, such as asphalt.
  • the electrically conductive fillers according to the invention are preferably used in an amount of 5 to 70, preferably 15 to 60 percent by weight (per total mixture).
  • plastic systems with excellent mechanical and electrical properties can be produced economically. They have a reinforcing effect on the carrier material and are characterized by good electrical conductivity. Certain plastics, for example epoxy resins, containing the fillers according to the invention also have a constant electrical conductivity over a wide temperature range.
  • Casting resin compositions for example epoxy casting resins, containing the fillers produced according to the invention also have good processing properties even with high conductivity (for example no or only low thixotropy) and lead to molded parts without a reduction in the mechanical properties.
  • high conductivity for example no or only low thixotropy
  • the fillers obtained according to the invention can be incorporated into plastics in a mixture with metals, for example in the form of powders, chips or fibers.
  • the metal to be used for this and its concentration depend on the area of application and should not impair the mechanical properties and the resistance, for example, to the decomposition of the plastic products produced with it. It is about for example around steel fibers and / or aluminum flakes. Instead of metals, carbon fibers can also be used.
  • the electrical conductivity can be specifically adjusted by dilution with the fillers listed on page 2 or by adding graded amounts of the fillers according to the invention in such plastics or in inorganic materials, for example in such a way that electrically partially conductive compositions are formed. This is particularly important for controlling electrical fields and / or for reducing surface or space charges.
  • the electrically conductive fillers according to the invention are not only suitable for the production of antistatic and electrically conductive polymer compositions, plastic articles and coatings. They can also be used to manufacture batteries and other objects in microelectronics, in or as sensors, as catalysts for certain chemical reactions, for the production of solar collectors, for shielding sensitive electronic components and high-frequency fields [EMI-shielding], for equipotential bonding and glow protection higher load capacity of electrical systems and machines, for controlling electrical fields and charges in electrical devices or as surface heating conductors.
  • EMI-shielding shielding sensitive electronic components and high-frequency fields
  • Example 1 90 parts of quartz powder W1® from SIHELCO AG (CH-Birsfelden) are mixed well with 90 parts of crude ⁇ -copper phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, in an oven to 1050 ° C within 6 hours. After 0.5 hours at this temperature, the mixture is cooled and 157 parts of a gray-black, solid mass are obtained, which is pulverized in a laboratory mixer. The powder has one Composition of 61.5% by weight Si0 2 , 30% by weight C, 6.5% by weight Cu and 2% by weight XN. The electrical conductivity, measured on the compressed powder, is 10 Scm -1 at room temperature (2 electrode measurement on micropressling).
  • Example 5 50 parts of W1® from SIHELCO AG (CH-Birsfelden) are mixed well with 50 parts of nickel phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, to 1000 ° C. in an oven within 6 hours. The mixture is kept at 1000 ° C. for 1 hour and then allowed to cool to room temperature. This gives 86.2 parts of a gray-black solid mass which is powdered. The electrical conductivity of the powder thus obtained is 12 Scm -1 at room temperature.
  • Example 12 270 parts of a filler produced analogously to Example 1, made from 135 parts of W12® quartz powder from SIHELCO AG and 135 parts of the electroconductive powder obtained according to Example 1, are converted into 100 parts of Araldit CY 225 0 (modified bisphenol A epoxy resin with a Molecular weight of 380) and 80 parts of the hardener HY 925® (modified dicarboxylic anhydride). The mixture is heated to 80 ° C., homogenized with a paddle stirrer and vented for 3 minutes. The mixture is then poured into molds preheated to 80 ° C. and cured for 4 hours at 80 ° C. and for 8 hours at 140 ° C. (DIN No. 16945).
  • Araldit CY 225 0 modified bisphenol A epoxy resin with a Molecular weight of 380
  • HY 925® modified dicarboxylic anhydride
  • EXAMPLE 14 25 parts of the product obtained according to Example 1, 37.5 parts of polyethylene wax AC-617® from Allied Chemicals and 125 parts of sodium chloride are kneaded at 80-110 ° C. for 6 hours in a 300-part laboratory kneader. Then 62.5 parts of MOPLEN MOB-120® from Montecatini are poured into the plasticine is working. The kneading compound is cooled to 30 ° C. in the running kneader, a gray-black powdery mass is formed, which is finely pulverized with approx. 3 liters of water on a FRYMA toothed colloid mill Z 050.
  • the suspension obtained is filtered off and the presscake is washed free of chloride with water.
  • the product obtained is dried in a vacuum drying cabinet at 50-60 ° C. 120 parts of a fine, loose, gray-black polyolefin preparation are obtained, which after extrusion on a laboratory extruder (Temp.:Zone 1: 160 ° C; Zone 2: 190 ° C; Zone 3: 220 ° C; Zone 4: 170 ° C) thermoplastic mass results.
  • This mass has an electrical volume resistance of approx. 4 10 5 ⁇ cm, and is excellently suited for the production of injection molded articles or fibers.
  • EXAMPLE 15 32 parts of the product obtained according to Example 1, 48 parts of DYNAPOL® L 206 from DYNAMIT-NOBEL, 160 parts of sodium chloride and 25-32 parts by volume of diacetone alcohol are mixed in a 300-part laboratory kneader for about 5 hours kneaded at 80 ° C. Water is then added dropwise in the running kneader and at the same time cooled until the kneading mass is converted into granules. The granules are ground on a FRYMA dental colloid mill Z 050 with plenty of water, filtered off, the press cake obtained is washed salt-free with water and then dried in a vacuum drying cabinet at 65-70 ° C. A gray-black powdery mass is obtained, which is extruded into a cord on a laboratory extruder and then granulated on a chopping machine. The 40% polyester preparation thus obtained has an electrical volume resistance of 10 4 to 105 ⁇ cm.
  • EXAMPLE 16 If the procedure is analogous to that of Example 1, but using 5 parts of quartz powder W instead of 90 parts and 95 parts of ⁇ -copper phthalocyanine instead of 90 parts, a product containing about 12% by weight of copper is obtained. It is an excellent catalyst for the reaction described in Example 17 for the preparation of an anthraquinoid wool dye.

Abstract

Elektrisch leitende Füllmittel, erhaltlich durch Pyrolysieren einer Mischung aus mindestens einem Metallphthalocyanin und mindestens einem bestimmten anorganischen Füllstoff, eignen sich zur Herstellung von elektrisch leitendem hochmolekularem organischem Material oder anorganischem Material.Electrically conductive fillers, obtainable by pyrolyzing a mixture of at least one metal phthalocyanine and at least one specific inorganic filler, are suitable for producing electrically conductive, high-molecular organic material or inorganic material.

Description

Verschiedene Applikationsgebiete verlangen elektrisch leitende Kunststoffsysteme, welche neben guten elektrischen Eigenschaften zusätzlich gute mechanische Festigkeiten aufweisen. Bekannte elektrisch leitende Füllmittel, beispielsweise Metallpulver, weisen wohl sehr gute elektrische Leitfähigkeiten auf, lassen sich aber infolge ihrer schlechten Dispergierbarkeit schwer in Kunststoffe einarbeiten, ergeben inhomogene Systeme, können die mechanischen Eigenschaften negativ beeinflussen und die katalytische Zersetzung der Kunststoffe fördern.Various areas of application require electrically conductive plastic systems which, in addition to having good electrical properties, also have good mechanical strengths. Known electrically conductive fillers, for example metal powder, have very good electrical conductivities, but are difficult to incorporate into plastics due to their poor dispersibility, result in inhomogeneous systems, can negatively influence the mechanical properties and promote the catalytic decomposition of the plastics.

