EP0090400B1 - Antenne de radar de surveillance avec discrimination angulaire en élévation - Google Patents

Antenne de radar de surveillance avec discrimination angulaire en élévation Download PDF

Info

Publication number
EP0090400B1
EP0090400B1 EP19830103074 EP83103074A EP0090400B1 EP 0090400 B1 EP0090400 B1 EP 0090400B1 EP 19830103074 EP19830103074 EP 19830103074 EP 83103074 A EP83103074 A EP 83103074A EP 0090400 B1 EP0090400 B1 EP 0090400B1
Authority
EP
European Patent Office
Prior art keywords
antenna
surveillance radar
radar antenna
electronically
exciters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830103074
Other languages
German (de)
English (en)
Other versions
EP0090400A1 (fr
Inventor
Anton Dipl.-Ing. Brunner
Helmuth Dipl.-Ing. Thiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0090400A1 publication Critical patent/EP0090400A1/fr
Application granted granted Critical
Publication of EP0090400B1 publication Critical patent/EP0090400B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/20Producing pencil beam by two cylindrical focusing devices with their focal lines orthogonally disposed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the invention relates to a circular search radar antenna with height detection using a cylinder parabolic reflector illuminated by a line source, the azimuthal scanning by mechanical rotation and the scanning in elevation by electronic swiveling of the radiation beam that runs from the parallel to the cylinder axis of the reflector. is emitted by a line source formed by a row of emitters, which forms the radiation aperture of a wave-guiding primary emitter in which the individual emitters are fed in terms of radiation via electronically controllable phase shifters for focusing and desired beam deflection in the elevation.
  • Such a search radar antenna with height detection is known from DE-AS 2533179.
  • a closed wave-guiding sector horn is used as the primary radiator, in which horizontal partition walls are inserted in the aperture area running parallel to the cylinder axis of the reflector, so that superimposed waveguide pieces result which form the individual radiators.
  • the object of the invention is to design a circular search radar antenna with mechanical rotation in the azimuth plane in such a way that the possibility of detecting the height of targets and tracking several targets according to the so-called "track while scan” method exists. It should be possible to implement such an antenna in an economical manner.
  • both known possibilities are technically very complex, so that the invention aims for a simpler and more economical solution.
  • the stated object which relates to a search radar antenna of the type mentioned at the outset, is achieved in that the wave-guiding primary radiator is a so-called flat parabolic antenna (pillbox antenna) in that several small exciters are arranged one above the other in the focal line area of the flat-arabolic antenna, one of which is only operated in the case of transmission and two in pairs only in the case of reception. and that the two radiation lobes produced and superimposed by the pathogens operated in the case of reception are set such that they overlap and together are essentially encompassed by the lobe which is generated by the pathogen for transmission.
  • the wave-guiding primary radiator is a so-called flat parabolic antenna (pillbox antenna) in that several small exciters are arranged one above the other in the focal line area of the flat-arabolic antenna, one of which is only operated in the case of transmission and two in pairs only in the case of reception. and that the two radiation lobes produced and superimposed by the pathogens operated in the case of reception are set such that
  • a target direction accuracy can be achieved, which is of the order of 1 °.
  • ranges of over 100 km are possible due to the large gain in antennas and the high transmission power to be transmitted with small secondary peaks.
  • An advantageous development of the invention consists in that the shape of the radiation lobe generated by the exciter for the transmission case can be set differently by means of the electronically controllable phase shifters.
  • a cosec 2 lobe or a normally shaped radiation lobe with any width of, for example, 3 °, 5 °, 10 ° or 20 ° can then be emitted.
  • the transmission lobe shaping can be carried out by exclusively setting the phase assignment along the linear radiator for a given amplitude assignment.
  • the two radiation lobes are electronically deflected by the electronically controllable phase shifters for a search process or for switching to an already known target.
