EP0091914B1 - Kathode für eine schmelzflusselektrolysezelle zur herstellung von aluminium - Google Patents

Kathode für eine schmelzflusselektrolysezelle zur herstellung von aluminium Download PDF

Info

Publication number
EP0091914B1
EP0091914B1 EP82902974A EP82902974A EP0091914B1 EP 0091914 B1 EP0091914 B1 EP 0091914B1 EP 82902974 A EP82902974 A EP 82902974A EP 82902974 A EP82902974 A EP 82902974A EP 0091914 B1 EP0091914 B1 EP 0091914B1
Authority
EP
European Patent Office
Prior art keywords
solid cathode
cathode
solid
aluminum
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82902974A
Other languages
English (en)
French (fr)
Other versions
EP0091914A1 (de
Inventor
Tibor Kugler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schweizerische Aluminium AG filed Critical Schweizerische Aluminium AG
Priority to AT82902974T priority Critical patent/ATE15079T1/de
Publication of EP0091914A1 publication Critical patent/EP0091914A1/de
Application granted granted Critical
Publication of EP0091914B1 publication Critical patent/EP0091914B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention relates to a wettable solid-state cathode which can be used in a melt-flow electrolysis cell for the production of aluminum and comprises an aluminide of at least one transition metal of groups IV A, V A and VI A of the periodic system of the elements.
  • the electrolysis generally takes place in a temperature range of about 940 to 970 ° C.
  • the electrolyte becomes poor in aluminum oxide.
  • At a lower concentration of about 1 to 2% by weight of aluminum oxide in the electrolyte there is an anode effect, which results in a voltage increase of, for example, 4 to 4.5 V to 30 V and above.
  • the aluminum oxide concentration must be increased by adding new aluminum oxide (alumina).
  • cathodes made of titanium diboride, titanium carbide, pyrolytic graphite, boron carbide and other substances are proposed, mixtures which can be sintered together, for example, also being used.
  • the usual interpolar distance of approximately 5 cm can be reduced as far as the other parameters allow, for example circulation of the electrolyte in the interpolar gap and maintenance of the electrolysis temperature.
  • The. reduced interpolar distance causes a significant reduction in energy consumption and avoids the formation of non-uniformities in the thickness of the aluminum layer.
  • DE-OS 28 38 965 shows solid-state cathodes made of individually interchangeable elements, each with at least one power supply.
  • the interchangeable elements are made of two different materials from two mechanically rigidly interconnected parts that are resistant to thermal shock - an upper part protruding from the molten electrolyte into the separated aluminum and a lower part arranged exclusively in the liquid aluminum .
  • the upper part at least in the area of the surface, remains unchanged from aluminum-wettable material, while the lower part or its coating consists of an insulator material that is resistant to the liquid aluminum.
  • DE-OS 3045349 relates to an exchangeable wettable solid-state cathode, which consists of an aluminide from at least one metal from the group, formed from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten, without a binding phase made of metallic aluminum, consists.
  • the non-aluminum components of the aluminide thus belong to group IV A, V A and / or VI A of the periodic system of the elements.
  • the chemical and thermal resistance of the aluminides allows them to be used in both molten electrolytes and molten aluminum, although they are of limited solubility in the latter. However, this solubility drops sharply as the temperature drops.
  • the solubility of a metallic non-aluminum component of the aluminide in the liquid aluminum is approximately 1%.
  • the cathode elements are therefore alloyed until the deposited liquid aluminum is saturated with one or more of the transition metals in the aluminide.
  • the elements of the aluminides alloyed during the electrolysis process are recovered from the deposited metal by cooling it to approximately 700 ° C.
  • the crystallizing aluminide can be removed from the liquid metal by known means and used again for the production of cathode elements. This creates a material cycle with relatively low losses.
  • the inventor has set himself the task of creating solid-state cathodes based on aluminides with a service life that corresponds to one or more anode service lives, with the purchase price of the cathode and the handling costs being substantially reduced.
  • the solid cathode consists essentially of a support body and an open-pore structure, at least in the region of the working surface, impregnated with aluminum saturated with transition metal / s, which structure can be fed continuously from aluminide supplies.
  • the working surface is the surface which, when the cathode is inserted in the electrolysis cell, points in the direction of the anode and through which direct electrical current flows.
  • the Alumi nium ions reduced to elemental aluminum.
  • the working surfaces of the cathodes are therefore appropriately slightly inclined so that the deposited aluminum, which forms a film on the wettable cathode, can flow off.
  • the work surfaces of the corresponding anodes which, for. B. can consist of flammable carbon or non-flammable oxide ceramics are inclined accordingly. This tendency also has an advantageous effect here: the oxygen or C0 2 formed can escape better from the molten electrolyte.
  • the open-pore structure is anchored on the support body or part of it. If this support body consists of an electrically non-conductive material, the open-pore structure impregnated with aluminum saturated with transition metal / s must reach at least liquid metal when the solid-state cathode is inserted, so that the electrical current can flow through this impregnation alloy and, if appropriate, through the structure.
  • the carrier body therefore preferably consists at least partially of a material which is electrically conductive at 900 to 1000 ° C. and is resistant to the melt flow. In this case, the current can flow mainly through the support body. Apart from the electrical conductivity, it is essential that the material of the support body is cheap and easy to form. For these reasons, carbon is particularly well suited for the supporting body.
  • the solid-state cathodes are therefore preferably designed as individually replaceable elements which stand on the cell bottom. Damaged elements can be quickly replaced.
  • the risk of damage can be significantly reduced if the solid-state cathodes are designed as elements which float in the melt flow and have lateral spaces.
  • the molten electrolyte has a density of 2.1 g / cm 3
  • the liquid aluminum has a density of 2.3 g / cm 3 .