Es wurde nun gefunden, dass man durch Pyrolysieren einer Mischung aus einem Metallphthalocyanin und einem bestimmten anorganischen Füllstoff elektrisch leitende Produkte erhält, die sich ausgezeichnet als elektrisch leitende Füllmittel für Kunststoffsysteme und für anorganisches Material eignen. Solche Produkte weisen die Vorteile der bereits heute mit Erfolg zur Verbesserung der mechanischen Festigkeit der Kunststoffe oder der anorganischen Materialien eingesetzten anorganischen Füllmittel auf und sind infolge der gut haftenden Beschichtung von pyrolysiertem Phthalocyanin elektrisch leitend. Sie lassen sich zudem einwandfrei einarbeiten, ergeben somit homogene Systeme und bewirken nicht deren Zersetzung.It has now been found that pyrolyzing a mixture of a metal phthalocyanine and a certain inorganic filler gives electrically conductive products which are outstandingly suitable as electrically conductive fillers for plastic systems and for inorganic material. Such products have the advantages of the inorganic fillers already successfully used today to improve the mechanical strength of plastics or inorganic materials and are electrically conductive due to the well-adhering coating of pyrolyzed phthalocyanine. They can also be incorporated perfectly, resulting in homogeneous systems and not causing them to decompose.

Die Erfindung betrifft somit elektrisch leitende Füllmittel, erhältlich durch Pyrolysieren einer Mischung aus mindestens einem Metallphthalocyanin und mindestens einem anorganischen Füllstoff. Geeignete Metallphthalocyanine sind z.B. Kupfer-, Eisen-, Nickel-, Aluminium-, Kobalt-, Mangan-, Zinn-, Silicium-, Germanium-, Blei-, Titan-, Chrom, Uran-, Magnesium-, Vanadium-, Molybdän- oder Zinkphthalocyanins, wobei auch Gemische von zwei oder mehr verschiedenen Metallphthalocyaninen möglich sind. Die Metallphthalocyanine können auch mit metallfreien Phthalocyaninen vermischt sein. Ebenenfalls können beispielsweise mit Sulfonsäure-, Sulfonamid-, Sulfoester-, Alkyl-, Aryl-, Aryläther- oder Thioätherresten substituierte Metallphthalocyanine verwendet werden. Die Metallphthalocyanine können in feiner oder grober Form eingesetzt werden. Für die erfindugnsemässen elektrisch leitenden Füllmittel verwendet man als Metallphthalocyanin bevorzugt Kupfer-, Nickel-, Kobalt- oder Eisenphthalocyanin, ganz bevorzugt aber Kupferphthalocyanin, aus wirtschaftlichen Gründen insbesondere die rohe β-Form des Kupferphthalocyanina.The invention relates thus electrically conductive filler, obtainable by pyrolysing a mixture of at least one metal p hthalocyanin and at least one inorganic filler. Suitable metal phthalocyanines are, for example, copper, iron, nickel, aluminum, cobalt, manganese, tin, silicon, germanium, lead, titanium, chromium, uranium, magnesium, vanadium, molybdenum or zinc phthalocyanine, mixtures of two or more different metal phthalocyanines also being possible. The metal phthalocyanines can also be mixed with metal-free phthalocyanines. It is also possible, for example, to use metal phthalocyanines substituted with sulfonic acid, sulfonamide, sulfoester, alkyl, aryl, aryl ether or thioether residues. The metal phthalocyanines can be used in fine or coarse form. For the electrically conductive fillers according to the invention, the metal phthalocyanine used is preferably copper, nickel, cobalt or iron phthalocyanine, but very preferably copper phthalocyanine, for economic reasons in particular the crude β-form of copper phthalocyanine.

Als anorganische Füllstoffe eignen sich insbesondere Glas, Quarz, Tonminerale, Feldspate, Silikate, Carbonate, Gesteinsmehle, Tonerde, Oxide oder Sulfate, wobei es sich um synthetische oder natürliche Materialien handeln kann, wie z.B. Quarzpulver, Glimmer, Talkum, Feldspat, Perlite, Basalt, Asbest, Schiefermehl, Kaolin, Wollastonit, Kreidepulver, Dolomit, Gips, Lava, Magnesiumcarbonat, Schwerspat, Bentone, Kieselsäureaerogel, Lithopone, Diatomeen, Metalloxide wie Magnesium-, Aluminium-, Titan-, Zink-, Eisen-, Bor-, Nickel-, Chrom-, Zirkon-, Vanadium-, Zinn-, Cobalt-, Antimon-, Wismuth- oder Manganoxide, sowie deren Mischoxide, ferner Metallsulfide wie Zink-, Silber-oder Cadmiumsulfid, Glaspulver, Glaskugeln, Glasfasern, Siliciumcarbid oder Cristobalit. Die genannten Füllstoffe können einzeln oder in Mischungen verwendet werden und können faserförmig, körnig oder pulverförmig beschaffen sein.Suitable inorganic fillers are in particular glass, quartz, clay minerals, feldspar, silicates, carbonates, rock flour, clay, oxides or sulfates, which can be synthetic or natural materials, such as e.g. Quartz powder, mica, talc, feldspar, perlite, basalt, asbestos, slate flour, kaolin, wollastonite, chalk powder, dolomite, gypsum, lava, magnesium carbonate, heavy spar, bentone, silicic acid airgel, lithopone, diatoms, metal oxides such as magnesium, aluminum, titanium , Zinc, iron, boron, nickel, chromium, zirconium, vanadium, tin, cobalt, antimony, bismuth or manganese oxides, as well as their mixed oxides, also metal sulfides such as zinc, silver or cadmium sulfide , Glass powder, glass balls, glass fibers, silicon carbide or cristobalite. The fillers mentioned can be used individually or in mixtures and can be fibrous, granular or powdery.

Als Füllstoff verwendet man bevorzugt Aluminiumoxid, Wollastonit, Titandioxid, Glimmer, Eisenoxid oder Quarz, insbesondere feinteiliger Quarz.Aluminum oxide, wollastonite, titanium dioxide, mica, iron oxide or quartz, in particular finely divided quartz, are preferably used as fillers.

Von besonderem Interesse sind elektrisch leitende Füllmittel, worin der anorganische Füllstoff kristalliner oder amorpher Quarz mit einer Teilchengrösse von 0,01 bis 1000 µm, bevorzugt 2 bis 200 pm ist.Of particular interest are electrically conductive fillers in which the inorganic filler is crystalline or amorphous quartz with a particle size of 0.01 to 1000 μm, preferably 2 to 200 μm.

Die elektrisch leitenden Füllmittel können hergestellt werden, indem man das zu pyrolysierende Pigment und den anorganischen Füllstoff trocken oder in wässeriger Suspension, gegebenenfalls unter Mahlen, innig miteinander vermischt,wobei, falls in wässriger Suspension gearbeitet wird, anschliessend filtriert und getrocknet wird. Gegebenenfalls kann der anorganische Füllstoff bereits bei der Synthese des Metallphthalocyanins zugesetzt werden.The electrically conductive fillers can be prepared by intimately mixing the pigment to be pyrolyzed and the inorganic filler dry or in an aqueous suspension, optionally with grinding, and then, if working in an aqueous suspension, filtering and drying. If necessary, the inorganic filler can be added during the synthesis of the metal phthalocyanine.