  • two exciters are then activated, which are at a relatively large distance from one another, whereas two exciters with a relatively small distance from one another are actuated to generate two sharp receiving lobes with a small angular offset.
  • the pair of receiving lobes is advantageously deflected electronically in such a way that it remains aligned with the angular range of the transmitting lobe during the reception of the target echoes.
  • Such a transmission lobe has the advantage of the larger transmission antenna gain and thus the greater range.
  • the pair of receiving lobes can also be deflected electronically during the time in which the echoes of a transmitted pulse return from the different target distances.
  • the antenna concept according to the invention offers the basis for a very flexible 3D search and tracking radar system according to the so-called “track while scan” method with the various possibilities for beam shape, beam width and deflection angle in the case of transmission and reception.
  • the flat parabolic antenna is expediently arranged outside the beam path of the cylindrical parabolic reflector, so that an aperture covering of the cylindrical parabolic reflector is avoided.
  • the flat parabolic antenna is advantageously designed in the so-called double-stick form and is also bent in the transverse direction in front of its elongated radiation opening.
  • the radiator elements located in the aperture area of the flat parabolic antenna are thus supplied with radiation via the bent flat parabolic antenna.
  • An advantageous embodiment of the invention consists in that at least approximately horizontal metallic intermediate walls are inserted in the aperture area of the flat parabolic antenna parallel to the cylinder axis of the parabolic cylinder reflector, so that there are superimposed waveguide pieces forming the individual radiators in which the electronically controllable phase shifters are arranged.
  • These phase shifters are then advantageously designed as ferrite phase shifters.
  • This type of phase shifter tolerates a relatively high transmission power and has relatively low transmission losses. They can be switched very quickly and also relatively often. Because of their non-reciprocal nature, however, it is necessary to switch between sending and receiving.
  • phase shifters thus receive the radiation emerging from the flat parabolic antenna on the aperture side and, after a corresponding phase shift, pass them on to the individual radiators, which are designed as horn radiators in the case of the waveguide design of the phase shifter.
  • the individual radiators arranged linearly in the aperture region of the flat antenna can each also consist of a collector radiator element which is aligned inside the flat parabolic antenna and an emitter radiator element which is aligned in the direction of the cylindrical parabolic reflector.
  • An electronically controllable phase shifter is then arranged between the respective collector element and the associated emitter emitter element.
  • a collector radiator element, an emitter radiator element and an electronically controllable phase shifter are expediently applied to a common substrate plate and then form a single radiator module. This also includes the driver electronics for the phase shifter.
  • the azimuthal side lobes can be further reduced by special training of the single radiators.
  • Radiation with circular polarization can also be generated by a polarizer on the individual radiators.
  • Dipoles for an integrated IFF (identification friend foe) antenna can be attached to both sides of the line source consisting of the individual radiators.
  • the small exciters of the flat parabolic antenna forming the primary radiator are advantageously horn radiators or open waveguides.
  • FIG. 1 shows the combination of a reflector antenna with a phase-controlled antenna according to the invention using a line source in front of a cylindrical parabolic reflector 1.
  • the line source running parallel to the cylinder axis of the reflector 1 is excited by a guided wave.
  • a kinked flat parabolic antenna 2 is used as the feed system of this line source, in the aperture area of which are located the radiator elements 3 forming the line source, into which phase shifters 4 are introduced.
  • the radiator elements 3 are supplied with radiation via the kinked flat parabolic antenna 2, which is designed to avoid aperture coverage by its exciters 5 to 10.
  • the vertical emitter element row is expanded by small funnel walls 11 and 12 in the horizontal plane in such a way that the radiation occupancy of the side reflector edge is optimized with respect to gain and secondary lobe level.
  • the cylindrical parabolic reflector 1 In the near field of this line source is the cylindrical parabolic reflector 1, which deflects the more or less deflected parallel beam in the vertical plane and focuses the radiation diverging in the horizontal plane.