  • the density of a floating cathode must be between these two values.
  • the density of the cathode material used is too low, appropriate pieces of iron can be used, but these must be evenly distributed and completely encased by the cathode material.
  • the weight of the iron pieces to be used is calculated so that the apparent density of the entire solid cathode is between 2.1 and 2.3 g / cm 3 .
  • the density of the cathode material used is too high, correspondingly closed cavities are formed in the cathode material.
  • Solid cathodes with the correct density float like rafts in the liquid aluminum they are preferably held at the desired distance from each other and from the cell shelf by appropriately trained spacers.
  • the open-pore structure on the one hand must be sufficiently permeable to the aluminum saturated with transition metal / s, but on the other hand it must not allow it to flow out without resistance.
  • These requirements can be formed by sintered fine-grained granules or preferably by a fiber structure in the form of a felt or a woven fabric.
  • the fibers are a few micrometers thick and are preferably made of carbon.
  • the open-pore structure impregnated with transition metal / s saturated aluminum is continuously fed from cavities arranged in the supporting body, into which the open-pore structure projects, or from another location the open-pore structure on which solid aluminide can be held.
  • the aluminum produced during the electrolysis process flows along the diagonally arranged open-pore structure, mixes with the impregnating aluminum saturated with transition metal (s) and would gradually reduce the transition metal content in it so that the open-pore structure would be attacked and gradually dissolved. This is prevented, however, by the open-pore structure being able to be fed continuously from aluminide stocks.
  • the transition metal extracted from the saturated aluminum becomes constantly replaced by new ones, so that the open-pore structure remains permanently impregnated with aluminum saturated with transition metal / s.
  • the open-pore structure in particular a 1-5 mm thick felt made of carbon fibers, is coated with a thin, well-adhering layer of titanium carbide or titanium diboride.
  • the layers that are preferably less than 0.4 ⁇ m thick are produced, for example, by CVD (Chemical Vapor Deposition). If the aluminum impregnating the felt is permanently saturated with titanium, the wettable coating is not dissolved, which can increase the life of the felt.
  • a felt consisting of coated carbon fibers has the further advantage that if the coating is faulty, the entire work surface will not become unusable, but only individual fibers will be dissolved prematurely.
  • the main advantage of the invention is thus that simple ceramic means can be used to replace expensive ceramic moldings by supporting bodies made of a cheap, easily moldable material with an open-pore surface structure impregnated with aluminum saturated with transition metal / s.
  • the solid-state cathodes according to the invention are also particularly suitable for converting existing aluminum melt flow electrolysis cells.
  • solid cathodes 10 and anode blocks 12 arranged in pairs form the electrode units of the electrolytic cell.
  • the solid-state cathode 10 consists of a shaped support body 14 made of carbon and a felt 16 made of carbon fibers coated with titanium carbide and fastened on the working surface facing the anode body 12. Rags of this approximately 4 mm thick felt 16 extend into a cavity 18 in the carrier body 14, which is filled with a titanium aluminide 19 which is dough at electrolysis temperature and which consists, for example, of 80% by weight aluminum and 20% by weight titanium.
  • the feet 20 of the support body 14 stand in correspondingly shaped recesses in the carbon base 22 of the electrolytic cell.
  • the density of the solid-state cathode 10 must therefore be greater than that of the liquid aluminum 24.
  • the felt 16 is impregnated with aluminum saturated with titanium, which system forms the cathode.
  • the deposited aluminum mixes with the titanium-saturated aluminum in the felt and flows to the center of the electrode element, depending on the inclination of the working surface of the solid-state cathode.
  • the felt 16 acts like a wick in the oil, liquid alloy is drawn from the cavity 18 with the pasty titanium aluminide, thus replacing the current losses. Without this replacement of the spent titanium, the deposited aluminum would dissolve the titanium carbide coating on the carbon fibers and render the cathode surface non-wettable.
  • a solid-state cathode 10 and an anode block 12 form a pair of electrodes.
  • the support body 14 consists of an insulating material, for example of highly sintered aluminum oxide, aluminum oxide-containing ceramics, silicon carbide or silicon nitride-bonded silicon carbide.
  • the felt 16 In order to ensure that the electrical direct current flows away, the felt 16 always extends along as far as possible all side surfaces of the support body 14 into the liquid aluminum 24.
  • the cavity 18 is trough-shaped, with a relatively large opening, and is filled with solid titanium aluminide granules which consist, for example, of 55% by weight of aluminum and 45% by weight of titanium.
  • the felt 16 does not reach down into the cavity 18;
  • the aluminum impregnating the felt 16 with titanium is saturated by the convection of the molten electrolyte 26.
  • the deposited aluminum flows through an opening 28 in the support body 14.
  • the apparent density of the entire solid cathode, at working temperature, must be between the density of the molten electrolyte and the molten aluminum. In the case of supporting bodies 14 made of carbon, this is achieved by inserting iron pieces 30 into closed cavities, for example in the form of a ring.
  • solid cathodes 10 attached to a cathodic suspension system 36 and anode bodies 12 attached to an anodic suspension system 38 are alternatively arranged.
  • the felt 16 is fed by means of a sleeve 34 which is placed over the support rods of the support body 14 and which is made of a solid aluminum minid exist.
  • the cathodes and anodes can be shifted to the right in the direction of the arrow.
  • a mechanism known per se ensures that the same interpolar distances exist between the anode and cathode after each shift.
  • anodes 12 or cathodes 14 arranged on the left have to be displaced more than those arranged on the right.
  • Burned-off anodes, along with the cathode, are removed on the right. A sufficiently large space has now been created on the left side so that the cathode can be reinserted together with a new anode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

