EP0125709B1 - Procédé de production de mélanges hydrocarburés à faible teneur en asphaltènes - Google Patents

Procédé de production de mélanges hydrocarburés à faible teneur en asphaltènes Download PDF

Info

Publication number
EP0125709B1
EP0125709B1 EP19840200457 EP84200457A EP0125709B1 EP 0125709 B1 EP0125709 B1 EP 0125709B1 EP 19840200457 EP19840200457 EP 19840200457 EP 84200457 A EP84200457 A EP 84200457A EP 0125709 B1 EP0125709 B1 EP 0125709B1
Authority
EP
European Patent Office
Prior art keywords
deasphalted oil
deasphalting
separated
asphalt
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840200457
Other languages
German (de)
English (en)
Other versions
EP0125709A3 (en
EP0125709A2 (fr
Inventor
Lucas Maria Andreas De Bont
John Robert Newsome
Petrus Matthias Marie Blauwhoff
Gerrit Jan Barend Assink
Karl Heinz Röbschläger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL8301352A external-priority patent/NL8301352A/nl
Priority claimed from NL8301353A external-priority patent/NL8301353A/nl
Priority claimed from NL8301354A external-priority patent/NL8301354A/nl
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP0125709A2 publication Critical patent/EP0125709A2/fr
Publication of EP0125709A3 publication Critical patent/EP0125709A3/en
Application granted granted Critical
Publication of EP0125709B1 publication Critical patent/EP0125709B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Definitions