  • the electronically controlled phase shifter 4 in Aperture range of the two-story flat parabolic antenna 2 effect the focusing and the deflection in the elevation plane.
  • the flat parabolic antenna 2 is therefore kinked so that the antenna dimension is reduced.
  • the fold line along the aperture is designated by 13.
  • exciters 5 to 10 Several small horns arranged above the focal line of the flat parabolic antenna 2 are used as exciters 5 to 10. Of these, only the exciter 5 is used for transmission, and two of the exciters 6 to 10 are operated in each case when received.
  • Fig. 2 shows a schematic sectional view of the flat parabolic antenna 2 used in the antenna arrangement according to Fig. 1.
  • the flat parabolic antenna 2 serving as the primary radiator is of two-tier design in such a way that a narrow cylindrical parabolic reflector 14 and two mutually parallel, parallel metallic plates 15 and 16 are provided with a metallic intermediate plate 17 running parallel to these plates 15 and 16, but not reaching as far as the parabolic reflector 14, so that there is a plate gap 18 and 19 on each side of this intermediate plate 17.
  • the small exciters 5 to 10 which are designed as horn radiators or as open waveguides, are arranged in the focal line region of the plate interspace 18.
  • a device for deflecting the radiation from the plate space 18 into the flap space 19 is provided.
  • This device for deflecting radiation is formed by two 45 ° bevels 20 and 21 in the cross-sectional contour of the cylindrical parabolic reflector 14.
  • the deflection of the radiation from one plate gap to the other can also take place exclusively through the narrow slot 22.
  • the plate 16 and the intermediate plate 17, which enclose the plate gap 19 not containing the exciters 5 to 10, are bent toward the aperture of the flat parabolic antenna 2 along the line 13 around the broad side of the flat parabolic antenna 2.
  • the area 23 forms a single radiator and is also provided with a phase shifter.
  • the flat parabolic antenna 2 is widened at its aperture by means of the two funnel walls 11 and 12 in the horizontal plane and can be provided with transverse grooves 24.
  • the individual radiators arranged linearly in the aperture region 23 of the flat parabolic antenna 2 can each consist of a collector radiator element which is aligned with the interior of the flat parabolic antenna 2 and an emitter radiator element which is aligned in the direction of the cylindrical parabolic reflector.
  • the electronically controllable phase shifter is then arranged in the region 23 between the collector element and the associated emitter radiation element.
  • a single radiator module is formed by a collector radiator element, an emitter radiator element and the electronically controllable phase shifter between them, which can all be attached to a common substrate plate with a driver circuit.
  • the individual radiators can also be implemented in the form of waveguide individual radiators with a ferrite phase shifter, as will be described later with reference to FIG. 9.
  • FIG. 3 shows a diagram of the levels of two signals received on a pair of exciters 6 to 10.
  • the elevation angle 0 is plotted on the abscissa and the reception level in dB is plotted on the ordinate.
  • the intersection angle of the two received signal lobes is designated by 0 S. 4
  • E1 denotes the received signal level of one receiving lobe and E2 denotes the received signal level of the second receiving lobe, which are obtained from a pair of exciters 6 to 10 in FIG. 1.
  • the target height results from the elevation angle and the distance. It is essential that the transmitting lobe emitted via the exciter 5 in FIG. 1 at least largely covers the respective pair of receiving lobes.
  • a different setting of the phase shifters for example, can emit a cosec 2 lobe or a normally shaped radiation lobe with any width.
  • the two pairs of reception lobes E and E2 lying one above the other which enable a fine bearing in the elevation by level comparison, can be electronically deflected together by the phase shifters.
  • FIG. 5 shows an example of an excitation arrangement and a line routing of a feed system of an antenna according to the invention.
  • the transmission signal from a transmitter 25, the signal input to a receiver 26 for evaluating the lower receiving lobe, the signal input to another receiver 27 for evaluating the upper receiving lobe, an angle signal 28, the power supply 29 for the phase shifter drivers and the IFF Signals 30 are fed to the antenna via a rotary coupling 31.
  • two RF amplifiers 32 and 33 are also switched into the receive channels.