  • Die Erfindung bezieht sich auf eine benetzbare, in einer Schmelzflußelektrolysezelle zur Herstellung von Aluminium einsetzbare Festkörperkathode mit einem Aluminid von wenigstens einem Übergangsmetall der Gruppen IV A, V A und VI A des periodischen Systems der Elemente.
  • Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum größten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. Am Anodenbalken befestigte, bei konventionellen Verfahren aus amorphem Kohlenstoff bestehende Anoden tauchen von oben in die Schmelze ein. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet.
  • Die Elektrolyse findet im allgemeinen in einem Temperaturbereich von etwa 940 bis 970° C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von etwa 1 bis 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Spannungserhöhung von beispielsweise 4 bis 4,5 V auf 30 V und darüber auswirkt. Spätestens dann muß die Aluminiumoxidkonzentration durch Zugabe von neuem Aluminiumoxid (Tonerde) angehoben werden.
  • Es ist bekannt, bei der Schmelzflußelektrolyse zur Herstellung von Aluminium benetzbare Festkörperkathoden einzusetzen. Dabei werden Kathoden aus Titandiborid, Titankarbid, pyrolytischem Graphit, Borkarbid und weiteren Subtanzen vorgeschlagen, wobei auch Gemische, die beispielsweise zusammengesintert sein können, eingesetzt werden.
  • Bei benetzbaren Kathoden kann die übliche Interpolardistanz von ca. 5 cm so weit herabgesetzt werden, als es die übrigen Parameter, beispielsweise Zirkulation des Elektrolyten im Interpolarspalt und Aufrechterhalten der Elektrolysetemperatur, erlauben. Die. reduzierte Interpolardistanz bewirkt einen in bedeutendem Maße herabgesetzten Energieverbrauch und vermeidet die Ausbildung von Ungleichmäßigkeiten in bezug auf die Dicke der Aluminiumschicht.
  • Im Gegensatz zu im Kohleboden der Zelle fest verankerten benetzbaren Kathoden zeigt die DE-OS 28 38 965 Festkörperkathoden aus einzeln auswechselbaren Elementen mit je mindestens einer Stromzuführung. In einer Weiterentwicklung nach der DE-OS 3024 172 werden die auswechselbaren Elemente aus zwei mechanisch starr miteinander verbundenen, gegen Wärmeschocks widerstandsfähigen Teilen - einem vom schmelzflüssigen Elektrolyten in das abgeschiedene Aluminium hineinragenden oberen und einem ausschließlich im flüssigen Aluminium angeordneten unteren Teil - aus verschiedenen Materialien hergestellt. Der obere Teil besteht, mindestens im Bereich der Oberfläche, unverändert aus mit Aluminium benetzbarem Material, während der untere Teil bzw. dessen Beschichtung aus einem gegen das flüssige Aluminium beständigen Isolatormaterial besteht.
  • Die DE-OS 3045349 hat eine auswechselbare benetzbare Festkörperkathode zum Gegenstand, welche aus einem Aluminid von mindestens einem Metall der Gruppe, gebildet aus Titan, Zirkon, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän und Wolfram, ohne Bindephase aus metallischem Aluminium, besteht. Die Nicht-Aluminiumkomponenten des Aluminids gehören also zur Gruppe IV A, V A und/oder VI A des periodischen Systems der Elemente.
  • Die chemische und thermische Widerstandsfähigkeit der Aluminide erlaubt, daß sie sowohl im schmelzflüssigen Elektrolyten als auch in geschmolzenem Aluminium eingesetzt werden können, obwohl sie in letzterem begrenzt löslich sind. Diese Löslichkeit fällt jedoch bei sinkender Temperatur steil ab.
  • Bei Arbeitstemperatur der Aluminiumelektrolysezelle, welche im Bereich von 900 bis 1000°C liegt, beträgt die Löslichkeit einer metallischen Nicht-Aluminiumkomponente des Aluminids im flüssigen Aluminium ungefähr 1%. Die Kathodenelemente werden also ablegiert, bis das abgeschiedene flüssige Aluminium mit einer oder mehreren der im Aluminid befindlichen Übergangsmetalle gesättigt ist.
  • Die Elemente der während des Elektrolyseprozesses ablegierten Aluminide werden aus dem abgeschiedenen Metall zurückgewonnen, indem dieses auf ungefähr 700°C abgekühlt wird. Das auskristallisierende Aluminid kann mit bekannten Mitteln aus dem flüssigen Metall entfernt und wieder zur Herstellung von Kathodenelementen eingesetzt werden. Damit entsteht ein Materialkreislauf mit verhältnismäßig geringen Verlusten.
  • Der Erfinder hat sich die Aufgabe gestellt, auf der Basis von Aluminiden arbeitende Festkörperkathoden mit einer Lebensdauer, die einer oder mehreren Anodenstandzeiten entspricht, zu schaffen, wobei der Anschaffungspreis der Kathode und die Handhabungskosten wesentlich reduziert werden sollen.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Festkörperkathode im wesentlichen aus einem Tragkörper und einer mindestens im Bereich der Arbeitsoberfläche befindlichen offenporigen mit an Übergangsmetall/en gesättigtem Aluminium imprägnierten Struktur, welche aus Aluminidvorräten kontinuierlich speisbar ist, besteht.
  • Als Arbeitsfläche wird diejenige Fläche bezeichnet, welche bei in die ELektrolysezelle eingesetzter Kathode in Richtung zur Anode weist und vom elektrischen Gleichstrom durchflossen wird. Auf dieser Arbeitsfläche werden die Aluminiumionen zu elementarem Aluminium reduziert. Die Arbeitsflächen der Kathoden sind deshalb zweckmäßig leicht geneigt, damit das abgeschiedene Aluminium, welches auf der benetzbaren Kathode einen Film bildet, abfließen kann.
  • Die Arbeitsflächen der korrespondierenden Anoden, welche z. B. aus brennbarem Kohlenstoff oder unbrennbarer Oxidkeramik bestehen können, sind entsprechend geneigt. Auch hier wirkt sich diese Neigung vorteilhaft aus: der entstehende Sauerstoff bzw. das C02 kann besser aus dem schmelzflüssigen Elektrolyten entweichen.