  • the invention relates to a process for the production of deasphalted oils and hydrocarbon oil distillates from asphaltenes-containing hydrocarbon mixtures.
  • a drawback of the conventional solvent-deasphalting in which an asphaltenes-containing feed is separated in one step into a deasphalted oil as desired main product and an asphalt as by-product, is that for realizing a sufficiently high yield of de-asphalted oil, one usually has to accept a deasphalted oil of insufficient quality.
  • the quality of the de-asphalted oil is meant to be its suitability for conversion into hydrocarbon oil distillates by catalytic cracking optionally in the presence of hydrogen. Said suitability is higher according as the deasphalted oil has, inter alia, a lower asphaltenes, metal and sulphur content.
  • Deasphalted oil 1 differs from deasphalted oil 2 mainly by a substantially lower asphaltenes, metal and sulphur content.
  • solvent-deasphalting has in practice been found to be suitable for the production of deasphalted oils from various asphaltenes-containing hydrocarbon mixtures and a two-step solvent-deasphalting process has moreover been found to yield better results than a one-step process, it was ascertained to what extent it would be possible to obtain a better result by combining the two-step solvent-deasphalting process with after treatment(s) of the deasphalted oil 2 and/or the asphalt and application of a residual fraction of the aftertreated product(s) as a feed component for the two-step solvent-deasphalting, than when using just a two-step solvent-deasphalting process.
  • Said suitability is higher according as the asphalt has a lower metal and sulphur content and a lower viscosity and density.
  • the combinations tested Compared with a mode of operation in which just a two-step solvent-deasphalting is used, the combinations tested generally resulted in a higher yield of deasphalted oil 1 and a considerable yield of hydrocarbon oil distillate. Some combinations have been found to yield deasphalted oils and/or asphalt of a better quality.
  • the present invention therefore relates to a process for the production of deasphalted oils and hydrocarbon oil distillates from asphaltenes-containing hydrocarbon mixtures, characterized in that an asphaltenes-containing hydrocarbon mixture is separted by two-step solvent-deasphalting into a deasphalted oil 1 of high quality, a deasphalted oil 2 of lower quality and an asphalt, that the deasphalted oil 2 or the asphalt is converted by a catalytic hydrotreatment into a product having a reduced RCT which is separated by distillation into one or more distillate fractions and a residual fraction, that the residual fraction is subjected to thermal or catalytic cracking or used as a feed component for solvent-deasphalting and the cracked product obtained is separated by distillation into one or more distillate fractions and a residual fraction, which latter fraction is used as a feed component for solvent-deasphalting, or that the deasphalted oil 2 is subjected to thermal or catalytic cracking and/or that the asphalt is subjecte
  • the asphaltenes-containing hydrocarbon mixture used as feed is first separated by a two-step solvent-deasphalting treatment into a deasphalted oil 1, a deasphalted oil 2 and an asphalt and that at least one of the residual fractions obtained in the aftertreatment is used as feed component for solvent-deasphalting, in particular the two-step solvent-deasphalting treatment referred to hereinabove.
  • a preferred embodiment of the process according to the present invention relates to a process for the production of a deasphalted oil and hydrocarbon oil distillates from asphaltenes-containing hydrocarbon mixtures, in which an asphaltenes-containing hydrocarbon mixture is separated by two-step solvent-deasphalting into a deasphalted oil 1 of high quality, a deasphalted oil 2 of lower quality and an asphalt, in which deasphalted oil 2 is converted by catalytic hydrotreatment into a product having a reduced RCT which is separted by distillation into one or more distillate fractions and a residual fraction, in which said residual fraction is converted by thermal or catalytic cracking into a cracked product which is separated by distillation into one or more distillate fractions and a residual fraction, the latter residual fraction being used as a feed component for the two-step solvent-deasphalting.
  • class I the deasphalted oil 2 is subjected to a catalytic hydrotreatment.
  • Class I can be further subdivided depending on whether the distillation residue of the hydrotreated product is subjected to thermal cracking (class IA) or to catalytic cracking (class IB).
  • a preferred embodiment of class I comprises a process wherein the residual fraction separated from the product of the catalytic hydrotreatment is subjected to thermal cracking and that the asphalt is used as a feed component for thermal cracking.
  • a further preferred embodiment of the process according to the present invention relates to a process for the production of deasphalted oils and hydrocarbon oil distillates from asphaltenes-containing hydrocarbon mixtures, in which an asphaltenes-containing hydrocarbon mixture is separated by two-step solvent-deasphalting into a deasphalted oil 1 of high quality, a deasphalted oil 2 of lower quality and an asphalt, in which the asphalt is converted by catalytic hydrotreatment into a product having a reduced RCT which is separated by distillation into one or more distillate fractions and a residual fraction and in which the residual fraction is used as a feed component for the solvent-deasphalting or is converted by thermal or catalytic cracking into a cracked product which is separated by distillation into one or more distillate fractions and a residual fraction, the latter residual fraction being used as a feed component for solvent-deasphalting.
  • class II the asphalt is subjected to a catalytic hydrotreatment.
  • Class II can be further subdivided depending on whether the distillation residue of the hydrotreated product is used as a feed component for solvent-deasphalting, in particular two-step solvent-deasphalting (class IIA) or is subjected to thermal cracking (class IIB) or to catalytic cracking (class IIC).
  • a preferred embodiment of class II comprises a process wherein the residual fraction separated from the product of the catalytic hydrotreatment is used as a feed component for solvent-deasphalting and that the deasphalted oil 2 is converted by thermal or catalytic cracking into a cracked product which is separated by distillation into one or more distillate fractions and a residual fraction that is used as a feed component for solvent-deasphalting.
  • a further preferred embodiment of class II comprises a process wherein the residual fraction separated from the product of the catalytic hydrotreatment is converted by thermal or catalytic cracking into a cracked product and that the deasphalted oil 2 is used as a feed component for thermal or catalytic cracking and that a distillation residue of the thermally or catalytically cracked product is used as a feed component for solvent-deasphalting.
