EP0087615A1 - Halogenierte 1-Hydroxypyrazole und Verfahren zu ihrer Herstellung - Google Patents

Halogenierte 1-Hydroxypyrazole und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0087615A1
EP0087615A1 EP83101128A EP83101128A EP0087615A1 EP 0087615 A1 EP0087615 A1 EP 0087615A1 EP 83101128 A EP83101128 A EP 83101128A EP 83101128 A EP83101128 A EP 83101128A EP 0087615 A1 EP0087615 A1 EP 0087615A1
Authority
EP
European Patent Office
Prior art keywords
formula
phosphoric acid
pyrazolyl
parts
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP83101128A
Other languages
English (en)
French (fr)
Inventor
Norbert Dr. Rieber
Heinrich Dr. Boehm
Heinrich Dr. Adolphi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19823205456 external-priority patent/DE3205456A1/de
Priority claimed from DE19823205455 external-priority patent/DE3205455A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP0087615A1 publication Critical patent/EP0087615A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/16Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/08Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/65031Five-membered rings having the nitrogen atoms in the positions 1 and 2

Definitions

  • the invention relates to halogenated 1-hydroxipyrazoles of the general formula (I) in which R 1 , R 2 and R 3 independently of one another are hydrogen, chlorine, bromine or iodine, with the proviso that R 1 3 R and R 3 do not simultaneously represent hydrogen, which are valuable intermediates and new 1- available from them Pyrazolyl-phosphoric acid esters of the general formula (II), processes for their preparation, pesticides which contain these compounds as active compounds, and processes for controlling pests with these active compounds or agents.
  • the compounds of the formula I according to the invention can be obtained by halogenation of 1-hydroxipyrazole by methods known per se (Houben-Weyl, Methods of Organic Chemistry, Vol. V / 3, 725ff, Georg Thieme-Verlag, Stuttgart, 4th edition, 1962; Vol. V / 4, 38ff, 530ff, Georg Thieme-Verlag, Stuttgart, 4th edition, 1960).
  • the corresponding mono-, di- or trihalogen derivatives are formed.
  • the multiple halogenation can be carried out in stages or in one step.
  • Gradual halogenation can also be used to synthesize derivatives with various halogen residues.
  • the halogenation is usually carried out in the presence of inert solvents, e.g. halogenated hydrocarbons, with or without the addition of auxiliary bases, e.g. Alkali carbonates, by adding the halogenating agent, e.g. the halogens, of N-halogen compounds and hypohalites, at temperatures between -60 and + 100 ° C, preferably at -20 to + 80 ° C.
  • auxiliary bases e.g. Alkali carbonates
  • the components can be used in molar excess or deficit.
  • the amount of auxiliary base is advantageously 1 to 25 moles per mole of 1-hydroxipyrazole.
  • the isolation of the new compounds of formula I is carried out by customary methods, e.g. by filtering, extraction from the reaction solution or concentration of the reaction mixture and / or fractional crystallization.
  • the 1-hydroxipyrazole used as starting material is obtained in a mixture with isoxazoles of the formula wherein R represents a hydrogen atom, an aliphatic, cycloaliphatic, araliphatic, aromatic radical, by heating isoxazoline-azoxy compounds of the formella , where R has the aforementioned meaning, to a temperature between 140 to 6000C.
  • Preferred starting materials Ia are those in whose formulas R is a hydrogen atom, an alkyl radical with 1 to 18, in particular 1 to 6, carbon atoms, a cycloalkyl radical with 5 to 8 carbon atoms, an aralkyl radical with 7 to 12 carbon atoms, an unsubstituted or by bromine atoms, fluorine atoms, Chlorine atoms, alkyl groups and / or alkoxy groups with 1 to 4 carbon atoms substituted phenyl radical.
  • the aforementioned radicals can also be replaced by groups and / or atoms which are inert under the reaction conditions, e.g. Alkyl groups and alkoxy groups, each having 1 to 4 carbon atoms, bromine atoms substituting phenyl radicals, fluorine atoms, chlorine atoms.
  • the starting materials Ia can easily be used by the reaction of 2,3,7-triaza-6-oxa-tricyclo- [5.2.1.0 5.9 ] -deca-2,7-of the formula Ib wherein R has the abovementioned meaning, with an organic peroxide at a temperature of -10 to + 130 ° C, preferably 20 to 100 ° C , in particular 50 to 90 ° C, without pressure or under pressure, continuously or discontinuously, in the absence or presence of organic solvents such as halogenated hydrocarbons and ethers.
