EP0112958B1 - Paper, cardboard or paperboardlike material - Google Patents

Paper, cardboard or paperboardlike material Download PDF

Info

Publication number
EP0112958B1
EP0112958B1 EP83101826A EP83101826A EP0112958B1 EP 0112958 B1 EP0112958 B1 EP 0112958B1 EP 83101826 A EP83101826 A EP 83101826A EP 83101826 A EP83101826 A EP 83101826A EP 0112958 B1 EP0112958 B1 EP 0112958B1
Authority
EP
European Patent Office
Prior art keywords
material according
fibers
water content
length
hydrogen bridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83101826A
Other languages
German (de)
French (fr)
Other versions
EP0112958A1 (en
Inventor
Bern Lüchtrath
Josef Weigl
Manfred Zeuner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83101826T priority Critical patent/ATE24343T1/en
Publication of EP0112958A1 publication Critical patent/EP0112958A1/en
Application granted granted Critical
Publication of EP0112958B1 publication Critical patent/EP0112958B1/en
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/38Inorganic fibres or flakes siliceous
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays

Definitions

  • the invention relates to a paper, cardboard or cardboard-like material produced by sheet formation from an aqueous fiber-containing slurry and dewatering of the slurry on a sieve with subsequent drying, the structural strength of a sheet being dependent on hydrogen bonds which form between the individual fibers during dewatering .
  • inorganic fillers with regard to certain paper, cardboard and cardboard qualities, e.g. Whiteness, smoothness, opacity and printability are known.
  • the structural strength of paper, cardboard or cardboard-like materials is known to depend on the number of hydrogen bonds between the fibrous carrier materials of the material that form when the slurry is dewatered.
  • the structural strength of the material decreases with increasing filler content, since the conventional inorganic fillers block or hinder the formation of hydrogen bonds between the fibers.
  • the object of the invention is to provide a paper, cardboard or cardboard-like material, the quality of which can be adjusted by means of a filler which, due to its special properties, neither blocks nor impedes the structural strength of the sheet-like material, but, in contrast to the known fillers, supports or improves the structural strength positively influenced.
  • the filler according to the invention thus has a special affinity for organic fibers and for coated, activated inorganic fibers with hydrogen bonding ability and thus differs significantly from conventional fillers, such as e.g. Talc, kaolin, gypsum, heavy spar, chalk, magnesite, dolomite, titanium white, zinc spar and zinc white.
  • conventional fillers such as e.g. Talc, kaolin, gypsum, heavy spar, chalk, magnesite, dolomite, titanium white, zinc spar and zinc white.
  • Such calcium hydrosilicates can advantageously be produced synthetically in the hydrothermal process.
  • calcium hydrosilicate can be produced by direct synthesis from lime and silica under certain mineralization conditions by precipitation processes or from lime and quartz sand with water under pressure at high temperatures, whereby the proportions can be varied according to the desired end product and various hydration levels can be achieved, to ensure residual moisture up to 50% by weight. Different residual moisture levels of the crystalline synthetic calcium hydrosilicates are obtained during production through different hydration levels.
  • such synthetic crystalline calcium silicates of various hydration levels can preferably be used as fillers with hydrogen bonding capacity in the sense of the task, which have a relatively high residual moisture content of over 3% by weight to about 50% by weight H 2 0, preferably around 35 have up to 50 wt .-% H 2 0.
  • xonotlitic calcium hydrosilicates have a high specific surface area and contain less than 1% of free crystalline silica.
  • Crystalline calcium hydrosilicates with residual moisture levels of up to about 50% by weight can also be adjusted under defined drying conditions. Differential thermal analysis and differential thermogravimetry show changes in xonotlitic calcium hydrosilicate in the temperature range above 500 ° C, which can be explained by conversion from a xonotlite structure to wollastonite structure.
  • Synthetic, crystalline calcium hydrosilicates with high residual moisture levels have a short aging ability when air is exposed. This is probably due to the fact that the entry of CO 2 from the air forms carbonates on the surfaces of the water-rich calcium hydrosilicates, which disrupt the ability to bind hydrogen, and therefore probably block the silanol groups present. It was found that a xonotlite with a residual moisture content of about 42% H 2 0 had significantly lost its good hydrogen bonding ability after a storage period of 1 week. In addition to superficial carbonation, this can also be due to the fact that water is separated out when synthetic crystalline calcium hydrosilicate with a high water content is stored for a long time. It is important that the water content is original. Xonotlite with low water contents, which has no hydrogen bonding ability, is not obtained by preparing it in an aqueous slurry and stirring it for a long time.
  • the advantageous properties of the filler according to the invention are also effective when the material is synthetic magnesium aluminum silicate fibers produced in the hydrothermal process. contains.
  • Such silicate fibers can consist of 45% Si0 2 , 20% CaO, 15% MgO, 12% A1 2 0 3 , 3% NaO, 5% Fe and can have a length of 1 to 5 mm with an average diameter of 3 to 5 ⁇ m.
  • a known method for producing such silicate fibers is disclosed in DE-A-28 29 692.
  • the material can advantageously also contain glass fibers.
  • the glass fibers can have a length of 3 to 12 mm and an average diameter of 10 to 14gm.
  • the glass fibers preferably have a greater length than the magnesium aluminum silicate fibers produced in the hydrothermal process.
  • the inorganic fibers are able to bind hydrogen bonds, they are coated and activated at least in places by adding strength and / or crosslinking aids in the form of organic polyelectrolytes.
  • non-flammable or flame-retardant papers, boxes and cardboards can be specified or produced which consist exclusively or predominantly of inorganic fibers and at least one inorganic filler which has a striking affinity for the activated, coated inorganic fibers and thanks to its ability to bind hydrogen bonds - can advantageously be integrated into the hydrogen bonds between the activated, inorganic fibers and also binds hydrogen bonds among themselves, in order to thereby support the structural strength between the fibers, the fibers and the fillers and between the fillers or to influence at least positively.
  • Fire resistance classes F30, F60 and F90 are defined for building materials of classes A1 and A2 according to the German industrial standard DIN, 4102 "Fire behavior of building materials and components", edition September 1977.
  • the invention thus includes above all non-combustible or flame-retardant papers, boxes and cardboards which at least meet the F30 requirement for building materials of classes A1 and A2.
  • the papers, boxes and cardboards according to the invention can be designed to be foldable and creasable so that they are suitable for producing fire-proof packaging, such as boxes and boxes.
  • the materials can be printed using any known method. Appropriate surface treatment means that the papers, boxes and cardboards according to the invention are practically no limits with regard to their usability, above all in the construction sector, including studio and exhibition construction and for displays.
  • the papers, boxes and cardboards according to the invention can advantageously be free of asbestos fibers from inorganic fibers or predominantly from such fibers.
  • the fillers according to the invention advantageously have a surprisingly high thermal insulation capacity if they - such as exposed to extremely high temperatures in the event of fire. This is probably related to the fact that the fillers according to the invention have a high thermal insulation capacity until they have released their bound water under the action of high temperatures and have thereby more or less changed from a xonotlite structure to a wollastonite structure.
  • the crystallized calcium hydrosilicate has an aspect ratio of 10: 1 to 200: 1.
  • the acicular crystallized xonotlite has advantageously also a length / width ratio of 100: 1 to 50: 1 and has width dimensions below 1 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paper (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)

