EP0101005A2 - Verfahren und Vorrichtung zum Ausschleusen von Rückständen aschehaltiger Brennstoffe - Google Patents

Verfahren und Vorrichtung zum Ausschleusen von Rückständen aschehaltiger Brennstoffe Download PDF

Info

Publication number
EP0101005A2
EP0101005A2 EP83107632A EP83107632A EP0101005A2 EP 0101005 A2 EP0101005 A2 EP 0101005A2 EP 83107632 A EP83107632 A EP 83107632A EP 83107632 A EP83107632 A EP 83107632A EP 0101005 A2 EP0101005 A2 EP 0101005A2
Authority
EP
European Patent Office
Prior art keywords
water
separation chamber
slag
container
water bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83107632A
Other languages
English (en)
French (fr)
Other versions
EP0101005A3 (en
EP0101005B1 (de
Inventor
Josef Dipl.-Ing. Hibbel
Ulrich Dipl.-Ing. Gerhardus
Volkmar Dipl.-Ing. Schmidt
Bernhard Lieder
Heinrich Dipl.-Ing. Scheve
Erwin Zerres
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Ruhrchemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruhrchemie AG filed Critical Ruhrchemie AG
Publication of EP0101005A2 publication Critical patent/EP0101005A2/de
Publication of EP0101005A3 publication Critical patent/EP0101005A3/de
Application granted granted Critical
Publication of EP0101005B1 publication Critical patent/EP0101005B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/02Slagging producer