Auf 100 Gew.-Teile trockene Ausgangsmischung setzt man bevorzugt 5 bis 99, insbesondere 10 bis 50 Gew.-Teile zu pyrolysierendes Pigment ein. Die so erhaltene Mischung aus anorganischem Füllstoff und Metallphthalocyanin wird anschliessend pyrolysiert, wobei der anorganische Füllstoff mit pyrolysiertem Pigment beschichtet wird. Die Pyrolyse kann bei 0,5 bis 20 bar, bevorzugt bei Normaldruck in Luft, Inertgas, in Luft mit erhöhtem Sauerstoffgehalt oder in Wasserstoffgas erfolgen. Druck, Gas und Temperaturerhöhung in Funktion der Zeit werden in der Regel so gewählt, dass das Pigment in möglichst hoher5 to 99, in particular 10 to 50 parts by weight of the pigment to be pyrolyzed are preferably used per 100 parts by weight of dry starting mixture. The mixture of inorganic filler and metal phthalocyanine thus obtained is then pyrolyzed, the inorganic filler being coated with pyrolyzed pigment. The pyrolysis can be carried out at 0.5 to 20 bar, preferably at normal pressure in air, inert gas, in air with increased oxygen content or in hydrogen gas. Pressure, gas and temperature increase as a function of time are usually chosen so that the pigment is as high as possible

Ausbeute an Kohlenstoff und Metall pyrolysiert.Pyrolysed yield of carbon and metal.

Als Gas eignen sich insbesondere Luft oder Stickstoff.Air or nitrogen are particularly suitable as the gas.

Das Pyrolysieren findet bei Temperaturen von 650 bis 2500°C, vorzugsweise 800 - 1200°C statt. Beispielsweise erhält man bei der Erhitzung einer 1:1 Mischung von Quarzmehl/Cu-Phthalocyanin in Luft auf 1050°C (bei Normaldruck) ein Produkt bestehend aus ca. 61 Gew.X Siliciumdioxid, 30 Gew.Z Kohlenstoff, 6,4 Gew.X Kupfer und 2,6 Gew.X Stickstoff. Die elektrische Leitfähigkeit bei Raumtemperatur beträgt etwa 10Ω-1cm-1.The pyrolysis takes place at temperatures of 650 to 2500 ° C, preferably 800 - 1200 ° C. For example, heating a 1: 1 mixture of quartz powder / Cu phthalocyanine in air to 1050 ° C (at normal pressure) gives a product consisting of approx. 61% by weight of silicon dioxide, 30% by weight of carbon, 6.4% by weight. X copper and 2.6 wt. X nitrogen. The electrical conductivity at room temperature is approximately 10Ω -1 cm -1 .

Das Pyrolyseprodukt fällt je nach Mischungsverhältnis Pigment/Füllstoff in zusammenhängender oder loser, dunkelgrauer bis schwarzer fester Masse an und wird in der Regel gebrochen und pulverisiert.Depending on the mixing ratio of pigment / filler, the pyrolysis product is obtained in continuous or loose, dark gray to black solid mass and is usually broken and pulverized.

Die erfindungsgemässen elektrisch leitenden Füllmittel eignen sich insbesondere zur Einarbeitung in hochmolekulares organisches oder anorganisches Material. Als hochmolekulares organisches Material eignen sich z.B. Celluloseäther und -ester, wie Aethylcellulose, Acetylcellulose, Nitrocellulose, Polyamide, Copolyamide, Polyäther und Polyätheramide, Polyurethane oder Polyester, natürliche Harze oder Kunstharze, insbesondere Harnstoff- und Melamin/Formaldehydharze, Epoxidharze, Alkydharze, Phenoplaste, Polyacetale, Polyvinylalkohole, Polyvinylacetat-, -stearat, -benzoat, -maleat, Polyvinylbutyral, Polyallylphthalat, Polyallylmelamin und deren Copolymere, Polyphenyloxide, Polysulfone, halogenhaltige Vinylpolymere wie Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylfluorid sowie Polychloropren und Chlorkautschuke, ferner Polycarbonate, Polyolefine, wie Polyäthylen, Polypropylen und Polystyrol, Polyacrylnitril, Polyacrylsäureester, thermoplastische oder härtbare Acrylharze, Gummi, Bitumen, Casein, Silikon und Silikonharze, einzeln oder in Mischungen. Die erwähnten hochmolekularen Verbindungen können als plastische Massen, Schmelzen oder Lösungen vorliegen. Die elektrisch leitenden Füllmitttel können nach den in der Technik üblichen Methoden, vor oder während der Formgebung, oder auch als Dispersion oder in Form von Präparaten zum hochmolekularen organischen Material zugegeben werden. Dabei kann man je nach Verwendungszweck noch weitere Stoffe zufügen, wie z.B. Lichtschutzmittel, Hitzestabilisatoren, Weichmacher, Bindemittel, Pigmente und/oder Farbstoffe, Russe, Flammschutzmittel oder weitere Füllstoffe. Bezogen auf das hochmolekulare organische Material setzt man das erfindungsgemässe elektrisch leitende Füllmittel vorzugsweise in einer Menge von 0,5 bis 70, bevorzugt 15 bis 60 Gewichtsprozenten (pro Gesamtmischung) ein. Die Zusätze können auch vor oder während der Polymerisation zugegeben werden.The electrically conductive fillers according to the invention are particularly suitable for incorporation into high-molecular organic or inorganic material. Suitable high-molecular organic materials are e.g. Cellulose ethers and esters, such as ethyl cellulose, acetyl cellulose, nitrocellulose, polyamides, copolyamides, polyethers and polyether amides, polyurethanes or polyesters, natural resins or synthetic resins, in particular urea and melamine / formaldehyde resins, epoxy resins, alkyd resins, phenoplasts, polyacetals, polyvinyl alcohols, polyvinyl -stearate, -benzoate, -maleate, polyvinyl butyral, polyallyl phthalate, polyallyl melamine and their copolymers, polyphenyl oxides, polysulfones, halogen-containing vinyl polymers such as polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride as well as polychloroprene and chlorinated rubbers, furthermore polycarbonates, polyolefins, such as polyethylene and polystyrene, such as polyethylene and polystyrene, such as polyethylene and polystyrene , thermoplastic or curable acrylic resins, rubber, bitumen, casein, silicone and silicone resins, individually or in mixtures. The high molecular weight compounds mentioned can exist as plastic masses, melts or solutions. The electrically conductive fillers can be added to the high molecular weight organic material by the methods customary in industry, before or during shaping, or as a dispersion or in the form of preparations. Depending on the intended use, other substances can be added, e.g. Light stabilizers, heat stabilizers, plasticizers, binders, pigments and / or dyes, carbon black, flame retardants or other fillers. Based on the high molecular weight organic material, the electrically conductive filler according to the invention is preferably used in an amount of 0.5 to 70, preferably 15 to 60 percent by weight (per total mixture). The additives can also be added before or during the polymerization.