Abstract

1. Paper-, cardboard- or paperboard-like material manufactured by forming sheets from a suspension of aqueous and fiber-like materials and dehydration of said suspension on a sieve followed by drying, with the rigidity of a sheet depending on the hydrogen bridges arising between the individual fibers during dehydration, characterized in that as filler material which is able to bond hydrogen bridges crystalline calcium hydrosilicate having a xonotlith structure with the formula 6 CaO x 6 SiO2 x nH2 or Ca [(OH)2 Si6 O17 ] x nH2 O comprising an original water content exceeding the crystal water content of 2.5 or 3% by weight is provided for, which water content is included in hydrogen bridges between the fibers for supporting the rigidity of the sheet.

Description

Die Erfindung betrifft einen papier, karton-oder pappenartigen Werkstoff hergestellt durch Blattbildung aus einer wäßrigen faserhaltigen Stoffaufschlämmung und Entwässerung der Stoffaufschlämmung auf einem Sieb mit anschließender Trocknung, wobei die Gefügefestigkeit eines Blattes abhängig ist von Wasserstoffbrücken, die sich bei der Entwässerung zwischen den einzelnen Fasern bilden.The invention relates to a paper, cardboard or cardboard-like material produced by sheet formation from an aqueous fiber-containing slurry and dewatering of the slurry on a sieve with subsequent drying, the structural strength of a sheet being dependent on hydrogen bonds which form between the individual fibers during dewatering .

Die Bedeutung von anorganischen Füllstoffen im Hinblick auf bestimmte Papier-, Karton- und Pappenqualitäten, wie z.B. Weißgrad, Glätte, Opazität und Bedruckbarkeit sind bekannt.The importance of inorganic fillers with regard to certain paper, cardboard and cardboard qualities, e.g. Whiteness, smoothness, opacity and printability are known.