Definitions

  • the invention relates to a method and an apparatus for discharging residues which arise in the gasification of ash-containing, in particular solid, fuels such as hard coal, lignite and other carbon-containing substances with oxygen or oxygen-containing compounds such as water and / or carbon dioxide.
  • the feedstock is converted at a pressure of 10 to 200 bar.
  • the gasification residues leave the gasification chamber in liquid or plastic form and are converted into solid granules, which can also be fine-grained, in a water bath connected to the gasification chamber. With the help of a water-filled lock container arranged under the water bath, the granular residues are periodically discharged from the pressure system of the pressure gasification system.
  • the method and device for discharging the ashes must meet a number of requirements. Apart from the fact that their operation should be possible with economically justifiable effort, it is certain make sure that the residues are discharged safely and without harming the environment.
  • the escape of product gas from the gasification chamber, which is under high pressure, into the atmosphere because of the risk of poisoning and explosion must be avoided.
  • care must be taken to ensure that dangerous or odor-causing gases, which are dissolved under pressure in process water, for example, and are released when the pressure is released, do not get into the environment, as does the waste water derived with the slag.
  • the outflow of the granulated slag from the gasification chamber into the discharge system should only be briefly interrupted by the discharge process in order to prevent the slag from backing up in the gasification chamber and thus blocking the outlet.
  • DE-OS 28 29 629 describes a method for periodically discharging residues resulting from the gasification of ash-containing fuels.
  • the resulting combustion residues granulate in a water bath.
  • a lock tank which sees a separate water supply, is located below the water bath. It is connected to the water bath via a line in which an injector is installed. The injector draws water from the lock tank and conveys it back into the water bath. To compensate, water and slag from the water bath enter the lock. The slag sediments in the lock. Before the sludge collected in the lock container is discharged, it is under the same pressure as the water Bad lock container relaxed in the separate, unpressurized or slightly overpressure water supply.
  • a predetermined amount of water is flushed into the lock container from the water supply, whereby water and slag from the lock container enter a downstream, unpressurized or slightly overpressure collection container in which slag and water are separated.
  • the lock tank which is always completely filled with water, is brought to the pressure prevailing in the water bath by opening a connecting line leading to the water bath.
  • the sluice tank is filled with slag using the previously described water circuit, which is maintained with the help of the injector.
  • the invention consists in a process for the periodic removal of residues which occur when gasifying ash-containing, in particular solid, fuels with oxygen or oxygen-containing gasifying agents under a pressure of 10 to 200 bar, which are granulated in a water bath and which are connected to a separate water supply standing, constantly filled with water lock container, from which they are discharged after relaxing from the gasification pressure to 0, o5 to 4 bar or atmospheric pressure through the water supply, into a downstream container.
  • a separating chamber is arranged between the water bath and the lock container, when the lock container is filled with slag a water flow directed from the water bath into the separating chamber is generated, which is returned from the separating chamber to the water bath, water and slag being separated from one another separate, slag gets into the lock tank located below the separation chamber, the Separation chamber is connected to the separate water supply and the hot water in the separation chamber is cooled after filling the sluice container with slag and before discharging the water-slag mixture or replaced by cold water.
  • the water-slag mixture reaches a separating chamber completely filled with water by means of a circuit flow via shut-off devices through a central channel and is returned to the water bath as a hot water phase cleaned of solids from the separating chamber using a conveying unit.
  • the central part of the central channel consists of a pipe socket, adjoined by guide surfaces arranged parallel to one another, which have an opening forming the channel in their center.
  • the guide surfaces are expediently self-contained and have the shape of a truncated cone or an oblique plate, the opening of which is determined by the overall diameter and points upwards.
  • Their diameter is from 70% to 99% of the diameter of the separation chamber. They are suspended from load-bearing axles that have spacers to ensure that the individual guide surfaces are arranged in parallel. It has proven to be advantageous to use a conical shape with an opening angle of 30 to 160 °, preferably 60 to 120 °. However, it is also possible to design the guide surfaces as inclined plates.
  • the untexn part of the central channel is formed by a further tubular connecting piece, the end of which protrudes only a short distance into a lock container immediately downstream of the separation chamber.
  • the central channel has the task of guiding falling solid particles into the lock tank and discharging hot water from the separation chamber along its guide surfaces.
  • the separation chamber On the one hand, the separation of finely divided slag, which settles on the guide surfaces built into the separation chamber, and water is brought about, on the other hand, the hot water is - immediately returned from the separation chamber back into the water bath.
  • the hot water enters the separation chamber through the central channel, flows between the baffles, resulting in a considerable slowdown in flow as a result of an enlarged overall cross-section and, thanks to the short sedimentation paths between the plates, also effectively separating fine particles.
  • the hot water is drawn off at the top of the separation chamber and returned to the water bath with the aid of the delivery unit.
  • the coarse, compact slag sinks due to its high weight directly through the central channel into the lock tank located below the separation chamber and settles there. Since the central channel leads through the separation chamber, but only slightly dips into the lock container, it is ensured that the hot and correspondingly lighter water which is circulated does not get into the lock container. Rather, the hot water flows even before the end of the central channel between the individual, parallel guide surfaces and is returned to the water bath with the help of the conveyor unit.
  • the fine-particle ash or fine-grained slag particles settle on the guide surfaces, agglomerate over time into a more compact layer, which due to its own weight finally slides into the central channel following the inclination of the guide surfaces and also reaches the lock tank via this.
  • a possible warming due to mixing of the hot water from the water bath and the cold water of the lock container is thus prevented and at the same time sufficient separation of fine-particle slag or ash is achieved.
  • the hot water in the separation chamber After filling the sluice container with slag and ash, the hot water in the separation chamber, after opening the corresponding shut-off devices, is passed through a heat exchanger with the aid of the delivery unit and cooled until the filling of the separation chamber has temperatures below 100 ° C.
  • This measure ensures that spontaneous evaporation processes are prevented during the subsequent expansion of the separation chamber and the lock container from a gasification pressure of 10 to 200 bar to a pressure of 0.05 to 4 bar or atmospheric pressure due to the high water temperature.
  • the relaxation occurs very quickly and without whirling up or partial discharge of the lock contents via the relaxation line.
  • An alternative is to introduce cold, pressurized water directly into the separation chamber instead of cooling by means of a heat exchanger, to displace the hot water present in the separation chamber into the water bath via the connecting line between the separation chamber and the water bath, in order to then relax of the so exchanged. also carry out cold contents of the separation chamber and the lock container.
  • the slag which has accumulated in the lock container, is discharged by means of a predetermined amount of water from a storage container arranged above the separation chamber, which is connected to the head of the separation chamber via a line.
