EP0090682B1 - Procédé et installation de traitement thermique de barres en acier allié prêtes à l'emploi - Google Patents

Procédé et installation de traitement thermique de barres en acier allié prêtes à l'emploi Download PDF

Info

Publication number
EP0090682B1
EP0090682B1 EP83400378A EP83400378A EP0090682B1 EP 0090682 B1 EP0090682 B1 EP 0090682B1 EP 83400378 A EP83400378 A EP 83400378A EP 83400378 A EP83400378 A EP 83400378A EP 0090682 B1 EP0090682 B1 EP 0090682B1
Authority
EP
European Patent Office
Prior art keywords
cooling
rod
forced cooling
cooler
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP83400378A
Other languages
German (de)
English (en)
Other versions
EP0090682A2 (fr
EP0090682A3 (en
Inventor
Yves Desalos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut de Recherches de la Siderurgie Francaise IRSID
Original Assignee
Institut de Recherches de la Siderurgie Francaise IRSID
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut de Recherches de la Siderurgie Francaise IRSID filed Critical Institut de Recherches de la Siderurgie Francaise IRSID
Priority to AT83400378T priority Critical patent/ATE62278T1/de
Publication of EP0090682A2 publication Critical patent/EP0090682A2/fr
Publication of EP0090682A3 publication Critical patent/EP0090682A3/fr
Application granted granted Critical
Publication of EP0090682B1 publication Critical patent/EP0090682B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching

Definitions

  • the invention relates to the field of heat treatment of metal bars at the end of rolling and more particularly relates to the direct production of quenching structures, preferably martensite, and optionally bainite, in the useful part of steel, intended in particular for mechanical construction.
  • the steel industry currently delivers alloy steels with improved machinability which exhibit, with the quenched and tempered effect, machinability comparable to that of conventional steels of the same composition but in the annealed state. Consequently, the possibility of machining certain parts from bars having the final characteristics of use is of considerable economic interest, in particular due to the elimination of annealing for machining on a blank, of the quenching and tempering treatment for the user, or resuming machining by rectification.
  • Direct quenching in a swimming pool of water would, for its part, be insufficiently rapid for the largest diameters and would risk leading to bar bending (due to the asymmetries of treatment), or to curls (due to the setting in tension of the fragile peripheral layer of martensite during the swelling linked to the subsequent transformation of the heart).
  • Document DD-119270 describes a quenching treatment interrupted in at least two steps immediately following rolling.
  • a steel bar first undergoes a very rapid quenching bringing its peripheral part to a temperature lower than the martensitic transformation temperature of the steel considered. Then the quenching is interrupted so as to allow the temperatures of the core and the periphery of the product to equalize. Finally the bar is subjected to a second less energetic quenching at the end of which the core of the bar is transformed into martensite.
  • the whole treatment lasts about 1.5 s and is only intended for products with a very small section, for example with a diameter of 10 mm.
  • the object of the invention is to obtain, without bending or taping, quenching structures in the section of ready-to-use rolled alloy steel bars having large diameters.
  • the invention also relates to an installation for implementing the method successively comprising, in the direction of travel of the product, means enabling a forced cooling of the bars in the parade according to step a) ensuring an average heat exchange coefficient greater than 5.103W / m2. ° C, and a chiller with movable beams ensuring a regular translation "with crawl steps” and a slow rotation on itself of the bar, said cooler being equipped with forced cooling means.
  • the cooling means according to step a) consist of at least one water box where the bar is wrapped in a sheet of water flowing collinearly with the bar.
  • the means for the more moderate forced cooling of the stage can be constituted by oscillating ramps with water spraying, or a pool of water or oil.
  • FIG. 1 shows, by way of example only intended to better understand the technical field of the invention, a diagram, of current use in thermal treatments, which represents on a temperature-time graph , the different micrographic constituents resulting, according to the cooling laws considered, from the transformation ⁇ ⁇ ⁇ of the metastable austenite identified 1.
  • rapid cooling laws lead to the instantaneous formation of martensite 2 as soon as the temperature of the metal drops below the temperature Ms of the steel (310 ° C. in the example chosen).
  • very slow cooling laws lead to the formation of ferrite 3 and perlite 4 at temperatures above 600 ° C.
  • intermediate cooling laws lead to the formation of bainite 5 and of a volume fraction which is all the more significant in martensite as the end of cooling is accelerated.
  • the operating modes of the above-described installation depend, at each cooling step, on the bar diameter considered, on the exit speed of the rolling mill, on the hardenability of the steel grade considered and on the desired structures at the heart of the bars.
  • the necessary cooling times have been seen depending on the diameter of the bars for a heat exchange coefficient of the quenching device of the order of 104 w / m2. ° C. Knowing the exit speeds in rolling and the temperatures at the end of rolling, we can deduce the necessary quenching lengths.
  • a limiting case is that where the speed of movement of the bar and the hardenability of the grade considered allows the following evolution of the average temperature of the section: end of rolling around 900 ° C., crossing of a first box with blade d water from 900 to 600 ° C, natural cooling in 1 to 2 minutes, passing through a second box with a blade of water from 600 to 400 - 300 ° C before final tempering.
  • the bar 20 comes out of the last stand of the rolling mill 21 to enter one or two boxes 22 with circulation of a water blade of the type of those described in patent application EP-A-0020246.
  • This bar is extracted at regular speed from the water boxes using the extractors 23, then slowed down to a stop on a line of braking rollers 24.
  • a tilting device 25 allows the bar to be placed on a cooler 29 with movable beams performing a movement in "no pilgrim" to ensure the bar a slow translation and rotation on itself.
  • the cooler 29 has three zones, marked 26, 27 and 28a. Zone 26 corresponds to the natural cooling of step b) according to the invention.
  • Zone 27 is a natural cooling of evacuation of the bars after the forced cooling phase ensured in zone 28a, but we can possibly start the final income from this zone 27.
  • zone 28a corresponds to forced cooling of the step c) according to the invention. This cooling is, in this example, ensured by water spraying ramps parallel to the bars and driven in a longitudinal movement back and forth sufficient for the treatment to be uniform along the bars.
  • FIG. 3 corresponds exactly to the description of FIG. 2, with the exception of the forced cooling of step c) which is carried out at 28b by progressive immersion in a pool of water or oil.
  • An advantageous device of inclined planes not shown allows the progressive introduction and extraction of the bars.
  • Figure 5 corresponds to the same representations as Figure 4, but with a 3rd cooling step according to the invention (step c) characterized by a heat exchange coefficient of 103 W / m2. ° C.
  • the martensitic transformation conditions were carried out substantially from the core up to 0 ⁇ 15 ⁇ 4 mm from the skin, the annular peripheral layer consisting of self-returning martensite.
  • a subsequent tempering of one hour at 500 ° C. on this bar made it possible to obtain a roughly uniform mechanical resistance throughout the section and close to 1000 N / mm2.
  • the Charpy V resilience measured at the core of the bar was only 40 J / cm2 at room temperature.
  • a step c) corresponding to quenching up to 100 ° C characterized by an average exchange coefficient of the order of 103 w / m2. ° C we follow, at the heart of a 0 ⁇ 60 mm bar, the law 41 of Figure 5. The transformation is then entirely martensitic over the entire section, (a final oil quenching, significantly less effective, would have still leads to 70% martensite at heart). For bars of 100 and 150 mm in diameter, almost three-quarters of the core transformation takes place below 400 ° C with almost 50% martensite. In all cases, an hour's income at 600 ° C made it possible to obtain a resistance of the order of 1000 N / mm2 and a Charpy V resilience to the ambient greater than 60 J / cm2.
  • the process according to the invention also lends itself well to the recovery of rolling operations completed at low temperature (around 850 ° C.), which make it possible to keep a hardened austenite which is not recrystallized at the time of the transformation ⁇ ⁇ ⁇ .
  • the inheritance of the crystalline defects of the hardened austenite will be all the more interesting that one will pass quickly to temperatures where the restoration of austenite is difficult, then to final structures of hardening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