Die Gefügefestigkeit von papier-, karton- oder pappenartigen Werkstoffen ist bekanntlich abhängig von der Anzahl der Wasserstoffbrücken zwischen den faserartigen Trägermaterialien des Werkstoffes, die sich beim Entwässern der Stoffaufschlämmung bilden. Dabei verringert sich allerdings die Gefügefestigkeit des Werkstoffes mit steigendem Füllstoffgehalt, da die herkömmlichen anorganischen Füllstoffe die Ausbildung von Wasserstoffbrücken zwischen den Fasern blockieren oder behindern.The structural strength of paper, cardboard or cardboard-like materials is known to depend on the number of hydrogen bonds between the fibrous carrier materials of the material that form when the slurry is dewatered. However, the structural strength of the material decreases with increasing filler content, since the conventional inorganic fillers block or hinder the formation of hydrogen bonds between the fibers.

Bei herkömmlichen, leicht brennbaren papier-, karton- und pappenartigen Werkstoffen mit Cellulosefasern als Trägermaterial bilden sich Wasserstoffbrücken zwischen Hydroxyl-Gruppen an den Oberflächen der Cellulosefasern aus. Zwischen anorganischen, Fasern bilden sich dagegen keine Wasserstoffbrücken aus. Es sind daher Festigkeits- und/ oder Vernetzungsmittel (organische Polyelektrolyte) notwendig, die sich wenigstens stellenweise adsorptiv an den anorganischen Faseroberflächen anlagern, um dadurch gecoatete, aktivierte Faserstellen zu bilden, zwischen denen sich bei der Entwässerung der Stoffaufschlämmung zur Bindung der anorganischen Fasern, vergleichbar wie bei den Gellulosefasern, Wasserstoffbrücken ausbilden.In conventional, easily flammable paper, cardboard and cardboard-like materials with cellulose fibers as the carrier material, hydrogen bonds are formed between hydroxyl groups on the surfaces of the cellulose fibers. In contrast, no hydrogen bonds form between inorganic fibers. Strength and / or crosslinking agents (organic polyelectrolytes) are therefore necessary, which are adsorptively attached to the inorganic fiber surfaces at least in places, in order to form coated, activated fiber sites, between which there is a comparable between the dewatering of the slurry to bind the inorganic fibers as with the cellulose fibers, form hydrogen bonds.

Durch die GB-A-1 585 490 und die DE-A-28 29 692 ist es grundsätzlich bekannt, hydratisierte Calciumsilikate als Füllstoffe auch in der Papierindustrie zu verwenden. Durch die WO-A-81/03397 ist auch schon die Kombination von Glasfasern und Calcjumsilikatfasern bekannt.From GB-A-1 585 490 and DE-A-28 29 692 it is known in principle to use hydrated calcium silicates as fillers in the paper industry as well. The combination of glass fibers and calcium silicate fibers is already known from WO-A-81/03397.

Aufgabe der Erfindung ist es einen papier-, karton- oder pappenartigen Werkstoff anzugeben, dessen Qualität durch einen Füllstoff einstellbar ist, der aufgrund seiner besonderen Eigenschaften die Gefügefestigkeit des blattförmigen Werkstoffes weder blockiert noch behindert, sondern im Gegenteil zu den bekannten Füllstoffen die Gefügefestigkeit unterstützt oder positiv beeinflußt.The object of the invention is to provide a paper, cardboard or cardboard-like material, the quality of which can be adjusted by means of a filler which, due to its special properties, neither blocks nor impedes the structural strength of the sheet-like material, but, in contrast to the known fillers, supports or improves the structural strength positively influenced.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Füllstoff mit Wasserstoffbrückenbindungsfähigkeit kristallines Calciumhydrosilikat mit Xonotlitstruktur der Formel

  • 6 CaO x 6 Si02 x nH20
  • bzw. Ca6 [(OH)2Si6O17) - nH20

mit einem den Kristallwassergehalt von 2,5 bzw. 3 Gew.-% übersteigenden originären Wassergehalt vorgesehen ist, der zur Unterstützung der Gefügefestigkeit des Blattes in Wasserstoffbrücken zwischen den Fasern eingebunden ist.The object is achieved in that crystalline calcium hydrosilicate with xonotlite structure of the formula as a filler with hydrogen bonding ability
  • 6 CaO x 6 Si0 2 x nH 2 0
  • or Ca 6 [(OH) 2 Si 6 O 17 ) - nH 2 0

with an original water content exceeding the crystal water content of 2.5 or 3% by weight is provided, which is integrated into hydrogen bonds between the fibers to support the structural strength of the sheet.

Vorteilhafte Ausführungen ergeben sich aus den Merkmalen der Unteransprüche.Advantageous designs result from the features of the subclaims.