Als Harz-/Härterkomponenten dienen bevorzugt Epoxidharze, die mit Dicarbonsäureanhydriden gehärtet werden,Epoxy resins which are hardened with dicarboxylic acid anhydrides are preferably used as resin / hardener components,

Als anorganisches Material, in welches sich die erfindungsgemässen, elektrisch leitenden Füllmittel einarbeiten lassen, seien z.B. Zement, Beton, Gläser, keramische Materialien, anorganische Polymere, wie Polykieselsäure oder Polyphosphorsäurederivate, allein oder in Mischung mit organischen Polymeren, wie beispielsweise Asphalt, erwähnt. Bezogen auf das hochmolekulare anorganische Material setzt man die erfindungsgemässen elektrisch leitenden Füllmittel vorzugsweise in einer Menge von 5 bis 70, bevorzugt 15 bis 60 Gewichtsprozenten (pro Gesamtmischung) ein.As an inorganic material in which the electrically conductive fillers according to the invention can be incorporated, e.g. Cement, concrete, glasses, ceramic materials, inorganic polymers, such as polysilicic acid or polyphosphoric acid derivatives, mentioned alone or in a mixture with organic polymers, such as asphalt. Based on the high molecular weight inorganic material, the electrically conductive fillers according to the invention are preferably used in an amount of 5 to 70, preferably 15 to 60 percent by weight (per total mixture).

Mit den erfindungsgemässen Füllmitteln lassen sich auf wirtschaftliche Art Kunststoffsysteme mit ausgezeichneten mechanischen und elektrischen Eigenschaften herstellen. Sie wirken auf das Trägermaterial verstärkend und zeichnen sich durch eine gute elektrische Leitfähigkeit aus. Gewisse Kunststoffe, beispielsweise Epoxidharze, enthaltend die erfindungsgemässen Füllmittel, weisen zudem über einen weiten Temperaturbereich eine konstante elektrische Leitfähigkeit auf.With the fillers according to the invention, plastic systems with excellent mechanical and electrical properties can be produced economically. They have a reinforcing effect on the carrier material and are characterized by good electrical conductivity. Certain plastics, for example epoxy resins, containing the fillers according to the invention also have a constant electrical conductivity over a wide temperature range.

Giessharzmassen, beispielsweise Epoxidgiessharze, enthaltend die erfindungsgemäss hergestellten Füllmittel, weisen zudem auch bei hoher Leitfähigkeit gute verarbeitungstechnische Eigenschaften auf (beispielsweise keine oder nur geringe Thixotropie) und führen zu Formteilen ohne Minderung der mechanischen Eigenschaften.Casting resin compositions, for example epoxy casting resins, containing the fillers produced according to the invention also have good processing properties even with high conductivity (for example no or only low thixotropy) and lead to molded parts without a reduction in the mechanical properties.

Gegebenenfalls k8nnen die erfindungsgemäss erhaltenen Füllmittel in Mischung mit Metallen, beispielsweise in Form von Pulvern, Spänen oder Fasern, in Kunststoffe eingearbeitet werden. Das hierfür zu verwendende Metall und seine Konzentration richten sich nach dem Einsatzgebiet und sollen die mechanischen Eigenschaften und die Beständigkeit beispielsweise gegen die Zersetzung der damit hergestellten Kunststofferzeugnisse nicht verschlechtern. Dabei handelt es sich beispielsweise um Stahlfasern und/oder Aluminiumflocken. Anstelle von Metallen können aber auch Kohlenstoff-Fasern eingesetzt werden.If appropriate, the fillers obtained according to the invention can be incorporated into plastics in a mixture with metals, for example in the form of powders, chips or fibers. The metal to be used for this and its concentration depend on the area of application and should not impair the mechanical properties and the resistance, for example, to the decomposition of the plastic products produced with it. It is about for example around steel fibers and / or aluminum flakes. Instead of metals, carbon fibers can also be used.

Durch Verdünnen mit den auf Seite 2 aufgeführten Füllstoffen oder durch Zugabe abgestufter Mengen der erfindungsgemässen Füllmittel in derartige Kunststoffe oder in anorganische Materialien lässt sich die elektrische Leitfähigkeit gezielt einstellen, beispielsweise so, dass elektrisch partiell leitende Zusammensetzungen entstehen. Dies ist besonders wichtig zur Steuerung elektrischer Felder und/oder zum Abbau von Oberflächen- bzw. Raumladungen.The electrical conductivity can be specifically adjusted by dilution with the fillers listed on page 2 or by adding graded amounts of the fillers according to the invention in such plastics or in inorganic materials, for example in such a way that electrically partially conductive compositions are formed. This is particularly important for controlling electrical fields and / or for reducing surface or space charges.

Die erfindungsgemässen elektrisch leitenden Füllmittel eignen sich nicht nur zur Herstellung von antistatisch wirkenden und elektrisch leitenden Polymermassen, Kunststoffartikeln und Beschichtungen. Sie können auch zur Herstellung von Batterien und anderen Gegenständen in der Mikroelektronik, in oder als Sensoren, als Katalysator bei gewissen chemischen Reaktionen, zur Herstellung von Sonnenkollektoren, zur Abschirmung empfindlicher elektronischer Bauteile und Hochfrequenzfeldern [EMI-shielding], zum Potentialausgleich und Glimmschutz, zur höheren Belastbarkeit elektrischer Anlagen und Maschinen, zur Steuerung elektrischer Felder und Ladungen in elektrischen Geräten oder als Flächenheizleiter verwendet werden.The electrically conductive fillers according to the invention are not only suitable for the production of antistatic and electrically conductive polymer compositions, plastic articles and coatings. They can also be used to manufacture batteries and other objects in microelectronics, in or as sensors, as catalysts for certain chemical reactions, for the production of solar collectors, for shielding sensitive electronic components and high-frequency fields [EMI-shielding], for equipotential bonding and glow protection higher load capacity of electrical systems and machines, for controlling electrical fields and charges in electrical devices or as surface heating conductors.

Die folgenden Beispiele erläutern die Erfindung. Teile bedeuten Gew.-Teile und Prozente Gew.-Prozente.The following examples illustrate the invention. Parts mean parts by weight and percentages percent by weight.

Beispiel 1 : 90 Teile Quarzmehl W1® der Firma SIHELCO AG (CH-Birsfelden) werden zusammen mit 90 Teilen rohem ß-Kupferphthalocyanin während 30 Minuten auf einer Turbula-Maschine der Firma W.A. Bachofen (CH-Basel) gut vermischt. Die Mischung wird in einem Quarzglasgefäss, dessen Deckel eine kleine œffnung aufweist, in einem Ofen innert 6 Stunden auf 1050°C erhitzt. Nach 0,5 Stunden bei dieser Temperatur kühlt man ab und erhält 157 Teile einer grauschwarzen, festen Masse, welche in einem Labormixer pulverisiert wird. Das Pulver weist eine Zusammensetzung von 61,5 Gew.% Si02, 30 Gew.% C, 6,5 Gew.% Cu und 2 Gew.-X N auf. Die elektrische Leitfähigkeit, gemessen am komprimierten Pulver, beträgt bei Raumtemperatur 10 Scm-1 (2 Elektroden-Messung an Micropressling).Example 1: 90 parts of quartz powder W1® from SIHELCO AG (CH-Birsfelden) are mixed well with 90 parts of crude β-copper phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, in an oven to 1050 ° C within 6 hours. After 0.5 hours at this temperature, the mixture is cooled and 157 parts of a gray-black, solid mass are obtained, which is pulverized in a laboratory mixer. The powder has one Composition of 61.5% by weight Si0 2 , 30% by weight C, 6.5% by weight Cu and 2% by weight XN. The electrical conductivity, measured on the compressed powder, is 10 Scm -1 at room temperature (2 electrode measurement on micropressling).