  • L'invention se situe dans le domaine des traitements thermiques des barres métalliques en fin de laminage et concerne plus spécialement l'obtention directe de structures de trempe, de préférence de la martensite, et éventuellement de la bainite, dans la partie utile de barres en acier, destinées notamment à la construction mécanique.
  • La sidérurgie livre actuellement des aciers alliés à usinabilité améliorée qui présentent, à l'effet trempé et revenu, une usinabilité comparable a celle des aciers classiques de même composition mais à l'état recuit. Dès lors, la possibilité d'usiner certaines pièces à partir de barres ayant les caractéristiques finales d'emploi présente un intérêt économique considérable, notamment du fait des suppressions du recuit pour usinage sur ébauche, du traitement de trempe et revenu pour l'utilisateur, ou des reprises d'usinage par rectification.
  • Il en résulte une simplification des cycles de fabrication, une réduction des frais de traitements thermiques et un gain sur les délais d'exécution.
  • On peut de surcroît, réaliser l'économie de l'austénitisation en procédant à la trempe des barres dans la "chaude" de laminage elle-même. Il est même possible d'obtenir en fin de laminage un état austénitique plus intéressant que celui résultant d'une austénitisation classique en raison d'une mise en solution plus complète des éléments d'addition au préchauffage, d'une taille de grain austénitique adaptable à la trempabilité désirée, et d'un état d'écrouissage de l'austénite, plus favorable au moment de la transformation γ → α.
  • Les raisons pour lesquelles ces traitements de barres ne sont guère développés jusqu'ici tiennent surtout à la maîtrise du refroidissement dans la chaude de laminage. Il faut savoir d'abord que les industries mécaniques sont surtout intéressées par des barres de diamètre important (50 - 150 mm) en nuances mi-dures, qui sont pratiquement les seules permettant d'obtenir à coeur de ces barres des résistances de l'ordre de 1000 N/mm². Obtenir une structure de trempe à coeur de barres d'aussi fort diamètre exige un acier relativement trempant (42CD4, par exemple) et une vitesse de trempe élevée. Les risques de tapures sont alors importants, même si, la durée de traitement n'étant pas limitée, on peut adopter le milieu de trempe le moins sévère compatible avec le diamètre de la barre et la trempabilité de la nuance d'acier.
  • La situation se complique encore pour les trempes au défilé juste après laminage. Il faut se rappeler que les plus importants coefficients d'échange thermique que l'on sache réaliser pratiquement sur barres lissées sont actuellement de l'ordre de 10⁴W/m².°C (soit 10⁴ kcal/m².h°C), et qu'il faudrait environ 20 secondes de traversée d'un milieu de trempe caractérisé par cette efficacité pour que la température moyenne d'une barre de 60 mm de diamètre passe de 900 à 400°C. (On rappelle que la température moyenne dansla section d'une barre de rayon R est définie par
    Figure imgb0001
    où Θ(r) est la température à la distance "r" de l'axe). Comme la vitesse de laminage de ces barres est couramment de quelques mètres par seconde, il faudrait des longueurs de trempe déraisonnables pour former de la martensite à coeur. La trempe directe en piscine d'eau serait, pour sa part, insuffisamment rapide pour le plus forts diamètres et risquerait de conduire à des cintrages de barre (du fait des dissymétries de traitement), ou à des tapures (du fait de la mise en tension de la couche périphérique fragile de martensite lors du gonflement lié à la transformation ultérieure du coeur).
  • Le document DD-119270 décrit un traitement de trempe interrompue en au moins deux étapes suivant immédiatement le laminage. Une barre d'acier subit d'abord une trempe très rapide portant sa partie périphérique à une température inférieure à la température de transformation martensitique de l'acier considéré. Puis la trempe est interrompue de manière à laisser s'égaliser les températures du coeur et de la périphérie du produit. Enfin la barre est soumise à une deuxième trempe moins énergique à l'issue de laquelle le coeur de la barre est transformé en martensite. L'ensemble du traitement dure environ 1,5 s et s'adresse uniquement à des produits de très faible section, par exemple de diamètre 10 mm.
  • L'invention a pour but l'obtention, sans cintrages ni tapures, de structures de trempe dans la section de barres en aciers alliés laminés prêtes à l'emploi présentant de forts diamètres.
  • A cet effet, l'invention a pour objet un procédé de traitement thermique de barres en acier allié de diamètre 50 à 150 mm consistant à faire subir à la barre laminée dans la chaude de laminage, une trempe étagée comprenant les trois étapes successives suivantes :