  • Die offenporige Struktur ist auf dem Tragkörper verankert oder Bestandteil davon. Falls dieser Tragkörper aus einem elektrisch nicht leitenden Material besteht, muß die offenporige, mit an Übergangsmetall/en gesättigtem Aluminium imprägnierte Struktur bei eingesetzter Festkörperkathode bis mindestens zum flüssigen Metall reichen, damit der elektrische Strom durch diese Imprägnierlegierung und gegebenenfalls durch die Struktur fließen kann. Der Tragkörper besteht deshalb vorzugsweise mindestens teilweise aus einem bei 900 bis 1000°C elektrisch gut leitenden und gegen den Schmelzfluß beständigen Material. In diesem Fall kann der Strom hauptsächlich durch den Tragkörper fließen. Abgesehen von der elektrischen Leitfähigkeit ist wesentlich, daß das Material des Tragkörpers billig und gut formbar ist. Aus diesen Gründen ist Kohlenstoff für den Tragkörper besonders gut geeignet.
  • Bei Manipulationen an der Traverse bzw. dem Anodenbalken und insbesondere beim Auswechseln der Anode ist die Kathode stets der Gefahr mechanischer Beschädigung ausgesetzt. Vorzugsweise sind deshalb die Festkörperkathoden als einzeln auswechselbare Elemente ausgebildet, welche auf dem Zellenboden stehen. Beschädigte Elemente können so rasch ausgewechselt werden.
  • Die Beschädigungsgefahr kann wesentlich herabgesetzt werden, wenn die Festkörperkathoden als im Schmelzfluß schwimmende Elemente mit seitlichen Zwischenräumen ausgebildet sind. Bei einer Temperatur von 900 bis 1000° C hat der schmelzflüssige Elektrolyt eine Dichte von 2,1 g/cm3, das flüssige Aluminium eine solche von 2,3 g/cm3. Die Dichte einer schwimmenden Kathode muß zwischen diesen beiden Werten liegen.
  • Wenn die Dichte des eingesetzten Kathodenmaterials zu gering ist, können entsprechende Eisenstücke eingesetzt werden, die jedoch gleichmäßig verteilt und vom Kathodenmaterial vollständig umhüllt sein müssen. Das Gewicht der einzusetzenden Eisenstücke wird so berechnet, daß die scheinbare Dichte der gesamten Festkörperkathode zwischen 2,1 und 2,3 g/cm3 liegt.
  • Wenn die Dichte des eingesetzten Kathodenmaterials dagegen zu groß ist, werden im Kathodenmaterial entsprechend geschlossene Hohlräume ausgebildet.
  • Festkörperkathoden mit der richtigen Dichte schwimmen wie Floße im flüssigen Aluminium, sie werden vorzugsweise von entsprechend ausgebildeten Distanzhaltern im gewünschten Abstand voneinander und vom Zellenbord gehalten.
  • Wird bei schwimmenden Kathoden durch eine Fehlmanipulation die Anode gegen die Festkörperkathode gedrückt, so kann diese ausweichen und erleidet keinerlei Beschädigung.
  • Die offenporige Struktur muß für das an Übergangsmetall/en gesättigte Aluminium einerseits genügend durchlässig sein, darf es aber andererseits nicht widerstandslos ausfließen lassen.
  • Je nach dem Material der offenporigen Struk- tur bzw. deren Beschichtung muß hier unter Berücksichtigung von Kapillar- und Oberflächenkräften die optimale Lösung gesucht werden.
  • Diese Anforderungen können durch zusammengesinterte feinkörnige Granalien oder vorzugsweise durch eine Faserstruktur in Form eines Filzes oder eines Gewebes ausgebildet. Die Fasern sind einige Mikrometer dick und bestehen vorzugsweise aus Kohlenstoff.
  • Die kontinuierliche Speisung der offenporigen, mit an Übergangsmetall/en gesättigtem Aluminium imprägnierten Struktur erfolgt, je nach geometrischer Form der Festkörperkathode und der chemischen Zusammensetzung des verwendeten Aluminids, aus im Tragkörper angeordneten Hohlräumen, in welche die offenporige Struktur hineinragt, oder von einer anderen Stelle auf der offenporigen Struktur an welcher festes Aluminid gehaltert werden kann.
  • Aus wirtschaftlichen Gründen und wegen der wissenschaftlich guten Erforschung werden vorzugsweise Titanaluminide eingesetzt. Je nach dem prozentualen Titangehalt haben diese Aluminide bei der Elektrolysetemperatur im Bereich von 900 bis 1000°C verschiedene Aggregatzustände:
    • - Aluminide mit weniger als 37,2 Gew.-% Titan sind bei Elektrolysetemperatur zähflüssig bis teigig. Diese können also nicht als feste Formkörper, sondern nur als Schüttkathode in Hohlräumen des Tragkörpers eingesetzt werden.
    • - Aluminide mit einem Titangehalt oberhalb 37,2 (bis 63) Gew.-% Titan dagegen können auch als feste Formkörper mit der offenporigen Struktur in Verbindung gebracht werden.
  • Das während des Elektrolyseprozesses erzeugte Aluminium fließt entlang der schräg angeordneten offenporigen Struktur, mischt sich dabei mit dem imprägnierenden, an Übergangsmetall/en gesättigten Aluminium und würde in diesem allmählich den Übergangsmetallgehalt derart weit herabsetzen, daß die offenporige Struktur angegriffen und allmählich aufgelöst würde. Dies wird jedoch verhindert, indem die offenporige Struktur kontinuierlich aus Aluminidvorräten speisbar ist. Das dem gesättigten Aluminium entzogene Übergangsmetall wird laufend durch neues ersetzt, so daß die offenporige Struktur dauernd mit an Übergangsmetall/ en gesättigtem Aluminium imprägniert bleibt.
  • Beim bevorzugt eingesetzten Titanaluminid wird die offenporige Struktur, insbesondere ein 1-5 mm dicker Filz aus Kohlenstoffasern, mit einer dünnen, gut haftenden Schicht aus Titankarbid oder Titandiborid beschichtet. Die bevorzugt weniger als 0,4 um dicken Schichten werden beispielsweise durch CVD (Chemical Vapor Deposition) hergestellt. Wenn das den Filz imprägnierende Aluminium dauernd mit Titan gesättigt ist, wird die benetzbare Beschichtung nicht aufgelöst, wodurch die Lebensdauer des Filzes vervielfacht werden kann.