Der erfindungsgemäße Füllstoff weist damit eine besondere Affinität zu organischen Fasern und zu gecoateten, aktivierten anorganischen Fasern mit Wasserstoffbrückenbindungsfähigkeit auf und unterscheidet sich damit wesentlich von herkömmlichen Füllstoffen, wie z.B. Talkum, Kaolin, Gips, Schwerspat, Kreide, Magnesit, Dolomit, Titanweiß, Zinkspat und Zinkweiß.The filler according to the invention thus has a special affinity for organic fibers and for coated, activated inorganic fibers with hydrogen bonding ability and thus differs significantly from conventional fillers, such as e.g. Talc, kaolin, gypsum, heavy spar, chalk, magnesite, dolomite, titanium white, zinc spar and zinc white.

Solche Calciumhydrosilikate lassen sich vorteilhafterweise synthetisch im Hydrothermalprozeß herstellen.Such calcium hydrosilicates can advantageously be produced synthetically in the hydrothermal process.

So läßt sich Calciumhydrosilikat bekanntlich durch eine Direktsynthese aus Kalk und Kieselsäure unter bestimmten Mineralisationsbedingungen durch Fällungsprozesse oder aus Kalk und Quarzsand mit Wasser unter Druck bei hohen Temperaturen herstellen, wobei die Mengenverhältnisse gemäß dem gewünschten Endprodukt variiert werden können und dabei auch verschiedene Hydratisationsstufen erzielt werden können, um Restfeuchtigkeiten bis 50 Gew.-% sicherstellen zu können. Unterschiedliche Restfeuchtigkeiten der kristallinen synthetischen Calciumhydrosilikate werden bei der Herstellung durch verschiedene Hydratisationsstufen erhalten.As is well known, calcium hydrosilicate can be produced by direct synthesis from lime and silica under certain mineralization conditions by precipitation processes or from lime and quartz sand with water under pressure at high temperatures, whereby the proportions can be varied according to the desired end product and various hydration levels can be achieved, to ensure residual moisture up to 50% by weight. Different residual moisture levels of the crystalline synthetic calcium hydrosilicates are obtained during production through different hydration levels.

Überraschenderweise zeigte es sich, daß ein Xonotlit, wie er durch die GB-A-1 385 810 und das Wochenblatt für Papierfabrikation 1973, Seite 789, bekannt geworden ist und der eine minimale Restfeuchte entsprechend der Formel

  • 6 CaO x 6 Si02 x H20 bzw. CaO x Si02 x 0,2 H20

aufweist, keine
Wasserstoffbrückenbindungsfähigkeit besitzt. Das hängt wahrscheinlich damit zusammen, daß an der Oberfläche der Xonotlit-Kristalle weitgehend Siloxangruppen und nur vereinzelte Silanolgruppen vorhanden sind. Je höher der Wassergehalt des synthetischen Xonotlits ist um so größer ist jedoch der Anteil der Silanolgruppen, die sich an den Xonotlit-Kristalloberflächen ausbilden können und die befähigt sind, Wasserstoffbrücken zu binden. Der bekannte Xonotlit wirkt daher wie ein inerter Füllstoff.Surprisingly, it was found that a xonotlite, as has become known through GB-A-1 385 810 and the Wochenblatt für Papierfabrikation 1973, page 789, and which has a minimal residual moisture according to the formula
  • 6 CaO x 6 Si0 2 x H 2 0 or CaO x Si0 2 x 0.2 H 2 0

has none
Has hydrogen bonding ability. This is probably due to the fact that there are largely siloxane groups and only a few silanol groups on the surface of the xonotlite crystals. However, the higher the water content of the synthetic xonotlite, the greater the proportion of silanol groups that can form on the xonotlite crystal surfaces and that are capable of binding hydrogen bonds. The well-known xonotlite therefore acts like an inert filler.

Erfinderseits wurde also besonders erkannt, daß solche synthetischen kristallinen Calciumsilikate verschiedener Hydratisationsstufen bevorzugt als Füllstoffe mit Wasserstoffbrückenbindungsfähigkeit im aufgabengemäßen Sinne verwendbar sind, die eine relativ hohe Restfeuchtigkeit von über 3 Gew.-% bis etwa 50 Gew.-% H20, vorzugsweise um 35 bis 50 Gew.-% H20 besitzen.It was thus particularly recognized by the invention that such synthetic crystalline calcium silicates of various hydration levels can preferably be used as fillers with hydrogen bonding capacity in the sense of the task, which have a relatively high residual moisture content of over 3% by weight to about 50% by weight H 2 0, preferably around 35 have up to 50 wt .-% H 2 0.

Xonotlitische Calciumhydrosilikate besitzen eine hohe spezifische Oberfläche und enthalten weniger als 1% an freier kristalliner Kieselsäure.Have xonotlitic calcium hydrosilicates have a high specific surface area and contain less than 1% of free crystalline silica.