  • the transmission signal from the transmitter 25 is fed to the exciter 5, whereas the signals picked up by the two exciters 9 and 10 via a switch 34 and the received signals coming from the exciters 6, 7 and 8 via the two switches 35 and 36 each individually on the Receiver 26 or the receiver 27 are connected. It is thus possible to operate the receiver 26 with the exciter 10 or 9 and the receiver 27 with one of the exciters 6 to 8 in each case.
  • Detection of exciters 9 and 10 at different distances from one another and 6 to 8 on the other to form a pair and corresponding defocusing by means of the phase shifter can generate pairs of lobes with a larger beam width and a corresponding offset of their main beam direction, which are suitable for reception from the upper elevation angle range, in which one short range is sufficient, because the search time is reduced.
  • z. B the two indicated by a circle exciters 6 and 10 effectively connected together by means of switches 34 to 36 to form reception lobes of about 10 ° beam width. If the two radiators 9 and 6 are effectively interconnected by means of the switches 34 to 36, the reception lobe widths of approximately 5 ° result, as indicated by the two rectangles.
  • the result - as indicated by the two diamonds - is a reception beam width of approximately 2.5 °. If you want to create very narrow lobes of approximately 1.25 °, the two excitation exciters 8 and 9 are connected to form a pair.
  • the exciter 5 for emitting the transmission signal can emit a Kosekans lobe or a radiation lobe with a beam width of, for example, 10 °, 5 ° or 2.5 ° by varying the setting of the phase shifters, which are not specifically shown in FIG. 5.
  • the radiators 5 to 10 are shown hatched on the left in FIG. 5 in the aperture region 37 of the flat parabolic antenna, the plane of symmetry of which is designated by 38.
  • FIG. 6 and 7 show the case of a transmitting lobe with Kosekans diagram 43 and electronic scanning of the illuminated area in the lower part with a narrow pair of receiving lobes 44 and 45 (FIG. 6) and in the upper part with a wider pair of receiving lobes 46 and 47 .
  • FIG. 8 shows in diagram form a strongly bundled transmission lobe (pencii beam) 48 and a pair of receiving rods 49 and 50 designed for this purpose.
  • the lobe design according to FIG. 8 has the advantage of the larger transmission antenna gain and thus the greater range compared to the Kosekan-shaped transmission diagram.
  • a certain elevation angle range e.g. B. from 0 ° -10 °
  • the transmitting lobe 48 and the receiving lobe pair 49, 50 are electronically deflected, the receiving lobe pair 49, 50 remaining aligned with the angular range of the transmitting lobe during the reception of the target echoes.
  • the pair of receiving lobes 44, 45 and 46, 47 can also be electronically deflected during the time in which the echoes of a transmitted pulse return from the different target distances.
  • the target distance R is plotted on the abscissa and the target flight height H is plotted on the ordinate.
  • the double arrows 51, 52 and 53 and the connecting lines thereof to the individual clubs are intended to show which of the clubs are electronically deflected in the example.
  • Fig. 9 shows a perspective view of the embodiment of the aperture region of the flat parabolic antenna 2 containing the individual radiators according to Fig. 1.
  • the aperture region of the flat parabolic antenna running parallel to the cylinder axis of the cylindrical parabolic reflector at least approximately horizontal, metallic intermediate walls 54 are inserted, so that superimposed ones Waveguide pieces forming single radiators result in which the electronically controllable phase shifters 55 are arranged.
  • these phase shifters 55 are designed as ferrite phase shifters (with, for example, 4 bits), which tolerate the relatively high transmission power and have relatively low transmission losses. They can be switched very quickly and quite often. Due to the non-reciprocal nature of the ferrite phase shifter 55, however, it is necessary to switch between sending and receiving.
  • the phase shifters 55 receive the radiation emerging from the flat parabolic antenna and, after a corresponding phase shift, pass it on to the radiator elements, which are designed as horn radiators with the lateral funnel walls 11 and 12.
  • the line source can be implemented, for example, with 80 phase-controlled elements, of which only the top three are shown in FIG. 9.
  • H. driver electronics 58 for controlling the ferrite phase shifters 55 are installed per single radiator. Not shown in FIG. 9 are polarizers on the individual radiators, with the aid of which circular polarization can be generated.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (23)