  • the water flows inside the separation chamber from the outside between the guide surfaces into the central channel of the separation chamber and passes through this into the lock container and from there via a line through a previously opened shut-off device into a collecting container downstream of the lock container.
  • the slag accumulated in the lower part of the lock container is washed out and reaches the collecting container located below the lock container as a water-slag mixture, in which the slag sediments and also the final separation of water and slag, e.g. by means of a mechanical separation device, such as a slag scraper or mud dredger.
  • the discharge takes place within a short time and is usually completed within 15 to 25 seconds, for the entire process of relaxation, outfeed and pressure equalization are estimated between 20 and 30 seconds.
  • the opening and closing of the corresponding shut-off devices takes place automatically, thus preventing human error.
  • the separation chamber and the lock container always remain completely filled with water even during the discharge process. This is achieved in that the storage container arranged above the separation chamber is not completely emptied, but rather only a predetermined amount of water is removed from it.
  • the connection between the separation chamber and the storage container as well as between the lock container and the collecting container is interrupted and the spontaneously occurring pressure equalization is brought about by opening a valve in a connection between the water bath and the separation chamber. After pressure equalization, this valve is closed and the line between the water bath and the separation chamber, which is intended for the passage of slag, is opened. At the same time, the path from the separation chamber via the conveyor unit to the water bath is cleared, the circuit is thus restored, and the sluice container can absorb slag again.
  • FIG. 1 A possible embodiment of the device on which the inventive idea is based can be seen in FIG. 1.
  • the separation chamber 43 is equipped with a fill level measuring device 14.
  • the lock container 6 has two level measuring devices 23 and 25 and a pressure measuring device 20 and has jacket cooling 48.
  • the water bath 2 has a high temperature, for example 200 ° C., which is dependent on the water vapor partial pressure in the synthesis gas.
  • a quantity of process circuit water or fresh water that can be adjusted with a valve 10 is continuously fed in via a line 9.
  • a level control 11 keeps the water level constant by actuating a throttle element 12 in a drain line 13 which contains a cooler 41 and a further cooler 54. Granulated residues with poor sedimentation behavior are removed with the aid of a conveyor unit 7, e.g.
  • a pump which is connected to the separation chamber via a line 40, 16 and valve 8, is withdrawn from the water bath 2 into the separation chamber 43.
  • the hot water is separated from the slag in the separation chamber.
  • the water discharged from the separation chamber then returns to the water bath with the process circuit water via a line 36.
  • the separation chamber 43 consists of a central feed channel 45, which is designed as a tube in the upper part, and the lower part 44 of which is formed by conically shaped plates arranged in parallel, which have a central opening on the guide surfaces pointing downward.
  • the last of these conical plates has an extension piece in the middle that protrudes into the lock container 6.
  • valve 10 and the valve 12 are closed at the same time.
  • the water supply via line 9 and the water discharge via line 13 are interrupted.
  • valve 5 By closing valve 5, the connection to the water bath and the return of the water from the separation chamber into the water bath is ended by closing valve 42.
  • valve 37 By opening valve 37, the hot water in the separation chamber is established by means of a cooling system 38 provided in line 39 via line 39, which creates the connection to suction line 40 of delivery unit 7 via line 45, separation chamber 43 and ring line 16 cooled down. After the hot water has cooled, the pressure release can be initiated.
  • cold water from line 9 via a line 53 the.
  • Line 9 connects to the supply channel 45 via a valve 52, is fed to the separation chamber and the hot water in the separation chamber is discharged via the ring line 16, line 13, cooler 41 and valve 12, which is open to a certain amount.
  • the valves 8 and 37 are closed. After the hot water has been displaced and after valve 12 has been closed, the pressure in the separation chamber 43 and lock container 6 can be released.
  • Another possibility is the hot, under pressure in the separation chamber To displace water by adding cold water to the water bath.
  • the water is added, as described above, via line 9, line 53, valve 52 and feed channel 45.
  • the hot water to be displaced comes from the separation chamber 43 via the ring line 16, line 40, valve 8, which is opened, pump 7, valve 42, which is opened, and via line 36 into the water bath 2.
  • valves 52 and 8 are shut off. Then the pressure release of the separation chamber 43 and lock container 6 can take place.
  • the pressure release from the separation chamber 43 and lock container 6 takes place via the ring line 16 into a line 17 which, by opening valve 15 with simultaneously closed valves 8 and 37, separates the separation chamber via a line 17 with a water reservoir 18 which is under a pressure of 0. 05 to 4 bar, and is connected to an exhaust gas network 19, is brought about.
  • Valve 15 is then closed.
  • the pressure release to atmospheric pressure takes place via a line 51, which is also connected to the ring line 16, by opening valve 46 into a collecting container 22 which is provided with a mechanical separating device 49 for separating slag and water and is under atmospheric pressure.
  • Quantities of gas are drawn off in the collecting container 22 via a line 50 and, for example, fed to a combustion.
  • the separation chamber and the lock container connected to it are emptied by opening valve 24, which is located in a connecting line 47 between water storage container 18 and line 40, and by opening valve 21, which is installed in the connecting line between lock container 6 and collecting container 22. brought about.
  • the water-slag mixture passes through the previously opened valve 21 in the collecting container 22, where water and slag, for example with a mechanical device such as a slag scraper 49.
  • Water from the collecting container 22 passes through a pump 32 and a valve 30 controlled by a fill level measuring device 33 and a line 31 into the storage container 18. Water losses resulting from the. Water-slag separation occur in the collecting container 22, are supplemented via line 31 with the aid of a fill level measuring device 29 attached to the storage container 18, which opens a valve 34 located in a line 35. In this way, a predetermined degree of filling is ensured in the reservoir 18.
  • valves 21, 46 and 24 are closed.
  • the lock container 6 and the separation chamber 43 are thus constantly filled with water.
  • the sluice container 6 can then be filled with slag again.
  • the pressure equalization between water bath 2 and lock container 6 takes place by opening valve 26 in a line 27 which connects lines 40 and 36 to one another.
  • a differential pressure measuring device 28 indicates this pressure compensation. Since the connecting lines 45, 40 and 9, like the separation chamber, are completely filled with water, the pressure equalization between the water bath 2 and the separation chamber 43 takes place momentarily via the incompressible medium water.
  • By closing the valves 26 and 37 and. by opening the shut-off devices 5, 8 and 42 the original connection between the water bath and the separation chamber is restored and the separation chamber is filled again with slag from the water bath 2.
  • the level control 11 via the valves 10 and 12 is brought back into operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ausschleusen von Rückständen aschehaltiger Brennstoffe, wie sie bei der Vergasung von Kohle anfallen. Das heiße Gemisch aus Rückständen und Wasser wird in einer Trennkammer getrennt, wobei die Rückstände in einen unterhalb der Trennkammer angeordneten Schleusbehälter gelangen. Das heiße Wasser wird in das unterhalb des Vergasungsreaktors angeordnete Wasserbad zurückgeführt. Nach Befüllen des Schleusbehälters mit Rückstand wird das in der Trennkammer befindliche heiße Wasser gekühlt oder durch kaltes Wasser ersetzt. Das Ausschleusen erfolgt drucklos durch eine Wasserströmung, die über die Trennkammer in den Schleusbehälter gerichtet ist. Trennkammer und Schleusbehälter bleiben stets restlos mit Wasser befüllt