Auch unter definierten Trocknungsbedingungen lassen sich kristalline Calsiumhydrosilikate mit Restfeuchten bis etwa 50 Gew.-% einstellen. Mittels Differentialthermoanalyse und Differntialthermogravimetrie zeigen sich Veränderungen bei xonotlitischen Calciumhydrosilikat im Temperaturbereich oberhalb 500°C, die durch Umwandlung von einer Xonotlit-Struktur zur Wollastonit-Struktur erklärt werden können.Crystalline calcium hydrosilicates with residual moisture levels of up to about 50% by weight can also be adjusted under defined drying conditions. Differential thermal analysis and differential thermogravimetry show changes in xonotlitic calcium hydrosilicate in the temperature range above 500 ° C, which can be explained by conversion from a xonotlite structure to wollastonite structure.

Synthetische, kristalline Calciumhydrosilikate mit hohen Restfeuchtigkeiten besitzen kurze Alterungsfähigkeit bei Zutritt von Luft. Das hängt wahrscheinlich damit zusammen, daß sich durch Zutritt von C02 aus der Luft an den Oberflächen der wasserreichen Calciumhydrosilikate Karbonate bilden, die die Wasserstoff brückenbindungsfähigkeit vereiteIn, also wahrscheinlich die vorhandenen Silanolgruppen blockieren. Es zeigte sich, daß ein Xonotlit mit einer Restfeuchte von etwa 42 % H20 seine gute Wasserstoffbrückenbindungsfähigkeit bei einer Lagerzeit von 1 Woche wesentlich eingebüßt hatte. Außer der oberflächlichen Karbonatisierung kann das auch damit zusammenhängen, daß bei einer längeren Lagerung von synthetischem kristallinem Calciumhydrosilikat mit hohem Wassergehalt, Wasser abgeschieden wird. Wichtig ist dabei, daß es sich um originäre Wassergehalte handelt. Xonotlit mit niedrigen Wassergehalten, der keine Wasserstoff brückenbindungsfähigkeit besitzt, erhält diese nicht dadurch, daß man ihn in einer wäßrigen Trübe ansetzt und dort längere Zeit rührt.Synthetic, crystalline calcium hydrosilicates with high residual moisture levels have a short aging ability when air is exposed. This is probably due to the fact that the entry of CO 2 from the air forms carbonates on the surfaces of the water-rich calcium hydrosilicates, which disrupt the ability to bind hydrogen, and therefore probably block the silanol groups present. It was found that a xonotlite with a residual moisture content of about 42% H 2 0 had significantly lost its good hydrogen bonding ability after a storage period of 1 week. In addition to superficial carbonation, this can also be due to the fact that water is separated out when synthetic crystalline calcium hydrosilicate with a high water content is stored for a long time. It is important that the water content is original. Xonotlite with low water contents, which has no hydrogen bonding ability, is not obtained by preparing it in an aqueous slurry and stirring it for a long time.

Die vorteilhaften Eigenschaften des erfindungsgemäßen Füllstoffes kommen auch dann wirksam zur Geltung, wenn der Werkstoff synthetische, im Hydrothermalprozeß hergestellte Magnesium-Aluminiumsilikatfasern . enthält. Solche Silikatfasern können im Mittel aus 45% Si02, 20% CaO, 15% MgO, 12% A1203, 3% NaO, 5% Fe bestehen und können eine Länge von 1 bis 5 mm bei einem mittleren Durchmesser von 3 bis 5µm aufweisen. Ein bekanntes Verfahren zur Herstellung solcher Silikatfasern ist in der DE-A-28 29 692 offenbart.The advantageous properties of the filler according to the invention are also effective when the material is synthetic magnesium aluminum silicate fibers produced in the hydrothermal process. contains. Such silicate fibers can consist of 45% Si0 2 , 20% CaO, 15% MgO, 12% A1 2 0 3 , 3% NaO, 5% Fe and can have a length of 1 to 5 mm with an average diameter of 3 to 5µm. A known method for producing such silicate fibers is disclosed in DE-A-28 29 692.

Der Werkstoff kann mit Vorteil auch Glasfasern enthalten. Dabei können die Glasfasern eine Länge von 3 bis 12 mm und einen mittleren Durchmesser von 10 bis 14gm aufweisen. Vorzugsweise weisen die Glasfasern eine größere Länge auf als die im Hydrothermalprozeß hergestellten Magnesium-Aluminiumsilikatfasern.The material can advantageously also contain glass fibers. The glass fibers can have a length of 3 to 12 mm and an average diameter of 10 to 14gm. The glass fibers preferably have a greater length than the magnesium aluminum silicate fibers produced in the hydrothermal process.