  • Ein aus beschichteten Kohlefasern bestehender Filz weist weiter den Vorteil auf, daß bei fehlerhafter Beschichtung nicht die ganze Arbeitsoberfläche unbrauchbar wird, sondern nur einzelne Fasern vorzeitig aufgelöst werden.
  • Der wesentliche Vorteil der Erfindung besteht also darin, daß mit einfachen Mitteln teure keramische Formkörper durch Tragkörper aus einem billigen, gut formbaren Material mit einer offenporigen, mit an Übergangsmetall/en gesättigtem Aluminium imprägnierten Oberflächenstruktur ersetzt werden können.
  • Die erfindungsgemäßen Festkörperkathoden sind insbesondere auch für das Umrüsten von bestehenden Aluminiumschmelzflußelektrolysezellen geeignet.
  • Die Erfindung wird anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Die schematischen teilweisen Vertikalschnitte aus Elektrolysezellen zeigen in
    • - Fig. 1 eine Festkörperkathode mit leitendem Tragkörper und entsprechend ausgebildeter Anode,
    • - Fig. 2 eine Festkörperkathode mit einem Tragkörper aus elektrisch isolierendem Material und entsprechend ausgebildeter Anode,
    • - Fig. 3 im schmelzflüssigen Aluminium schwimmende Festkörperkathoden aus elektrisch leitfähigem Material und entsprechend ausgebildeter Anode, und
    • - Fig. 4 alternativ angeordnete Festkörperkathoden aus elektrisch leitfähigem Material und entsprechend ausgebildete Anoden.
  • Nach der in Fig. 1 dargestellten Ausführungsform bilden paarweise angeordnete Festkörperkathoden 10 und Anodenblöcke 12 die Elektrodeneinheiten der Elektrolysezelle. Die Festkörperkathode 10 besteht aus einem geformten Tragkörper 14 aus Kohlenstoff und einem auf der dem Anodenkörper 12 zugewandten Arbeitsfläche befestigten Filz 16 aus mit Titankarbid beschichteten Kohlenstoffasern. Lappen dieses etwa 4 mm dicken Filzes 16 reichen in einen Hohlraum 18 im Tragkörper 14, welcher mit einem bei Elektrolysetemperatur teigigen Titanaluminid 19, das aus beispielsweise 80 Gew.-% Aluminium und 20 Gew.-% Titan besteht, gefüllt ist.
  • Die Füße 20 des Tragkörpers 14 stehen in entsprechend geformten Ausnehmungen des Kohlenstoffbodens 22 der Elektrolysezelle. Die Dichte der Festkörperkathode 10 muß also größer als diejenige des flüssigen Aluminiums 24 sein.
  • Während des Elektrolyseprozesses wird auf dem mit an Titan gesättigten Aluminium imprägnierten Filz 16, welches System die Kathode bildet, Aluminium abgeschieden. Das abgeschiedene Aluminium mischt sich mit dem an Titan gesättigten Aluminium im Filz und fließt, entsprechend der Neigung der Arbeitsfläche der Festkörperkathode, zur Mitte des Elektrodenelementes. Der Filz 16 wirkt wie ein Docht im Öl, aus dem Hohlraum 18 mit dem teigigen Titanaluminid wird flüssige Legierung nachgezogen und so die laufenden Verluste ersetzt. Ohne diesen Ersatz des verbrauchten Titans würde das abgeschiedene Aluminium die Titankarbidbeschichtung auf den Kohlenstoffasern auflösen und die Kathodenoberfläche unbenetzbar machen.
  • Durch die verhältnismäßig kleine Öffnung des Hohlraumes 18 kann nur wenig des zirkulierenden schmelzflüssigen Elektrolyten 26 eintreten, die Speisung mittels Konvektion ist also klein.
  • In Fig. 2 bilden eine Festkörperkathode 10 und ein Anodenblock 12 ein Elektrodenpaar. Der Tragkörper 14 besteht aus einem isolierenden Material, beispielsweise aus hochgesintertem Aluminiumoxid, aluminiumoxidhaltigen Keramiken, Siliziumkarbid oder siliziumnitridgebundenem Siliziumkarbid. Damit der Abfluß des elektrischen Gleichstromes gewährleistet ist, reicht der Filz 16 entlang möglichst aller Seitenflächen des Tragkörpers 14 stets bis in das flüssige Aluminium 24 hinein. Der Hohlraum 18 ist trogförmig, mit verhältnismäßig großer Öffnung, ausgebildet und mit festen Titanaluminidgranalien gefüllt, welche beispielsweise aus 55 Gew.-% Aluminium und 45 Gew.-% Titan bestehen.
  • Der Filz 16 reicht dagegen nicht in den Hohlraum 18 hinunter; die Sättigung des den Filz 16 imprägnierenden Aluminiums mit Titan erfolgt durch die Konvektion des schmelzflüssigen Elektrolyten 26.
  • Das abgeschiedene Aluminium fließt durch eine Öffnung 28 im Tragkörper 14 ab.
  • Die in Fig.3 dargestellten schwimmenden Festkörperkathoden 10 füllen, an die Anodenkörper 12 angepaßt, die gesamte Elektrolysewanne, indem ihre umlaufend ausgebildeten Distanzhalter 32 satt aneinander liegen. Die scheinbare Dichte der gesamten Festkörperkathode muß, bei Arbeitstemperatur, zwischen der Dichte des schmelzflüssigen Elektrolyten und des geschmolzenen Aluminiums liegen. Dies wird bei Tragkörpern 14 aus Kohlenstoff durch die Einlage von Eisenstücken 30 in geschlossene Hohlräume, beispielsweise in Form eines Ringes, erreicht.
  • In Fig. 4 sind an einem kathodischen Aufhängesystem 36 befestigte Festkörperkathoden 10 und an einem anodischen Aufhängesystem 38 befestigte Anodenkörper 12 alternativ angeordnet. Die Speisung des Filzes 16 erfolgt durch über die Tragstangen der Tragkörper 14 gestülpte Manschette 34, welche aus einem festen Aluminid bestehen.
  • Falls die Anodenkörper 12 aus Kohlenstoff bestehen, also abbrennen, können Kathoden und Anoden in Pfeilrichtung nach rechts verschoben werden. Ein an sich bekannter Mechanismus sorgt dafür, daß nach jedem Verschieben überall die gleichen Interpolardistanzen zwischen Anode und Kathode bestehen.
  • Deshalb müssen die links angeordneten Anoden 12 bzw. Kathoden 14 mehr verschoben werden als die rechts angeordneten.
  • Abgebrannte Anoden werden, zusammen mit der Kathode, rechts entnommen. Auf der linken Seite ist nun ein genügend großer Zwischenraum entstanden, so daß die Kathode, zusammen mit einer neuen Anode, wieder eingesetzt werden kann.