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ausschleusen von Rückständen, die bei der Vergasung von aschehaltiger, insbesondere festen Brennstoffen, wie Steinkohle, Braunkohle und anderen kohlenstoffhaltigen Substanzen mit Sauerstoff oder Sauerstoff enthaltenden Verbindungen wie Wasser und/oder Kohlendioxid entstehen. Die Umsetzung des Einsatzmaterials erfolgt bei einem Druck von 10 bis 200 bar. Die Vergasungsrückstände verlassen den Vergasungsraum flüssig bzw. plastisch und werden in einem, dem Vergasungsraum angeschlossenen Wasserbad in ein festes Granulat, das auch feinkörnig sein kann, überführt. Mit Hilfe eines unter dem Wasserbad angeordneten wassergefüllten Schleusbehälters werden die granulatförmigen Rückstände periodisch aus dem Drucksystem der Druckvergasungsanlage ausgetragen.
  • Verfahren und Vorrichtung zur Ausschleusung der Asche müssen eine Reihe von Forderungen erfüllen. Abgesehen davon, daß ihr Betrieb mit wirtschaftlich vertretbarem Aufwand möglich sein soll, ist sicherzustellen, daß die Ausschleusung der Rückstände gefahrlos und ohne Belastung der Umwelt erfolgt. So muß der Austritt von Produktgas aus dem unter hohem Druck stehenden Vergasungsraum in die Atmosphäre wegen Vergiftungs- und Explosionsgefahr unbedingt vermieden werden. Darüber hinaus ist dafür Sorge zu tragen, daß gefährliche bzw. geruchsbelästigende Gase, die z.B. im Prozeßwasser unter Druck gelöst sind und beim Entspannen frei werden, ebenso wenig wie das mit der Schlacke abgeleitete Schmutzwasser in die Umwelt gelangen. Schließlich soll der Abfluß der granulierten Schlacke aus dem Vergasungsraum in das Ausschleusungssystem durch den Ausschleusungsvorgang nur kurzzeitig unterbrochen werden, um einen Rückstau der Schlacke im Vergasungsraum und damit eine Blockierung des Auslaufs zu vermeiden.
  • In der DE-OS 28 29 629 wird ein Verfahren zum periodischen Ausschleusen von beim Vergasen aschehaltiger Brennstoffe anfallender Rückstände beschrieben. Die hierbei auftretenden Verbrennungsrückstände granulieren in einem Wasserbad. Unterhalb des Wasserbades ist ein Schleusbehälter, der mit einem gesonderten Wasservorrat in Verbindung sieht, angeordnet. Er ist über eine Leitung, in der ein Injektor eingebaut ist, mit dem Wasserbad verbunden. Der Injektor saugt aus dem Schleusbehälter Wasser an und fördert dieses in das Wasserbad zurück. Zum Ausgleich gelangt Wasser und Schlacke aus dem Wasserbad in die Schleuse. Die Schlacke sedimentiert in der Schleuse. Vor dem Ausschleusen der im Schleusbehälter angesammelten Schlakke wird der unter dem gleichen Druck wie das Wasserbad stehende Schleusbehälter in den gesonderten, drucklosen bzw. unter geringem Überdruck stehenden Wasservorrat entspannt. Anschließend wird aus dem Wasservorrat eine vorgegebene Menge Wasser in den Schleusbehälter gespült, wodurch Wasser und Schlacke aus dem Schleusbehälter in einen nachgeschalteten, drucklosen bzw. unter geringem Überdruck stehenden Auffangbehälter, in dem Schlacke und Wasser getrennt werden, gelangen. Nach Unterbrechen der Verbindung vom Schleusbehälter zum Wasserbad wird der stets restlos mit Wasser gefüllte Schleusbehälter durch Öffnen einer Verbindungsleitung, die zum Wasserbad führt, auf den im Wasserbad herrschenden Druck gebracht. Das Befüllen des Schleusbehälters mit Schlacke erfolgt über den zuvor beschriebenen Wasserkreislauf, der mit Hilfe des Injektors aufrecht erhalten wird.
  • Das in der vorstehend aufgeführten Druckschrift praktizierte Verfahren läßt sich allerdings nur dann ohne Störung durchführen, wenn gewährleistet ist, daß die Temperatur im Wasserbad möglichst unter 1000C bzw. nur geringfügig über dem Siedepunkt der wässrigen Phase bei Atmosphärendruck liegt. Bei Temperaturen oberhalb des Siedepunktes der wässrigen Phase bei Atmosphärendruck treten .bei der erforderlichen Entspannung des Druckes des Schleusbehälters auf Atmosphärendruck, die dem drucklos durchzuführenden Entleeren vorangehen soll, Schwierigkeiten infolge spontaner, unerwünschter Verdampfungsvorgänge auf. Diese Verdampiungen'verhindern die erwünschte rasche Entspannung und wirbeln Flüssigkeit und schon abgeschiedene Asche auf, die mit dem Entspannungsgas abgeführt wird.
  • Bei der Verwendung stark schlackehaltiger Kohle, deren Schlacke im heißen Zustand in das Wasserbad gelangt und/oder teilweisem bzw. direktem Quench des aus der Kohle gebildeten Gasgemisches wird das Wasserbad abhängig vom Betriebsdruck zwangsweise auf Temperaturen erhitzt, die weit oberhalb des Siedepunktes der wässrigen Phase bei Atmosphärendruck liegen. Als Folge hiervon stellen sich die vorstehend genannten Erschwernisse ein. Diese Nachteile werden durch die vorliegende Erfindung beseitigt.
  • Die Erfindung besteht in einem Verfahren zum periodischen Ausschleusen von beim Vergasen aschehaltiger, insbesondere fester Brennstoffe mit Sauerstoff bzw.sauerstoffhaltigen Vergasungsmitteln unter einem Druck von 10 bis 200 bar entstehenden Rückständen, die in einem Wasserbad granuliert werden und die über einen mit einem gesonderten Wasservorrat in Verbindung stehenden, ständig mit Wasser gefüllten Schleusbehälter, aus dem sie nach Entspannen vom Vergasungsdruck auf 0,o5 bis 4 bar bzw. Atmosphärendruck durch den Wasservorrat ausgetragen werden, in einen nachgeschalteten Behälter gelangen. Es ist dadurch gekennzeichnet, daß zwischen dem Wasserbad und dem Schleusbehälter eine Trennkammer angeordnet ist, beim Befüllen des Schleusbehälers mit Schlacke ein - vom Wasserbad in die Trennkammer gerichtetepWasserstrom erzeugt wird, dieser von der Trennkammer in das Wasserbad zurückgeführt wird, wobei Wasser und Schlacke sich voneinander trennen, Schlacke in den unterhalb der Trennkammer befindlichen Schleusbehälter gelangt, die Trennkammer mit dem gesonderten Wasservorrat in Verbindung steht und das in der Trennkammer befindliche heiße Wasser nach Befüllen des Schleusbehälters mit Schlacke und vor dem Ausschleusen von Wasser-Schlacke-Gemisch gekühlt oder durch kaltes Wasser ersetzt wird.
  • Im Wasserbad granulieren die bei der Vergasung aschehaltiger, insbesondere fester Brennstoffe enthaltenden Rückstände. Das Wasser-Schlacke-Gemisch gelangt mittels eines Kreislaufstromes über Absperrorgane durch einen zentrischen Kanal in eine restlos mit Wasser gefüllte Trennkammer und wird als von Feststoffen gereinigte, heiße Wasserphase von der Trennkammer unter Verwendung eines Förderaggregates in das Wasserbad zurückgeführt. Der zentrische Kanal besteht in seinem oberen Teil aus einem Rohrstutzen, an den sich parallel zueinander angeordnete Leitflächen anschließen, die in ihrer Mitte eine den Kanal bildende Öffnung aufweisen. Zweckmäßigerweise sind die Leitflächen in sich geschlossen und besitzen die Form eines Kegelstumpfes oder einer Schrägplatte, deren durch den Gesamtdurchmesser bestimmte Öffnung nach oben weist. Ihr Durchmesser beträgt von 70 % bis 99 % des Durchmessers der Trennkammer. Sie sind an tragenden Achsen aufgehängt, die Distanzstücke aufweisen, um eine parallele Anordnung der einzelnen Leitflächen zu gewährleisten. Es erweist sich als vorteilhaft, eine Kegelform mit einem Öffnungswinkel von 30 bis 160°, vorzugsweise 60 bis 120°, zu verwenden. Es ist jedoch auch möglich, die Leitflächen als Schrägplatten auszugestalten.
  • Den untexn Teil des zentrischen Kanals bildet ein weiterer rohrförmiger Stutzen, der mit seinem Ende in einen der Trennkammer unmittelbar nachgeschalteten Schleusbehälter lediglich ein kurzes Stück hineinragt. Dem zentrischen Kanal kommt die Aufgabe zu, herabfallende Feststoffteile in den Schleusbehälter zu leiten und heißes Wasser entlang seiner Leitflächen aus der Trennkammer abzuführen.
  • In der Trennkammer wird zum einen die Trennung von feinteiliger Schlacke, die sich auf den in der Trennkammer eingebauten Leitflächen absetzt, und Wasser herbeigeführt, zum anderen wird das heiße Wasser un- - mittelbar aus der Trennkammer wieder in das Wasserbad zurückgeführt.