Damit die anorganischen Fasern in der Lage sind, Wasserstoffbrücken zu binden, werden sie durch Zugabe von Festigkeits- und/oder Vernetzungshilfsmittel in Form von organischen Polyelektrolyten wenigstens stellenweise gecoatet und aktiviert.So that the inorganic fibers are able to bind hydrogen bonds, they are coated and activated at least in places by adding strength and / or crosslinking aids in the form of organic polyelectrolytes.

Nach der Erfindung lassen sich damit vor allem auch nicht brennbare oder schwer entflammbare Papiere, Kartons und Pappen angeben bzw. herstellen, die ausschließlich oder überwiegend aus anorganischen Fasern und wenigstens einem anorganischen Füllstoff bestehen, der eine auffällige Affinität zu den aktivierten, gecoateten anorganischen Fasern aufweist und sich dabei Dank seiner Fähigkeit, Wasserstoffbrücken zu binden - vorteilhafterweise in die Wasserstoffbrücken zwischen den aktivierten, anorganischen Fasern einbinden läßt und auch unter sich Wasserstoffbrücken bindet, um dadurch die Gefügefestigkeit zwischen den Fasern, den Fasern und den Füllstoffen und zwischen den Füllstoffen zu unterstützen oder wenigstens positiv zu beeinflußen.According to the invention, above all, non-flammable or flame-retardant papers, boxes and cardboards can be specified or produced which consist exclusively or predominantly of inorganic fibers and at least one inorganic filler which has a striking affinity for the activated, coated inorganic fibers and thanks to its ability to bind hydrogen bonds - can advantageously be integrated into the hydrogen bonds between the activated, inorganic fibers and also binds hydrogen bonds among themselves, in order to thereby support the structural strength between the fibers, the fibers and the fillers and between the fillers or to influence at least positively.

Nach der deutschen Industrienorm DIN,4102 "Brandverhalten von Baustoffen und Bauteilen", Ausgabe September 1977, sind Feuerwiderstandsklassen F30, F60 und F90 für Baustoffe der Klasse A1 und A2 definiert. Die Erfindung umfaßt damit vor allem auch nicht brennbare oder schwer entflammbare Papiere, Kartons und Pappen, die wenigstens die F30-Bedingung für Baustoffe der Klasse A1 und A2 erfüllen. Dabei lassen sich die erfindungsgemäßen Papiere, Kartons und Pappen falz- und rillfähig ausbilden, so daß sie zur Herstellung von brandsicheren Verpackungen, wie Kartons und Schachteln, geeignet sind. Die Werkstoffe lassen sich mit jedem bekannten Verfahren bedrucken. Durch entsprechende Oberflächenbehandlung sind den erfindungsgemäßen Papieren, Kartons und Pappen hinsichtlich ihrer Verwendbarkeit vor allem auf dem Bausektor, einschließlich dem Studio- und Ausstellungsbau sowie für Displays praktisch keine Grenzen gesetzt. Dabei können die erfindungsgemäßen Papiere, Kartons und Pappen aus anorganischen Fasern oder überwiegend aus solchen Fasern vorteilhafterweise asbestfaserfrei sein.Fire resistance classes F30, F60 and F90 are defined for building materials of classes A1 and A2 according to the German industrial standard DIN, 4102 "Fire behavior of building materials and components", edition September 1977. The invention thus includes above all non-combustible or flame-retardant papers, boxes and cardboards which at least meet the F30 requirement for building materials of classes A1 and A2. The papers, boxes and cardboards according to the invention can be designed to be foldable and creasable so that they are suitable for producing fire-proof packaging, such as boxes and boxes. The materials can be printed using any known method. Appropriate surface treatment means that the papers, boxes and cardboards according to the invention are practically no limits with regard to their usability, above all in the construction sector, including studio and exhibition construction and for displays. The papers, boxes and cardboards according to the invention can advantageously be free of asbestos fibers from inorganic fibers or predominantly from such fibers.

Dank der hohen Restfeuchtigkeitsgehalte der erfindungsgemäß in nicht brennbaren oder schwer entflammbaren Papieren, Kartons und Pappen verwendeten Calciumhydrosilikat-Füllstoffe besitzen derartige Papier- oder Pappenwerkstoffe vorteilhafterweise eine überraschend hohe Wärmedämmfähigkeit, wenn sie - wie z.B. bei Bränden extrem hohen Temperaturen ausgesetzt werden. Das hängt wahrscheinlich damit zusammen, daß die erfindungsgemäßen Füllstoffe so lange eine hohe Wärmedämmfähigkeit besitzen, bis sie unter der Einwirkung hoher Temperaturen ihr gebundenes Wasser abgegeben haben und sich dabei wahrscheinlich mehr oder weniger von einer Xonotlit Struktur in eine Wollastonit-Struktur umgewandelt haben.Thanks to the high residual moisture content of the calcium hydrosilicate fillers used according to the invention in non-flammable or flame-retardant papers, boxes and cardboards, such paper or cardboard materials advantageously have a surprisingly high thermal insulation capacity if they - such as exposed to extremely high temperatures in the event of fire. This is probably related to the fact that the fillers according to the invention have a high thermal insulation capacity until they have released their bound water under the action of high temperatures and have thereby more or less changed from a xonotlite structure to a wollastonite structure.