  • a third preferred embodiment of the process according to the present invention relates to a process for the production of deasphalted oils and hydrocarbon oil distillates from asphaltenes-containing hydrocarbon mixtures, in which an asphaltenes-containing hydrocarbon mixture is separated by two-step solvent-deasphalting into a deasphalted oil 1 of high quality, a deasphalted oil 2 of lower quality and an asphalt, in which the deasphalted oil 2 is subjected to thermal or catalytic cracking and/or in which the asphalt is subjected to thermal cracking, in which a distillation residue of the cracked product is converted by catalytic hydrotreatment into a product with a reduced RCT that is separated by distillation into one or more distillate fractions and a residual fraction and in which the residual fraction is used as a feed component for solvent-deasphalting, in particular two-step solvent-deasphalting.
  • class III the deasphalted oil 2 is subjected to thermal or catalytic cracking and/or the asphalt is subjected to thermal cracking.
  • Class III can be further subdivided depending on whether the apparatus in which the process is carried out contains in addition to a two-step solvent-deasphalting section and a catalytic hydrotreatment section, either a thermal cracking section (class IIIA) or a catalytic cracking section (class IIIB), or both a thermal and a catalytic cracking section (class IIIC), in which the deasphalted oil 2 and/or the asphalt separated in the two-step solvent-deasphalting section is/are further processed.
  • a thermal cracking section class IIIA
  • a catalytic cracking section class IIIB
  • Class IIIC thermal and a catalytic cracking section
  • a preferred embodiment of class III comprises a process wherein the deasphalted oil 2 is thermally or catalytically cracked and that the asphalt is used as a feed component for the catalytic hydrotreatment.
  • a further preferred embodiment of class III comprises a process wherein the deasphalted oil 2 is catalytically cracked and that the asphalt is thermally cracked and that the mixture of the distillation residues of the cracked products is subjected to catalytic hydrotreatment.
  • the feed used is an asphaltenes-containing hydrocarbon mixture.
  • the process is preferably applied to hydrocarbon mixturres mainly boiling above 350°C and more than 35% by weight boiling above 520°C and having an RCT above 7.5% by weight.
  • hydrocarbon mixtures are residues obtained in the'distillation of crude mineral oils as well as heavy hydrocarbon mixtures obtained from shale and tar sand.
  • the process can also be used for heavy crude mineral oils and for residues obtained in the distillation of products formed in the thermal cracking of hydrocarbon mixtures.
  • the process according to the invention is very suitable to be applied to residues obtained in the vacuum distillation of atmospheric distillation residues of crude mineral oils.
  • the process according to the invention is further very suitable to be applied to residues obtained in the vacuum distillation of atmospheric distillation residues of products formed in the thermal cracking of asphaltenes-containing hydrocarbon mixtures. If an atmospheric distillation residue is available as feed for the process according to the invention, it is preferred to separate therefrom a vacuum distillate by vacuum distillation and subject the resultant vacuum residue to the process according to the invention.
  • the separated vacuum distillate can be converted into light hydrocarbon oil distillates by subjecting it to thermal cracking or catalytic cracking optionally in the presence of hydrogen.
  • Suitable solvents for carrying out the deasphalting treatment are paraffinic hydrocarbons with 3-7 carbon atoms per molecule, such as propane, n-butane, iso-butane, n-pentane, iso-pentane and mixtures thereof, such as mixtures of propane with n-butane and mixtures of n-butane with iso-butane.
  • Suitable solvent/oil weight ratios lie between 7:1 and 1:1.
  • the solvent-deasphalting is preferably carried out at elevated temperature and pressure.
  • the two-step solvent-deasphalting can in principle be carried out in two manners.
  • the feed may be subjected to an extraction under mild conditions in which the feed is separated into a deasphalted oil 1 and a "light" asphalt and in the second step the light asphalt is subsequently subjected to a second extraction in which it is separated into a deasphalted oil 2 and the final asphalt as by-product.
  • the same solvent can be used, the degree of extraction being controlled by means of the temperature (temperature in the first step higher than in the second step). It is also possible to use different solvents, for example propane in the first step and n-butane in the second step.
  • the feed may be subjected to an extraction under heavier conditions in which the feed is separated into a de-asphalted oil and the final asphalt as by-product and in the second step the deasphalted oil is subsequently separated into a deasphalted oil 1 and a deasphalted oil 2.
  • the mixture of deasphalted oil and solvent from the extractor should only be supplied to a settler in which the temperature is higher than that applied in the first step.
  • the asphaltenes-containing hydrocarbon mixtures used as feed in the process according to the invention usually contain a substantial quantity of metals, especially vanadium and nickel. In the two-step solvent-deasphalting treatment some of these metals find their way into the deasphalted oil 2 or the asphalt. In the catalytic hydrotreatment of the deasphalted oil 2, the asphalt or the distillation products obtained therefrom by thermal or catalytic cracking at least part of said metals deposits on the catalyst and consequently shortens its life.
  • a deasphalted oil 2 an asphalt or a cracking residue or a mixture of a cracking residue and an asphalt having a vanadium+nickel content above 50 parts per million by weight (ppmw)
  • Said demetallization can very suitably be carried out by contacting the product(s) to be demetallized in the presence of hydrogen with a catalyst consisting more than 80% by weight of silica.
  • catalysts completely consisting of silica and catalysts containing one or more metals having hydrogenation activity, in particular a combination of nickel and vanadium, present on a carrier support substantially consisting of silica are suitable for said purpose.
  • a catalytic demetallization in the presence of hydrogen is applied said demetallization can be carried out in a separate reactor. Since the catalytic demetallization and the catalytic hydrotreatment to reduce the RCT can be carried out under the same conditions, the two processes can also very suitably be carried out in the same reactor, consecutively containing a bed of the demetallization catalyst and a bed of the catalyst used in the catalytic hydrotreatment.
  • Suitable catalysts for carrying out the catalytic hydrotreatment are those containing at least one metal chosen from the group formed by nickel and cobalt and at least one metal chosen from the group formed by molybdenum and tungsten on a carrier consisting more than 40% by weight of alumina.
  • Very suitable catalysts for carrying out the catalytic hydrotreatment are those containing the metal combination nickel/molybdenum or cobalt/molybdenum on alumina.