  • Das heiße Wasser tritt durch den zentrischen Kanal in die Trennkammer ein, strömt zwischen den Leitflächen hindurch, wodurch infolge eines vergrößerten Gesamtquerschnittes eine erhebliche Strömungsverlangsamung und unterstützt durch die kurzen Sedimentationswege zwischen den Platten auch feine Partikel wirkungsvoll abgeschieden werden. Das heiße Wasser wird am Kopf der Trennkammer abgezogen und mit Hilfe des Förderaggregates wieder dem Wasserbad zugeleitet. Die grobteilige, kompakte Schlacke sinkt infolge ihres hohen Eigengewichtes direkt durch den zentrischen Kanal in den unterhalb der Trennkammer angeordneten Schleusbehälter und setzt sich dort ab. Da der zentrische Kanal zwar durch die Trennkammer führt, aber nur geringfügig in den Schleusbehälter eintaucht, ist gewährleistet, daß das im Kreislauf geführte heiße und entsprechend leichtere Wasser nicht in den Schleusbehälter gelangt. Vielmehr strömt das heiße Wasser bereits vor dem Ende des zentrischen Kanals zwischen den einzelnen, parallel angeordneten Leitflächen hindurch und wird mit Hilfe des Förderaggregates in das Wasserbad zurückgeführt.
  • Die feinteiligen Asche- bzw. feinkörnigen Schlackepartikel setzen sich auf den Leitflächen ab, agglomerieren im Laufe der Zeit zu einer kompakteren Schicht, die infolge ihres Eigengewichtes schließlich der Neigung der Leitflächen folgend in den zentrischen Kanal rutschen und über diesen ebenfalls in den Schleusbehälter gelangen. Eine mögliche Erwärmung infolge von Vermischung des heißen, dem Wasserbad entstammenden Wassers und dem kalten Wasser des Schleusbehälters wird somit verhindert und zugleich eine ausreichende Abscheidung feinteiliger Schlacke bzw. Asche erreicht.
  • Sobald der unmittelbar unterhalb der Trennkammer angeordnete Schleusbehälter mit Schlacke, d.h. sowohl mit der soeben beschriebenen feinkörnigen Schlacke, die auf den Leitflächen in der Trennkammer agglomeriert und von dort absinkt, als auch mit grobkörniger, kompakter Schlakke, die direkt durch die. Trennkammer im zentrischen Kanal nach unten in den Schleusbehälter sinkt, gefüllt ist, wird die Zufuhr von Wasser-Schlacke-Gemisch aus dem Wasserbad in die Trennkammer durch Schließen von Absperrorganen unterbrochen. Dies gilt ebenfalls für den mittels des Förderaggregates betriebenen Kreislauf, in dem von dem Wasserbad zu der Trennkammer ein Wasser-Schlacke-Gemisch und von der Trennkammer zu dem Wasserbad die von Schlacke befreite heiße Wasserphase zirkuliert.
  • Im Anschluß an die Befüllung des Schleusbehälters mit Schlacke und Asche wird das in der Trennkammer befindliche, heiße Wasser nach Öffnen entsprechender Absperrorgane mit Hilfe des Förderaggregates über einen Wärmeaustauscher geführt und solange abgekühlt, bis die Füllung der Trennkammer Temperaturen unter 100°C aufweist. Durch diese Maßnahme wird erreicht, daß beim nachfolgenden Entspannen der Trennkammer und des Schleusbehälters von einem Vergasungsdruck von 10 bis 200 bar auf einen Druck von 0,05 bis 4 bar bzw. Atmosphärendruck infolge der hohen Wassertemperatur spontan auftretende Verdampfungsvorgänge unterbunden werden. Die Entspannung tritt so sehr rasch und ohne Aufwirbelung bzw. teilweisen Austrag des Schleuseninhalts über die Entspannungsleitung ein.
  • Eine Alternative sieht vor, an Stelle der Kühlung mittels eines Wärmeaustauschers direkt kaltes, unter Druck stehendes Wasser.in die Trennkammer einzuführen, das in der Trennkammer vorhandene, heiße Wasser über die Verbindungsleitung zwischen Trennkammer und Wasserbad in das Wasserbad zu verdrängen, um anschließend die Entspannung des so ausgetauschten,. ebenfalls kalt vorliegenden Inhaltes von Trennkammer und Bchleusbehälter vorzunehmen.
  • Die weitere Entspannung erfolgt durch Öffnen eines Ventils in einer Verbindungsleitung, die die Trennkammer mit einem dem Schleusbehälter nachgeschalteten, drucklos betriebenen Auffangbehälter verbindet. Dieser Auffangbehälter weist stets einen vorgegebenen Wasserstand auf und ist an ein unter mäßigem Druck stehendes Gasnetz oder an eine Absaugung angeschlossen. Die Entspannung des Druckes erfolgt, da lediglich ein imkompressibles Wasservolumen, das Temperaturen unterhalb seines Siedepunktes bei Atmosphärendruck aufweist, freigesetzt wird, fast augenblicklich.
  • Die Ausschleusung der Schlacke, die sich im Schleusbehälter angesammelt hat, erfolgt mittels einer vorgegebenen Wassermenge aus einem oberhalb der Trennkammer angeordneten Vorratsbehälter, welcher über eine Leitung mit dem Kopf der Trennkammer in Verbindung steht. Das Wasser strömt innerhalb der Trennkammer von außen zwischen den Leitflächen in den zentrischen Kanal der Trennkammer und gelangt durch diesen in den Schleusbehälter und von dort über eine Leitung durch ein zuvor geöffnetes Absperrorgan in einen dem Schleusbehälter nachgeschalteten Auffangbehälter. Durch die Zugabe von Wasser aus dem Vorratsbehälter wird die im unteren Teil des Schleusbehälters angesammelte Schlacke herausgeschwemmt und gelangt als Wasser-Schlacke-Gemisch in den unterhalb des Schleusbehälters angeordneten Auffangbehälter, in dem die Schlacke sedimentiert und auch die abschließende Trennung von Wasser und Schlacke z.B. durch eine mechanische Trennvorrichtung, wie einem Schlackekratzer oder Schlammbagger, erfolgt.
  • Die Ausschleusung erfolgt binnen kurzer Zeit und ist in der Regel innerhalb von 15 bis 25 Sekunden abgeschlossen, für den gesamten Ablauf der Entspannung, Aussdieusung und des Druckausgleiches sind zwischen 20 bis 30 Sekunden zu veranschlagen. Der zeitliche Ablauf des Öffnens und Schließens entsprechender Absperrorgane erfolgt automatisch, auf diese Weise wird menschliches Versagen ausgeschlossen.
  • Die Trennkammer und der Schleusbehälter verbleiben auch während des Ausschleusungsvorganges stets restlos mit Wasser gefüllt. Dies wird dadurch erreicht, daß der oberhalb der Trennkammer angeordnete Vorratsbehälter nicht restlos entleert, vielmehr ihm nur eine vorgegebene Menge Wasser entnommen wird. Nach der Ausschleusung wird die Verbindung zwischen Trennkammer und Vorratsbehälter ebenso wie die zwischen Schleusbehälter und Auffangbehälter unterbrochen und der sich spontan einstellende Druckausgleich durch Öffnen eines Ventils in einer Verbindung zwischen Wasserbad und Trennkammer herbei geführt. Nach Druckausgleich wird dieses Ventil geschlossen und die Leitung zwischen Wasserbad und Trennkammer, die für den Durchtritt von Schlacke vorgesehen ist, geöffnet. Gleichzeitig wird der Weg von der Trennkammer über das Förderaggregat zum Wasserbad freigegeben, der Kreislauf also wieder hergestellt, und der Schleusbehälter kann erneut Schlacke aufnehmen.
  • Eine mögliche Ausgestaltung der dem Erfindungsgedanken zugrundeliegenden Vorrichtung ist der Abbildung 1 zu entnehmen.
  • Die in einem Gasraum 1 bei Drücken von 10 bis 200 bar und bei Temperaturen von 1100 bis 1700°C gebildeten Vergasungsrückstände gelangen in ein Wasserbad 2, kühlen dort ab, granulieren und treten durch ein geöffnetes Sicherheitsabsperrorgan 3,* eine flexible Verbindung 4, z.B. einen Kompensator, ein geöffnetes Absperrorgan 5 in Wasser suspendiert in eine Trennkammer 43, die mit einem Schleusbehälter 6 verbunden ist und unter dem gleichen hohen Druck wie der Vergasungsraum steht, ein. Die Trennkammer 43 ist mit einem Füllstandsmeßgerät 14 ausgerüstet. Der Schleusbehälter 6 weist zwei Füllstandsmeßgeräte 23 und 25 sowie ein Druckmeßgerät 20 auf und besitzt eine Mantelkühlung 48.
  • Das Wasserbad 2 hat eine vom Wasserdampfpartialdruck im Synthesegas abhängige hohe Temperatur von beispielsweise 200°C. Um die Konzentration an gelösten Salzen und feinkörnigen Feststoffpartikeln, die von den Vergasungsrückständen herrühren, im Wasser nicht unzulässig hoch ansteigen zu lassen, wird über eine Leitung 9 eine mit einem Ventil 10 einstellbare Menge Prozeßkreislaufwasser bzw. Frischwasser ständig eingespeist. Eine Standregelung 11 hält durch Betätigen eines Drosselorgans 12 in einer Ablaufleitung 13, die einen Kühler 41 und einen weiteren Kühler 54 enthält, den Wasserstand konstant. Granulierte Rückstände mit schlechtem Sedimentationsverhalten werden mit Hilfe eines Förderaggregates 7, z.B. einer Pumpe, die über eine Leitung 40, 16 und Ventil 8 mit der Trennkammer in Verbindung steht, aus dem Wasserbad 2 in die Trennkammer 43 abgezogen. In der Trennkammer erfolgt eine Trennung des heißen Wassers von der Schlacke. Das dabei aus der Trennkammer abgeleitete Wasser gelangt mit dem Prozeßkreislaufwasser über eine Leitung36 in das Wasserbad zurück.