1. Antenne de radar panoramique de surveillance à détection de l'élévation moyennant l'utilisation d'un réflecteur en forme de cylindre parabolique irradié par une source linéaire, l'exploration en azimut étant réalisée au moyen d'une rotation mécanique et l'exploration en élévation étant réalisée par un pivotement électronique du faisceau de rayonnement qui est délivré par une source linéaire s'étendant parallèlement à l'axe du cylindre du réflecteur et formée par une série d'émetteurs et qui forme l'ouverture rayonnante d'un émetteur primaire guidant les ondes et dans lequel les éléments rayonnants individuels sont alimentés, du point de vue rayonnement, par l'intermédiaire d'un déphaseur, pouvant être commandé par voie électronique, pour ia focalisa- tion et l'orientation désirée du rayonnement en élévation, caractérisée par le fait que l'émetteur primaire guidant le rayonnement est ce qu'on appelle une antenne parabolique plate (antenne Pillbox) (2), qu'au voisinage de la droite focale de l'antenne parabolique plate (2) se trouvent disposés plusieurs petits excitateurs (5 à 10), dont l'un (5) fonctionne uniquement lors de l'émission et dont respectivement deux (6-10) fonctionnent par couples uniquement lors de la réception, et que les deux lobes de rayonnement superposés, produits respectivement par les excitateurs fonctionnant lors de la réception, sont réglés de telle sorte qu'ils se recouvrent et sont sensiblement englobés en commun par le lobe qui est produit par l'excitateur prévu pour l'émission.
2. Antenne de radar panoramique de surveillance selon la revendication 1, caractérisée en ce que la forme du lobe de rayonnement produit par l'excitateur (5) prévu pour l'émission peut être réglée différemment au moyen des déphaseurs pouvant être commandés par voie électronique.
3. Antenne de radar panoramique de surveillance suivant la revendication 1 ou 2, caractérisée par le fait que les deux lobes de rayonnement en recouvrement, qui sont produits respectivement par deux excitateurs (6 à 10) prévus pour la réception, peuvent être orientés en commun au moyen des déphaseurs pouvant être commandés par voie électronique.
4. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que des excitateurs (6 à 10) prévus pour la partie réception, qui sont écartés mutuellement de distances différentes, peuvent être actionnés respectivement par couples.
5. Antenne de radar panoramique de surveillance suivant la revendication 4, caractérisée par le fait que deux excitateurs, qui sont à une distance mutuelle relativement faible, sont activés en vue de produire deux lobes de rayonnement serrés présentant un faible décalage angulaire.
6. Antenne de radar panoramique de surveillance suivant la revendication 4, caractérisée par le fait que deux excitateurs, qui sont à une distance mutuelle relativement importante, sont activés en vue de la production de deux lobes de réception larges présentant un décalage angulaire important.
7. Antenne de radar panoramique de surveillance suivant l'une des revendications 4 à 6, caractérisée par une défocalisation dimensionnée de façon adaptée et réalisée au moyen des déphaseurs pouvant être commandés par voie électronique.
8. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que dans le cas d'un lobe d'émission (48) en forme de crayon, pouvant être exploré par voie électronique, le couple de lobes de réception (49, 50) est orienté simultanément par voie électronique lors de l'exploration d'une plage déterminée d'angles d'élévation de telle sorte qu'il reste aligné er direction de la plage angulaire du lobe d'émission pendant la réception des échos de cibles.
9. Antenne de radar panoramiaue de surveillance suivant l'une des revendications 1 à 7, caractérisée par le fait que dans ie cas d'un lobe d'émission en cosec2 (43), le couple de lobes de réception (44, 45 ou 46, 47) est orienté par voie électronique lors de l'exploration d'une plage déterminée d'angles d'élévation.
10. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que l'antenne parabolique plate (2) est disposée à l'extérieur du trajet du rayonnement du réflecteur en forme de cylindre parabolique (1).
11. Antenne de radar panoramique de surveillance suivant la revendication 10, caractérisée par le fait que l'antenne parabolique plate (2) est réalisée à deux étages, et ce de telle sorte qu'il est prévu un petit réflecteur en forme de cylindre parabolique (14) et deux plaques métalliques (15, 16) perpendiculaires à ce réflecteur et parallèles entre elles, avec une plaque intermédiaire métallique (17) parallèle à ces plaques mais ne s'étendant pas jusqu'au réflecteur parabolique (14), de sorte que l'on obtient, des deux côtés de cette plaque intermédiaire respectivement un espace intermédiaire (18, 19) entre plaques, que les petits excitateurs (5 à 10) sont disposés au voisinage d'une droite focale d'un espace intermédiaire (18) entre plaques et que le long du petit cylindre en forme de réflecteur parabolique (14) il est prévu un dispositif servant à dévier le rayonnement depuis un espace intermédiaire (18) entre plaques en direction de l'autre espace intermédiaire (19) entre plaques.
12. Antenne de radar panoramique de surveillance suivant la revendication 11, caractérisée en ce que les deux plaques (16, 17), qui enserrent l'espace intermédiaire (19) entre plaques, contenant l'excitateur (5 à 10), sont coudées en direction de l'ouverture de l'antenne parabolique plate (2).
13. Antenne de radar panoramique de surveillance suivant la revendication 11 ou 12, caractérisée par le fait que le dispositif servant à dévier le rayonnement depuis un espace intermédiaire (18) dans l'autre espace intermédiaire (19) entre plaques est disposé dans une fente (22) qui est obtenue par le fait que la plaque intermédiaire (17) ne s'étend pas complètement jusqu'au petit réflecteur en forme de cylindre parabolique (14).
14. Antenne de radar panoramique de surveillance suivant la revendication 11 ou 12, caractérisée par le fait que le dispositif servant à dévier le rayonnement depuis un espace intermédiaire (18) en direction de l'autre espace intermédiaire (19) entre plaques, est formé par deux biseaux (20, 21) à 45° prévu dans le contour en coupe transversale du réflecteur en forme de cylindre parabolique (14).
15. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que des parois intermédiaires métalliques (54) au moins approximativement horizontales sont insérées dans la zone de l'ouverture, qui s'étend parallèlement à l'axe du réflecteur en forme de cylindre parabolique (1 de l'antenne parabolique plate (2) de sorte que l'on obtient des éléments de guides d'ondes (57) superposés, constituant les éléments rayonnants individuels et dans lesquels sont disposés les déphaseurs (55) pouvant être commandés par voie électronique.
16. Antenne de radar panoramique de surveillance suivant la revendication 15, caractérisée par le fait que les déphaseurs pouvant être commandés par voie électronique sont des déphaseurs à ferrite (55).
17. Antenne de radar panoramique de surveillance suivant la revendication 15 ou 16, caractérisée par le fait que l'ouverture rayonnante de l'antenne parabolique plate (2) s'élargit en forme de cornet grâce à la présence de deux parois formant entonnoir (11, 12).
18. Antenne de radar panoramique de surveillance suivant la revendication 17, caractérisée par le fait que l'ouverture rayonnante du type en forme de cornet est munie de nervures transversales (24).
19. Antenne de radar panoramique de surveillance suivant l'une des revendications 1 à 14, caractérisée en ce que les éléments rayonnants, qui sont disposés suivant une droite dans la zone d'ouverture de l'antenne parabolique plate (2), sont constituées chacun par un élément rayonnant formant collecteur, qui est orienté vers l'intérieur de l'antenne parabolique plate (2) et par un élément rayonnant formant émetteur, qui est orienté en direction du réflecteur en forme de cylindre parabolique (1), et qu'un déphaseur pouvant être commandé par voie électronique est disposé respectivement entre l'élément rayonnant formant collecteur et l'élément rayonnant formant émetteur associé.
20. Antenne de radar panoramique de surveillance suivant la revendication 19, caractérisée en ce qu'un élément rayonnant formant collecteur, un élément rayonnant formant émetteur et un déphaseur pouvant être commandé par voie électronique sont disposés sur une plaque commune formant substrat et forment un module d'élément rayonnant individuel.
21. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que des polariseurs servant à produire une polarisation circulaire des éléments rayonnants sont montés sur les éléments rayonnants individuels.
22. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que des deux côtés de la source linéaire constituée par les éléments rayonnants individuels, se trouvent disposés des dipôles pour une antenne intégrée IFF (Identification friend foe = Identification ami-ennemi).
23. Antenne de radar panoramique de surveillance suivant l'une des revendications précédentes, caractérisée par le fait que les petits excitateurs (5 à 10) de l'antenne parabolique plate (2) constituant l'émetteur primaire sont des cornets.
EP19830103074 1982-03-30 1983-03-28 Antenne de radar de surveillance avec discrimination angulaire en élévation Expired EP0090400B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3211707 1982-03-30
DE19823211707 DE3211707C2 (de) 1982-03-30 1982-03-30 Rundsuch-Radarantenne mit Höhenerfassung

Publications (2)

Publication Number Publication Date
EP0090400A1 EP0090400A1 (fr) 1983-10-05
EP0090400B1 true EP0090400B1 (fr) 1986-12-03

Family

ID=6159723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830103074 Expired EP0090400B1 (fr) 1982-03-30 1983-03-28 Antenne de radar de surveillance avec discrimination angulaire en élévation

Country Status (2)

Country Link
EP (1) EP0090400B1 (fr)
DE (1) DE3211707C2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524132A1 (de) * 1985-07-05 1987-01-08 Siemens Ag Rundsuchradarantenne
US6169522B1 (en) * 1999-09-03 2001-01-02 Motorola, Inc. Combined mechanical scanning and digital beamforming antenna
DE10024320C2 (de) * 2000-05-17 2002-09-05 Diehl Munitionssysteme Gmbh Radareinrichtung für den Objekt-Selbstschutz
CN117458132A (zh) * 2022-12-16 2024-01-26 深圳迈睿智能科技有限公司 一种双极子天线的前向集束和后向空间拒止的改进型天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE977820C (de) * 1960-03-10 1971-01-21 Siemens Ag Verfahren zur Bestimmung der Zielentfernung, Fluggeschwindigkeit und Flugrichtung von Flugzielen mittels eines Dopplerfrequenz-Radargeraetes
FR1573820A (fr) * 1966-09-01 1969-07-11
US3810185A (en) * 1972-05-26 1974-05-07 Communications Satellite Corp Dual polarized cylindrical reflector antenna system
DE2533179C3 (de) * 1975-07-24 1984-08-30 Siemens AG, 1000 Berlin und 8000 München Rundsicht-Radarantenne mit Höhenerfassung
DE2925063C2 (de) * 1979-06-21 1982-06-09 Siemens AG, 1000 Berlin und 8000 München Radarantenne mit integrierter IFF-Antenne
DE2925104C2 (de) * 1979-06-21 1984-06-20 Siemens AG, 1000 Berlin und 8000 München Segment-(Pillbox-) Radarantenne mit integrierter IFF-Antenne
DE2945789A1 (de) * 1979-11-13 1981-05-21 Siemens AG, 1000 Berlin und 8000 München Antennenanordnung fuer ein radarrundsuchverfahren zur zielortung mit hoehenerfassung
DE3206517A1 (de) * 1982-02-24 1983-09-08 Siemens AG, 1000 Berlin und 8000 München Mikrowellen-gruppenantenne

Also Published As

Publication number Publication date
EP0090400A1 (fr) 1983-10-05
DE3211707A1 (de) 1983-10-20
DE3211707C2 (de) 1984-07-12

Similar Documents

Publication Publication Date Title
EP2659285B1 (fr) Capteur radar pour véhicules à moteur
EP0061576B1 (fr) Dispositif de transmission d'informations à micro-ondes avec réception combinée de diversité multimode
EP0028836B1 (fr) Disposition d'antenne radar à balayage azimuthal et détermination du site
DE2248325A1 (de) Einrichtung zur fokussierung von wellenenergie, insbesondere fuer antennen
EP1506432B1 (fr) Detecteur d'emission et de reception de signaux electromagnetiques
WO2009021768A1 (fr) Détecteur radar monostatique multifaisceau pour véhicules automobiles
DE2306407C3 (de) Antennensystem hoher Winkelauflösung für Radargeräte mit getrennten Sende- und Empfangsantennen
DE2405520A1 (de) Phasengesteuerte antennenanordnung
DE69121701T2 (de) Pulsradar und Bauelemente dafür
DE2140082A1 (de) Autonome Kollisionswarneinrichtung für Luftfahrzeuge
DE2434924C3 (de) Antennenanlage für ein Primär- und Sekundärradar mit Reflektor, Primärstrahler und zwei Hilfsstrahlern
DE102019212553A1 (de) Radarsensor, Kraftfahrzeug und Verfahren zum Betrieb eines Radarsensors
EP0090400B1 (fr) Antenne de radar de surveillance avec discrimination angulaire en élévation
DE2128689A1 (de) Antennensystem, insbesondere für Satelliten
DE1791252C3 (de) Richtpeilsystem zur aktiven und passiven Ortung bestehend aus einer Mehrzahl von Antennenelementen. Ausscheidung aus: 1441757
DE102010040696A1 (de) Radarsensor für Kraftfahrzeuge, insbesondere RCA-Sensor
DE2335792A1 (de) Funknavigations-, insbesondere landesystem
EP0021252A1 (fr) Antenne radar du type pillbox avec antenne d'interrogation IFF intégrée
DE3638879A1 (de) Integrierte antennen-misch-einrichtung und waffenleitsystem
DE2533179C3 (de) Rundsicht-Radarantenne mit Höhenerfassung
DE2055981C3 (de) Schaltung für ein räumliches Monopulsradarsystem mit Sekundärradar-Abfrage
WO2019158251A1 (fr) Système d'antenne pour un capteur radar
DE102023211324A1 (de) Hohlleiterantenne, Radarsensor sowie Fahrzeug
WO2024114867A1 (fr) Antenne à guide d'ondes, capteur radar et véhicule
DE3524132C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19840208

RBV Designated contracting states (corrected)

Designated state(s): BE FR GB IT NL

17Q First examination report despatched

Effective date: 19860401

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE FR GB IT NL

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890331

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19890331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19891001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19891130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930216

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940328

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940328