  • the catalytic hydrotreatment is preferably carried out at a temperature of from 300-500°C and in particular of from 350-450°C, a pressure of from 50-300 bar and in particular of from 75-200 bar, a space velocity of from 0.02-10 g ⁇ g -1 ⁇ h- 1 and in particular of from 0.1-2 g - g -1 ⁇ h- 1 and an H 2 /feed ratio of from 100-5000 NI - kg- 1 and in particular of from 500-2000 NI ⁇ kg- 1 .
  • the same preference holds as stated above for the catalytic hydrotreatment to reduce the RCT.
  • the catalytic hydrotreatment is preferably carried out in such a manner that a product is obtained the C 5 + fraction of which fulfils the following requirements:
  • a product with a reduced RCT is obtained from which one or more distillate fractions and a residual fraction are separated.
  • the distillate fractions separated from the product may be atmospheric distillates only, but it is preferred to separate a vacuum distillate from the product. Said vacuum distillate can be converted into light hydrocarbon oil distillates in the manners stated hereinbefore.
  • a distillation residue of the hydrotreated product is subjected to thermal or catalytic cracking.
  • One or more distillate fractions are then separated from the cracked product.
  • Said distillate fraction(s) may be atmospheric distillate(s) only, but it is preferred to separate a vacuum distillate from the cracked product(s).
  • Said vacuum distillate can be converted into light hydrocarbon oil distillates in the manners stated hereinbefore.
  • IA-1, IA-2, IB, IIA-1 to IIA-3 inclusive, IIB-1, IIB-2, IIC-1, IIC-2, IIIA-1 to IIIA-4 inclusive, IIIB-1, IIIB-2 and IIIC are discussed in some detail hereinafter.
  • the embodiments IA-1 and IA-2 are characterized in that the apparatus in which they are carried out contains in addition to a two-step solvent-deasphalting section and a catalytic hydrotreatment section, a thermal cracking section.
  • a distillation residue of the hydrotreated product is used as feed for the thermal cracking section and asphalt is separated off as final product.
  • both a distillation residue of the hydrotreated product and the asphalt are used as feed components for the thermal cracking section.
  • Embodiment IB is characterized in that the apparatus in which it is carried out contains a catalytic cracking section in addition to a two-step solvent-deasphalting section and a catalytic hydrotreatment section.
  • the embodiments IIA-1 to IIA-3 inclusive are characterized in that the distillation residue of the hydrotreated product is used as a feed component for the two-step solvent-deasphalting.
  • the deasphalted oil 2 is separated off as final product.
  • the deasphalted oil 2 is subjected to thermal and catalytic cracking respectively and a distillation residue of the cracked product is used as a feed component for the two-step solvent-deasphalting.
  • the embodiments IIB-1, IIB-2, IIC-1 and IIC-2 are characterized in that the distillation residue of the hydrotreated product is subjected to thermal (IIB-1 and IIB-2) or catalytic (IIC-1 and IIC-2) cracking.
  • a distillation residue of the cracked product is used as a feed component for the two-step solvent-deasphalting.
  • the deasphalted oil 2 is separated off as final product.
  • the deasphalted oil 2 is used as a feed component for the thermal and catalytic cracking section respectively.
  • the embodiments IIIA-1 to IIIA-4 inclusive are characterized in that the apparatus in which they are carried out consecutively consists of a two-step solvent-deasphalting section, a thermal cracking section and a catalytic hydrotreatment section.
  • the deasphalted oil 2 is subjected to thermal cracking and the asphalt is separated off as final product.
  • Embodiment IIIA-2 is a variant of the embodiment IIIA-1 in which the asphalt is mixed with the distillation residue of the thermally cracked product and the mixture is subjected to catalytic hydrotreatment.
  • the asphalt is subjected to thermal cracking and the deasphalted oil 2 is separated off as final product.
  • both the deasphalted oil 2 and the asphalt are thermally cracked.
  • the embodiments IIIB-1 and IIIB-2 are characterized in that the apparatus in which they are carried out consecutively consists of a two-step solvent-deasphalting section, a catalytic cracking section and a catalytic hydrotreatment section.
  • the deasphalted oil 2 is subjected to catalytic cracking and the asphalt is separated off as final product.
  • Embodiment IIIB-2 is a variant of the embodiment IIIB-1 in which the asphalt is mixed with the distillation residue of the catalytically cracked product and the mixture is subjected to catalytic hydrotreatment.
  • Embodiment IIIC is characterized in that the apparatus in which it is carried out consecutively consists of a two-step solvent-deasphalting section, a thermal cracking section, a catalytic cracking section and a catalytic hydrotreatment section.
  • the asphalt is thermally cracked
  • the deasphalted oil 2 is catalytically cracked and a mixture of the two cracking residues is subjected to catalytic hydrotreatment.
  • the embodiments IA-1, IA-2 and IB are diagrammatically shown in Figures 1, 2 and 3 respectively.
  • the embodiments IIA-1 to IIA-3 inclusive, IIB-1, IIB-2, IIC-1 and IIC-2 are diagrammatically shown in Figures 6-12 respctively.
  • the embodiments IIIA-1 to IIIA-4 inclusive, IIIB-1, IIIB-2 and IIIC are diagrammatically shown in Figures 15-21 respectively. The following streams and sections are designated throughout the Figures 1-3, 6-12 and 15 ⁇ 21 respectively with the following numerals.
  • a heavy fraction of the cracked product from the cracking unit in which stream 6 is treated is preferably recycled to said cracking unit.
  • a thermal cracking section containing two cracking units it is possible, if desired, to separate a relatively low-asphaltenes fraction from the product obtained in the cracking unit in which stream 4 is cracked, and said relatively low-asphaltenes fraction can be used as feed component for the cracking unit in which stream 6 is treated.
  • a heavy fraction of the cracked product from the cracking unit in which stream 3 is treated is preferably recycled to said cracking unit.
  • a thermal cracking section containing two cracking units it is possible, if desired, to separate a relatively low-asphaltenes fraction from the product obtained in the cracking unit in which stream 4 is cracked, and said relatively low-asphaltenes fraction can be used as a feed component for the cracking unit in which stream 3 is treated.
  • the process is carried out in an apparatus consecutively consisting of a two-step solvent-deasphalting section 111, a catalytic hydrotreatment section built up of a catalytic hydrotreatment unit 115, a first atmospheric distillation unit 116 and a first vacuum distillation unit 117 and a thermal cracking section built up of a thermal cracking unit 118, a second atmospheric distillation unit 119 and a second vacuum distillation unit 120.
  • An asphaltenes-containing hydrocarbon mixture 101 is mixed with a recycled stream 108 and the mixture 122 is separated by two-step solvent-deasphalting into a deasphalted oil 1 (stream 102), a deasphalted oil 2 (stream 103) and an asphalt (104).
  • the deasphalted oil 2 (stream 103) together with hydrogen 123 is subjected to catalytic hydrotreatment.