  • Die Trennkammer 43 besteht aus einem zentrischen Zuführungskanal 45, der im oberen Teil als Rohr ausgebildet ist, und dessen unterer Teil 44 durch kegelförmig ausgebildete, parallel angeordnete Teller, die eine zentrische Öffnung an den nach unten weisenden Leitflächen besitzen, gebildet wird. Der letzte dieser kegelförmigen Teller besitzt in der Mitte einen Verlängerungsstutzen, der in den Schleusbehälter 6ragt. Infolge der Saugwirkung der Pumpe 7 gelangt das Wasser-Schlacke-Gemisch über den zentrisch angeordneten Zuführungskanal 45 in die Trennkammer 43. Die Geschwindigkeit des Wasser-Schlacke-Gemisches ist in dem Zuleitungskanal höher als zwischen den parallel angeordneten, nach oben gerichteten Tellerflächen 44. Zwischen diesen Tellerflächen 44 kommt es somit zu einer Verlangsamung der Strömung und zu einer Sedimentation der Feststoffpartikel. Gröbere Schlackepartikel sinken während dieses Füllvorganges durch den Zuführungskanal direkt in den unterhalb der Trennkammer 43 befindlichen Sdieusbehälter 6.
  • Da sowohl die Trennkammer 43 als auch der mit ihr verbundene Schleusbehälter 6 stets restlos mit Wasser befüllt vorliegen, findet eine Durchmischung des kalten Inhaltes des Schleusbehälters 6 mit dem in die Trennkammer 43 eintretenden heißen Wasser-Schlacke-Gemisch nicht statt. Vielmehr wird das heiße Wasser in der Trennkammer entlang der kegelförmigen Teller umgelenkt und über Kopf mittels der Ringleitung 16, die in die Leitung 40 mündet, über Ventil 8, Förderaggregat 7, Ventil 42 und Leitung 36 in das Wasserbad 2 zurückgeführt.
  • Nach Befüllen des Schleusbehälters 6 mit Schlacke werden das Ventil 10 und das Ventil 12 gleichzeitig geschlossen. Die Wasserzufuhr über Leitung 9, und die Wasserableitung über die Leitung 13 sind damit unterbrochen. Durch Schließen von Ventil 5 wird die Verbindung mit dem Wasserbad und die Rückführung des Wassers aus der Trennkammer in das Wasserbad durch Schließen von Ventil 42 beendet. Durch Öffnen von Ventil 37 wird über eine Leitung-39, die über die Leitung 45, die Trennkammer 43 und Ringleitung 16 die Verbindung zur Ansaugleitung 40 des Förderaggregates 7 herstellt, das in der Trennkammer befindliche heiße Wasser mittels eines in der Leitung 39 angebrachten Kühlsystems 38 abgekühlt. Nach Abkühlung des heißen Wassers kann die Druckentspannung eingeleitet werden.
  • Es ist auch vorgesehen, das heiße, in der Trennkammer befindliche, unter Druck stehende Wasser durch Zufuhr von kaltem Wasser zu verdrängen. Hierfür wird kaltes Wasser aus Leitung 9 über eine Leitung 53, die die . Leitung 9 über ein Ventil 52 mit dem Zuführungskanal 45 verbindet, der Trennkammer zugeleitet und das in der Trennkammer befindliche heiße Wasser über die Ringleitung 16, Leitung 13, Kühler 41 und Ventil 12, das um einen gewissen Betrag geffnet ist, abgeleitet. Die Ventile 8 und 37 sind geschlossen. Nach Verdrängung des heißen Wassers und nach Schließen von Ventil 12 kann die Druckentspannung von Trennkammer 43 und Schleusbehälter 6 vorgenommen werden.
  • Eine weitere Möglichkeit besteht darin, das heiße, in der Trennkammer befindliche, unter Druck stehende Wasser durch Zufuhr von kaltem Wasser in das Wasserbad zu verdrängen. Die Wasserzugabe erfolgt dabei, wie zuvor beschrieben, über Leitung 9, Leitung 53, Ventil 52 und Zuführungskanal 45. Das zu verdrängende, heiße Wasser gelangt aus der Trennkammer 43 über die Ringleitung 16, die Leitung 40, Ventil 8, das geöffnet wird, Pumpe 7, Ventil 42, das geöffnet wird, und über die Leitung 36 in das Wasserbad 2. Nach Verdrängen des heißen Inhalts der Trennkammer werden die Ventile 52 und 8 abgesperrt. Danach kann die Druckentspannung von Trennkammer 43 und Schleusbehälter 6 erfolgen.
  • Die Druckentspannung von Trennkammer 43 und Schleusbehälter 6 erfolgt über die Ringleitung 16 in eine Leitung 17, die durch Öffnen von Ventil 15 bei gleichzeitig geschlossenen Ventilen 8 und 37 die Trennkammer über eine-Leitung 17 mit einem Wasservorratsbehälter 18, der unter einem Druck von 0,05 bis 4 bar steht, und an ein Abgasnetz 19 angeschlossen ist, herbeigeführt wird. Hierbei entweichen in Wasser gelöste gasförmige Bestandteile wie CO und H2. Da im wesentlichen lediglich ein eingeschlossenes Flüssigkeitsvolumen entspannt wird, erfolgt der Druckausgleich spontan. Ventil 15 wird anschließend geschlossen. Die Druckentspannung auf Atmosphärendruck erfolgt über eine Leitung 51, die ebenfalls an die Ringleitung 16 angeschlossen ist, durch Öffnen von Ventil 46 in einen Auffangbehälter 22, der mit einer.mechanischen Trennvorrichtung 49 zur Trennung von Schlacke und Wasser versehen ist und unter Atmosphärendruck steht. Die bei diesem Druckentspannungsschritt restlichen, freigesetzten Gasmengen werden in dem Auffangbehälter 22 über eine Leitung 50 abgesaugt und beispielsweise einer Verbrennung zugeführt.
  • Die Entleerung der Trennkammer und des mit ihr verbundenen Schleusbehälters wird durch Öffnen von Ventil 24, das sich in einer Verbindungsleitung 47 zwischen Wasservorratsbehälter 18 und Leitung 40 befindet und durch Öffnen von Ventil 21, das in der Verbindungsleitung zwischen Schleusbehälter 6 und Auffangbehälter 22 eingebaut ist, herbeigeführt. Aus dem Vorratsbehälter 18 strömt nunmehr Wasser über die Ringleitung in die Trennkammer 43 und spült die zwischen den einzelnen konischen, parallel angeordneten Tellerflächen abgelagerte Schlacke in den zentrischen Zuführungskanal und von dort in den Schleusbehälter 6. Das-Wasser-Schlacke-Gemisch gelangt über das zuvor geöffnete Ventil 21 in den Auffangbehälter'22, wo Wasser und Schlacke z.B. mit einer mechanischen Vorrichtung, wie mit einem Schlackekratzer 49, getrennt werden.
  • Wasser aus dem Auffangbehälter 22 gelangt über eine Pumpe 32 und ein durch ein FüllstandsmeBgerät 33 gesteuertes Ventil 30 und eine Leitung 31 in den Vorratsbehälter 18. Wasserverluste, die infolge der. Wasser-Schlacke-Trennung im Auffangbehälter 22 entstehen, werden mit Hilfe eines am Vorratsbehälter 18 angebrachten Füllstandsmeßgerätes 29, das ein in einer Leitung 35 befindliches Ventil 34 öffnet, über Leitung 31 ergänzt. Auf diese Weise wird im Vorratsbehälter 18 ein vorgegebener Füllungsgrad gewährleistet.
  • Bevor der Wasservorratsbehälter 18 leer läuft, werden die Ventile 21, 46 und 24 geschlossen. Der Schleusbehälter 6 und die Trennkammer 43 sind somit ständig mit Wasser gefüllt. Die Befüllung des Schleusbehälters 6 mit Schlacke kann hiernach erneut erfolgen.
  • Der Druckausgleich zwischen Wasserbad 2 und Schleusbehälter 6 erfolgt durch Öffnen von Ventil 26 in einer Leitung 27, die die Leitungen 40 und 36 miteinander verbindet. Ein Differenzdruckmeßgerät 28 zeigt diesen Druckausgleich an. Da die Verbindungsleitungen 45, 40 und 9 ebenso wie die Trennkammer restlos mit Wasser befüllt vorliegen, erfolgt der Druckausgleich zwischen Wasserbad 2 und Trennkammer 43 über das inkompressible Medium Wasser momentan. Durch Schließen der Ventile 26 und 37 und. durchoffnen der Absperrorgane 5, 8 und 42 wird die ursprüngliche Verbindung von Wasserbad und Trennkammer wieder hergestellt und die Trennkammer erneut mit Schlacke aus dem Wasserbad 2 befüllt. Die Standregelung 11 über die Ventile 10 und 12 wird wieder in Funktion gebracht.
  • Zur Verdeutlichung ist in Figur 2 die Trennkammer 43 und der Schleusbehälter 6 vergrößert abgebildet. Die eingetragenen Zahlen entsprechen den in der vorangegangenen Beschreibung erwähnten Elementen der erfindungsgemäßen Vorrichtung.