    • a) juste après le laminage, on soumet la barre au défilé à l'action d'un milieu de trempe extrêmement sévère, présentant un coefficient d'échange thermique de l'ordre de 10⁴W/m².°C de manière à porter sa température moyenne vers 600-550 °C et à former une couche superficielle de martensite tout en évitant la formation de ferrite et de perlite à coeur.
    • b) on laisse ensuite refroidir la barre naturellement à l'air - ou dans un milieu faiblement refroidissant analogue - jusqu'à parvenir sensiblement à une réhomogénéisation thermique dans la section vers 550°C, tout en évitant une formation significative de perlite ou de bainite à coeur.
    • c) puis on soumet à nouveau la barre à un refroidissement forcé, de sévérité moins forte que celle mise en jeu dans l'étape a) pour que la température du coeur descende en dessous de 300°C environ en un temps compatible avec les cinétiques de transformation martensitique principalement, et bainitique, de la nuance d'acier mise en oeuvre.
  • L'invention a également pour objet une installation pour le mise en oeuvre du procédé comprenant successivement dans le sens de défilement du produit des moyens permettant d'assurer un refroidissement forcé des barres au défilé selon l'étape a) assurant un coefficient d'échange thermique moyen supérieur à 5.10³W/m².°C, et un refroidissoir à longerons mobiles assurant une translation régulière "à pas de pélerin" et une rotation lente sur elle-même de la barre, ledit refroidissoir étant équipé de moyens de refroidissement forcé.
  • Avantageusement, les moyens de refroidissement selon l'étape a) sont constitués par au moins une boîte à eau où la barre est enveloppée dans une lame d'eau circulant colinéairement avec la barre. Les moyens pour le refroidissement forcé plus modéré de l'étape peuvent être constitués par des rampes oscillantes à pulvérisation d'eau, ou une piscine d'eau ou d'huile.
  • Pour bien faire comprendre l'invention, on reprend ci-après en détail les trois étapes successives en se référant aux planches de dessins annexées sur lesquelles :
    • la figure 1 représente un diagramme de transformation en refroidissement continu d'un acier de construction mécanique du type 42 CD4 (0,42 % de C, 0,7 % de Mn, 1 % de Cr, 0,20 % de Mo) après une austénitisation vers 850 - 900 °C conférant à la structure austénitique une taille de grain de l'ordre de 20 µm ;
    • la figure 2 représente schématiquement un mode de réalisation d'une installation de mise en oeuvre de l'invention ;
    • la figure 3 représente schématiquement un autre mode de réalisation d'une telle installation ;
    • la figure 4 représente schématiquement des exemples de conditions de transformation sur trois diamètres différents de barres en acier 42 CD4 traitées selon une variante simplifiée de l'invention ;
    • la figure 5 représente schématiquement des exemples de conditions de transformation obtenues sur trois diamètres différents de barres en acier 42 CD4 traitées selon une variante complète du procédé selon l'invention.
  • La première étape du procédé' notée a), répond à deux objectifs :
    • former une couche annulaire superficielle de martensite,
    • éviter la formation de perlite dans la plus grande partie de la section de la barre.
  • Pour illustrer ces deux objectifs, la figure 1 montre, à titre d'exemple uniquement destiné à mieux faire comprendre le domaine technique de l'invention, un diagramme, d'un usage courant en traitements thermiques, qui représente sur un graphique température-temps, les différents constituants micrographiques résultant, suivant les lois de refroidissement considérées, de la transformation γ → α de l'austénite métastable repérée 1. Ainsi des lois de refroidissement rapides conduisent à la formation instantanée de martensite 2 dès que la température du métal descend en-dessous de la température Ms de l'acier (310 °C dans l'exemple choisi). A l'opposé, des lois de refroidissement très lentes conduisent à la formation de ferrite 3 et perlite 4 à des températures supérieures à 600 °C. Enfin, des lois de refroidissement intermédiaires conduisent à la formation de bainite 5 et d'une fraction volumique d'autant plus importante de martensite que la fin de refroidissement est accélérée.