  • the hydrotreated product 124 is separated by atmospheric distillation into a gas fraction 125, at atmospheric distillate 105A and an atmospheric residue 126.
  • the atmospheric residue 126 is separated by vacuum distillation into a vacuum distillate 105B and a vacuum residue 106.
  • the vacuum residue 106 is thermally cracked and the cracked product 127 is separated by atmospheric distillation into a gas fraction 128, an atmospheric distillate 107A and an atmospheric residue 129.
  • the atmospheric residue 129 is separated by vacuum distillation into a vacuum distillate 107B and a vacuum residue 108.
  • the process is mainly carried out in the same manner as that described under flow diagram 1, except that the thermal cracking unit 118 present in flow diagram 1 has been replaced by a catalytic cracking unit 221 in flow diagram 2.
  • the process is carried out in an apparatus consecutively consisting of a two-step solvent-deasphalting section 311, a catalytic hydrotreatment section built up of a catalytic hydrotreatment unit 315, a first atmospheric distillation unit 316, a first vacuum distillation unit 317 and a catalytic cracking section built up of a catalytic cracking unit 321, a second atmospheric distillation unit 319 and a second vacuum distillation unit 320.
  • An asphaltenes-containing hydrocarbon mixture 301 is mixed with a recycle stream 306 and a recycle stream 310 and the mixture 322 is separated by two-step solvent-deasphalting into a deasphalted oil 1 (stream 302), a deasphalted oil 2 (stream 303) and an asphalt 304.
  • the asphalt 304 is separated into two portions 304A and 304B. Portion 304B is subjected to catalytic hydrotreatment together with hydrogen 323.
  • the hydrotreated product 324 is separated by atmospheric distillation into a gas fraction 325, an atmospheric distillation 305A and an atmospheric residue 326.
  • the atmospheric residue 326 is separated by vacuum distillation into a vacuum distillate 305B and a vacuum residue 306.
  • the deasphalted oil 2 (stream 303) is catalytically cracked and the cracked product 327 is separated by atmospheric distillation into a gas fraction 328, an atmospheric distillate 309A and an atmospheric residue 329.
  • the atmospheric residue 329 is separated by vacuum distillation into a vacuum distillate 309B and a vacuum residue 310.
  • the process is carried out in an apparatus consecutively consisting of a two-step solvent-deasphalting section 511, a thermal cracking section built up of a thermal cracking unit 518, a first atmospheric distillation unit 519 and a first vacuum distillation unit 520 and a catalytic hydrotreatment section built up of a catalytic hydrotreatment unit 515, a second atmospheric distillation unit 516 and a second vacuum distillation unit 517.
  • An asphaltenes-containing hydrocarbon mixture 501 is mixed with a recycle stream 506 and the mixture 522 is separated by two-step solvent-deasphalting into a deasphalted oil 1 (stream *
  • the various streams and apparatuses in the flow diagrams are referred to by three-digit numbers, .
  • the first digit corresponds with the diagram concerned. 502), a deasphalted oil 2 (stream 503) and an asphalt 504.
  • the asphalt 504 is separated into two portions (504A and 504B).
  • Portion 504B and deasphalted oil 2 (stream 503) are thermally cracked and the cracked product 527 is separated by atmospheric distillation into a gas fraction 528, an atmospheric distillate 507A and an atmospheric residue 529.
  • the atmospheric residue 529 is separated by vacuum distillation into a vacuum distillate 507B and a vacuum residue 508.
  • the vacuum residue 508 is subjected to catalytic hydrotreatment together with hydrogen 523.
  • the hydrotreated product 524 is separated by atmospheric distillation into a gas fraction 525, an atmospheric distillate 505A and an atmospheric residue 526.
  • the atmospheric residue 526 is separated by vacuum distillation into a vacuum distillate 505B and a vacuum residue 506.
  • the present application also relates to apparatuses for carrying out the process according to the invention, substantially corresponding with those diagrammatically shown in Figures 1-23.
  • the starting material was an asphaltenes-containing hydrocarbon mixture obtained as residue in the vacuum distillation of an atmospheric distillation residue of a crude mineral oil.
  • the vacuum residue mainly boiled above 520°C and had an RCT of 18.8% by weight, a total vanadium and nickel content of 167 ppmw and a sulphur content of 5.4% by weight.
  • the process was carried out according to the flow diagrams 1-6 respectively. The following conditions were applied in the various sections.
  • the two-step solvent-deasphalting was carried out by contacting the feed to be deasphalted in the first step in an extractor with an n-butane/isobutane mixture (weight ratio 65:35) at a temperature 110°C, a pressure of 40 bar and a solvent/oil weight ratio of 2:1 and, after separation of the asphalt, separating the deasphalted oil into a deasphalted oil 1 and a deasphalted oil 2 in the second- step in a settler at a temperature of 140°C and a pressure of 40 bar.
  • an n-butane/isobutane mixture weight ratio 65:35
  • the catalytic hydrotreatment unit consisted of two reactors the first of which was filled with an NiN/Si0 2 catalyst containing 0.5 parts by weight (pbw) of nickel and 2.0 pbw of vanadium per 100 pbw of silica and the second of which was filled with an Ni/Mo/AI 2 0 3 catalyst containing 4 pbw of nickel and 12 pbw of molybdenum per 100 pbw of alumina.
  • the catalysts were used in a volume ratio of 1:4.
  • the catalytic hydrotreatment was carried out at a hydrogen pressure of 150 bar, a space velocity (measured over both reactors) of 0.5 kg feed/catalyst/h, an H 2 /feed ratio of 1000 NI per kg and an average temperature of 410°C in the first reactor and of 390°C in the second reactor.
  • the catalytic cracking was carried out at a temperature of 510°C, a pressure of 2.2 bar, a space velocity of 2 kg - kg-' - h- 1 and a catalyst regeneration rate of 1.0 part by weight of catalyst per 1000 pbw of oil and using a zeolitic cracking catalyst.
  • the thermal cracking was carried out as described for flow diagram 1, but at a space velocity of 0.4 kg of fresh feed per cracking coil volume per minute and in the process described in flow diagram 5, the thermal cracking was carried out in two cracking coils under conditions as described for flow diagram 1, but at space velocities of 0.4 and 2.5 kg of fresh feed per cracking coil volume per minute for asphalt and deasphalted oil 2 respectively.
  • Example 7 the two-step solvent-deasphalting was mainly carried out in the same manner as described in the Examples 1-6, with the exception that the temperature in the settler described in Example 7 was 144°C.
  • the one-step solvent-deasphalting described in Example 8 was carried out in the same manner as the first step of the two-step solvent-deasphalting described in the Examples 1-6.
  • asphaltenes-containing hydrocarbon mixture (1) used as starting material was 100 parts by weight of vacuum residue.
  • Table II gives a survey of the yield of final products obtained in Examples 1-8.
  • Table III gives a survey of the properites of the final products obtained in the Examples 1-8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (19)