Beispiele 2 bis 4: Verfährt man analog wie in Beispiel 1 beschrieben, verwendet jedoch als Ausgangsmischung die in Tabelle 1 angegebenen Verbindungen, so erhält man grau-schwarze Pulver mit den in der Tabelle 1 aufgeführten elektrischen Leitfähigkeiten.

Figure imgb0001
Examples 2 to 4: If the procedure is analogous to that described in Example 1, but the compounds given in Table 1 are used as the starting mixture, gray-black powders having the electrical conductivities listed in Table 1 are obtained.
Figure imgb0001

Beispiel 5: 50 Teile W1® der Firma SIHELCO AG (CH-Birsfelden) werden zusammen mit 50 Teilen Nickelphthalocyanin während 30 Minuten auf einer Turbula Maschine der Firma W.A. Bachofen (CH-Basel) gut vermischt. Die Mischung wird in einem Quarzglasgefäss, dessen Deckel eine kleine Oeffnung aufweist, in einem Ofen innert 6 Stunden auf 1000°C erhitzt. Man hält das Gemisch 1 Stunde bei 1000°C und lässt es dann auf Raumtemperatur abkühlen. Man erhält 86,2 Teile einer grauschwarzen festen Masse, welche gepulvert wird. Die elektrische Leitfähigkeit des so erhaltenen Pulvers beträgt bei Raumtemperatur 12 Scm-1.Example 5: 50 parts of W1® from SIHELCO AG (CH-Birsfelden) are mixed well with 50 parts of nickel phthalocyanine for 30 minutes on a Turbula machine from WA Bachofen (CH-Basel). The mixture is heated in a quartz glass vessel, the lid of which has a small opening, to 1000 ° C. in an oven within 6 hours. The mixture is kept at 1000 ° C. for 1 hour and then allowed to cool to room temperature. This gives 86.2 parts of a gray-black solid mass which is powdered. The electrical conductivity of the powder thus obtained is 12 Scm -1 at room temperature.

Beispiele 6-10: Verfährt man analog wie in Beispiel 5 beschrieben, verwendet jedoch als Ausgangsmischung die in Tabelle 2 angegebenen Verbindungen, so erhält man grauschwarze Pulver mit den in Tabelle 2 angegebenen elektrischen Leitfähigkeiten.

Figure imgb0002
Examples 6-10: If the procedure is analogous to that described in Example 5, but using the compounds given in Table 2 as the starting mixture, gray-black powders having the electrical conductivities given in Table 2 are obtained.
Figure imgb0002

Beispiel 11: Verfährt man wie in Beispiel 5 beschrieben, leitet aber während der Pyrolyse Stickstoff langsam durch das Reaktionsgefäss, so erhält man ein grauschwarzes Pulver mit ähnlichen Eigenschaften.EXAMPLE 11 If the procedure is as described in Example 5, but nitrogen is slowly passed through the reaction vessel during the pyrolysis, a gray-black powder with similar properties is obtained.

Beispiel 12: 270 Teile eines analog zu Beispiel 1 hergestellten Füllmittels aus 135 Teilen Quarzmehl W12® der Firma SIHELCO AG und 135 Teilen des gemäss Beispiel 1 erhaltenen elektrisch leitenden Pulvers werden zu 100 Teilen Araldit CY 225 0 (modifizierter Bisphenol-A-Epoxidharz mit einem Molekulargewicht von 380) und 80 Teilen des Härters HY 925®(modifiziertes Dicarbonsäureanhydrid) gegeben. Man erwärmt auf 80° C, homogenisiert mit einem Flügelrüher und entlüftet während 3 Minuten. Anschliessend wird die Mischung in auf 80° C vorgewärmte Formen gegossen und während 4 Stunden bei 80" C und während 8 Stunden bei 140° C gehärtet (DIN Nr. 16945).Example 12: 270 parts of a filler produced analogously to Example 1, made from 135 parts of W12® quartz powder from SIHELCO AG and 135 parts of the electroconductive powder obtained according to Example 1, are converted into 100 parts of Araldit CY 225 0 (modified bisphenol A epoxy resin with a Molecular weight of 380) and 80 parts of the hardener HY 925® (modified dicarboxylic anhydride). The mixture is heated to 80 ° C., homogenized with a paddle stirrer and vented for 3 minutes. The mixture is then poured into molds preheated to 80 ° C. and cured for 4 hours at 80 ° C. and for 8 hours at 140 ° C. (DIN No. 16945).

An den so hergestellten Martensstäben und Platten werden folgende Daten gemessen:

Figure imgb0003
The following data are measured on the martensets and plates produced in this way:
Figure imgb0003

Beispiel 13: Für die Färbung von PVC wird eine Mischung von

  • 65 Teilen stabilisiertem PVC,
  • 35 Teilen Dioctylphthalat und
  • 25 Teilen des nach Beispiel 1 erhaltenen Produkts

hergestellt und zwischen zwei Rollen eines Walzkalanders bei ca.150°C 5 Minuten hin und her bewegt. Die so erhaltene Weich-PVC-Folie weist einen spezifischen Oberflächenwiderstand R , gemessen nach DIN 53482 (Elektrodenanordnung A), von 5,5 1010Ωcm auf.Example 13: For the coloring of PVC a mixture of
  • 65 parts of stabilized PVC,
  • 35 parts of dioctyl phthalate and
  • 25 parts of the product obtained according to Example 1

produced and moved back and forth between two rolls of a rolling calender at approx. 150 ° C for 5 minutes. The soft PVC film thus obtained has a specific surface resistance R, measured in accordance with DIN 53482 (electrode arrangement A), of 5.5 10 10 Ωcm.

Beispiel 14: In einem 300 Vol.-Teile fassenden Laborkneter werden 25 Teile des nach Beispiel 1 erhaltenen Produktes, 37,5 Teile Polyäthylenwachs AC-617® der Firma Allied Chemicals und 125 Teile Natriumchlorid während 6 Stunden bei 80-110°C geknetet. Danach werden 62,5 Teile MOPLEN MOB-120® der Firma Montecatini in die Knetmasse eingearbeitet. Die Knetmasse wird im laufenden Kneter auf 30°C abgekühlt, dabei bildet sich eine grauschwarze pulverige Masse, welche mit ca. 3 Litern Wasser auf einer FRYMA-Zahnkolloidmühle Z 050 fein pulverisiert wird. Die erhaltene Suspension wird abfiltriert und der Presskuchen mit Wasser chloridfrei gewaschen. Das erhaltene Produkt wird im Vakuumtrockenschrank bei 50-60°C getrocknet. Man erhält 120 Teile eines feinen lockeren grauschwarzen Polyolefinpräparates, welches nach dem Extrudieren auf einem Laborextruder (Temp.:Zone 1:160°C; Zone 2: 190°C; Zone 3: 220°C; Zone 4: 170°C) eine thermoplastische Masse ergibt. Diese Masse weist einen elektrischen Durchgangswiderstand von ca. 4 105Ω cm auf, und eignet sich ausgezeichnet zur Herstellung von Spritzgussartikeln oder Fasern.EXAMPLE 14 25 parts of the product obtained according to Example 1, 37.5 parts of polyethylene wax AC-617® from Allied Chemicals and 125 parts of sodium chloride are kneaded at 80-110 ° C. for 6 hours in a 300-part laboratory kneader. Then 62.5 parts of MOPLEN MOB-120® from Montecatini are poured into the plasticine is working. The kneading compound is cooled to 30 ° C. in the running kneader, a gray-black powdery mass is formed, which is finely pulverized with approx. 3 liters of water on a FRYMA toothed colloid mill Z 050. The suspension obtained is filtered off and the presscake is washed free of chloride with water. The product obtained is dried in a vacuum drying cabinet at 50-60 ° C. 120 parts of a fine, loose, gray-black polyolefin preparation are obtained, which after extrusion on a laboratory extruder (Temp.:Zone 1: 160 ° C; Zone 2: 190 ° C; Zone 3: 220 ° C; Zone 4: 170 ° C) thermoplastic mass results. This mass has an electrical volume resistance of approx. 4 10 5 Ω cm, and is excellently suited for the production of injection molded articles or fibers.

Beispiel 15: In einem 300 Vol.-Teile fassenden Laborkneter werden 32 Teile des nach Beispiel 1 erhaltenen Produktes, 48 Teile DYNAPOL® L 206 der Firma DYNAMIT-NOBEL, 160 Teile Natriumchlorid sowie 25-32 Vol.-Teile Diacetonalkohol ca. 5 Stunden bei 80°C geknetet. Im laufenden Kneter wird dann tropfenweise Wasser zugegeben und gleichzeitig gekühlt, bis sich die Knetmasse in ein Granulat umwandelt. Das Granulat wird auf einer FRYMA-Zahnkolloidmühle Z 050 mit viel Wasser gemahlen, abfiltriert, der erhaltene Presskuchen mit Wasser salzfrei gewaschen und danach im Vakuumtrockenschrank bei 65-70°C getrocknet. Man erhält eine grauschwarze pulverige Masse, welche auf einem Laborextruder zu einer Schnur extrudiert und danach auf einer Hackmaschine granuliert wird. Das so erhaltene,40%-ige Polyesterpräparat weist einen elektrischen Durchgangswiderstand von 104 bis 105Ω cm auf.EXAMPLE 15 32 parts of the product obtained according to Example 1, 48 parts of DYNAPOL® L 206 from DYNAMIT-NOBEL, 160 parts of sodium chloride and 25-32 parts by volume of diacetone alcohol are mixed in a 300-part laboratory kneader for about 5 hours kneaded at 80 ° C. Water is then added dropwise in the running kneader and at the same time cooled until the kneading mass is converted into granules. The granules are ground on a FRYMA dental colloid mill Z 050 with plenty of water, filtered off, the press cake obtained is washed salt-free with water and then dried in a vacuum drying cabinet at 65-70 ° C. A gray-black powdery mass is obtained, which is extruded into a cord on a laboratory extruder and then granulated on a chopping machine. The 40% polyester preparation thus obtained has an electrical volume resistance of 10 4 to 105Ω cm.

Beispiel 16: Verfährt man analog wie in Beispiel 1, verwendet aber anstelle von 90 Teilen 5 Teile Quarzmehl W und anstelle von 90 Teilen 95 Teile ß-Kupferphthalocyanin, so erhält man ein Produkt enthaltend ca. 12 Gew:% an Kupfer. Es eignet sich ausgezeichnet als Katalysator der in Beispiel 17 beschriebenen Reaktion zur Herstellung eines anthrachinoiden Wollfarbstoffes.EXAMPLE 16 If the procedure is analogous to that of Example 1, but using 5 parts of quartz powder W instead of 90 parts and 95 parts of β-copper phthalocyanine instead of 90 parts, a product containing about 12% by weight of copper is obtained. It is an excellent catalyst for the reaction described in Example 17 for the preparation of an anthraquinoid wool dye.

Beispiel 17: ReaktionsschemaExample 17: Reaction scheme

Figure imgb0004
Figure imgb0004

20,2 Teile l-amino-4-bromanthrachinon-2-sulfonsaures Natrium werden mit 300 Teilen Wasser verrührt und nach Zugabe von 13,8 Teilen Natriumcarbonat allmählich mit 11,25 Teilen 1-Aminobenzol-4-sulfonsäure versetzt. DEr auf 85°C erhitzten Mischung werden als Katalysator in Abständen von 45 Minuten 7 Portionen von je 1 Teil des nach Beispiel 16 erhaltenen Produktes, feinst gepulvert, zugefügt. Nach der letzten Zugabe wird das Gemisch eine weitere Stunde bei 85-90°C gerührt, darauf mit 7,5 Teilen Natriumcarbonat, 11,25 Teilen l-Aminobenzol-4-sulfonsäure und 1 Teil des nach Beispiel 16 erhaltenen Produktes versetzt. Nach 20-stündigem Rühren bei 85-90°C werden 50 Teile Natriumchlorid zugegeben. Der beim Abkühlen ausfallende Niederschlag wird bei 25°C abfiltriert. Das feuchte Nutschgut wird in 1000 Teilen Wasser von 90°C verrührt und die Lösung nach Zugabe von 10 Teilen eines Filterhilfsmittels (Kieselgur Hyflo Supercel) filtriert. Die dunkelblaue Lösung (900 Teile) wird bei 75°C unter Rühren mit 135 Teilen Natriumchlorid versetzt und unter Rühren auf 35°C erkalten gelassen. Der ausgefallene Farbstoff wird abfiltriert, zweimal mit Natriumchloridlösung 15% gewaschen und getrocknet. Man erhält unter Berücksichtigung des Natriumchloridgehaltes 18,3 Teile des Dinatriumsalzes der l-Amino-4-anilinoanthrachinon-2,4'-disulfonsäure als dunkles Pulver. Der Farbstoff färbt Wolle aus saurem Bade in blauen Tönen.20.2 parts of 1-amino-4-bromoanthraquinone-2-sulfonic acid sodium are stirred with 300 parts of water and, after the addition of 13.8 parts of sodium carbonate, 11.25 parts of 1-aminobenzene-4-sulfonic acid are gradually added. The mixture heated to 85 ° C. is admixed with 7 portions of 1 part each of the product obtained according to Example 16, finely powdered, as a catalyst at intervals of 45 minutes. After the last addition, the mixture is stirred for a further hour at 85-90 ° C., then 7.5 parts of sodium carbonate, 11.25 parts of 1-aminobenzene-4-sulfonic acid and 1 part of the product obtained according to Example 16 are added. After stirring for 20 hours at 85-90 ° C, 50 parts of sodium chloride are added. The precipitate which precipitates on cooling is filtered off at 25 ° C. The moist filter cake is stirred in 1000 parts of water at 90 ° C. and the solution is filtered after adding 10 parts of a filter aid (diatomaceous earth Hyflo Supercel). The dark blue solution (900 parts) is mixed at 75 ° C. with stirring with 135 parts of sodium chloride and allowed to cool to 35 ° C. with stirring. The precipitated dye is filtered off, washed twice with 15% sodium chloride solution and dried. Taking into account the sodium chloride content, 18.3 parts of the disodium salt of l-amino-4-anilinoanthraquinone-2,4'-disulfonic acid are obtained as a dark powder. The dye dyes wool from acid baths in blue tones.

Claims (24)

1. Elektrisch leitendes Füllmittel erhältlich durch Pyrolysieren einer Mischung aus mindestens einem Metallphthalocyanin und mindestens einem anorganischen Füllstoff.1. Electrically conductive filler obtainable by pyrolyzing a mixture of at least one metal phthalocyanine and at least one inorganic filler. 2. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin das Metallphthalocyanin Kupfer-, Nickel-, Kobalt- oder Eisenphthalocyanin ist.2. An electrically conductive filler according to claim 1, wherein the metal phthalocyanine is copper, nickel, cobalt or iron phthalocyanine. 3. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin das Metallphthalocyanin Kupferphthalocyanin ist.3. An electrically conductive filler according to claim 1, wherein the metal phthalocyanine is copper phthalocyanine. 4. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin das Metallphthalocyanin die rohe ß-Form von Kupferphthalocyanin ist.4. An electrically conductive filler according to claim 1, wherein the metal phthalocyanine is the crude β-form of copper phthalocyanine. 5. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin der anorganische Füllstoff Aluminiumoxid, Wollastonit, Eisenoxid, Titandioxid, Glimmer oder Quarz ist.5. An electrically conductive filler according to claim 1, wherein the inorganic filler is aluminum oxide, wollastonite, iron oxide, titanium dioxide, mica or quartz. 6. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin der anorganische Füllstoff kristalliner oder amorpher Quarz mit einer Teilchengrösse von 0,01 bis 1000 µm ist.6. An electrically conductive filler according to claim 1, wherein the inorganic filler is crystalline or amorphous quartz with a particle size of 0.01 to 1000 microns. 7. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin das Pyrolysieren bei Temperaturen von 650 bis zu 2500°C, bei einem Druck von 0,5 bis 20 bar und in Luft, Inertgas, in Luft mit erhöhtem Sauerstoffgehalt oder im Wasserstoffgas erfolgt.7. An electrically conductive filler according to claim 1, wherein the pyrolyzing is carried out at temperatures of 650 to 2500 ° C, at a pressure of 0.5 to 20 bar and in air, inert gas, in air with increased oxygen content or in hydrogen gas. 8. Elektrisch leitendes Füllmittel gemäss Anspruch 1, worin das Pyrolysieren bei 800 bis 1200°C und bei Normaldruck in Luft erfolgt.8. An electrically conductive filler according to claim 1, wherein the pyrolyzing is carried out at 800 to 1200 ° C and at normal pressure in air. 9. Verwendung des elektrisch leitenden Füllmittels gemäss Anspruch l zum Einarbeiten in hochmolekulares organisches Material.9. Use of the electrically conductive filler according to claim l for incorporation into high molecular weight organic material. 10. Verwendung des elektrisch leitenden Füllmittels gemäss Anspruch 1 zum Einarbeiten in anorganisches Material.10. Use of the electrically conductive filler according to claim 1 for incorporation into inorganic material. 11. Verwendung des elektrisch leitenden Füllmittels gemäss Anspruch 1 zum Einarbeiten in Epoxidharze.11. Use of the electrically conductive filler according to claim 1 for incorporation in epoxy resins. 12. Organisches Material enthaltend ein elektrisch leitendes Füllmittel gemäss Anspruch 1.12. Organic material containing an electrically conductive filler according to claim 1. 13. Anorganisches Material enthaltend ein elektrisch leitendes Füllmittel gemäss Anspruch 1.13. Inorganic material containing an electrically conductive filler according to claim 1. 1. Verfahren zur Herstellung eines elektrisch leitenden Füllmittels, dadurch gekennzeichnet, dass man eine Mischung aus mindestens einem Metallphthalocyanin und mindestens einem anorganischen Füllstoff pyrolysiert.1. A process for producing an electrically conductive filler, characterized in that a mixture of at least one metal phthalocyanine and at least one inorganic filler is pyrolyzed. 2. Verfahren gemäss Anspruch 1, wobei man als Metallphthalocyanin Kupfer-, Nickel-, Kobalt- oder Eisenphthalocyanin verwendet.2. The method according to claim 1, wherein copper, nickel, cobalt or iron phthalocyanine is used as the metal phthalocyanine. 3. Verfahren gemäss Anspruch 1, wobei man als Metallphthalocyanin Kupferphthalocyanin verwendet.3. The method according to claim 1, wherein copper phthalocyanine is used as the metal phthalocyanine. 4. Verfahren gemäss Anspruch 1, wobei man als Metallphthalocyanin die rohe ß-Form von Kupferphthalocyanin verwendet.4. The method according to claim 1, wherein the crude β-form of copper phthalocyanine is used as the metal phthalocyanine. 5. Verfahren gemäss Anspruch 1, wobei man als anorganischen Füllstoff Aluminiumoxid, Wollastonit, Eisenoxid, Titandioxid, Glimmer oder Quarz verwendet.5. The method according to claim 1, wherein the inorganic filler used is aluminum oxide, wollastonite, iron oxide, titanium dioxide, mica or quartz. 6. Verfahren gemäss Anspruch 1, wobei man als anorganischen Füllstoff kristallinen oder amorphen Quarz mit einer Teilchengrösse von 0,01 bis 1000µm verwendet.6. The method according to claim 1, wherein crystalline or amorphous quartz with a particle size of 0.01 to 1000 µm is used as the inorganic filler. 7. Verfahren gemäss Anpruch 1, wobei. man bei Temperaturen von 650 bis zu 2500°C, bei einem Druck von 0,5 bis 20 bar und in Luft, Inertgas, in Luft mit erhöhtem Sauerstoffgehalt oder im Wasserstoffgas pyrolysiert.7. The method according to claim 1, wherein. pyrolyzed at temperatures from 650 to 2500 ° C, at a pressure of 0.5 to 20 bar and in air, inert gas, in air with increased oxygen content or in hydrogen gas. 8. Verfahren gemäss Anspruch 1, wobei man bei 800 bis 1200°C und bei Normaldruck in Luft pyrolysiert.8. The method according to claim 1, wherein pyrolyzing at 800 to 1200 ° C and at normal pressure in air. 9. Verwendung des elektrisch leitenden Füllmittels gemäss Anpruch 1 zum Einarbeiten in hochmolekulares organisches Material.9. Use of the electrically conductive filler according to claim 1 for incorporation into high-molecular organic material. 10. Verwendung des elektrisch leitenden Füllmittels gemäss Anspruch 1 zum Einarbeiten in anorganisches Material.10. Use of the electrically conductive filler according to claim 1 for incorporation into inorganic material. 11. Verwendung des elektrisch leitenden Füllmittels gemäss Anspruch 1 zum Einarbeiten in Epoxidharze.11. Use of the electrically conductive filler according to claim 1 for incorporation in epoxy resins.
EP84810326A 1983-07-08 1984-07-02 Electrically conductive filling agent Expired EP0131544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84810326T ATE31993T1 (en) 1983-07-08 1984-07-02 ELECTRICALLY CONDUCTIVE FILLERS.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH3766/83 1983-07-08
CH376683 1983-07-08
CH515383 1983-09-22
CH5153/83 1983-09-22
CH617/84 1984-02-09
CH61784 1984-02-09

Publications (2)

Publication Number Publication Date
EP0131544A1 true EP0131544A1 (en) 1985-01-16
EP0131544B1 EP0131544B1 (en) 1988-01-13

Family

ID=27172246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84810326A Expired EP0131544B1 (en) 1983-07-08 1984-07-02 Electrically conductive filling agent

Country Status (7)

Country Link
US (1) US4554094A (en)
EP (1) EP0131544B1 (en)
AU (1) AU561786B2 (en)
CA (1) CA1217043A (en)
DE (1) DE3468769D1 (en)
FI (1) FI76102C (en)
NO (1) NO161224C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328938A1 (en) * 1988-02-12 1989-08-23 AEG Sachsenwerk GmbH Insulator for use in high-voltage installations
DE4015929A1 (en) * 1990-05-17 1991-11-21 Asea Brown Boveri Gas insulated HV installation isolator - has at least one field control element of electrically conductive plastic coupled by moulding onto insulator body
EP0651473A2 (en) * 1993-10-29 1995-05-03 Siemens Aktiengesellschaft Slip ring or commutator motor
EP0704943A1 (en) * 1994-09-30 1996-04-03 Siemens Aktiengesellschaft Collector or commutator
DE19500849A1 (en) * 1995-01-13 1996-07-18 Abb Research Ltd Electrical component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720418A (en) * 1985-07-01 1988-01-19 Cts Corporation Pre-reacted resistor paint, and resistors made therefrom
GB8622752D0 (en) * 1986-09-22 1986-10-29 Shell Int Research Conductive polymer compositions
US4711708A (en) * 1986-10-09 1987-12-08 Gas Research Institute Chemically modified electrodes for the catalytic reduction of CO2
US4756807A (en) * 1986-10-09 1988-07-12 Gas Research Institute Chemically modified electrodes for the catalytic reduction of CO2
US5366664A (en) * 1992-05-04 1994-11-22 The Penn State Research Foundation Electromagnetic shielding materials
CN1039506C (en) * 1994-09-12 1998-08-12 宝山钢铁(集团)公司 Stereo-space static electricity prevention and curing method
US20010014399A1 (en) * 1997-02-26 2001-08-16 Stanley J. Jasne Conductive uv-curable epoxy formulations
JP3032491B2 (en) * 1997-08-27 2000-04-17 大塚化学株式会社 Printing sheet
US20060108567A1 (en) * 2002-07-23 2006-05-25 Charati Sanjay G Conductive poly (arylene ether) compositions and methods of making the same
US8999200B2 (en) * 2002-07-23 2015-04-07 Sabic Global Technologies B.V. Conductive thermoplastic composites and methods of making

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2016743A6 (en) * 1968-05-07 1970-05-15 Gen Motors Corp

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252565A (en) * 1976-04-08 1981-02-24 Ciba-Geigy Corporation Stabilized phthalocyanines
GB1535434A (en) * 1976-12-01 1978-12-13 Ciba Geigy Ag Flocculation inhibitors
JPS5940172B2 (en) * 1977-10-28 1984-09-28 東洋インキ製造株式会社 Phthalocyanine pigment composition
US4347173A (en) * 1980-06-06 1982-08-31 Westinghouse Electric Corp. Opaque black dye for color coding of wire enamels, varnishes and synthetic resins
US4304719A (en) * 1981-01-23 1981-12-08 The United States Of America As Represented By The Secretary Of The Navy Conducting iodine-doped fluorometallophthalocyanines
US4477608A (en) * 1982-08-20 1984-10-16 Ciba-Geigy Corporation Compositions containing graphite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2016743A6 (en) * 1968-05-07 1970-05-15 Gen Motors Corp

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328938A1 (en) * 1988-02-12 1989-08-23 AEG Sachsenwerk GmbH Insulator for use in high-voltage installations
DE3804381A1 (en) * 1988-02-12 1989-08-24 Sachsenwerk Ag INSULATING PART FOR USE IN HIGH VOLTAGE SYSTEMS
DE4015929A1 (en) * 1990-05-17 1991-11-21 Asea Brown Boveri Gas insulated HV installation isolator - has at least one field control element of electrically conductive plastic coupled by moulding onto insulator body
EP0651473A2 (en) * 1993-10-29 1995-05-03 Siemens Aktiengesellschaft Slip ring or commutator motor
EP0651473A3 (en) * 1993-10-29 1996-07-10 Siemens Ag Slip ring or commutator motor.
EP0704943A1 (en) * 1994-09-30 1996-04-03 Siemens Aktiengesellschaft Collector or commutator
DE19500849A1 (en) * 1995-01-13 1996-07-18 Abb Research Ltd Electrical component

Also Published As

Publication number Publication date
AU3039084A (en) 1985-01-10
AU561786B2 (en) 1987-05-14
FI76102B (en) 1988-05-31
US4554094A (en) 1985-11-19
DE3468769D1 (en) 1988-02-18
NO842777L (en) 1985-01-09
FI842682A0 (en) 1984-07-04
FI842682A (en) 1985-01-09
FI76102C (en) 1988-09-09
CA1217043A (en) 1987-01-27
NO161224C (en) 1989-07-19
NO161224B (en) 1989-04-10
EP0131544B1 (en) 1988-01-13

Similar Documents

Publication Publication Date Title
EP0131544B1 (en) Electrically conductive filling agent
DE69826629T2 (en) SYNTHETIC RESIN COMPOSITION RESISTANT TO THERMAL DECOMPOSITION AND MOLDED ARTICLES
EP2995178A1 (en) Additive for lds plastics
DE2624065A1 (en) NEW MAGNESIUM HYDROXIDES
DE19701771A1 (en) Melamine borate particles, processes for their production and their use and processes for producing hexagonal boron nitride powder
EP2358821A1 (en) Surface-treated titanium dioxide pigments for plastics and method for production
DE102014008963A1 (en) Additive for LDS plastics
US7074949B2 (en) Zinc glycerolate composition and method for manufacture thereof
DE69831916T2 (en) Colored pearlescent pigments
EP0675175B1 (en) Carbon containing pigments
EP0405364A1 (en) Conductive needle zinc oxide and process for manufacturing thereof
DE69915490T2 (en) Bismuth based pigments and process for their preparation
DE3348108C2 (en)
EP0511694A2 (en) Electrical conductive fibrous filler and process for its manufacture
DE4117034A1 (en) CATIONIC LAYER CONNECTIONS MODIFIED WITH POLYMERS
AU2012275786B2 (en) Treated inorganic pigments having reduced photoactivity and improved anti-microbial properties and their use in polymer compositions
DE69932188T2 (en) COLORED THERMOPLASTIC RESIN COMPOSITION AND ARTICLES MANUFACTURED THEREFROM
DE2632446C2 (en)
DE60108888T2 (en) YELLOW PIGMENTS MADE TOGETHER
DE2855005A1 (en) FLAME RETARDANT THERMOPLASTIC POLYESTER COMPOSITIONS WITH IMPROVED ARC RESISTANCE AND PROCESS FOR THEIR MANUFACTURING
DE60006639T2 (en) FLAME RETARDANT POLYKETONE MIXTURE AND MOLDED PART
EP0176899A2 (en) Mixed crystals of pigments on the basis of diimides of perylene tetracarboxylic acid, their manufacturing process and their use
EP1311605B1 (en) Use of amphiphilic polymers or copolymers for surface modification of reactive inorganic fillers
EP0356390B1 (en) Pigmented thermoplastic resins
DE69333473T2 (en) Carbon black containing EPDM compositions with a textured, matt surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840704

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 31993

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3468769

Country of ref document: DE

Date of ref document: 19880218

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900528

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900529

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900613

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900618

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900712

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900924

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910702

Ref country code: AT

Effective date: 19910702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910731

Ref country code: CH

Effective date: 19910731

Ref country code: BE

Effective date: 19910731

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84810326.3

Effective date: 19920210