  • the peroxide can be reacted in a stoichiometric amount or in excess, preferably in a ratio of 1 to 10, in particular 1 to 1.5, moles of peroxide per mole of starting material.
  • the starting materials Ib can easily be obtained by, in a first step, nitrile oxides of the formula Ic where R 1 has the abovementioned general and preferred meaning, with N, N'-dicarbalkoxy-2,3-diaza-bicyclo- [2.2.1] -hept-2-enes of the formula Id wherein the individual radicals R 2 may be the same or different and each represents a hydrogen atom or an aliphatic radical, and then in a second step the N, N'-dicarbalkoxy-isoxazolino compounds of the formula Ie thus obtained in which R 1 has the abovementioned meaning, saponified, decarboxylated and oxidized to the starting materials III by the customary method.
  • the starting materials Ic are easily accessible by the procedure described in Houben-Weyl, Methods of Organic Chemistry, Volume 10/3, pages 841 to 853, for example by dehydrogenation of aldoximes or from hydroxamic acid derivatives or nitric acids.
  • the starting materials Id are obtained, for example, by reacting cyclopentadiene with dimethyl azodicarboxylates according to the methods described in Ann. 443, 242 to 262 (1925).
  • the oxygen of the azo group can be bound to either one or the other nitrogen atom of the azo group.
  • the pure isomers can therefore be used as starting materials Ia the mixture of isomers, as is obtained in the preparation, is expediently used.
  • the reaction is expediently carried out at a temperature of 140 to 600 ° C. , preferably 150 to 500 c , in the case of starting materials Ia with R meaning hydrogen, aliphatic, cycloaliphatic, araliphatic radical, at a temperature of 200 to 600, preferably 250 to 500 , in particular 300 to 450 ° C, in the case of starting materials Ia with R meaning aromatic radical of 140 to 200 o C , preferably 150 to 190 ° C, in particular 160 to 180 ° C, without pressure, with negative pressure or under pressure, discontinuously or carried out continuously.
  • Organic solvents which are inert under the reaction conditions can be used or, for economic reasons, it can be conveniently implemented in the absence of organic solvents.
  • the reaction can be carried out as follows: The starting material Ia is held at the reaction temperature for from one second to 21 hours. Then the 1-hydroxipyrazole and the isoxazole are removed from the reaction mixture in a conventional manner, e.g. separated by fractional distillation or condensation, extraction or crystallization.
  • Examples A, B, C or D the following compounds of formula I can be obtained:
  • 1-pyrazolylphosphoric esters (II) are obtained which are suitable for controlling animal pests and are distinguished by a particularly high specific activity.
  • 1-pyrazolyl phosphoric acid esters have not been described in the literature to date. Only 4- or 5-pyrazolyl phosphoric acid esters are known (DE-PS 910 652, EP-OS 12 344).
  • the phosphoric acid esters of formula II in which R 1 , R 2 and R 3 have the meanings given above and R 4 and R 5 are identical or different C 1 -C 6 -alkyl radicals, X and Y are oxygen or sulfur, can be obtained in a manner known per se if (Thio) -phosphoric acid (thio) ester halides of the formula IIa
  • Unbranched or branched C 1 -C 6 -alkyl radicals for R 4 and R 5 in formula I are methyl, ethyl, n-propyl, i-propyl, i-butyl, n-butyl, s-butyl, n-pentyl, i- Pentyl, n-hexyl, i-hexyl; preferred are C I -C 4 alkyl radicals, especially ethyl.
  • the reaction is preferably carried out in the presence of solvents.
  • solvents such as aliphatic and aromatic, optionally chlorinated hydrocarbons, e.g. Gasoline, toluene, xylene, methylene chloride, chloroform, chlorobenzene, ethers such as diethyl or dibutyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl, methyl isopropyl and methyl isobutyl ketone, and nitriles such as acetonitrile or propionitrile.
  • inert solvents such as aliphatic and aromatic, optionally chlorinated hydrocarbons, e.g. Gasoline, toluene, xylene, methylene chloride, chloroform, chlorobenzene, ethers such as diethyl or dibutyl ether, tetrahydrofuran and dioxane, ketones
  • the acid acceptors which can be used are the generally customary acid binders, such as e.g. Alkali carbonates or alcoholates or aliphatic, aromatic or heterocyclic amines.
  • the reaction temperature can vary between 0 and 100 ° C; it is preferably in a temperature range between 10 and 60 ° C.
  • the starting materials are usually used in equimolar amounts, but can also be present in a molar excess or below.
  • reaction mixture is worked up by customary methods, for example filtering and distilling off the solvent, if appropriate after extracting the organic phase with water or aqueous NaHCO 3 or soda solution.
  • water-soluble solvents a water-immiscible solvent is added before the extraction.
  • the (thio) phosphoric acid (thio) ester halides are known and can be prepared by known processes (DE-OS 26 42 982; J. Org. Chem. 30, 3217 (1965)).
  • the residue is dissolved in 300 parts by weight of methylene chloride, the organic phase is extracted three times with 50 parts by weight of saturated aqueous NaHCO 3 solution, the methylene chloride solution is dried with magnesium sulfate and the solvent is drawn off in a rotary evaporator at 20 to 40 ° C. and 20 mbar.
  • Controllable insects and arachnids, formulation instructions and information on recommended mixture partners can be found in the information in DE-OS 30 39 080 and EP publication 0050219, which deals with structurally related active ingredients.
  • these 1-pyrazolyl phosphoric acid esters are suitable for controlling pests from the class of insects and arachnids.
  • the numbering of the active ingredients corresponds to that in the table.
  • Leaves of young cabbage plants are immersed in the aqueous active ingredient emulsion for 3 seconds and, after a short drop, placed on a moistened filter in a petri dish. The sheet is then covered with 10 caterpillars of the 4th stage. The effect is assessed after 48 hours.
  • the active ingredients Nos. 1, 2, 3, 6, 14, 16 show a superior activity compared to the comparative agent.
  • the bottom of a 1 liter mason jar is treated with the acetone solution of the active ingredient. After the solvent has evaporated, 5 adult cockroaches are placed in each glass. The mortality rate is determined after 48 hours.
  • the test is carried out on young ticks that have first taken blood. For this purpose, 5 animals each, which are in a paper bag, are immersed in the aqueous active ingredient preparation for 5 seconds. The bags are hung freely. The test temperature is 25 to 26 ° C. The mortality rate is determined after 48 hours.
  • Petri dishes with a diameter of 10 cm are lined with 1 ml of an acetone solution.
  • the dishes are populated with 20 larvae of the penultimate stage and the effect is registered after 24 hours.
  • 200 ml quartz sand are placed in 250 ml plastic beakers in pallets of 8 containers. Each cup is topped with 5 corn kernels (approx. 1 cm below the surface). It is moistened with 50 ml of water and covered with a suitable transparent plastic hood. After 8 days the pallets are covered, after 10 days the treatment is done. 40 ml of the aqueous active ingredient preparation are poured onto the plants and covered with 50 ml of dry quartz sand after a further day. This is to prevent the test animals from coming into contact with the treated surface.
  • a plastic cylinder (diameter 7 cm) is placed on each beaker, each with 5 caterpillars in the 3rd larval stage and covers the cylinder with a wire gauze cover. After 4 days, the vials and mortality in the vessels are assessed.
  • Potted bean plants (Vicia faba) with strong leaf colonies are sprayed to runoff point in a spray chamber with aqueous active ingredient preparations. The evaluation takes place after 24 hours.
  • Both parts of a Petri dish with a diameter of 10 cm are lined with a total of 2 ml of the acetone active ingredient solution. After the solvent has evaporated (approx. 30 minutes), 20 flies, each 4 days old, are placed in the dishes. The mortality rate is determined after 4 hours.
  • test animals with the same treatment are then placed in a foil bag with a volume of approx. 500 ml. After 4 hours, count the animals on their back and determine the LD 50 graphically.
  • the LD 50 of the active ingredients No. 6, 7, 15, 16 is lower than that of the comparative agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

1-Pryazolyl-phosphorsäureester der Formel <IMAGE> deren Herstellung und Verwendung als Pflanzenschutzmittel sowie deren unmittelbare Vorprodukte, nämlich halogenierte 1-Hydroxipyrazole der Formel <IMAGE> wobei R¹ bis R<5>, X und Y die in Ansprüchen und Beschreibung angegebene Bedeutung haben.