1. Un procédé de production d'huiles désasphaltées et de distillats d'huiles d'hydrocarbures à partir de mélanges d'hydrocarbures contenant des asphaltènes, dans lequel un mélange d'hydrocarbures contenant des asphaltènes est séparé par désasphaltage au solvant en une huile désasphattée et en asphalte et au moins un des deux produits de la séparation, l'huile désasphaltée et l'asphalte, est soumis à un traitement ultérieur, caractérisé en ce que le mélange d'hydrocarbures contenant des asphaltènes est séparé par désasphaltage au solvant en deux étapes en une huile désasphaltée 1 de qualité supérieure, une huile désasphaltée 2 de qualité inférieure et un asphalte, que l'huile désasphaltée 2 ou l'asphalte est transformé par un hydrotraitement catalytique en un produit ayant un résidu Ramsbottom réduit qui est séparé par distillation en une ou plusieurs fractions destillées et une fraction résiduelle, que la fraction résiduelle est soumise à un craquage thermique ou catalytique ou utilisée comme constituant de la charge pour le désasphaltage au solvant et le produit de craquage obtenu est séparé par distillation en une ou pluuieurs fractions distillées et une fraction résiduelle, cette dernière fraction étant utilisée comme constituant de la charge pour le désasphaltage au solvant, ou que l'huile désasphaltée 2 est soumise à un craquage thermique ou catalytique et/ou que l'asphalte est soumis à un craquage thermique et qu'un résidu de distillation du ou des produits de craquage est transformé par un hydrotraitement cataiytique en un produit ayant un résidu Ramsbottom réduit qui est séparé par distillation en une ou plusieurs fraction distillées et une fraction résiduelle qui est utilisée comme constituant de la charge pour le désasphaltage au solvant.
2. Un procédé selon la revendication 1, caractérisé en ce qu'un mélange d'hydrocarbures contenant des asphaltènes est séparé par désasphaltage au solvant en deux étapes en une huile désasphaltée 1 de qualité supérieure, une huile désasphaltée 2 de qualité inférieure et un asphalte, que l'huile désasphaltée 2 est transformée par hydrotraitement catalytique en un produit ayant un résidu Ramsbottom rédiut qui est séparé par distillation en une ou plusieurs fractions distillées et une fraction résiduelle, que cette fraction résiduelle est transformée par craquage thermique ou catalytique en un produit de craquage qui est séparé par distillation en une ou plusieurs fractions distillées et une fraction résiduelle et que cette dernière fraction résiduelle est utilisée comme constituant de la charge pour le déspasphaltage au solvant.
3. Un procédé selon la revendication 2, caractérisé en ce que la fraction résiduelle séparée du produit de l'hydrotraitement catalytique est soumise à un craquage thermique et que l'asphalte est utilisé comme constituant de la charge pour le craquage thermique.
4. Un procédé selon la revendication 1, caractérisé en ce qu'un mélange d'hydrocarbures contenant des asphaltènes est séparé par désasphaltage au solvant en deux étapes en une huile désasphaltée 1 de qualité supérieure, une huile désasphaltée 2 de qualité inférieure et un asphalte, que l'asphalte est transformé par hydrotraitement catalytique en un produit ayant un résidu Ramsbottom réduit qui est séparé par distillation en une ou plusieurs fractions distillées et une fraction résiduelle et que la fraction résiduelle est utilisée comme constituant de la charge pour le désasphaltage au solvant ou est transformée par craquage thermique ou catalytique en un produit de craquage qui est séparé par distillation en une ou plusieurs fractions distillées et une fraction résiduelle, cette dernière fraction résiduelle étant utilisée comme constituant de la charge pour le désasphaltage au solvant.
5. Un procédé selon la revendication 4, caractérisé en ce que la fraction résiduelle séparée du produit de l'hydrotraitement catalytique est utilisée comme constituant de la charge pour le désasphaltage au solvant et que l'huile désasphaltée 2 est transformée par craquage thermique ou catalytique en un produit de craquage qui est séparé par distillation en une ou plusieurs fractions distillées et une fraction résiduelle qui est utilisée comme constituant de la charge pour désasphaltage au solvant.
6. Un procédé selon la revendication 4, caractérisé en ce que la fraction résiduelle séparée du produit de l'hydrotraitement catalytique est transformée par craquage thermique ou catalytique en un produit de craquage, que l'huile désasphaltée 2 est utilisée comme constituant d'une charge pour craquage thermique ou catalytique et qu'un résidu de distillation du produit de craquage thermique ou catalytique est utilisé comme constituant de la charge pour désasphaltage au solvant.
7. Un procédé selon la revendication 1, caractérisé en ce qu'un mélange d'hydrocarbures contenant des asphaltènes est séparé par désasphaltage au solvant en deux étapes en une huile désasphaltée 1 de qualité supérieure, une huile désasphaltée 2 de qualité inférieure et un asphalte, que l'huile désasphaltée 2 est soumise à un craquage thermique ou catalytique et que l'asphalte est soumis à un craquage thermique, qu'un résidu de distillation du ou des produits de craquage est transformé par un hydrotraitement catalytique en un produit ayant un résidu Ramsbottom réduit qui est séparé par distillation en une ou plusieurs fractions distillées et une fraction résiduelle et que la fraction résiduelle est utilisée comme constituant de la charge pour désasphaltage au solvant.