Erfindungsgemäß lassen sich besonders gute Ergebnisse erzielen, wenn das kristallisierte Calciumhydrosilikat ein Längen- /Breitenverhältnis von 10:1 bis 200:1 aufweist. Der nadelförmig kristallisierte Xonotlit besitzt vorteilhafterweise auch ein Längen- /Breitenverhältnis von 100:1 bis 50:1 und weist Breitenabmessungen unter 1µm auf.According to the invention, particularly good results can be achieved if the crystallized calcium hydrosilicate has an aspect ratio of 10: 1 to 200: 1. The acicular crystallized xonotlite has advantageously also a length / width ratio of 100: 1 to 50: 1 and has width dimensions below 1 µm.

Claims (10)

1. Paper-, cardboard- or paperboard-like material manufactured by forming sheets from a suspension of aqueous and fiber-like materials and dehydration of said suspension on a sieve followed by drying, with the rigidity of a sheet depending on the hydrogen bridges arising between the individual fibers during dehydration, characterized in that as filler material which is able to bond hydrogen bridges crystalline calcium hydrosilicate having a xonolith structure with the formula
6 CaO x 6 Si02 x nH2
or Ca [(OH)2Si6Ol7] x nH20
comprising an original water content exceeding the crystal water content of 2.5 or 3 % by weight is provided for, which water content is included in hydrogen bridges between the fibers for supporting the rigidity of the sheet.
2. Material according to claim 1, characterized in that the crystallized calcium hydrosilicate has a large length/width ratio as well as a width of below 1 µm.
3. Material according to claim 2, characterized in that the crystallized calcium hydrosilicate has a length/ width ratio of 10:1 to 200:1.
4. Material according to claim 2 or 3, characterized in that the needle-like crystallized xonolith has a length/width ratio of 100:1 to 50:1 and a width of below 1 µm.
5. Material according to one of claims 1 thru 4, characterized in that the calcium hydrosilicate is produced synthetically in a hydrothermal process and the residual moisture amounts up to about 50 % by weight of H20, preferably 35 to 50 % by weight of H20.
6. Material according to one of claims 1 thru 5, characterized in that the material comprises synthetic magnesium aluminum silicate fibers produced in the hydrothermal process.
7. Material according to claim 6, characterized in that the magnesium aluminum silicate fibers on average consist of 45 % Si02, 20 % CaO, 15 % MgO, 12 % A1203, 3 % NaO and 5 % Fe.
8. Material according to claim 6 or 7, characterized in that the magnesium aluminum silicate fibers have a length of 1 to 5 mm with a mean diameter of 3 to 5 µm.
9. Material according to one of claims 1 thru 8, characterized in that the material comprises glass fibers.
10. Material according to claim 9, characterized in that the glass fibers have a length of 3 to 12 mm, preferably 3 to 6 mm and a mean diameter of 10 to 14 µm, preferably 12 to 13 µm.
EP83101826A 1982-12-30 1983-02-24 Paper, cardboard or paperboardlike material Expired EP0112958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83101826T ATE24343T1 (en) 1982-12-30 1983-02-24 PAPER, CARDBOARD OR PAPER-LIKE MATERIAL.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3248667 1982-12-30
DE3248667 1982-12-30

Publications (2)

Publication Number Publication Date
EP0112958A1 EP0112958A1 (en) 1984-07-11
EP0112958B1 true EP0112958B1 (en) 1986-12-17

Family

ID=6182188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101826A Expired EP0112958B1 (en) 1982-12-30 1983-02-24 Paper, cardboard or paperboardlike material

Country Status (3)