Claims (10)

1. Benetzbare, in einer Schmelzflußelektrolysezelle zur Herstellung von Aluminium einsetzbare Festkörperkathode mit einem Aluminid von wenigstens einem Übergangsmetall der Gruppen IV A, V A und VI A des periodischen Systems der Elemente, dadurch gekennzeichnet, daß die Festkörperkathode (10) im wesentlichen aus einem Tragkörper (14) und einer mindestens im Bereich der Arbeitsfläche befindlichen offenporigen, mit an Übergangsmetall/en gesättigtem Aluminium imprägnierten Struktur (16), welche aus Aluminidvorräten (19, 34) kontinuierlich speisbar ist, besteht.
2. Festkörperkathode nach Anspruch 1, dadurch gekennzeichnet, daß die Festkörperkathode (10) als auswechselbares Element ausgebildet ist.
3. Festkörperkathode nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß deren Tragkörper (14) mindestens teilweise aus bei 900 bis 1000°C elektrisch gut leitendem und gegen den Schmelzfluß beständigem Material, vorzugsweise Kohlenstoff, besteht.
4. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Tragkörper (14) wenigstens einen Hohlraum (18) zur Aufnahme des Aluminids hat, in welchen die offenporige Struktur (16) vorzugsweise hineinragt.
5. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die offenporige Struktur (16) aus zusammengesinterten feinkörnigen Granalien besteht.
6. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die offenporige Struktur (16) aus Fasern, vorzugsweise einem Filz oder Gewebe, besteht.
7. Festkörperkathode nach Anspruch 6, dadurch gekennzeichnet, daß die offenporige Struktur (16) aus einem vorzugsweise 1-5 mm dicken Filz aus Kohlenstoffasern besteht.
8. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß beim Einsatz von Titanaluminid die offenporige Struktur (16) mit Titankarbid oder Titandiborid, vorzugsweise 0,4 J.Lm dick, beschichtet ist.
9. Festkörperkathode nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Festkörperkathode (10) bei 900-1000°C eine scheinbare Dichte hat, die zwischen denjenigen des Elektrolyten und des flüssigen Aluminiums, vorzugsweise zwischen 2,1 bis 2,3 g/cm3, liegt, und mit Distanzhaltern (32) versehen ist.
10. Festkörperkathode nach Anspruch 9, dadurch gekennzeichnet, daß zum Erreichen der richtigen scheinbaren Dichte vom Kathodenmaterial ummantelte regelmäßig verteilte Eisenstücke (30) eingesetzt sind.
EP82902974A 1981-10-23 1982-10-14 Kathode für eine schmelzflusselektrolysezelle zur herstellung von aluminium Expired EP0091914B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82902974T ATE15079T1 (de) 1981-10-23 1982-10-14 Kathode fuer eine schmelzflusselektrolysezelle zur herstellung von aluminium.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6788/81 1981-10-23
CH6788/81A CH648870A5 (de) 1981-10-23 1981-10-23 Kathode fuer eine schmelzflusselektrolysezelle zur herstellung von aluminium.

Publications (2)

Publication Number Publication Date
EP0091914A1 EP0091914A1 (de) 1983-10-26
EP0091914B1 true EP0091914B1 (de) 1985-08-21

Family

ID=4315036

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82902974A Expired EP0091914B1 (de) 1981-10-23 1982-10-14 Kathode für eine schmelzflusselektrolysezelle zur herstellung von aluminium

Country Status (8)

Country Link
US (1) US4462886A (de)
EP (1) EP0091914B1 (de)
CA (1) CA1209526A (de)
CH (1) CH648870A5 (de)
DE (1) DE3142686C1 (de)
IT (1) IT1152748B (de)
NO (1) NO832198L (de)
WO (1) WO1983001465A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102953083A (zh) * 2011-08-25 2013-03-06 贵阳铝镁设计研究院有限公司 内腔阴极结构铝电解槽

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2518124A1 (fr) * 1981-12-11 1983-06-17 Pechiney Aluminium Elements cathodiques flottants, a base de refractaire electroconducteur, pour la production d'aluminium par electrolyse
US4544457A (en) * 1982-05-10 1985-10-01 Eltech Systems Corporation Dimensionally stable drained aluminum electrowinning cathode method and apparatus
ATE24937T1 (de) * 1982-05-10 1987-01-15 Eltech Systems Corp Masshaltende drainierfaehige kathode zur aluminiumgewinnung, verfahren und vorrichtung zu ihrer herstellung.
ATE32107T1 (de) * 1982-05-10 1988-02-15 Eltech Systems Corp Aluminium benetzbare materialien.
US4560448A (en) * 1982-05-10 1985-12-24 Eltech Systems Corporation Aluminum wettable materials for aluminum production
FR2529580B1 (fr) * 1982-06-30 1986-03-21 Pechiney Aluminium Cuve d'electrolyse pour la production d'aluminium, comportant un ecran conducteur flottant
CH651855A5 (de) * 1982-07-09 1985-10-15 Alusuisse Festkoerperkathode in einer schmelzflusselektrolysezelle.
US4664760A (en) * 1983-04-26 1987-05-12 Aluminum Company Of America Electrolytic cell and method of electrolysis using supported electrodes
US4596637A (en) * 1983-04-26 1986-06-24 Aluminum Company Of America Apparatus and method for electrolysis and float
US4622111A (en) * 1983-04-26 1986-11-11 Aluminum Company Of America Apparatus and method for electrolysis and inclined electrodes
DE69114511D1 (de) * 1990-08-20 1995-12-14 Comalco Alu Verbesserte aluminium-schmelzzelle.
DE4118304A1 (de) * 1991-06-04 1992-12-24 Vaw Ver Aluminium Werke Ag Elektrolysezelle zur aluminiumgewinnung
CA2108072A1 (en) * 1992-03-19 1995-04-09 Robert P. Coe Secure event tickets
WO1996007773A1 (en) * 1994-09-08 1996-03-14 Moltech Invent S.A. Aluminium electrowinning cell with improved carbon cathode blocks
US5472578A (en) * 1994-09-16 1995-12-05 Moltech Invent S.A. Aluminium production cell and assembly
US5498320A (en) * 1994-12-15 1996-03-12 Solv-Ex Corporation Method and apparatus for electrolytic reduction of fine-particle alumina with porous-cathode cells
EP1224340B1 (de) * 1999-10-26 2005-04-27 MOLTECH Invent S.A. Aluminium elektrogewinnungszelle mit drainierter kathode und verbesserter elektrolytumwälzung
ES2224048T3 (es) * 2001-03-07 2005-03-01 Moltech Invent S.A. Celda para la fabricacion de aluminio por electrolisis que funciona con anodos de base metalica.
CN101698945B (zh) * 2009-11-03 2011-07-27 中国铝业股份有限公司 一种碳素纤维增强型阴极炭块及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE549859A (de) * 1955-07-28
US3459515A (en) * 1964-03-31 1969-08-05 Du Pont Cermets of aluminum with titanium carbide and titanium and zirconium borides
US3471380A (en) * 1966-10-25 1969-10-07 Reynolds Metals Co Method of treating cathode surfaces in alumina reduction cells
US3661736A (en) * 1969-05-07 1972-05-09 Olin Mathieson Refractory hard metal composite cathode aluminum reduction cell
US4224128A (en) * 1979-08-17 1980-09-23 Ppg Industries, Inc. Cathode assembly for electrolytic aluminum reduction cell
US4339316A (en) * 1980-09-22 1982-07-13 Aluminum Company Of America Intermediate layer for seating RHM tubes in cathode blocks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102953083A (zh) * 2011-08-25 2013-03-06 贵阳铝镁设计研究院有限公司 内腔阴极结构铝电解槽
CN102953083B (zh) * 2011-08-25 2016-08-24 贵阳铝镁设计研究院有限公司 内腔阴极结构铝电解槽