  • Il faut se rappeler qu'en règle générale, une martensite revenue a une meilleure ténacité qu'une structure bainitique revenue à même niveau de résistance finale. De façon générale, si l'installation est équipée d'une station pour un revenu final, on recherchera, pour obtenir de bonnes caractéristiques mécaniques et améliorer l'homogénéité des structures dans la section, à obtenir dans la plus grosse partie de cette dernière des structures formées aux plus basses températures possibles. Pour guider dans le choix du cycle de refroidissement, les diagrammes de transformation du type de celui présenté à la figure 1 présentent toutefois un certain nombre de limites. D'abord, la forme du cycle thermique au-dessus de la température A₃ de l'acier où a lieu le début de transformation γ ⇄ α (800°C dans le cas présenté) n'a généralement pas d'influence. On peut donc ne considérer les cycles thermiques qu'à partir de cette température, comme cela a été fait à la figure 1. Plus délicat est le fait que les conditions de transformation ne sont déterminées que pour les lois continues ayant servi à établir le diagramme. On ne peut donc en toute rigueur superposer à ce diagramme, pour prévoir les structures finales, des cycles thermiques complexes tels que ceux préconisés par l'invention. Ainsi lors d'une trempe sévère interrompue au défilé, une couche superficielle voit sa température chuter rapidement en-dessous du point Ms puis remonter au niveau de la température moyenne de la section en fin de trempe. Au contraire, le coeur de barre ne voit sa température baisser qu'après l'entrée dans le dispositif de trempe et n'atteindre que très lentement la température moyenne en fin de trempe. Toutefois, l'observation d'un diagramme tel que celui de la figure 1 suggère quelques remarques. On ne formera pas de ferrite-perlite dans ce cas particulier si tous les points de la section voient leur température passer de 800 à 650 °C en moins de 150 secondes. Par ailleurs, un domaine de métastabilité de l'austénite entre les températures (supérieures à 600 °C) de formation de la perlite et celles (inférieures à 550°C) de formation de la bainite permettra une réhomogénéisation thermique naturelle de la barre vers 575 °C sans transformation notable de l'austénite. Enfin, dans le cas présenté à la figure 1, des vitesses de refroidissement supérieures à 3 °C/s entre 550 et 300 °C sont nécessaires pour repousser les transformations de la bainite vers la martensite plus intéressante.
  • Pour revenir aux deux objectifs qui ont été assignés à la première étape de refroidissement des barres, on indique :
    • que l'épaisseur de martensite superficielle sera d'autant plus forte que la sévérité de trempe et le diamètre de barre seront élevés. Un coefficient d'échange thermique de 10⁴ w/m² . °C donne, par exemple sur une barre de 0̸ = 60 mm de diamètre, une couche de martensite d'épaisseur 12
      Figure imgb0002
      = 5 mm ;
    • qu'un coefficient d'échange thermique de l'ordre de 10⁴ W/m² . °C permet d'éviter la formation de perlite sur des barres de diamètre allant jusqu'à 150 mm laminées dans la nuance 42 CD4 correspondant au diagramme de la figure 1. Les durées de trempe entre 900 °C et une température moyenne de 600 °C seraient alors respectivement de 7,5 , 17 et 35 s pour des diamètres de 60, 100 et 150 mm, ce qui permet d'envisager des longueurs de traitement raisonnables. Il faut d'ailleurs noter que, pour les plus forts diamètres, une augmentation du coefficient d'échange thermique serait aussi nécessaire qu'une augmentation de la trempabilité de l'acier (addition de manganèse, molybdène, bore ...).
  • Pour ce qui concerne maintenant la 2ème étape, ou 2ème phase du procédé, notée b), la réhomogénéisation thermique naturelle à l'air de la barre autour de 550 °C dure généralement de 1 à 2 minutes et permet :
    • au coeur de la barre, de voir la température passer en-dessous de 600 °C sans transformation notable en perlite ou bainite ;
    • à la couche annulaire superficielle de martensite, de voir améliorer sa ténacité par un auto-revenu de l'ordre de la minute au-dessus de 500 °C.
  • Enfin, au sujet de la 3ème étape du traitement, notée c), on doit, après l'homogénéisation thermique de la phase précédente, comme l'on recherche des structures essentiellement martensitiques à coeur, soumettre la barre à un second refroidissement forcé permettant à la température du coeur de descendre en-dessous de 300 °C en un temps compatible avec les cinétiques de transformation martensitique principalement, et éventuellement bainitique de l'acier considéré. De fait, les bainites "inférieures" (celles formées à des températures un peu supérieures à Ms) ont, après revenu, des caractéristiques mécaniques comparables à celle de la martensite, si bien qu'il suffit souvent d'accélérer le refroidissement entre 550 et 400 °C. Pour des nuances particulièrement trempantes et (ou) des diamètres peu importants, un simple refroidissement naturel ou légèrement accéléré sera suffisant. A titre d'exemple, il suffit, dans le cas de la nuance 42 CD4 présentée à la figure 1, d'un refroidissement a plus de 4 ou 5 °C/s entre 550 et 300 °C pour obtenir une structure essentiellement martensitique à coeur de barre.
  • Dans tous les cas, la couche annulaire superficielle de martensite obtenue dans la 1ère étape du traitement et autorevenue dans la 2ème étape a un double rôle dans la 3ème étape de refroidissement forcé :