Country Link
EP (1) EP0112958B1 (en)
AT (1) ATE24343T1 (en)
DE (1) DE3368451D1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB732733A (en) * 1953-04-07 1955-06-29 H I Thompson Company Improvements in or relating to method of forming batts of silica fibres and the resulting product
US2919222A (en) * 1954-11-05 1959-12-29 Wyandotte Chemicals Corp Paper making process and product
US2943971A (en) * 1955-10-31 1960-07-05 Pigmented paper and preparation
DE1210112B (en) * 1962-07-24 1966-02-03 Johns Manville Process for making hydrated calcium silicate products
DE1912354B2 (en) * 1969-03-12 1972-04-13 Reimbold & Strick, 5000 Köln-Kalk SYNTHETIC CRYSTALLINE CALCIUM SILICATE AND THE PROCESS FOR ITS MANUFACTURING
BE791644A (en) * 1971-12-17 1973-05-21 Hebel Gasbetonwerk Gmbh CHARGES OR PIGMENTS AND THEIR PREPARATION PROCESS
DK543676A (en) * 1976-12-03 1978-06-04 K Holbaek COMPOSITE MATERIAL
GB1585490A (en) * 1977-05-31 1981-03-04 Turner & Newall Ltd Microfibrous tricalcium silicate dihydrate
SE414397B (en) * 1977-07-08 1980-07-28 Advanced Mineral Res SILICATE POLYMATED MATERIAL WITH MAIN FIBER AND / OR FLINGMIC MICROSTRUCTURE AND PROCEDURE FOR ITS MANUFACTURING
SE422047B (en) * 1977-12-02 1982-02-15 Ytong International Ab PROCEDURE FOR THE PREPARATION OF AN ATMINSTONE PART OF ORGANIC MATERIALS EXISTING PRODUCT
EP0051599A4 (en) * 1980-05-12 1982-09-03 Dexter Corp Battery separator for lead-acid type batteries.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wochenblatt für Papierfabrikation, No. 20, 1973, Seite 789 *

Also Published As

Publication number Publication date
EP0112958A1 (en) 1984-07-11
ATE24343T1 (en) 1987-01-15
DE3368451D1 (en) 1987-01-29

Similar Documents

Publication Publication Date Title
DE3608544C1 (en) Lightweight insulation panels and methods of making the same
EP0379964B1 (en) Ink jet printer recording sheet
DE60016572T2 (en) WATER RESISTANT PREPARED PLASTER ELEMENT
DE69817732T3 (en) Inorganic, porous, particulate material
DE2516097B2 (en)
CH645322A5 (en) METHOD FOR PRODUCING SODIUM ALUMINOSILICATE-ZEOLITE PARTICLES WITH A SMALL AND UNIFORM SIZE.
DE3325467A1 (en) CELLULAR GLASS COATED WITH A HEAT-INSULATING MATERIAL
DE3625254A1 (en) Non-flammable paper
DE1912628C3 (en) High temperature resistant nonwoven fabric and process for its manufacture
EP0131010B1 (en) Filler for a paper- or cardboard-type material
DE3110967A1 (en) ADHESIVES AND / OR COATING MEASURES BASED ON ALKALINE METAL SILICATE SOLUTIONS AND THEIR USE
DE3306528A1 (en) PAPER, CARDBOARD AND PAPER-LIKE MATERIAL
EP0112958B1 (en) Paper, cardboard or paperboardlike material
DE1246515B (en) Process for the production of building and insulating panels
DE60318562T2 (en) FIBER CLADS AND ITS MANUFACTURE
DE60024483T2 (en) MULTIPHASIC CALCIUM SILICATE HYDRATES, PROCESS FOR PREPARING THE SAME AND IMPROVED PAPER AND PIGMENT PRODUCTS CONTAINING THEM
EP0399010B1 (en) Paper-like or cardboard-like raw material and process for making it
DE2745750A1 (en) CEMENT-FREE BUILDING MATERIAL
DE2649300A1 (en) Gypsum building panel contg. fibrous material, pref. waste paper - is moulded to shaft from di:hydrate with removal of added water, then dried within controlled temp. range
DE3623858A1 (en) USE OF WATER GLASS OR THE LIKE MATERIAL FOR APPLYING TO CARRIER MATERIALS AND METHOD FOR PRODUCING SUCH CARRIER MATERIALS
DE2624130A1 (en) METHOD FOR MANUFACTURING ARTIFICIAL FIBER PRODUCTS
EP0237827A2 (en) Flat, cross-linked cristalline xenolit fibres and process for their preparation
DE2608239A1 (en) COPY PAPER FOR THE ELECTROPHOTOGRAPHIC PROCESS AND PROCESS FOR ITS MANUFACTURING
DE2239209C2 (en) Finely divided sodium aluminum silicate coating pigment for paper
EP2314765B1 (en) Production of a fibre compound, use of same and fibre compound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19841001

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19861217

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19861217

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19861217

Ref country code: BE

Effective date: 19861217

REF Corresponds to:

Ref document number: 24343

Country of ref document: AT

Date of ref document: 19870115

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19861231

REF Corresponds to:

Ref document number: 3368451

Country of ref document: DE

Date of ref document: 19870129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870228

Ref country code: LI

Effective date: 19870228

Ref country code: CH

Effective date: 19870228

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871103

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122

ITTA It: last paid annual fee