Claims (7)

  1. l. Verfahren zum periodischen Ausschleusen von beim Vergasen aschehältiger, insbesondere fester Brennstoffe mit Sauerstoff bzw. sauerstoffhaltigen Vergasungsmitteln unter einem Druck von 10 bis 200 bar entstehenden Rückständen, die in einem Wasserbad (2) granuliert werden und die über einen mit einem ge-_ sonderten Wasservorrat (18) in Verbindung stehenden, ständig mit Wasser gefüllten Schleusbehälter (6), aus dem sie nach Entspannen vom Vergasungsdruck auf 0,05 bis 4 bar bzw. Atmosphärendruck durch den Wasservorrat ausgetragen werden, in einen nachgeschalteten Behälter (22) gelangen, dadurch gekennzeichnet, daß zwischen dem Wasserbad (2) und dem Schleusbehälter (6) eine Trennkammer (43) angeordnet ist, beim Befüllen des Schleusbehälters (6) mit Schlacke ein.vom Wasserbad (2) in die Trennkammer (43) gerichteter Wasserstrom erzeugt wird, dieser von der Trennkammer (43) in das Wasserbad (2) zurückgeführt wird, wobei Wasser und Schlacke sich voneinander trennen, Schlacke in den unterhalb der Trennkammer (43) befindlichen Schleusbehälter (6) gelangt, die Trennkammer (43) mit dem gesonderten Wasservorrat (18) in Verbindung steht und das in der Trennkammer (43) befindliche heiße Wasser nach Befüllen des Schleusbehälters (6) mit Schlacke und vor dem Ausschleusen von Wasser-Schlacke-Gemisch gekühlt oder durch kaltes Wasser ersetzt wird.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die vom Wasserbad (2) in die Trennkammer (43) gerichtete Wasserbewegung über einen zentrisch angeordneten Kanal (45), der durch die Trennkammer (43) führt, erfolgt, der Kanal (45) in seinem mittleren und unteren Teil aus parallel angeordneten Leitflächen (44) besteht, daß der Wasserstrom zwischen den parallelen Leitflächen (44) seinen Verlauf nimmt und über Kopf (16) der Trennkammer (43) dem Wasserbad (2) mittels eines Förderaggregates (7) wieder zugeführt wird.
  3. 3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß beim Ausschleusen Wasser aus dem Wasservorrat (18) über Kopf (16) in die Trennkammer (43) eingeführt wird und zwischen den parallelen Leitflächen (44) hindurchströmend über den zentralen Kanal (45) in den Schleusbehälter (6) gelangt.
  4. 4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das in der Trennkammer (43) befindliche Wasser mittels des Förderaggregates (7) einer Kühlvorrichtung (38) zugeführt oder durch kaltes Wasser aus der Trennkammer entweder in das Wasserbad oder nach Kühlung in einen Behälter verdrängt wird.
  5. 5. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bestehend aus einem Gasgenerator mit Vergasungsraum und an diesem sich anschließenden Wasserbad (2), das über Absperrorgane mit einem nachgeschalteten Schleusbehälter (6) sowie mit einem wassergefüllten Vorlagebehälter (22) verbunden ist, der an ein Unterdruck aufweisendes Gasnetz angeschlossen ist, dadurch gekennzeichnet, daß zwischen dem Wasserbad (2) und Schleusbehälter (6) eine Trennkammer (43) angeordnet ist, aus dem Wasserbad über eine Leitung (45) Wasser und Schlacke in die Trennkammer (43) gelangen und Wasser über eine am Kopf der Trennkammer (43) angebrachte Ringleitung (16) sowie eine Leitung (40), ein Ventil (8), ein Förderaggregat (7), ein Ventil (42) und eine Leitung (36) mit dem Wasserbad (2) in Verbindung steht, das in der Trennkammer (43) befindliche Wasser über die Leitung (40), das Förderaggregat (7), über ein Ventil (37), über einen Kühler (38) und eine Leitung (39) und (45) im Kreislauf gefahren und gekühlt wird.
  6. 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die parallelen Leitflächen kegelförmig ausgebildet sind, einen Öffnungswinkel von 30 bis 160° aufweisen und der Strömungsquerschnitt sich nach außen hin kontinuierlich erweitert.
  7. 7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die leitflächen als Schrägplatten ausgebildet sind.
EP83107632A 1982-08-13 1983-08-03 Verfahren und Vorrichtung zum Ausschleusen von Rückständen aschehaltiger Brennstoffe Expired EP0101005B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823230088 DE3230088A1 (de) 1982-08-13 1982-08-13 Verfahren und vorrichtung zum ausschleusen von rueckstaenden aschehaltiger brennstoffe
DE3230088 1982-08-13