8. Un procédé selon la revendication 7, caractérisé en ce que l'huile désasphaltée 2 est craquée thermiquement ou catalytiquement et que l'asphalte est utilisé comme constituant de la charge pour l'hydrotraitement catalytique.
9. Un procédé selon la revendication 7, caractérisé en ce que l'huile désasphaltée 2 est craquée catalytiquement, que l'asphalte est craqué thermiquement et que le mélange des résidus de distillation des produits de craquage est soumis à un hydrotraitement catalytique.
10. Un procédé selon une des revendications 1-9, caractérisé en ce que la charge utilisée est un mélange d'hydrocarbures bouillant principalement au-dessus de 350°C et dont une proportion de plus de 35% en poids bout au-dessus de 520°C et ayant un résidu Ramsbottom de plus de 7,5% en poids.
11. Un procédé selon la revendication 10, caractérisé en ce que la charge utilisée est un residu obtenu dans la distillation sous vide d'un résidu de distillation atmosphérique d'une huile minérale brute.
12. Un procédé selon l'une quelconque des revendications 1-11, caractérisé en ce que le désasphaltage au solvant en deux étapes est effectué en soumettant la charge dans la première étape à une extraction dans des conditions modérées dans lesquelles elle est séparée en une huile désasphaltée 1 et un asphalte "léger" et en soumettant l'asphalte léger dans la deuxième étape à une seconde extraction dans laquelle il est séparé en une huile désasphaltée 2 et l'asphalte final comme sous-produit du procédé.
13. Un procédé selon l'une quelconque des revendications 1-12, caractérisé en ce que le désasphaltage au solvant en deux étapes est effectué en soumettant la charge dans la première étape à une extraction dans des conditions assez sévères dans lesquelles elle est séparée en une huile désasphaltée et un asphalte final comme sous-produit du procédé et en séparant l'huile désasphaltée dans la deuxième étape en une huile désasphaltée 1 et une huile désasphaltée 2.
14. Un procédé selon l'une quelconque des revendications 1-13, caractérisé en ce que dans l'hydrotraitement catalytique pour la réduction du résidu Ramsbottom, on utilise un catalyseur contenant au moins un métal choisi dans le groupe formé par le nickel et le cobalt et au moins un métal choisi dans le groupe formé par le molybdène et le tungstène sur un support consistant en plus de 40% en poids d'alumine.
15. Un procédé selon la revendication 14, caractérisé en ce que dans l'hydrotraitement catalytique pour la réduction du résidu Ramsbottom, on utilise un catalyseur contenant la combinaison de métaux nickel/molybdène ou cobalt/molybdène sur de l'alumine comme support.
16. Un procédé selon la revendication 14 ou 15, caractérisé en ce que la charge pour l'hydrotraitement catalytique a une teneur en vanadium+nickel de plus de 50 ppm en poids et que dans l'hydrotraitement catalytique cette charge est mise successivement en contact avec deux catalyseurs, dont le premier est un catalyseur de démétallisation consistant à raison de plus de 80% en poids en silice et le deuxième catalyseur est un catalyseur de réduction du résidu Ramsbottom tel que décrit dans la revendication 14 ou 15.
17. Un procédé selon la revendication 16, caractérisé en ce que le catalyseur de démétallisation contient la combinaison de métaux nickel/vanadium sur de la silice comme support.
18. Un procédé selon l'une quelconque des revendications 1-17, caractérisé en ce que l'hydrotraitement catalytique est effectué à une température comprise entre 350 et 450°C, une pression comprise entre 75 et 200 bars, une vitesse spatiale comprise entre 0,1 et 2 g · g-1 · h-1 et un rapport H2/charge compris entre 500 et 2000 l (TPN) · kg-'.
19. Un procédé selon l'une quelconque des revendications 1-18, caractérisé en ce que l'hydrotraitement catalytique est effectué d'une manière telle que l'on obtienne un produit dont la fraction CS + remplit les conditions suivantes:
a) le résidu Ramsbottom de la fraction C5 + est inférieur à 50% du résidu Ramsbottom du courants soumis à l'hydrotraitement catalytique et
b) la quantité d'hydrocarbures bouillant au-dessous de 350°C dans la fraction CS + est inférieure à 40% en poids.
EP19840200457 1983-04-18 1984-03-28 Procédé de production de mélanges hydrocarburés à faible teneur en asphaltènes Expired EP0125709B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
NL8301354 1983-04-18
NL8301352A NL8301352A (nl) 1983-04-18 1983-04-18 Werkwijze voor de bereiding van asfaltenenarme koolwaterstofmengsels.
NL8301353 1983-04-18
NL8301352 1983-04-18
NL8301353A NL8301353A (nl) 1983-04-18 1983-04-18 Werkwijze voor de bereiding van asfaltenenarme koolwaterstofmengsels.
NL8301354A NL8301354A (nl) 1983-04-18 1983-04-18 Werkwijze voor de bereiding van asfaltenenarme koolwaterstofmengsels.