    • elle réduit considérablement les risques de tapures lors d'une transformation martensitique ultérieure plus profonde,
    • elle limite les risques de cintrage des barres par dissymétrie du refroidissement, puisqu'elle constitue une sorte de "corset" rigide annulaire.
  • Ce double rôle permet d'envisager pour la 3ème étape de refroidissement forcé des moyens de refroidissement moins exigeants en ce qui concerne la symétrie de révolution de la trempe que ceux utilisés dans la 1ère étape.
  • L'installation selon l'invention découle du procédé décrit ci-dessus. Elle comprend de préférence :
    • pour la 1ère étape : au moins une boîte à lame d'eau, modulaire, à grande efficacité thermique, du type de celle décrite dans la demande de brevet EP-A-0020246, où le produit en défilement est enveloppé dans une nappe d'eau circulant à vitesse soutenue colinéairement au produit. Eventuellement, la boîte à eau peut être remplacée par un moyen équivalent, comme un dispositif de pulvérisation d'eau, ayant une efficacité de refroidissement comparable ;
    • pour la 2ème étape : un refroidissoir à "pas de pélerin" permettant la réhomogénéisation naturelle pendant 1 à 2 minutes d'une ou plusieurs barres en parallèle ;
    • pour la 3ème étape :
    • · soit un dispositif de rampes oscillantes à pulvérisation d'eau installé sur la seconde partie du refroidissoir précédent,
    • · soit une piscine d'eau ou d'huile alimentée en barres par le refroidissoir et permettant une sortie continue de ces barres (plan incliné par exemple).
  • Les modalités de fonctionnement de l'installation prédécrite dépendent, au niveau de chaque étape de refroidissement, du diamètre de barre considéré, de la vitesse de sortie du laminoir, de la trempabilité de la nuance d'acier considéré et des structures désirées à coeur des barres.
  • Ainsi, au niveau de la première étape de refroidissement on a vu les durées de refroidissement nécessaires selon le diamètre des barres pour un coefficient d'échange thermique du dispositif de trempe de l'ordre de 10⁴ w/m² . °C. Connaissant les vitesses de sortie en laminage et les températures de fin de laminage, on peut en déduire les longueurs de trempe nécessaires.
  • Au niveau de la 2ème étape, on évite au maximum la transformation à coeur en perlite si la nuance et le diamètre traités le permettent.
  • Enfin, au niveau de la 3ème étape, on cherche à obtenir des structures essentiellement martensitiques. En conséquence, le mode de refroidissement sera d'autant plus sévère que le diamètre de barre sera important et les cinétiques de transfor mation en bainite supérieure rapides (importance de la trempabilité de l'acier considéré entre 600 et 300 °C). Dans tous les cas, comme cela a déjà été précisé, il est peu souhaitable de poursuivre cette phase de refroidissement en-dessous de 250 °C (température à coeur). Un cas limite est celui où la vitesse de défilement de la barre et la trempabilité de la nuance considérée permet l'évolution suivante de la température moyenne de la section : fin de laminage vers 900 °C, traversée d'une première boîte à lame d'eau de 900 à 600 °C, refroidissement naturel en 1 à 2 minutes, traversée d'une seconde boîte à lame d'eau de 600 à 400 - 300 °C avant le revenu final.
  • D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre en référence aux figures 2, 3, 4 et 5.
  • A la figure 2, la barre 20 sort de la dernière cage du laminoir 21 pour pénétrer dans une ou deux boîtes 22 à circulation d'une lame d'eau du type de celles décrites dans la demande de brevet EP-A-0020246. Cette barre est extraite à vitesse régulière des boîtes à eau grâce aux extracteurs 23, puis ralentie jusqu'à l'arrêt sur une ligne de rouleaux de freinage 24. Un dispositif à basculement 25 permet de déposer la barre sur un refroidissoir 29 à longerons mobiles effectuant un déplacement en "pas de pélerin" permettant d'assurer à la barre une translation et une rotation lente sur elle-même. Le refroidissoir 29 comporte trois zones, repérées 26, 27 et 28a. La zone 26 correspond au refroidissement naturel de l'étape b) selon l'invention. La zone 27 est un refroidissement naturel d'évacuation des barres après la phase de refroidissement forcé assurée sur la zone 28a, mais on pourra éventuellement faire débuter le revenu final dès cette zone 27. Enfin, la zone 28a correspond au refroidissement forcé de l'étape c) selon l'invention. Ce refroidissement est, dans cet exemple, assuré par des rampes de pulvérisation d'eau parallèles aux barres et animées d'un mouvement longitudinal de va et vient suffisant pour que le traitement soit homogène le long des barres.
  • La figure 3 correspond très exactement au descriptif de la figure 2, à l'exception du refroidissement forcé de l'étape c) qui est réalisé en 28b par immersion progressive en piscine d'eau ou d'huile. Un dispositif avantageux de plans inclinés non représenté permet l'introduction et l'extraction progressive des barres.
  • A titre d'exemple, on a cherché, grâce à une installation telle que celle schématisée à la figure 3, à obtenir à coeur d'une barre de 60 mm de diamètre une résistance mécanique de 1000 N/mm² et une résilience Charpy V de 60 J/cm² sur un acier type 42 CD4.
  • La figure 4, sur un diagramme température-temps, représente les conditions de transformation γ → α le long des lois thermiques obtenues à coeur de barres en acier 42 CD4 de diamètres respectifs de 60 mm pour la loi repérée "41", de 100 mm pour la loi repérée "42", et de 150 mm pour la loi repérée "43". Ces lois thermiques correspondent aux traitements suivants :
    • un passage en boîte à lame d'eau caractérisée par un coefficient d'échange moyen de l'ordre de 10⁴ W/m². °C, de manière que la température moyenne de chaque barre passe rapidement de 900 °C à 600 °C (étape a) selon l'invention) ;
    • puis un refroidissement naturel à l'air jusqu'à l'ambiante (étape b). Le refroidissement forcé ultérieur - étape c) - a été volontairement supprimé dans ce cas.
  • On a représenté sur la figure 4 :
    • les cycles thermiques 41, 42 et 43 à partir de 800 °C (température A₃ de l'acier),
    • la ligne, repérée 44, de début de transformation de l'austénite,
    • la ligne, repérée 45, correspondant à 25 % de transformation γ → α,
    • la ligne, repérée 46, correspondant à 50 % de transformation,
    • la ligne, repérée 47, correspondant à 75 % de transformation,
    • la ligne, repérée 48, correspondant à la fin de la transformation.
  • La figure 5 correspond aux mêmes représentations que la figure 4, mais avec une 3ème étape de refroidissement selon l'invention (étape c) caractérisée par un coefficient d'échange thermique de 10³ W/m² . °C.
  • La comparaison des figures 4 et 5 montre que l'accélération du refroidissement de la 3ème étape a permis d'obtenir à coeur des trois diamètres considérés plus de 50 % de structures formées en-dessous de 300 °C (martensite).
  • Pour la barre de 60 mm de diamètre de la figure 4, les conditions de transformation martensitique se sont réalisées sensiblement du coeur jusqu'à 15
    Figure imgb0003
    ≃ 4 mm de la peau, la couche périphérique annulaire étant constituée de martensite auto-revenue. Un revenu ultérieur d'une heure à 500 °C sur cette barre a permis d'obtenir une résistance mécanique à peu près uniforme dans toute la section et voisine de 1000 N/mm². Cependant, la résilience Charpy V mesurée à coeur de barre n'a été que de 40 J/cm² à température ambiante.
  • En optant pour un traitement complet selon l'invention comportant la même première étape de refroidissement que précédemment, une étape b) correspondant à 1 minute de refroidissement naturel vers 600-550 °C, et une étape c) correspondant à une trempe jusqu'à 100 °C caractérisée par un coefficient d'échange moyen de l'ordre de 10³ w/m² . °C, on suit, à coeur d'une barre de 0̸ 60 mm, la loi 41 de la figure 5. La transformation est alors entièrement martensitique sur toute la section, (une trempe finale à l'huile, nettement moins efficace, aurait encore conduit à 70 % de martensite à coeur). Pour les barres de 100 et 150 mm de diamètre, près des trois quarts de la transformation à coeur s'effectuent en-dessous de 400 °C avec près de 50 % de martensite. Dans tous les cas, un revenu d'une heure à 600 °C a permis d'obtenir une résistance de l'ordre de 1000 N/mm² et une résilience Charpy V à l'ambiante supérieure à 60 J/cm².
  • Il est clair, d'après les exemples précités, que le procédé selon l'invention permet une grande souplesse de traitement selon le diamètre des barres à traiter et le niveau de caractéristiques mécaniques désiré. Il permet également de réduire au maximum l'utilisation d'éléments d'addition dans l'acier en se prêtant bien, dans sa version la plus générale, à la mise en oeuvre de nuances économiques ayant seulement un "nez perlitique" (durée d'incubation de la transformation γ → α vers 600 °C) relativement dégagé et une cinétique de transformation lente dans le domaine de la bainite supérieure (nuances au Mn-B, etc ...).
  • En outre, le procédé selon l'invention se prête également bien à la valorisation d'opération de laminage terminée à basse température (vers 850 °C), qui permettent de conserver une austénite écrouie et non recristallisée au moment de la transformation γ → α. L'héritage des défauts cristallins de l'austénite écrouie sera d'autant plus intéressant que l'on passera rapidement à des températures où la restauration de l'austénite est difficile, puis à des structures finales de trempe.

Claims (9)

  1. Procédé de traitement thermique de barres en acier allié de diamètre 50 à 150 mm prêtes à l'emploi, notamment pour la construction mécanique, caractérisé en ce qu'il consiste à soumettre la barre, dans la chaude de laminage, à une trempe étagée comprenant les trois étapes successives suivantes :
    a) juste après le laminage, on soumet la barre au défilé à un refroidissement forcé sévère, présentant un coefficient d'échange thermique de l'ordre de 10⁴W/m².°C de manière à abaisser rapidement la température moyenne de la section de la barre jusqu'à environ 600-550 °C et à former une couche superficielle de martensite tout en évitant la formation de ferrite et de perlite à coeur ;
    b) on provoque ensuite un auto-revenu de la couche superficielle de martensite en laissant refroidir la barre naturellement à l'air jusqu'à parvenir sensiblement à une réhomogénéisation thermique dans la section vers 550°C, tout en évitant une formation significative de perlite ou de bainite à coeur ;
    c) puis on soumet à nouveau la barre à un refroidissement forcé, de sévérité moins forte que celle mise en jeu dans la phase a), pour que la température du coeur descende en dessous de 300°C environ en un temps compatible avec les cinétiques de transformation martensitique principalement, et bainitique de la nuance d'acier mise en oeuvre.
  2. Installation de mise en oeuvre du procédé selon la revendication 1, caractérisée en ce qu'elle comporte successivement dans le sens de défilement du produit :
    - des moyens permettent d'assurer un refroidissement forcé des barres au défilé selon l'étape a) assurant un coefficient d'échange thermique moyen supérieur à 5.10³W/m².°C ;
    - un refroidissoir à longerons mobiles assurant une translation régulière "à pas de pélerin" et une rotation lente sur elle-même de la barre, ledit refroidissoir étant équipé de moyens de refroidissement forcé.
  3. Installation selon la revendication 2, caractérisée en ce que les moyens de refroidissement du produit selon l'étape a) sont constitués par au moins une boîte à eau (22) où la barre est enveloppée dans une lame d'eau circulant colinéairement avec la barre.
  4. Installation selon la revendication 3, caractérisée en ce que les moyens de refroidissement du produit selon l'étape a) sont constituées par un dispositif de pulvérisation d'eau.
  5. Installation selon la revendication 2, caractérisé en ce que les moyens de refroidissement forcé équipant le refroidissoir sont constitués par des rampes de pulvérisation d'eau.
  6. Installation selon la revendication 5, caractérisée en ce que lesdites rampes sont animées d'un mouvement de "va et vient" parallèlement à l'axe de la barre à refroidir.
  7. Installation selon la revendication 2 caractérisée en ce que les moyens de refroidissement forcé équipant le refroidissoir sont constitués par une piscine d'eau ou d'huile.
  8. Installation selon la revendication 7 caractérisée en ce que la piscine comporte deux plans inclinés pour assurer respectivement l'introduction et l'extraction progressive des barres à refroidir.
  9. Installation selon l'une quelconque des revendications 2 à 8 caractérisée en ce qu'elle comprend une station de revenu thermique des barres placée après le refroidissoir.
EP83400378A 1982-03-03 1983-02-24 Procédé et installation de traitement thermique de barres en acier allié prêtes à l'emploi Expired - Lifetime EP0090682B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83400378T ATE62278T1 (de) 1982-03-03 1983-02-24 Waermebehandlungsverfahren und vorrichtung zum herstellen gebrauchsfertiger stangen aus legierten staehlen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8203659A FR2522688B1 (fr) 1982-03-03 1982-03-03 Procede et installation de traitement thermique de barres en acier allie pretes a l'emploi, notamment pour la construction mecanique
FR8203659 1982-03-03

Publications (3)

Publication Number Publication Date
EP0090682A2 EP0090682A2 (fr) 1983-10-05
EP0090682A3 EP0090682A3 (en) 1987-09-02
EP0090682B1 true EP0090682B1 (fr) 1991-04-03

Family

ID=9271614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400378A Expired - Lifetime EP0090682B1 (fr) 1982-03-03 1983-02-24 Procédé et installation de traitement thermique de barres en acier allié prêtes à l'emploi

Country Status (7)

Country Link
EP (1) EP0090682B1 (fr)
JP (1) JPS58189328A (fr)
AT (1) ATE62278T1 (fr)
BE (1) BE896021A (fr)
DE (1) DE3382237D1 (fr)
FR (1) FR2522688B1 (fr)
LU (1) LU84666A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3927276A1 (de) * 1989-08-18 1991-02-21 Schloemann Siemag Ag Verfahren zum haerten von stahl mit hilfe fluessiger kuehlmedien
CN105400945B (zh) * 2015-12-17 2018-02-16 北京科技大学 一种大直径斜轧球磨钢球热处理***
CN105385831B (zh) * 2015-12-17 2018-02-16 北京科技大学 一种斜轧球磨钢球余热利用热处理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD84615A (fr) *
DE925527C (de) * 1941-07-30 1955-03-24 Oberhuetten Vereinigte Obersch Verfahren und Vorrichtung zum Haerten und Vergueten von gewalzten Gegenstaenden
DD112144A1 (fr) * 1974-06-12 1975-03-20
DD119270B1 (de) * 1975-04-02 1987-10-14 Florin Stahl Walzwerk Verfahren zur herstellung von walzstahlerzeugnissen mit entfestigter randzone und hochfestem kern
FR2457724A1 (fr) * 1979-06-01 1980-12-26 Siderurgie Fse Inst Rech Dispositif de refroidissement de produits longs lamines en defilement
FR2488279A1 (fr) * 1980-08-08 1982-02-12 Siderurgie Fse Inst Rech Traitement par refroidissement accelere de barres en acier dans la chaude de laminage

Also Published As

Publication number Publication date
FR2522688B1 (fr) 1990-09-14
JPH0335363B2 (fr) 1991-05-28
BE896021A (fr) 1983-06-16
DE3382237D1 (de) 1991-05-08
JPS58189328A (ja) 1983-11-05
LU84666A1 (fr) 1983-09-08
FR2522688A1 (fr) 1983-09-09
ATE62278T1 (de) 1991-04-15
EP0090682A2 (fr) 1983-10-05
EP0090682A3 (en) 1987-09-02

Similar Documents

Publication Publication Date Title
CA2314830C (fr) Procede de fabrication de bandes minces en acier de type "trip", et bandes minces ainsi obtenues
CA2314624C (fr) Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites
CA3022115A1 (fr) Procede de fabrication d'une piece en acier inoxydable martensitique a partir d'une tole
WO2003025240A1 (fr) Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu
EP0881305A1 (fr) Procédé de fabrication de bandes minces d'acier inoxydable ferritique, et bandes minces ainsi obtenues
EP1670963B1 (fr) Procede d' elaboration d'un produit plat en alliage de zirconium, produit plat ainsi obtenu et grille de reacteur de centrale nucleaire realisee a partir de ce produit plat
RU2239892C2 (ru) Способ получения тонких элементов из сплава на основе циркония и пластины, получаемые этим способом
EP2957643A1 (fr) Acier pour pièces mécaniques à hautes caractéristiques traitées superficiellement, et pièces mécaniques en cet acier et leur procédé de fabrication
WO2016174500A1 (fr) Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
FR2834722A1 (fr) Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
FR2495639A1 (fr) Procede ameliore de traitement thermique des aciers utilisant un chauffage electrique direct par resistance et produits en acier obtenus par ce procede
EP0090682B1 (fr) Procédé et installation de traitement thermique de barres en acier allié prêtes à l'emploi
CA1107179A (fr) Procede d'obtention d'un element allonge en acier dur
EP1061139B1 (fr) Procédé de fabrication de tôles d'acier aptes à l'emboutissage par coulée directe de bandes
FR2488279A1 (fr) Traitement par refroidissement accelere de barres en acier dans la chaude de laminage
EP0245174B1 (fr) Procédé de fabrication d'une bande de tôle composite polymétallique, notamment d'une bande de tôle composite mince à base d'acier et articles obtenus à partir d'une telle tôle
FR2511038A1 (fr) Procede de fabrication de produits semi-finis siderurgiques en aciers durs mettant en oeuvre une operation de coulee continue
EP0092629B1 (fr) Procédé de fabrication de barres et de tubes en aciers à hautes caractéristiques mécaniques
FR2716897A1 (fr) Procédé de fabrication d'un produit plat en alliage de zirconium ou en alliage de hafnium comprenant une poursuite du laminage à chaud après rechauffage par infrarouges et ses utilisations .
CN111996478B (zh) 去除n06600镍基合金荒管表面发纹的方法
BE906040A (fr) Procede continu de fabrication de fil d'acier.
FR2636548A1 (fr) Element formant marbre de refroidissement en materiau refractaire
BE854191A (fr) Procede de traitement thermique en continu de toles laminees
FR2585726A1 (fr) Procede de traitement thermique de fil machine en acier inoxydable
BE901292A (fr) Procede de laminage controle d'un produit epais.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840323

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19881223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 62278

Country of ref document: AT

Date of ref document: 19910415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3382237

Country of ref document: DE

Date of ref document: 19910508

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920102

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920122

Year of fee payment: 10

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 10

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930224

Ref country code: AT

Effective date: 19930224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931029

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83400378.2

Effective date: 19930912