Publications (3)

Publication Number Publication Date
EP0101005A2 true EP0101005A2 (de) 1984-02-22
EP0101005A3 EP0101005A3 (en) 1985-01-09
EP0101005B1 EP0101005B1 (de) 1987-01-07

Family

ID=6170744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83107632A Expired EP0101005B1 (de) 1982-08-13 1983-08-03 Verfahren und Vorrichtung zum Ausschleusen von Rückständen aschehaltiger Brennstoffe

Country Status (11)

Country Link
US (1) US4541840A (de)
EP (1) EP0101005B1 (de)
JP (1) JPS5956489A (de)
AU (1) AU558293B2 (de)
BR (1) BR8304239A (de)
CA (1) CA1211287A (de)
DE (2) DE3230088A1 (de)
IN (1) IN159749B (de)
PL (1) PL139176B1 (de)
SU (1) SU1301318A3 (de)
ZA (1) ZA835787B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690120A1 (de) * 1994-06-27 1996-01-03 Texaco Development Corporation Schlackbehandlungssystem und -methode
WO2010012404A2 (de) * 2008-07-29 2010-02-04 Uhde Gmbh Schlackeaustrag aus reaktor zur synthesegasgewinnung
WO2010090784A3 (en) * 2009-01-21 2010-10-07 Conocophillips Company Methods and systems for treating a gasification slag product
EP2300569A2 (de) * 2008-07-15 2011-03-30 Uhde GmbH Vorrichtung zur schlackeabführung aus einem kohlevergasungsreaktor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533363A (en) * 1984-01-20 1985-08-06 Texaco Development Corporation Production of synthesis gas
US4852997A (en) * 1987-10-05 1989-08-01 Shell Oil Company Slag water bath process
DE10118443A1 (de) * 2001-04-12 2002-10-17 Bokela Ing Gmbh Verfahren und Vorrichtung zur Stofftrennung
US20070210012A1 (en) * 2006-03-09 2007-09-13 Energy & Environmental Research Center Foundation Wet solids removal and separation system
DE202006020602U1 (de) * 2006-08-28 2009-04-23 Siemens Aktiengesellschaft Vorrichtung zum Austrag von Schlacke aus Vergasungsreaktoren
US20080115479A1 (en) * 2006-11-17 2008-05-22 Mitsubishi Heavy Industries, Ltd. Pressurized coal gasifier and coal gasification combined cycle power plant
EP1978074A1 (de) * 2007-04-06 2008-10-08 Waterim Ltd Vorrichtung zur Reinigung eines bei der Vergasung von Abfallstoffen und/oder Biomasse erhaltenen Synthesegasstroms
JP5484850B2 (ja) * 2009-09-30 2014-05-07 三菱重工業株式会社 スラグ排出システム
CN112210406B (zh) * 2020-10-13 2022-01-07 海泉风雷新能源发电股份有限公司 一种无炉排下吸式生物质颗粒热解炉
CN112961708A (zh) * 2021-02-07 2021-06-15 恒力石化(大连)炼化有限公司 一种气化炉下降管保护装置
CN113072980B (zh) * 2021-04-28 2021-12-07 宁夏神耀科技有限责任公司 一种过热蒸汽的下行全废锅气流床气化设备和煤化工***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235313A (en) * 1964-05-18 1966-02-15 Koppers Co Inc Sluicing solid materials from spaces under superatmospheric pressure
DE2348845A1 (de) * 1973-09-13 1975-04-10 Escher Wyss Gmbh Dekanter
FR2417326A1 (fr) * 1978-02-15 1979-09-14 Tepral Grpt Interet Economique Ensemble a effet gravitaire pour la decantation en continu
DE2829629A1 (de) * 1978-07-06 1980-01-24 Ruhrchemie Ag Verfahren und vorrichtung zum ausschleusen von rueckstaenden aus dem drucksystem einer druckvergasungsanlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2444819B2 (de) * 1974-09-19 1980-01-03 Steag Ag, 4300 Essen Verfahren zum Reinigen des bei der Kohledruckvergasung erzeugten Gases
DE2455127C2 (de) * 1974-11-21 1986-02-27 Shell Internationale Research Maatschappij B.V., Den Haag Verfahren zum Ausschleusen von Rückständen aus einem unter erhöhtem Druck stehenden Vergasungsraum
DE2815329A1 (de) * 1978-04-08 1979-10-18 Ruhrkohle Ag Verfahren zur aufbereitung von wasser/kohlenstoffsuspensionen, die beim auswaschen des gases anfallen, das bei der vergasung von mineralischen rohstoffen entsteht
US4342638A (en) * 1979-04-02 1982-08-03 Envirotech Corporation Flashed-down residue treatment including filtering and solvent repulping
BR8105270A (pt) * 1980-11-12 1982-08-31 Texaco Development Corp Processo para producao de gas de sintese substancialmente isento de particulas
US4459134A (en) * 1982-09-15 1984-07-10 Texaco Inc. Outlet structure for a downflow generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3235313A (en) * 1964-05-18 1966-02-15 Koppers Co Inc Sluicing solid materials from spaces under superatmospheric pressure
DE2348845A1 (de) * 1973-09-13 1975-04-10 Escher Wyss Gmbh Dekanter
FR2417326A1 (fr) * 1978-02-15 1979-09-14 Tepral Grpt Interet Economique Ensemble a effet gravitaire pour la decantation en continu
DE2829629A1 (de) * 1978-07-06 1980-01-24 Ruhrchemie Ag Verfahren und vorrichtung zum ausschleusen von rueckstaenden aus dem drucksystem einer druckvergasungsanlage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690120A1 (de) * 1994-06-27 1996-01-03 Texaco Development Corporation Schlackbehandlungssystem und -methode
EP2300569A2 (de) * 2008-07-15 2011-03-30 Uhde GmbH Vorrichtung zur schlackeabführung aus einem kohlevergasungsreaktor
WO2010012404A2 (de) * 2008-07-29 2010-02-04 Uhde Gmbh Schlackeaustrag aus reaktor zur synthesegasgewinnung
DE102008035386A1 (de) 2008-07-29 2010-02-11 Uhde Gmbh Schlackeaustrag aus Reaktor zur Synthesegasgewinnung
WO2010012404A3 (de) * 2008-07-29 2010-05-27 Uhde Gmbh Schlackeaustrag aus reaktor zur synthesegasgewinnung
RU2508392C2 (ru) * 2008-07-29 2014-02-27 Уде Гмбх Выгрузка шлака из реактора для получения синтез-газа
TWI461524B (zh) * 2008-07-29 2014-11-21 Uhde Gmbh 自合成氣體淬取用的反應器排出爐渣的方法
US9102883B2 (en) 2008-07-29 2015-08-11 Thyssenkrupp Uhde Gmbh Slag discharge from reactor for synthesis gas production
AP3484A (en) * 2008-07-29 2015-12-31 Uhde Gmbh Slag discharge from reactor for synthesis gas production
WO2010090784A3 (en) * 2009-01-21 2010-10-07 Conocophillips Company Methods and systems for treating a gasification slag product
US9074149B2 (en) 2009-01-21 2015-07-07 Lummus Technology Inc. Methods and systems for treating a gasification slag product

Also Published As

Publication number Publication date
US4541840A (en) 1985-09-17
DE3368952D1 (en) 1987-02-12
AU558293B2 (en) 1987-01-22
AU1796383A (en) 1984-02-16
SU1301318A3 (ru) 1987-03-30
DE3230088A1 (de) 1984-02-16
PL243333A1 (en) 1985-06-04
EP0101005A3 (en) 1985-01-09
IN159749B (de) 1987-06-06
BR8304239A (pt) 1984-04-24
PL139176B1 (en) 1986-12-31
ZA835787B (en) 1984-04-25
JPS5956489A (ja) 1984-03-31
EP0101005B1 (de) 1987-01-07
CA1211287A (en) 1986-09-16

Similar Documents

Publication Publication Date Title
DE102006040077B4 (de) Verfahren und Vorrichtung zum Austrag von Schlacke aus Vergasungsreaktoren
EP0101005B1 (de) Verfahren und Vorrichtung zum Ausschleusen von Rückständen aschehaltiger Brennstoffe
DE2829629C2 (de) Verfahren und Vorrichtung zum Ausschleusen von Rückständen aus dem Drucksystem einer Druckvergasungsanlage
DE2455127A1 (de) Verfahren zum ausschleusen von rueckstaenden aus einem unter erhoehtem druck stehenden vergasungsraum
DE69400918T2 (de) Vorrichtung zur durchführung von physikalischen und/oder chemischen verfahren, zum beispiel ein wärmetauscher
WO2010006746A2 (de) Vorrichtung zur schlackeabführung aus einem kohlevergasungsreaktor
DE3019937C2 (de)
DE2442836A1 (de) Katalysatorueberfuehrungsverfahren fuer bewegtbett-reaktoren
DE102014201890A1 (de) Kühlung und Waschung eines Rohgases aus der Flugstromvergasung
EP1218471B1 (de) Verfahren und vorrichtung zum gewinnen heizwertreicher brenngase
EP0278287B1 (de) Verfahren und Einrichtung zur Behandlung von körnigen Feststoffen in einer Wirbelschicht
DE2342079A1 (de) Einrichtung zur vergasung feinverteilter, insbesondere fester brennstoffe
DE69515700T2 (de) Dampfkrackverfahren mit injektion von an einem punkt gesammelten pulvern und vorrichtung dazu
DE2828562A1 (de) Schlackeaustrag
DE3617802A1 (de) Verfahren zur herstellung von wasserstoff und kohlenmonoxid enthaltenen gasen aus festen brennstoffen
DE102016218855A1 (de) Freiraumquench mit selbstkühlendem, mehrmanteligem Zentralrohr
DE3144266A1 (de) "verfahren zur herstellung von synthesegas"
DE3439600A1 (de) Verfahren zur erzeugung von schwefelarmem gas aus feingemahlenen kohlenstoffhaltigen feststoffen
DE3403811C2 (de)
EP2300570B1 (de) Vergasungsvorrichtung und vergasungsverfahren mit kontinuierlichem feststoffaustrag
DE102016218854A1 (de) Freiraumquench mit selbstkühlendem, einmanteligem Zentralrohr
DE68905681T2 (de) Methode zur umaenderung der schmutzstoffe in einem rohen hochtemperatur-hochdruck-synthesegasstrom.
DE1023844B (de) Verfahren zum Inberuehrungbringen von Gasen mit kohleartigen Feststoffen
DE3207215A1 (de) Vorrichtung zur kontinuierlichen granulierung von schlacken mittels kuehlfluessigkeit
DE4032747C2 (de) Verfahren zur Naßausschleusung von Aschen aus Generatoren der Kohledruckvergasung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19850202

ITF It: translation for a ep patent filed

Owner name: STUDIO MASSARI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3368952

Country of ref document: DE

Date of ref document: 19870212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83107632.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020725

Year of fee payment: 20

Ref country code: NL

Payment date: 20020725

Year of fee payment: 20

Ref country code: BE

Payment date: 20020725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020812

Year of fee payment: 20

NLS Nl: assignments of ep-patents

Owner name: HOECHST AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: TEXACO DEVELOPMENT CORPORATION

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030803

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20030803