Publications (3)

Publication Number Publication Date
EP0125709A2 EP0125709A2 (fr) 1984-11-21
EP0125709A3 EP0125709A3 (en) 1987-03-25
EP0125709B1 true EP0125709B1 (fr) 1989-08-02

Family

ID=27352095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840200457 Expired EP0125709B1 (fr) 1983-04-18 1984-03-28 Procédé de production de mélanges hydrocarburés à faible teneur en asphaltènes

Country Status (5)

Country Link
EP (1) EP0125709B1 (fr)
AU (1) AU573739B2 (fr)
DE (1) DE3479225D1 (fr)
ES (1) ES8505400A1 (fr)
MX (1) MX170899B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062504B2 (en) 2007-08-06 2011-11-22 Exxonmobil Research & Engineering Company Method for reducing oil fouling in heat transfer equipment
US8425761B2 (en) 2008-12-11 2013-04-23 Exxonmobil Research And Engineering Company Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects
US8440069B2 (en) 2007-08-06 2013-05-14 Exxonmobil Research And Engineering Company Methods of isolating and using components from a high solvency dispersive power (HSDP) crude oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8828206D0 (en) * 1988-12-02 1989-01-05 Shell Int Research Process for conversion of hydrocarbonaceous feedstock
EP0779916B1 (fr) * 1994-09-05 1998-12-09 Shell Internationale Researchmaatschappij B.V. Procede de craquage thermique d'une huile residuelle d'hydrocarbure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7512090A (nl) * 1975-10-15 1977-04-19 Shell Int Research Werkwijze voor het omzetten van koolwaterstof- fen.
US4354922A (en) * 1981-03-31 1982-10-19 Mobil Oil Corporation Processing of heavy hydrocarbon oils
NL8105660A (nl) * 1981-12-16 1983-07-18 Shell Int Research Werkwijze voor de bereiding van koolwaterstofoliedestillaten.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8062504B2 (en) 2007-08-06 2011-11-22 Exxonmobil Research & Engineering Company Method for reducing oil fouling in heat transfer equipment
US8440069B2 (en) 2007-08-06 2013-05-14 Exxonmobil Research And Engineering Company Methods of isolating and using components from a high solvency dispersive power (HSDP) crude oil
US8425761B2 (en) 2008-12-11 2013-04-23 Exxonmobil Research And Engineering Company Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects

Also Published As

Publication number Publication date
EP0125709A3 (en) 1987-03-25
AU2687284A (en) 1984-10-25
EP0125709A2 (fr) 1984-11-21
DE3479225D1 (en) 1989-09-07
ES531652A0 (es) 1985-05-16
AU573739B2 (en) 1988-06-23
ES8505400A1 (es) 1985-05-16
MX170899B (es) 1993-09-21

Similar Documents

Publication Publication Date Title
US4354928A (en) Supercritical selective extraction of hydrocarbons from asphaltic petroleum oils
US4006076A (en) Process for the production of low-sulfur-content hydrocarbon mixtures
US3227645A (en) Combined process for metal removal and hydrocracking of high boiling oils
US5024750A (en) Process for converting heavy hydrocarbon oil
US4126538A (en) Process for the conversion of hydrocarbons
US20080149534A1 (en) Method of conversion of residues comprising 2 deasphaltings in series
US3172842A (en) Hydrocarbon conversion process includ- ing a hydrocracking stage, two stages of catalytic cracking, and a reform- ing stage
US3671419A (en) Upgrading of crude oil by combination processing
EP0090437B1 (fr) Procédé pour la production de distillates d'hydrocarbures
US2801208A (en) Process for hydrogen treatment of hydrocarbons
US4859309A (en) Process for the preparation of light hydrocarbon distillates by hydrocracking and catalytic cracking
US3238118A (en) Conversion of hydrocarbons in the presence of a hydrogenated donor diluent
CA1117058A (fr) Methode de conversion d'hydrocarbures
EP0082555B1 (fr) Procédé pour la production de distillats d'hydrocarbures
US3321395A (en) Hydroprocessing of metal-containing asphaltic hydrocarbons
KR100188422B1 (ko) 잔유의 질을 향상시키는 방법
US4391700A (en) Process for converting heavy hydrocarbon oils, containing asphaltenes, to lighter fractions
US3816295A (en) Production of lubricating oils
US4120778A (en) Process for the conversion of hydrocarbons in atmospheric crude residue
EP0125709B1 (fr) Procédé de production de mélanges hydrocarburés à faible teneur en asphaltènes
EP0099141B1 (fr) Procédé pour la production de mélanges d'hydrocarbures à faible teneur en asphaltène
US3896025A (en) Production of improved lubricating oils
US4721557A (en) Combination process for the conversion of a residual asphaltene-containing hydrocarbonaceous stream to maximize middle distillate production
US3766055A (en) Lubricating oils by hydrocracking and solvent extraction
US11041129B2 (en) Processes for producing a fuel range hydrocarbon and a lubricant base oil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840328

AK Designated contracting states

Designated state(s): BE DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT SE

17Q First examination report despatched

Effective date: 19880628

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3479225

Country of ref document: DE

Date of ref document: 19890907

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 84200457.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960201

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960207

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960209

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960304

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960417

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970331

BERE Be: lapsed

Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

Effective date: 19970331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971202

EUG Se: european patent has lapsed

Ref document number: 84200457.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST