FR2834722A1 - Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu - Google Patents

Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu Download PDF

Info

Publication number
FR2834722A1
FR2834722A1 FR0200387A FR0200387A FR2834722A1 FR 2834722 A1 FR2834722 A1 FR 2834722A1 FR 0200387 A FR0200387 A FR 0200387A FR 0200387 A FR0200387 A FR 0200387A FR 2834722 A1 FR2834722 A1 FR 2834722A1
Authority
FR
France
Prior art keywords
copper
strip
temperature
steel
precipitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0200387A
Other languages
English (en)
Other versions
FR2834722B1 (fr
Inventor
Nicolas Patrice Guelton
Michel Faral
Jean Pierre Birat
Catherine Juckum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USINOR SA
Original Assignee
USINOR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8871276&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=FR2834722(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by USINOR SA filed Critical USINOR SA
Priority to FR0200387A priority Critical patent/FR2834722B1/fr
Priority to ES03712234T priority patent/ES2289270T3/es
Priority to US10/501,456 priority patent/US7425240B2/en
Priority to CA002473050A priority patent/CA2473050A1/fr
Priority to PCT/FR2003/000088 priority patent/WO2003057928A1/fr
Priority to CNB038039451A priority patent/CN100334235C/zh
Priority to JP2003558221A priority patent/JP2005514518A/ja
Priority to KR10-2004-7010945A priority patent/KR20040069357A/ko
Priority to AT03712234T priority patent/ATE368132T1/de
Priority to AU2003216715A priority patent/AU2003216715A1/en
Priority to EP03712234A priority patent/EP1466024B1/fr
Priority to DE60315129T priority patent/DE60315129T2/de
Priority to BR0307165-0A priority patent/BR0307165A/pt
Publication of FR2834722A1 publication Critical patent/FR2834722A1/fr
Publication of FR2834722B1 publication Critical patent/FR2834722B1/fr
Application granted granted Critical
Priority to US12/110,599 priority patent/US20080257456A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un produit sidérurgique en acier au carbone riche en cuivre, selon lequel :- on élabore un acier liquide ayant la composition : 0, 0005% ≤ C ≤ 1%; 0, 5 ≤ Cu ≤ 10%; 0 ≤ Mn ≤ 2%; 0 ≤ Si ≤ 5%; 0 ≤ Ti ≤ 0, 5%; 0 ≤ Nb ≤ 0, 5%; 0 ≤ Ni ≤ 5%; 0 ≤ Al ≤ 2%, le reste étant du fer et des impuretés;- on coule cet acier liquide directement sous forme d'une bande mince d'épaisseur inférieure ou égale à 10 mm- tant que la bande est à plus de 1000°C, on lui fait subir un refroidissement forcé et/ ou on l'entoure d'une atmosphère non oxydante;- on fait subir à la bande mince un laminage à chaud à un taux de réduction d'au moins 10%, la température de fin de laminage étant telle qu'à cette température, tout le cuivre se trouve encore en solution solide dans la matrice de ferrite et/ ou d'austénite;- on fait ensuite subir à la bande un refroidissement forcé de manière à maintenir le cuivre en solution solide sursaturée dans la matrice de ferrite etlou d'austénite;- et on bobine la bande.L'invention concerne également un produit sidérurgique ainsi obtenu.

Description

L'invention concerne le domaine de la production d'alliages ferreux, et
plus précisément le domaine de la production d'aciers à fortes teneurs en cuivre. Le cuivre est généralement considéré comme un élément indésirable dans les aciers au carbone, parce qu'en favorisant la fissuration à chaud, d'une part il rend diffcile le travail à chaud de l'acier, et d'autre part il dégrade la qualité et l'aspect de la surface des produits. Pour ces raisons, il est habituel de limiter la teneur en cuivre des aciers au carbone de haute qualité à des teneurs inférieures à 0,05%. Comme il n'est pas possible d'enlever le cuivre présent dans l'acier liquide, I'obtention assurée de ces basses teneurs en cuivre n'est possible qu'en produisant l'acier à partir de fonte liquide, ce qui n'est économiquement viable que pour des productions en grandes quantités, ou en produisant l'acier au four électrique par fusion de
ferrailles soigneusement sélectionnées, donc onéreuses.
11 y a, cependant, des cas o la présence d'une forte teneur en cuivre dans l'acier peut être souhaitable. En effet, le cuivre peut avoir des effets bénéfiques pour certaines applications, notamment pour l'industrie automobile. En premier lieu, il augmente la résistance à la déformation de I'acier par une précipitation que l'on peut obtenir au moyen d'un revenu
(durcissement structural).
D'autre part, il améliore la résistance de l'acier à la corrosion
atmosphérique, car il conduit à la formation d'une couche d'oxyde protectrice.
Enfln, il augmente la résistance à la fragilisation par l'hydrogène de deux façons: - du fait de la formation de ladite couche d'oxyde protectrice; - en se substituant au manganèse, il limite la formation des
inclusions de M nS autou r desquelles l' hyd rogène s'accu mule.
L'augmentation de la résistance de l'acier due au durcissement structural peut être évaluée à environ 300 MPa par 1% de cuivre. Cependant, il appara^'t diffcile de tirer parti de ce phénomène, en ce que dans les filières de production classiques de tôles par coulée continue de brames épaisses ou minces, laminage à chaud au train à bandes et laminage à froid, le cuivre conduit à une détérioration de la qualité de surface par fissuration en peau lors de la transformation à chaud en atmosphère oxydante. Cette fissuration est appelée K faençage)?. Une teneur en cuivre inférieure à 1%, voire 0,5% s est alors impérative, à moins de limiter cette fissuration par une addition de nickel ou de silicium, ou par un réchauffage avant transformation à chaud à une température inférieure à la température de fusion péritectique du cuivre (1094 C pour un alliage Fe-Cu pur), ce qui restreint la gamme d'épaisseurs accessible, ou par un contrôle de l'atmosphère de réchauffage incompatible
avec les installations de production actuelles.
De plus, le pouvoir durcissant du cuivre par précipitation est optimal lorsque le cuivre est maintenu intégralement en solution solide avant le traitement de précipitation par une trempe. En effet, la contribution de la précipitation au durcissement est d'autant plus faible que la température de précipitation est élevée. Il ne faut donc pas que le cuivre précipite au refroidissement tant que la température de revenu n'est pas atteinte. La filière de production classique ne permet pas l'exécution d'une telle trempe
nécessaire à la maximisation du pouvoir durcissant.
Il a été proposé dans le document EP-A-O 641 867 de produire des bandes d'acier au carbone contenant de grandes quantités de cuivre (0,3 à %) et d'étain (0,03 à 0,5%) par un procédé de coulée directe de bandes minces de 0,1 à 15mm d'épaisseur, tel que la coulée entre cylindres. La solidification rapide de la bande et la possibilité de limiter par un refroidissement suivant cette solidification le temps de séjour de la bande à plus de 1000 C permettent de résoudre les problèmes de qualité de surface évoqués plus haut. La bande est ensuite laminée à froid. Il est ainsi possible d'élaborer des bandes ayant de bonnes propriétés mécaniques et un bon aspect de surface sans avoir recours à des matières premières pauvres en cuivre et en étain. Pour cela, on doit obtenir un produit dont, après sa solidification, les dendrites primaires sont espacées de 5 à 100,um. Les propriétés mécaniques recherchées sur la bande mince sont essentiellement une bonne résistance et un bon allongement à la traction. Ce document n'évoque cependant pas en détail les traitements postérieurs à la coulée qui
permettraient d'aboutir à une tole exploitable pour une application industrielle.
Le but de l'invention est de proposer des procédés d'élaboration complets de toles laminées à chaud ou laminées à froid en acier au carbone présentant des propriétés mécaniques élevées, notamment une forte résistance, une bonne anisotropie des déformations, ainsi qu'une bonne aptitude au soudage, dans lesquelles une teneur en cuivre élevée est tolérée,
voire souhaitée.
A cet effet, I'invention a pour objet un procédé de fabrication d'un produit sidérurgique en acier au carbone riche en cuivre, selon lequel: on élabore un acier liquide ayant la composition, exprimée en pourcentages pondéraux:
* 0,0005% < C < 1 %
*0,5 <Cu<10% *O<Mn<2% * O < Si < 5% * O < Ti < 0,5% *O<Nb<0,5% *O<Nis5% * 0 <Al <2% le reste étant du fer et des impuretés résultant de l'élaboration; - on coule cet acier liquide directement sous forme d'une bande mince d'épaisseur inférieure ou égale à 10 mm; - on refroidit rapidement la bande jusqu'à une température inférieure ou égale à 1 000 C; - on fait subir à la bande mince un laminage à chaud à un taux de réduction d'au moins 10%, la température de fin de laminage étant telle qu'à cette température, tout le cuivre se trouve encore en solution solide dans la matrice de ferrite eVou d'austénite; - on fait ensuite subir à la bande un refroidissement forcé de manière à maintenir le cuivre en solution solide sursaturée dans la matrice de ferrite eVou d'austénite; :
- et on bobine la bande.
De préférence, le rapport Mn/Si est supérieur ou égal à 3.
On peut réaliser la coulée de la bande mince sur une installation de coulée entre deux cylindres refroidis intérieurement tournant en sens contraires. Le laminage à chaud de la bande est de préférence réalisé en ligne
avec la coulée de la bande.
La vitesse V du refroidissement forcé suivant le laminage à chaud est généralement telle que V 2 e ',9a (%cu) - 0,08
avec V exprimée en Cls et %Cu en % pondéraux.
Selon une variante du procédé, la teneur en carbone de l'acier est comprise entre 0,1 et 1%, et le bobinage de la bande est effectué à une température supérieure à la température Ms de début de transformation martensitique. Selon une autre variante du procédé, le bobinage de la bande est effectué à moins de 300 C, et la bande subit ensuite un traitement thermique de précipitation du cuivre entre 400 et 700 C. Dans ces conditions, si la teneur en carbone est comprise entre 0,1 et 1%, il n'y a de préférence pas de
débobinage préalablement au traitement thermique.
Selon une autre variante du procédé, le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300 C, et on effectue ensuite un laminage à froid, un recuit de recristallisation dans un domaine de température o le cuivre est en solution solide sursaturée, un refroidissement
forcé maintenant le cuivre en solution solide, et un revenu de précipitation.
Ledit revenu de précipitation est effectué dans une installation de recuit continu entre 600 et 700 C, ou dans une installation de recuit base
entre 400 et 700 C.
Selon une autre variante du procédé, le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300 C, et on effectue ensuite s un laminage à froid et un recuit base entre 400 et 700 C servant à la fois de
recuit de recristallisation et de revenu de précipitation.
Dans les cas o la bande subit un laminage à froid, la teneur en carbone de l'acier est préférentiellement comprise entre 0,1 et 1%, ou entre 0,01 et 0,2%, ou entre 0,0005% et 0,05%. Dans ce dernier cas, sa teneur en
cuivre est préférentiellement comprise entre 0,5 et 1,8%.
Egalement dans ce dernier cas, préalablement au revenu de précipitation, on peut découper la bande pour former une tôle que l'on met en forme par emboutissage, et effectuer le revenu de précipitation sur la tôle emboutie. On peut enfin procéder à un traitement final de la bande dans un
laminoir écrouisseur.
L'invention a également pour objet un produit sidérurgique obtenu
par un des procédés précédents.
Comme on l'aura compris, I'invention consiste essentiellement à couler directement en bande mince un- acier ayant la composition précisée, puis à lui imposer des conditions évitant le faençage (soit par refroidissement rapide de la bande en sortie de lingotière l'amenant en dessous de 1000 C, soit en maintenant la bande dans une atmosphère non oxydante au moins jusqu'à l'obtention de cette température), puis à effectuer un laminage à chaud de la bande, de préférence en ligne, suivi d'un refroidissement forcé maintenant le cuivre en solution solide sursaturée. La bande est ensuite bobinée. Elle peut alors subir divers traitements thermiques ou mécaniques
qui vont lui conférer son épaisseur et ses propriétés finales.
L'invention va à présent être décrite plus en détail, en référence aux figures annexées suivantes: - la figure 1 qui représente le diagramme de phases de l'alliage fer cuivre pur dans son ensemble (fig.1a), et pour des teneurs en cuivre inférieures ou égales à 5% et des températures de 600 à 1 000 C (fig. 1 b); - la figure 2 qui représente une portion du diagramme de phases
d'un alliage fer-cuivre à 0,2% de carbone.
En premier lieu, on élabore un métal liquide présentant la composition suivante (toutes les teneurs sont exprimées en pourcentages pondéraux). La teneur en carbone peut aller de 0,0005% à 1%, selon s notamment les applications envisagées pour le produit final. La limite inférieure de 0, 0005% correspond pratiquement au minimum qu'il est possible d'obtenir par les procédés classiques de décarburation du métal liquide. La limite supérieure de 1% se justifie par l'effet gammagène du carbone. En effet, au-delà de 1%, le carbone réduit excessivement la solubilité du cuivre dans la ferrite. De plus, au-delà de 1%, la soudabilité de l'acier est dégradée notablement, ce qui le rend impropre à de nombreuses applications
privilégiées des tôles obtenues à partir des aciers de l'invention.
Par ailleurs, le carbone permet d'obtenir un effet durcissant, ainsi que la précipitation de carbures de titane et/ou de nioblum servant au contrôle de la texture, si du titane eVou du nioblum sont présents en quantités
significatives dans l'acier.
De manière générale, on peut dire que: - lorsque la teneur en carbone est comprise entre 0,1 et 1%, les aciers obtenus trouvent une application privilégiée dans le domaine des tôles à très haute résistance laminées à chaud, lorsqu'après la coulée ils ont été bobinés à température permettant un revenu de précipitation, ou lorsqu'ils ont été bobinés à basse température puis ont subi un revenu, ou dans le domaine des tôles laminées à froid à très haute résistance; - lorsque la teneur en carbone est comprise entre 001 et 0,2%, les aciers obtenus trouvent une application privilégiée dans le domaine des aciers soudables à haute résistance lorsqu'ils ont été laminés à chaud, ou lorsqu'ils ont été laminés à froid et traités thermiquement dans des conditions qui seront vues plus loin; lorsque la teneur en carbone est comprise entre 0,0005% et 0,05%, les aciers obtenus trouvent une application privilégiée dans le domaine de l'emboutissage, lorsqu'ils ont été laminés à froid et contiennent de préférence au plus 1,8% du cuivre (les raisons en seront vues plus loin); Une teneur en carbone de l'ordre de 0,02% est typique des aciers de l'invention, sauf des aciers à très haute résistance laminés à chaud ou à froid. La teneur en cuivre de l'acier est comprise entre 0,5 et 10%, de préférence entre 1 et 10%. En deçà de 0,5%, le cuivre n'a pas d'effet durcissant par précipitation ou, plus exactement, la force motrice de précipitation est trop faible pour obtenir un durcissement de précipitation dans des conditions de temps et de température raisonnables dans la perspective d'une application industrielle. Pratiquement, il est préférable d'avoir au moins 1% de cuivre
dans l'acier pour profiter de son effet durcissant.
Lorsqu'on élabore un acier destiné à former des bandes laminées à chaud, il n'y a pas de limitation métallurgique à la teneur en cuivre, si on respecte les conditions de vitesse de refroidissement et de température de fin de refroidissement de la bande mince après sa coulée. Il faut que le
refroidissement commence dans le domaine 100% austénitique (le domaine--
Fe de la figure 1a) et qu'il soit suffisamment rapide pour conserver la totalité du cuivre en solution solide. La limitation est donc technologique. On peut par exemple viser la teneur en cuivre (2,9%) o la température d'apparition de la ferrite est la plus basse (environ 840 C, voir la fig.1) et pour laquelle la vitesse critique de refroidissement au delà de laquelle le cuivre reste en solution solide est encore facilement accessible (pour cette teneur en cuivre elle est d'environ 350 C/s). Une augmentation de la teneur en cuivre nécessite une élévation de la vitesse de refroidissement et de la température de fin de laminage. La température de fin de laminage est conditionnée par la limite de solubilité du cuivre dans l'austénite. Mais des teneurs de l'ordre de 4% de cuivre, imposant de laminer à chaud au-dessus de 1000 C et de refroidir ensuite la bande à plus de 2500 C/s, sont encore accessibles par la technologie de coulée de bandes minces, à condition d'imposer une faible
vitesse de défilement du produit chaud, de l'ordre de quelques m/s.
Lorsqu'on élabore un acier destiné à former des bandes laminées à froid, on doit procéder à un traitement de recristallisation de la tôle laminée à
froid. Deux variantes peuvent être choisies à cet effet.
Selon ia première variante, on choisit de dissocier le traitement de recristallisation du traitement de précipitation (cas des tôles laminées à froid à haute résistance pour emboutissage). A la température de recristallisation, le cuivre doit étre totalement en solution solide dans le domaine ferritique monophasé. La teneur maximale en cuivre est alors donnée par la limite de solubilité du cuivre dans la ferrite à la température de recristallisation considérée. Elle est au maximum de 1,8% à la température de recristallisation
maximale admissible de 840 C (voir la figure 1 b).
Selon la deuxième variante, on choisit de coupler le traitement de recristallisation et le traitement de précipitation (cas des tôles laminées à froid à haute résistance). Des teneurs très élevées en cuivre, jusqu'à 10%, sont tolérables si on procède à un recuit base. Néanmoins, I'optimum de recristallisation peut ne pas coincider avec l'optimum de précipitation, et les pàramètres du traitement doivent alors être choisis de manière à réaliser le
meilleur compromis pour l'application envisagée.
Typiquement, des teneurs en cuivre de l'ordre de 3% et 1,8% selon
les applications peuvent être recommandées.
La teneur en manganèse doit être maintenue inférieure ou égale à 2%. Comme le carbone, le manganèse a un effet durcissant. De plus, il est gammagène, donc il diminue la solubilité du cuivre dans la ferrite en réduisant l'étendue du domaine ferritique. Typiquement, on recommande une teneur en
manganèse de l'ordre de 0,3%.
La teneur en silicium peut aller jusqu'à 5%, sans qu'une teneur minimale soit à imposer impérativement. Son caractère alphagène le rend cependant avantageux, car il permet de rester dans le domaine ferritique même avec les teneurs en cuivre privilégiées de 1,8, voire 3% des aciers de I'invention. Il est recommandé d'ajuster le rapport Mn/Si à une valeur préférentiellement supérieure à 3, pour contrôler, lors de la transformation - y, le transfert de rugosité de la surface des cylindres sur les peaux solidifiées et la régularité d'accrochage des peaux solidifiées, afin d'éviter la formation de criques sur la bande en cours de solidification et de refroidissement. A cet effet, il est également recommandé (comme il est connu) d'effectuer la coulée en utilisant des surfaces de coulée rugueuses et s un ga d'inertage contenant de l'azote, qui est soluble dans l'acier liquide, de manière à se donner la possibilité d'ajuster favorablement les transferts thermiques entre l'acier et les surfaces de coulée. La teneur maximale en Si de 5% est imposée par la facilité de réalisation et de couiée de la nuance à
l'aciérie. Typiquement, on recommande une teneur de l'ordre de 0,05%.
Le nloblum et le titane peuvent, de préférence mais pas obiigatoirement, être présents à des teneurs allant jusqu'à 0,5% chacun. Ils produisent des carbures favorables au contrôle de la texture, et lorsqu'ils sont en sur-stoechiométrie par rapport au carbone, ils augmentent la température Ac' de l'acier, donc la solubilité du cuivre dans ia ferrite. Typiquement, chacun
de ces éléments peut être présent à une teneur de 0,05% environ.
La teneur en nickel peut aller jusqu'à 5%, cet élément n'étant qu'optionnel. Le nickel est souvent ajouté dans les aciers au cuivre pour lutter contre la flssuration à chaud. Son action est double. D'une part, en augmentant la solubilité du cuivre dans l'austénite, le nickel retarde la ségrégation du cuivre à 1'interface métal-oxyde. D'autre part, comme il est miscible au cuivre en toute proportion, le nickel augmente le point de fusion de la phase qui ségrège. On considère habituellement qu'une addition de nickel de l'ordre celle du cuivre suffit à empêcher la fissuration à chaud. Le refroidissement rapide eVou l'inertage après coulée du procédé selon I'invention empêchent la fissuration à chaud, ce qui diminue l'intérêt d'une addition de nickel avec cet objectif en vue. On peut néanmoins prévoir l'ajout
de nickel pour faciliter le laminage à chaud.
La teneur en aluminium peut aller jusqu'à 2% sans détériorer les propriétés de l'acier, mais cet élément n'est pas obligatoirement présent. Il est cependant avantageux pour son rôle alphagène comparable à celui du
silicium. Typiquement, I'aluminium est présent à une teneur de 0,05% environ.
! Les au1s lmants chimlques sont prAsents t#re d'AiAments rdsiduels, des teneum sultant de l'Alabomtlon de l'acier selon les pcAds classiques. En padiculier, la teneur en Ataln est lnrieu Q,Q3, la teneur I en a e deum Q2, la neur en sou lnMeu QS, la
I 5 neur en phosphom rieure 05.
L'acier liquide dont la composltlon vlent d'6t expose est ensulte coulA en condnu dlemen1 sous rme de bande mce d'Apseur inrleure ou Agale 1Qmm. A cet et, I'acier est typlquemen1 coulA dns une UngotAm sans nd, dont l'espace de coulbe est limltd par les pem latArales koidies lntArleurement de deux cyndres en tadon en sens contrakes, et par deux pamis latArales en r6ctake plaques contre les -mkAs anes des cynds. Ce pmcAdA est aouui en connu dans la llU6tum (il est dAcrit dans EP-A-O 641 807 notamment), et on n'en parlera pas davantage. IJ serait aussl envisageable d'utlliser un pmcAdA de coule par soNdcadon de Lacr sur un ind unique, qul donnemlt accAs des bandes us nes que coue ent deux cynd AvRer les pblAmes de Tengage de suce de bande HAs A rinDitlon temnulake de cure llqulde dans l'acier sous la calamlne que la mpmtum de la bande dApasse la mpAtum de sn de la phase riche en cub, soR 1000 C envim il ut ensuRe: - soR fmldE rapidement la bande venant d'At coule, par exemple pr asperslon d'eau ou d'un mlange eau/alr, de maniAre la poder en dessous de 1000 C avant qu'un enhchsement en cu ne se pmduise l'lotece mAtal- calamlre; on consldAm que cet oectif est aUelnt pour une tesse de re- issement de 25'C/s loque la bande a une teneur de 3 en cuIvre; - so# empAcher roxydadon du r en malntenAnt la bande dans une atmosphAre non odante, au molns 1usqu'A ce qu'e#e attene une tempArature lnrleure 1000 C; cela peut At rdaNsA classiquement en isant passar la bande dans une encete dont PatmosphAre est pauvre en oxygAne (molns de 5) et est consdtude essenDeMement par un gaz neube, argon ou azote; la présence d'un gaz réducteur tel que l'hydrogène est
également envisageable.
Ces deux solutions peuvent étre combinées, en étant utilisées
simultanément ou en succession.
La bande subit ensuite un laminage à chaud. Celui-ci peut être réalisé sur une installation séparée de l'installation de coulée, après un réchauffage de la bande à une température ne dépassant pas 1000 C pour éviter le fatençage (à moins que l'on ne réalise ce réchauffage en atmosphère non oxydante). Mais il est préférable, pour des raisons économiques, de réaliser ce laminage à chaud en ligne, c'est-à-dire sur la même installation que la coulée de la bande, en plaçant une ou plusieurs cages de laminage sur le trajet de la bande. Un laminage en ligne permet également de se passer d'une séquence d'opérations de bobinage/débobinage/réchauffage entre la coulée et le laminage à chaud, qui peut présenter des risques métallurgiques:
fissuration superficielle, et incrustation de calamine au bobinage notamment.
Ce laminage à chaud est réalisé, avec un taux de réduction d'au
moins 10%, en une passe ou davantage. Il a essentiellement trois fonctions.
En premier lieu, la recristallisation qu'il provoque supprime la
structure de solidification, qui est défavorabie à la mise en forme de la tôle.
Par ailleurs, cette recristallisation conduit à un affinement du grain qui est nécessaire à l'amélioration simultance des propriétés de résistance et de ténacité de la bande, si celle-ci est destinse à être utilisoe à létat de tôle
laminée à chaud.
En second lieu, il referme les porosités qui ont pu être formées au c_ur de la bande lors de la solidification, et qui seraient également néfastes
lors de la mise en forme.
De plus, il garantit le respect des spécifications dimensionnelles de
la bande concernant sa planéité, son bombé, sa symétrie.
Enfin, il améliore l'aspect de surface de la bande.
La température de fin de laminage doit être telle que le cuivre soit encore à ce stade en solution solide dans la ferrite eVou l'austénite. En effet, la précipitation du cuivre avant la fin du laminage ne permettrait pas d'en tirer
1 2834722
l le maximum de durcissement. Ce maximum est de l'ordre de 300 MPa par 1% de cuivre, lorsque les conditions de précipitation sont bien ma^trisées. Cette température de fin de laminage à respecter dépend donc de la composition de
! I'acier, notamment de ses teneurs en cuivre et en carbone.
s On considère ainsi que pour les hautes teneurs en cuivre d'environ 7% et davantage, la température de fin de laminage doit être supérieure à 1094 C, cette température étant approximativement la température du palier péritectique que présente le diagramme de phases Fe-Cu représenté sur la figure 1a, pour les teneurs en carbone très faibles. Cela implique également que le laminage à chaud soit effectué dans une atmosphère non oxydante, et que si on procède à un refroidissement de la bande immédiatement après sa solidification, ce refroidissement soit interrompu à une température suffisamment élevée pour permettre ensuite un laminage à chaud de la bande dans des conditions entraînant une température de fin de laminage supérieure
à 1 094 C.
Entre 2,9 et 7% de cuivre, la température de fin de laminage doit être supérieure à la limite de solubilité du cuivre dans l'austénite, telle que donnée par le diagramme de phases Fe-Cu, pour la teneur en carbone considérce. A titre indicatif, pour une teneur en carbone très faible, cette température T serait donnée par T(K) = 3 186-log,o Cu(%) Entre 2,9 et 1,8% de cuivre, la température de fin de laminage doit être supérieure à 840 C pour les teneurs en carbone très faibles, cette
température correspondant au palier eutectode (voir fig. 1 b).
En dessous de 1,8% de cuivre, la température de fin de laminage doit être supérieure à la limite de solubilité du cuivre dans la ferrite, telle que donnée par le diagramme de phases Fe-Cu pour la teneur en carbone considérée. A titre indicatif, pour une teneur en carbone très faible, cette température T serait donnée par T(K) = 3 279-logc Cu(%) pour le fer a paramagnétique (entre 840 C et la température de Curie de 759 C, pour une teneur en cuivre de 1,08 à 1,8%), et par T(K) = 4 495-logloCu(%) pour le fer oc ferromagnétique (entre 690 C et 759 C, pour une teneur en
cuivre de 0,5 à 1,08%).
Il faut cependant faire remarquer que les valeurs numériques ci dessus ne sont données qu'à titre indicatif, car elles varient légèrement selon
les auteurs.
Lorsque la teneur en carbone de l'acier augmente, les chiffre ci-
dessus sont également modifiés, car le carbone a un effet gammagène, comme on le voit sur l'extrait de diagramme de phase Fe-Cu de la figure 2, établi pour une teneur en carbone de 0,2 %. La température du palier eutectofde s'en trouve abaissée par rapport au cas des teneurs en carbone très faibles, et se situe souvent en-dessous de 800 C. On peut alors se permettre d'abaisser la température de fin de laminage par rapport aux cas précédemment décrits. Pour ces aciers relativement riches en carbone, on obtient, de plus, un durcissement structurel par l'action des constituants de trempe qui précipitent, tels que la bainite ou la martensite, qui vient s'ajouter
au durcissement lié à la précipitation du cuivre.
Compte tenu de ce que l'on vient de dire, il ressort qu'il n'est pas possible de définir quantitativement de façon simple et très précise la valeur
de la température de fin de laminage minimale d u procédé selon l' invention.
Ce qui est certain, c'est que cette température de fin de laminage ne doit pas être inférieure à la température pour laquelle, compte tenu de la composition de l'acier, on observerait une précipitation du cuivre. La détermination de cette température pour une composition d'acier donnée peut être effectuée au moyen d'expériences courantes par des métallurgistes, au cas o une mesure
de cette température ne serait pas disponible dans la littérature.
Si le laminage à chaud n'a pas lieu en ligne, il n'est pas nécessaire de maintenir le cuivre en solution solide jusqu'au bobinage suivant la coulée, par un refroidissement rapide tel qu'indiqué précédemment, puisque le réchauffage précébant le laminage à chaud induira une remise en solution du
S cuivre.
Après le laminage à chaud, la bande subit un nouveau refroidissement forcé. Ce refroidissement a plusieurs fonctions: - si la température de fin de laminage est supérieure à 1000 C (ce qui, on l'a vu, est souhaitable principalement pour les aciers à teneur en cuivre très élevée) , ce refroidissement garantit qu'entre la température de fin de laminage et 1 000 C il n'y aura pas d'oxydation significative du fer, et qu'on neconstatera pas de faençage sur la bande; -et surtout, il permet de maintenir le cuivre en solution solide sursaturée dans l'austénite et/ou la ferrite; cette condition est importante pour
profiter au maximum de l'effet de durcissement par précipitation du cuivre.
Pour des teneurs en cuivre de 3% et moins, on admet que le maintien du cuivre en solution solide est généralement réalisé si, pendant tout le temps que la bande passe en défilement, sans être bobinée, la vitesse de refroidissement V de la bande est telle que V 2 e 1,98 (%Cu) - 0,08 (1)
avec V en C/s et %Cu en % pondéraux.
Pour une teneur en cuivre de 1%, V doit donc être supérieure ou égale à 7 C/s, ce qui est aisément accessible. Pour une teneur en cuivre de 3%, V doit être supérieure ou égale à 350 C/s. Cette vitesse élevée est
cependant accessibie sur une installation de coulée de bandes minces.
Pour les teneurs en cuivre supérieures à 3%, la formule ci-dessus n'est plus valable, et un contrôle expérimental des résultats du refroidissement doit être effectué pour vérifier que celui-ci a bien été suffisant
pour obtenir le maintien du cuivre en solution solide sursaturée.
Le bobinage de la bande a ensuite lieu. On peut profiter de la période o la bande séjourne à l'état de bobine pour procéder à un revenu de précipitation du cuivre qui provoque le durcissement de l'acier. La dureté de l'acier HV obtenue dépend de la composition de l'acier, mais aussi de la durée du séjour de la bande sous forme de bobine et de la température de bobinage, sachant que, dans la pratique, une bobine reste environ 1h à sa température de bobinage avant de refroidir à une vitesse d'environ 10 à C/h. On constate que la courbe HV = f(t) présente un maximum HVmax pour une durée donnée tHvmax' au-delà de laquelle la dureté diminue. On peut donc conseiller de refroidir la bande bobinée (ou de la débobiner) dès que
tHvmax a été atteinte.
L'expérience montre que tHvmaX est donnée par l'équation: 8.1 o-8 14343 tHVmaX = (%Cu)3 (2) avec tHVmax en h, %Cu en % pondéraux et T en K. On peut ainsi choisir, pour une teneur en cuivre donnée, les
combinaisons (tHV' T) préférentielles compatibles avec l'outil industriel utilisé.
Dans le cas o on choisit d'effectuer un revenu pendant le bobinage, tHv est imposé (supérieur à 1 h); on ne peut alors jouer que sur la température de bobinage. D'autre part, la valeur de la dureté maximale que l'on peut obtenir augmente lorsque la température du revenu de précipitation diminue, à condition que l'on laisse à la bande assez de temps pour parvenir à cette
dureté maximale.
Par ailleurs, le choix de la température de bobinage de la bande et le choix des opérations ultérieures dépendent du type de produit que l'on
désire fabriquer.
Comme on l'a dit, il est possible de fabriquer des tôles laminées à chaud selon le procédé de l'invention. Deux modes opératoires sont envisageables. Selon un premier mode opératoire, on effectue le bobinage de la bande après laminage à chaud à une température élevée, par exemple celle (calculée en fonction de la teneur en cuivre selon la formule (2) précédente) qui permet d'atteindre la dureté maximale en 1h (durée à partir de laquelle, comme on l'a dit, la température de la bobine commence habituellement à décro^'tre). La période pendant laquelle la bande subit un séjour à haute température est donc la phase initiale de son séjour sous forme de bobine
suivant le refroidissement rapide.
Dans le cas des aciers dont la teneur en carbone est comprise entre 0,1 et 1%, une condition supplémentaire sur la température de bobinage est qu'elle se situe au dessus de la température Ms de début de transformation martensitique. En effet, la formation de martensite pourrait provoquer l'apparition de criques lors du débobinage. Ms est donnse par la formule classique dite " formule d'Andrews ": Ms ( C) = 539 - 423 C% - 30,4 Mn% 17,7 Ni% - 12,1 Cr% -11 Si% - 7 Mo%
o les teneurs en les divers éléments sont exprimées en % pondéraux.
Pour les aciers dont la teneur en carbone est comprise entre 0,0005 et 0, 1%, il n'est pas nécessaire de prendre Ms en compte. Dans leur cas Ms est de l'ordre de 400 à 500 C, ce qui est élevé et, le plus souvent, au dessus de la température de bobinage qui serait aisément accessible sur
l'installation. Mais il n'y a ici pas d'inconvénient à bobiner en dessous de Ms.
car: - soit, au cours du refroidissement, on aura formé de la bainite (les aciers à faible teneur en carbone ne sont pas " trempants "), ce qui empêche la formation de martensite; - soit on forme effectivement de la martensite; mais comme la teneur en carbone est faible, la quantité de martensite formée est réduite et
ne provoque pas d'incidents au débobinage.
Après refroidissement complet de la bobine (qui, selon les besoins, peut s'effectuer de façon entièrement naturelle ou être exécuté de manière forcée après l'écoulement du temps nécessaire à l'obtention de la dureté
désirée), la tôle laminée à chaud est prête à l'emploi.
Cependant, il faut savoir que le taux de germination des précipités de cuivre est une fonction exponentielle croissante du dogré de refroidissement de la bande. Dans ces conditions, il est conseillé, pour obtenir un effet de durcissement par précipitation maximal, d'achever la phase de germination à une température inférieure à celle à laquelle s'effectuera la croissance des grains. On peut donc proposer un second mode opératoire pour la fabrication de bandes laminées à chaud. Selon ce second mode opératoire, on procède au bobinage de la bande à une température suffisamment basse pour que, lors du refroidissement naturel de la bobine, il ne se produise pas de précipitation du cuivre, celui-ci restant en solution solide sursaturée. On estime qu'une température de bobinage inférieure à 300 C est suffisante à cet effet. Il n'y a, ici, pas d'inconvénient à bobiner la bande dans le domaine de transformation martensitique. En effet, la bande (toujours bobinée, au moins dans le cas o le bobinage a eu lieu en dessous de Ms) subit ensuite un traitement thermique de revenu entre 400 et 700 C qui permet de faire dispara^'tre la martensite. Mais le rôle principal de ce revenu est de faire précipiter le cuivre, de manière à obtenir les propriétés désirées pour la tôle à chaud. Les paramètres de ce traitement (température et durée) peuvent être déterminés au moyen de l'équation (2) précédemment donnée. Dans le cas o on désire produire des tôles laminées à froid selon le procédé de l'invention, la température de bobinage doit être supérieure à Ms pour les aciers dont la teneur en carbone est comprise entre 0,1 et 1%, car il n'y a pas de traitement thermique qui permettrait d'éliminer la martensite entre le bobinage et le débobinage précédant le laminage à froid. Mais la température de bobinage doit également dans tous les cas être inférieure à 300 C pour que le laminage à froid et le recuit de recristallisation qui suit aient
lieu sur un acier o le cuivre se trouve en solution solide sursaturée.
Dans le cas o on désire fabriquer des tôles laminées à froid à très haute résistance pouvant contenir des teneurs en cuivre et en carbone élevées (0,1 à 1% de C), ou des tôles laminées à froid à haute résistance et aisément soudables, pour lesquelles une teneur en carbone relativement basse est exigée t0,01 à 0,2%), on peut proposer différentes variantes de mode opératoire, selon que l'on désire utiliser une installation de recuit continu ou une installation de recuit base pour réaliser le traitement thermique
de revenu de précipitation.
Dans tous les cas, on procède d'abord au laminage à froid (typiquement à un taux de réduction de 40 à 80% et à température ambiante) de la bande dont le cuivre est en solution solide sursaturée puis à un recuit de recristallisation effectué dans le domaine des températures élevées o le cuivre est également en solution solide dans la ferrite eVou l'austénite. On a déjà vu à propos du choix de la température de fin du laminage à chaud quelles pouvaient être les conditions adaptées à cet effet, en fonction de la
teneur en cuivre de la bande.
La durée de ce recuit de recristallisation dépend de la capacité à avoir préalablement conservé le cuivre en solution solide. En effet, à la température de recristallisation de 840 C o l'on peut remettre jusqu'à 1, 8% de cuivre en solution solide, la croissance des grains peut être excessive. Si le cuivre est déjà en solution solide avant la recristallisation, le temps de recuit est fixé non plus par la cinétique de dissolution des précipités de cuivre, mais par la cinétique de croissance des grains. La dissolution du cuivre avant recristallisation facilite donc l'optimisation de la texture, et cette situation est la plus avantageuse pour le métallurgiste. En fonction de l'état dans lequel se trouve le cu ivre (intég ralement en solution ou partiellement précipité), le recu it de recristallisation, s'il est effectué à 840 C, a une durée pouvant varier de s à 5mn. Il peut avantageusement être exécuté dans une installation de " recuit compact " donnant accès en peu de temps à des températures
élevées qui permettent de remettre en solution de fortes quantité de cuivre.
Après le recuit de recristallisation, on effectue le revenu de précipitation. Ces deux opérations sont séparées par une étape de refroid isse ment rap ide, d estinée à conserve r l e cu ivre en sol ution sol ide. Ce
refroidissement doit donc obéir à l'équation (1) précédemment citée.
Si pour le revenu de précipitation on utilise une installation de recuit continu (de préférence enchanée directement avec l'installation de recuit compact qui a servi à réaliser le recuit de recristallisation), pour laquelle on ne dispose que de peu de temps pour atteindre la dureté maximale HVnaX de la bande (voir l'équation (2) pour son calcul), il faut exécuter ce revenu à une température relativement élevée (600-700 C). Cela limite l'ampleur du durcissement par précipitation obtenu, puisque ce durcissement, comme on l'a dit, est d'autant plus important que le revenu est effectué à plus basse température. C'est pourquoi, lorsque de très hauts niveaux de résistance sont recherchés, il est préférable de réaliser le revenu de précipitation à relativement basse température (400 à 700 C), mais pendant une durée prolongée déterminée, de préférence, par l'équation (2) précédente, dans une installation de recuit base o la bande séjourne à l'état de bobine. Dans ce cas, le refroidissement rapide suivant le traitement doit porter la bande à
moins de 300 C pour conserver le cu ivre en solution sol ide sursatu rce.
L'utilisation d'une filière " recuit compact suivi d'un refroidissement très rapide (facilement accessible sur ce type d'installation) - recuit base " s'avère donc particulièrement avantageuse pour obtenir des aciers à forte teneur en cuivre, ayant donc une grande capacité à étre durcis par précipitation et, par suite, une résistance finale très élevée. Cette filière est
cependant relativement longue du fait de la présence du recuit base.
En variante, comme on l'a dit, il est possible de coupler les deux opérations de recristallisation et de précipitation au cours d'un recuit base effectué à 400-700 C pendant une durée pouvant être déterminée par l'équation (2) précédente, sans recuit de recristallisation préalable, donc directement après le laminage à froid. Cette façon de procéder s'adresse plus particulièrement aux aciers les plus chargés en cuivre ausqu'à 10%). Dans certains cas, les paramètres du traitement devront être choisis afin d'obtenir le melileur compromis possible entre les exigences concernant la recristallisation
et les exigences co ncern ant la préci pitation d u cu ivre.
Dans le cas o on désire fabriquer une tôle laminée à froid en acier à bas carbone (moins de 0,05%) et à bonne emboutissabilité, on propose un mode opératoire comportant, comme précédemment, un laminage à froid (typIquement à un taux de réduction de 40 à 80% et à température ambiante) effectué su r la bande o le cu ivre est en solution solide su rsaturée, u n recu it
de recristallisation et un revenu de précipitation.
Pour que la tôle conserve de bonnes propriétés d'emboutissage, la recristallisation doit s'effectuer dans le domaine ferritique et ne doit pas permettre au cuivre de précipiter. La température de recristallisation est donc détermince par la limite de solubilité du cuivre dans la ferrite telle qu'on l'a vue plus haut. Pratiquement, on peut recommander de réaliser le recuit de recristallisation à la température eutectoide (de l'ordre de 840 C pour les aciers au cuivre à bas carbone), là o la solubilité du cuivre dans la ferrite est
maximale (1,8%).
11 est nécessaire d'éviter une croissance exagérée du grain ferritique pendant le recuit de recristallisation. Il peut également être nécessaire d'élever la température Ac' de l'acier pour que la mise en solution complète du cuivre puisse être effectuée en phase ferritique au cas o le refroid issement ap rès la mi nag e à ch aud n'a it pas pe rmis d e le conserve r intégralement en sursaturation. L'addition de titane ou de niobium permet de satisfaire ces deux exigences. Ces éléments ont aussi un effet favorable sur la texture de recristallisation par piégeage du carbone et de l'azote notamment. Comme il est classique, la bande laminée à chaud ou à froid peut subir un traitement final dans un laminoir écrouisseur (skin-pass) pour lui conférer son état de surface et sa planéité définitifs et ajuster ses propriétés mécaniques. Enfin, si la mise en _uvre de la tôle obtenue à partir des bandes selon l'invention demande une emboutissabilité très élevée, il est possible de la réaliser avant le revenu de précipitation, qui est donc effectué non plus sur
la bande brute mais sur le produit embouti.
Grâce au procédé selon l'invention, il est possible de fabriquer des tôles à très haute résistance non nécessairement produites à partir de fonte
liquide, ce qui les rend économiques.
Un autre avantage de ces tôles est que la présence de cuivre en proportion importante les rend moins sensibles à la corrosion atmosphérique,
et peut donc permettre de se passer de revêtement anticorrosion.
Concernant les propriétés mécaniques accessibles par le procédé selon l'invention: - les tôles laminées à chaud ou à froid contenant jusqu'à 10% de cuivre et de 0,1 à 1% de carbone peuvent avoir des résistances très supérieures à 1000 MPa; les tôles laminses à chaud ou à froid ayant des teneurs en carbone moindres ont des résistances moins élevées, mais qui sont toujours supérieures à 1000 MPa, et elles présentent une bonne soudabilité qui rend leur emploi possible notamment dans l'industrie automobile; - les tôles laminées à froid contenant jusqu'à 1,8% de cuivre et 0,05% de carbone présentent une résistance de l'ordre de 700 à 900 MPa et un allongement à la rupture de 15 à 30%, donc une très bonne emboutissabilité.

Claims (18)

REVENDICATIONS
1. Procédé de fabrication d'un produit sidérurgique en acier au carbone riche en cuivre, selon lequel: - on éiabore un acier liquide ayant la composition, exprimée en pourcentages pondéraux:
* 0,0005 % < C < 1 %
* 0,5 < C u < 10 % * 0 < Mn < 2% * O < Si < 5 % * 0 < Ti < 0,5 % * 0 < Nb < 0,5 % *0<Ni<5% * 0 < Al < 2% le reste étant du fer et des impuretés résultant de l'élaboration; - on coule cet acier liquide directement sous forme d'une bande mince d'épaisseur inférieure ou égale à 10 mm - on refroidit rapidement la bande jusqu'à une température inférieure ou égale à 1000 C; - on fait subir à la bande mince un laminage à chaud à un taux de réduction d'au moins 10%, la température de fin de laminage étant telle qu'à cette température, tout le cuivre se trouve encore en solution solide dans la matrice de ferrite eVou d'austénite; - on fait ensuite subir à la bande un refroidissement forcé de manière à maintenir le cuivre en solution solide sursaturée dans la matrice de ferrite eVou d'austénite;
- et on bobine la bande.
2. Procédé selon la revendication 1, caractérisé en ce que le
rapport Mn/Si est supérieur ou égal à 3.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'on réalise la coulée de la bande mince sur une installation de coulée entre deux
cylindres refroidis intérieurement tournant en sens contraires.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce
que le laminage à chaud de la bande est réalisé en ligne avec la coulée de la bande.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce
que la vitesse V du refroidissement forcé suivant le laminage à chaud est telle que V 2 e 1,98 (%Cu) -0,08
avec V exprimée en C/s et %Cu en % pondéraux.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce
que la teneur en carbone de l'acier est comprise entre 0,1 et 1% et en ce que le bobinage de la bande est effectué à une température supérieure à la
température Ms de début de transformation martensitique.
7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce
que le bobinage de la bande est effectué à moins de 300 C, et en ce que la bande subit ensuite un traitement thermique de précipitation du cuivre entre
400 et 700 C.
8. Procédé selon la revendication 7, caractérisé en ce que la teneur en carbone de l'acier est comprise entre 0,1 et 1% et en ce que la bande subit
le traitement thermique de précipitation sans débobinage préalable.
9. Procédé selon l'une des revendications 1 à 5, caractérisé en ce
que le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300 C, et en ce qu'on effectue ensuite un laminage à froid, un recuit de recristallisation dans un domaine de température o le cuivre est en solution solide sursaturce, un refroidissement forcé maintenant le cuivre en
solution solide, et un revenu de précipitation.
10. Procédé selon la revendication 9, caractérisé en ce que ledit revenu de précipitation est effectué entre 600 et 700 C dans une installation
de recuit continu.
11. Procédé selon la revendication 9, caractérisé en ce que ledit revenu de précipitation est effectué entre 400 et 700 C dans une installation
de recuit base.
12. Procédé selon l'une des revendications 1 à 5, caractérisé en ce
que le bobinage de la bande est effectué à une température à la fois supérieure à la température Ms de début de transformation martensitique et inférieure à 300 C, et en ce qu'on effectue ensuite un laminage à froid et un recuit base entre 400 et 700 C servant à la fois de recuit de recristallisation et
de revenu de précipitation.
13. Procédé selon l'une des revendications 9 à 12, caractérisé en
ce que la teneur en carbone de l'acier est comprise entre 0,1 et 1%.
14. Procédé selon l'une des revendications 9 à 12, caractérisé en
ce que la teneur en carbone de l'acier est comprise entre 0,01 et 0,2%.
15. Procédé selon l'une des revendications 9 à 12, caractérisé en
ce que la teneur en carbone de l'acier est comprise entre 0,0005% et 0, 05%
et en ce que sa teneur en cuivre est comprise entre 0,5 et 1,8%.
16. Procédé selon la revendication 15, caractérisé en ce que préalablement au revenu de précipitation, on découpe la bande pour former une tôle que l'on met en forme par emboutissage, et en ce que le revenu de
précipitation est effectué sur la tôle emboutie.
17. Procédé selon l'une des revendications 1 à 15, caractérisé en
ce que l'on procède à un traitement final de la bande dans un laminoir écrouisseur.
18. Produit sidérurgique, caractérisé en ce qu'il a été obtenu par un
FR0200387A 2002-01-14 2002-01-14 Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu Expired - Fee Related FR2834722B1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
FR0200387A FR2834722B1 (fr) 2002-01-14 2002-01-14 Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
AT03712234T ATE368132T1 (de) 2002-01-14 2003-01-13 Verfahren zur herstellung eines eisenhüttenprodukts aus unlegiertem stahl mit hohem kupfergehalt und danach erhaltenes eisenhüttenprodukt
EP03712234A EP1466024B1 (fr) 2002-01-14 2003-01-13 Procede de fabrication d un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
CA002473050A CA2473050A1 (fr) 2002-01-14 2003-01-13 Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
PCT/FR2003/000088 WO2003057928A1 (fr) 2002-01-14 2003-01-13 Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
CNB038039451A CN100334235C (zh) 2002-01-14 2003-01-13 用于制造由含铜量高的碳钢制成的钢铁冶金制品的方法及根据所述方法获得的钢铁冶金制品
JP2003558221A JP2005514518A (ja) 2002-01-14 2003-01-13 高い銅含有量を有する炭素鋼製鉄鋼製品を製造する方法および前記方法によって得られた鉄鋼製品
KR10-2004-7010945A KR20040069357A (ko) 2002-01-14 2003-01-13 높은 구리함량을 갖는 탄소강으로 제조된 철강 제품제조방법 및 그 제조방법에 따라 제조된 철강제품
ES03712234T ES2289270T3 (es) 2002-01-14 2003-01-13 Procedimiento de fabricacion de un producto siderurgico de acero al carbono rico en cobre, y producto siderurgico asi obtenido.
AU2003216715A AU2003216715A1 (en) 2002-01-14 2003-01-13 Method for the production of a siderurgical product made of carbon steel with a high copper content, and siderurgical product obtained according to said method
US10/501,456 US7425240B2 (en) 2002-01-14 2003-01-13 Method for the production of a siderurgical product made of carbon steel with a high copper content
DE60315129T DE60315129T2 (de) 2002-01-14 2003-01-13 Verfahren zur herstellung eines eisenhüttenprodukts aus unlegiertem stahl mit hohem kupfergehalt und danach erhaltenes eisenhüttenprodukt
BR0307165-0A BR0307165A (pt) 2002-01-14 2003-01-13 Processo de fabricação de um produto siderúrgico de aço com carbono rico em cobre e produto siderúrgico
US12/110,599 US20080257456A1 (en) 2002-01-14 2008-04-28 Method for the Production of a Siderurgical Product Made of Carbon Steel with a High Copper Content, and Siderurgical Product Obtained According to Said Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0200387A FR2834722B1 (fr) 2002-01-14 2002-01-14 Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu

Publications (2)

Publication Number Publication Date
FR2834722A1 true FR2834722A1 (fr) 2003-07-18
FR2834722B1 FR2834722B1 (fr) 2004-12-24

Family

ID=8871276

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0200387A Expired - Fee Related FR2834722B1 (fr) 2002-01-14 2002-01-14 Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu

Country Status (13)

Country Link
US (2) US7425240B2 (fr)
EP (1) EP1466024B1 (fr)
JP (1) JP2005514518A (fr)
KR (1) KR20040069357A (fr)
CN (1) CN100334235C (fr)
AT (1) ATE368132T1 (fr)
AU (1) AU2003216715A1 (fr)
BR (1) BR0307165A (fr)
CA (1) CA2473050A1 (fr)
DE (1) DE60315129T2 (fr)
ES (1) ES2289270T3 (fr)
FR (1) FR2834722B1 (fr)
WO (1) WO2003057928A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618503B2 (en) * 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
FR2834722B1 (fr) * 2002-01-14 2004-12-24 Usinor Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
AT504225B1 (de) * 2006-09-22 2008-10-15 Siemens Vai Metals Tech Gmbh Verfahren zur herstellung eines stahlbandes
WO2008088834A1 (fr) * 2007-01-17 2008-07-24 Kva, Inc. Procédé pour améliorer la performance de joints à soudure continue utilisant un traitement thermique après soudure
BRPI0803913A2 (pt) * 2008-09-12 2010-06-22 Univ Fed Do Espirito Santo Ufe nova tecnologia para produção de aços patináveis, com alto cobre e baixo manganês, apresentando vantagens tecnológicas, econÈmicas e ambientais
US20100215981A1 (en) * 2009-02-20 2010-08-26 Nucor Corporation Hot rolled thin cast strip product and method for making the same
RU2477323C1 (ru) * 2011-09-29 2013-03-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства толстолистового низколегированного проката
EP2690184B1 (fr) 2012-07-27 2020-09-02 ThyssenKrupp Steel Europe AG Cold rolled steel flat product and method for its production
EP2690183B1 (fr) 2012-07-27 2017-06-28 ThyssenKrupp Steel Europe AG Produit plat en acier laminé à chaud et son procédé de fabrication
WO2015001367A1 (fr) 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Feuille d'acier laminée à froid, procédé de fabrication et véhicule
EP2840159B8 (fr) 2013-08-22 2017-07-19 ThyssenKrupp Steel Europe AG Procédé destiné à la fabrication d'un composant en acier
DE102015106780A1 (de) * 2015-04-30 2016-11-03 Salzgitter Flachstahl Gmbh Verfahren zur Erzeugung eines Warm- oder Kaltbandes aus einem Stahl mit erhöhtem Kupfergehalt
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
CN105838966A (zh) * 2016-05-18 2016-08-10 安徽合矿机械股份有限公司 一种汽车齿轮用耐疲劳材料
CN107321795A (zh) * 2017-06-19 2017-11-07 太仓市钧胜轧辊有限公司 一种高强度复合轧辊
US20220340993A1 (en) 2019-09-19 2022-10-27 Baoshan Iron & Steel Co., Ltd. Hot-rolled steel plate/strip for sulfuric acid dew point corrosion resistance and manufacturing method therefor
DE112020004462T9 (de) 2019-09-19 2022-08-04 Baoshan Iron & Steel Co., Ltd. Feuerfestes und witterungsbeständiges stahlblech/-band und verfahren zur herstellung desselben
CN112522576B (zh) 2019-09-19 2022-11-18 宝山钢铁股份有限公司 一种薄规格高耐蚀钢及其生产方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925500A (en) * 1987-06-26 1990-05-15 Nippon Steel Corporation High-strength hot-rolled steel sheet having remarkably excellent cold workability and process for manufacturing the same
EP0641867A1 (fr) * 1993-02-26 1995-03-08 Nippon Steel Corporation Piece mince moule en acier au carbone ordinaire contenant des quantites importantes de cuivre et d'etain, tole mince en acier et procede de fabrication
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JPH0920959A (ja) * 1995-06-30 1997-01-21 Nkk Corp 耐二次加工性および表面品質に優れたプレス成形用熱延鋼板及びその製造方法
JPH09209039A (ja) * 1996-02-08 1997-08-12 Nisshin Steel Co Ltd 深絞り性に優れた高強度冷延鋼板の製造方法
EP0969112A1 (fr) * 1997-03-17 2000-01-05 Nippon Steel Corporation Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation
JP2000309848A (ja) * 1999-04-20 2000-11-07 Nippon Steel Corp 疲労特性に優れた加工用熱延鋼板およびその製造方法
EP1072689A1 (fr) * 1999-07-30 2001-01-31 Usinor Procédé de fabrication de bandes minces en acier de type "TRIP" , et bandes minces ainsi obtenues
WO2001077400A1 (fr) * 2000-04-07 2001-10-18 Kawasaki Steel Corporation Tole d'acier laminee a chaud, tole d'acier laminee a froid et tole d'acier galvanisee par immersion a chaud ayant d'excellentes caracteristiques de durcissement au vieillissement par ecrouissage, et procede pour leur production
WO2001081640A1 (fr) * 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644429A (en) * 1987-06-26 1989-01-09 Nippon Steel Corp Manufacture of high-strength cold-rolled steel sheet with high (r) value
JPH01156418A (ja) * 1987-12-14 1989-06-20 Yamakawa Kogyo Kk 自動車用高強度駆動伝達部品の製造方法
JP3126256B2 (ja) * 1993-04-09 2001-01-22 新日本製鐵株式会社 Cu含有鋼の連続鋳造方法およびその鋳片並びにCu含有鋼板の製造方法およびその鋼板
JP3358137B2 (ja) * 1994-03-31 2002-12-16 新日本製鐵株式会社 Cu,Sn含有薄スラブ鋳片およびCu,Sn含有鋼板の製造方法
FR2798871B1 (fr) * 1999-09-24 2001-11-02 Usinor Procede de fabrication de bandes d'acier au carbone, notamment d'acier pour emballages, et bandes ainsi produites
FR2834722B1 (fr) * 2002-01-14 2004-12-24 Usinor Procede de fabrication d'un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925500A (en) * 1987-06-26 1990-05-15 Nippon Steel Corporation High-strength hot-rolled steel sheet having remarkably excellent cold workability and process for manufacturing the same
EP0641867A1 (fr) * 1993-02-26 1995-03-08 Nippon Steel Corporation Piece mince moule en acier au carbone ordinaire contenant des quantites importantes de cuivre et d'etain, tole mince en acier et procede de fabrication
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
JPH0920959A (ja) * 1995-06-30 1997-01-21 Nkk Corp 耐二次加工性および表面品質に優れたプレス成形用熱延鋼板及びその製造方法
JPH09209039A (ja) * 1996-02-08 1997-08-12 Nisshin Steel Co Ltd 深絞り性に優れた高強度冷延鋼板の製造方法
EP0969112A1 (fr) * 1997-03-17 2000-01-05 Nippon Steel Corporation Tole d'acier biphase a haute resistance ayant d'excellentes proprietes de deformation dynamique et son procede de preparation
JP2000309848A (ja) * 1999-04-20 2000-11-07 Nippon Steel Corp 疲労特性に優れた加工用熱延鋼板およびその製造方法
EP1072689A1 (fr) * 1999-07-30 2001-01-31 Usinor Procédé de fabrication de bandes minces en acier de type "TRIP" , et bandes minces ainsi obtenues
WO2001077400A1 (fr) * 2000-04-07 2001-10-18 Kawasaki Steel Corporation Tole d'acier laminee a chaud, tole d'acier laminee a froid et tole d'acier galvanisee par immersion a chaud ayant d'excellentes caracteristiques de durcissement au vieillissement par ecrouissage, et procede pour leur production
EP1195447A1 (fr) * 2000-04-07 2002-04-10 Kawasaki Steel Corporation Tole d'acier laminee a chaud, tole d'acier laminee a froid et tole d'acier galvanisee par immersion a chaud ayant d'excellentes caracteristiques de durcissement au vieillissement par ecrouissage, et procede pour leur production
WO2001081640A1 (fr) * 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
EP1201780A1 (fr) * 2000-04-21 2002-05-02 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05 30 May 1997 (1997-05-30) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 12 25 December 1997 (1997-12-25) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14 5 March 2001 (2001-03-05) *

Also Published As

Publication number Publication date
ATE368132T1 (de) 2007-08-15
US20080257456A1 (en) 2008-10-23
US7425240B2 (en) 2008-09-16
BR0307165A (pt) 2004-11-03
AU2003216715A1 (en) 2003-07-24
DE60315129D1 (de) 2007-09-06
KR20040069357A (ko) 2004-08-05
US20050028898A1 (en) 2005-02-10
CA2473050A1 (fr) 2003-07-17
CN1633509A (zh) 2005-06-29
FR2834722B1 (fr) 2004-12-24
EP1466024B1 (fr) 2007-07-25
EP1466024A1 (fr) 2004-10-13
CN100334235C (zh) 2007-08-29
JP2005514518A (ja) 2005-05-19
DE60315129T2 (de) 2008-04-10
ES2289270T3 (es) 2008-02-01
WO2003057928A1 (fr) 2003-07-17

Similar Documents

Publication Publication Date Title
EP1067203B1 (fr) &#34;Procédé de fabrication de bandes en alliage fer-carbone-manganèse, et bandes ainsi produites&#34;
EP1466024B1 (fr) Procede de fabrication d un produit siderurgique en acier au carbone riche en cuivre, et produit siderurgique ainsi obtenu
EP1072689B1 (fr) Procédé de fabrication de bandes minces en acier de type &#34;TRIP&#34; , et bandes minces ainsi obtenues
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
EP1228254B1 (fr) Procede de fabrication de bandes d&#39;acier au carbone, notamment d&#39;acier pour emballages
EP0881305B1 (fr) Procédé de fabrication de bandes minces d&#39;acier inoxydable ferritique
EP1427866B1 (fr) Procede de fabrication de tubes soudes et tube ainsi obtenu
EP1187691B1 (fr) Procede de coulee continue entre cylindres de bandes d&#39;acier inoxydable ferritique exemptes de microcriques
CA2325892C (fr) Procede de realisation d&#39;une bande de tole laminee a chaud a tres haute resistance, utilisable pour la mise en forme et notamment pour l&#39;emboutissage
EP1061139B1 (fr) Procédé de fabrication de tôles d&#39;acier aptes à l&#39;emboutissage par coulée directe de bandes
EP0896069A1 (fr) Procédé d&#39;élaboration d&#39;une tÔle mince en acier à ultra bas carbone pour la réalisation de produits emboutis pour emballage et tÔle mince obtenue
FR2631350A1 (fr) Alliage de ni-fe ferromagnetique et procede de fabrication de brames ayant une qualite de surface excellente en cet alliage
BE893814A (fr) Procede de fabrication d&#39;un feuillard d&#39;acier au silicium a grains orientes et contenant de l&#39;aluminium
CA2281991A1 (fr) Procede de fabrication d&#39;une bande mince en acier inoxydable
BE1011557A4 (fr) Acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de cet acier.
CA2337260A1 (fr) Produit plat, tel que tole, d&#39;un acier a haute limite d&#39;elasticite montrant une bonne ductilite et procede de fabrication de ce produit
BE570815A (fr)
BE854191A (fr) Procede de traitement thermique en continu de toles laminees
BE735339A (fr)

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20110930