Also Published As

Publication number Publication date
IT1152748B (it) 1987-01-07
US4462886A (en) 1984-07-31
IT8223834A0 (it) 1982-10-20
WO1983001465A1 (en) 1983-04-28
CA1209526A (en) 1986-08-12
DE3142686C1 (de) 1983-02-03
CH648870A5 (de) 1985-04-15
NO832198L (no) 1983-06-17
EP0091914A1 (de) 1983-10-26

Similar Documents

Publication Publication Date Title
EP0091914B1 (de) Kathode für eine schmelzflusselektrolysezelle zur herstellung von aluminium
DE69111078T2 (de) Elektrodenzusammenstellung und multimonopolare zellen für die aluminiumelektrogewinnung.
DE69532052T2 (de) Mit versenkten Nuten drainierte horizontale Kathodenoberfläche für die Aluminium Elektrogewinnung
DE2838965C2 (de) Benetzbare Kathode für einen Schmelzflußelektrolyseofen
EP0041045B1 (de) Kathode für eine Schmelzflusselektrolysezelle
DE69306775T2 (de) Anode-kathode anordnung für aluminium-herstellungszellen
DE2818971C2 (de) Vorrichtung und Verfahren zur elektrochemischen Gewinnung von Alkalimetall aus einem elektrisch dissoziierbaren Salz desselben und dessen Verwendung
DE60013886T2 (de) Bei niedriger temperatur betriebene elektrolysezelle zur herstellung von aluminium
DE2446668C3 (de) Verfahren zur Schtnelzflußelektrolyse, insbesondere von Aluminiumoxid, und Anode zur Ausführung des Verfahrens
CH643885A5 (de) Elektrodenanordnung einer schmelzflusselektrolysezelle zur herstellung von aluminium.
DE2910811A1 (de) Stromleitereinrichtung fuer elektrode
DE3405762C2 (de) Zelle zur Raffination von Aluminium
DE3880940T2 (de)
DE60202536T2 (de) Aluminium elektrogewinnungszellen mit geneigten kathoden
DE69837966T2 (de) Zelle für aluminium-herstellung mit drainierfähiger kathode
DE60003683T2 (de) Aluminium-elektrogewinnungszelle mit v-förmigem kathodenboden
DE60019782T2 (de) Aluminium elektrogewinnungszelle mit drainierter kathode und verbesserter elektrolytumwälzung
EP0065534B1 (de) Kathode für eine schmelzflusselektrolysezelle zur herstellung von aluminium
DE1174516B (de) Ofen und Verfahren zur Herstellung von Aluminium durch Schmelzflusselektrolyse
DE69210038T2 (de) Zelle für die elektrolyse von tonerde,vorzugsweise bei niedrigeren temperaturen
DE1092216B (de) Stromfuehrungselemente und deren Verwendung in elektrolytischen Zellen zur Gewinnung oder Raffination von Aluminium
DE2107675C3 (de) Verfahren und Vorrichtung zum Regulieren der Al tief 2 0 tief 3 -Konzentration im Fluoridelektrolyten bei der Aluminiumelektrolyse
DE60201534T2 (de) Elektrolysezellen zur aluminiumgewinnung mit drainiertem kathodenboden und einem reservoir für aluminium
AT208090B (de) Zelle für die Schmelzflußelektrolyse von Verbindungen solcher Metalle, deren Dichte größer ist als die Dichte des Elektrolysebades, insbesondere von Al2O3
DE3012694A1 (de) Einrichtung und verfahren zum galvanischen abscheiden von aluminium mittels elektrolyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830618

AK Designated contracting states

Designated state(s): AT CH FR GB LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH FR GB LI NL SE

REF Corresponds to:

Ref document number: 15079

Country of ref document: AT

Date of ref document: 19850915

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19850917

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19851031

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19861014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19861015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870630

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871031

Ref country code: CH

Effective date: 19871031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122

EUG Se: european patent has lapsed

Ref document number: 82902974.3

Effective date: 19870812