Description

  • Die Erfindung betrifft halogenierte 1-Hydroxipyrazole der allgemeinen Formel (I)
    Figure imgb0001
    in der R1, R2 und R3 unabhängig voneinander Wasserstoff, Chlor, Brom oder Iod bedeuten, mit der Maßgabe, daß R1 3 R und R3 nicht gleichzeitig für Wasserstoff stehen, die wertvolle Zwischenprodukte darstellen und aus diesen erhältliche neue 1-Pyrazolyl-phosphorsäureester der allgemeinen Formel (II), Verfahren zu deren Herstellung, Schädlingsbekämpfungsmittel, die diese Verbindungen als Wirkstoffe enthalten, sowie Verfahren zur Bekämpfung von Schädlingen mit diesen Wirkstoffen bzw. Mitteln.
  • Die erfindungsgemäßen Verbindungen der Formel I können durch Halogenierung von 1-Hydroxipyrazol nach an sich bekannten Methoden erhalten werden (Houben-Weyl, Methoden der org. Chemie, Bd. V/3, 725ff, Georg Thieme-Verlag, Stuttgart, 4. Auflage, 1962; Bd. V/4, 38ff, 530ff, Georg Thieme-Verlag, Stuttgart, 4. Auflage, 1960).
  • Je nach Menge des eingesetzten Halogenierungsmittels entstehen dabei die entsprechenden Mono-, Di- oder Trihalogen-Derivate. Die Mehrfach-Halogenierung kann stufenweise oder in einem Schritt durchgeführt werden. Durch stufenweise Halogenierung lassen sich auch Derivate mit verschiedenen Halogenresten synthetisieren. Mu/IG
  • Im einzelnen wird die Halogenierung meist in Anwesenheit von inerten Lösungsmitteln, z.B. halogenierter Kohlenwasserstoffe, mit oder ohne Zusatz von Hilfsbasen, z.B. Alkalicarbonate, durch Zugabe des Halogenierungsmittels, z.B. der Halogene, von N-Halogenverbindungen und Hypohalogeniten, bei Temperaturen zwischen -60 und +100°C, vorzugsweise bei -20 bis +80°C, vorgenommen. Die Komponenten können dabei im molaren Über- oder Unterschuß eingesetzt werden. Die Menge an Hilfsbase beträgt zweckmäßigerweise 1 bis 25 Mol pro Mol 1-Hydroxipyrazol.
  • Die Isolierung der neuen Verbindungen der Formel I erfolgt nach üblichen Methoden, z.B. durch Abfiltrieren, Extraktion aus der Reaktionslösung oder Einengen des Reaktionsgemisches und/oder fraktionierte Kristallisation.
  • Das als Ausgangsstoff eingesetzte 1-Hydroxipyrazol erhält man im Gemisch mit Isoxazolen der Formel
    Figure imgb0002
    worin R ein Wasserstoffatom, einen aliphatischen, cycloaliphatischen, araliphatischen, aromatischen Rest bedeutet, durch Erhitzen von Isoxazolin-azoxiverbindungen der Formella
    Figure imgb0003
    , worin R die vorgenannte Bedeutung hat, auf eine Temperatur zwischen 140 bis 6000C.
  • Die Umsetzung kann für den Fall der Verwendung von 2,3-Azoxi-6-oxa-7-aza-tricyclo-[5.2.1.05,9]-deca-2,7-dien durch die folgenden Formeln wiedergegeben werden:
    Figure imgb0004
  • Bevorzugte Ausgangsstoffe Ia sind solche, in deren Formeln R ein Wasserstoffatom, einen Alkylrest mit 1 bis 18, insbesondere 1 bis 6 Kohlenstoffatomen, einen Cycloalkylrest mit 5 bis 8 Kohlenstoffatomen, einen Aralkylrest mit 7 bis 12 Kohlenstoffatomen, einen unsubstituierten oder durch Bromatome, Fluoratome, Chloratome, Alkylgruppen und/oder Alkoxygruppen mit 1 bis 4 Kohlenstoffatomen substituierten Phenylrest bedeutet. Die vorgenannten Reste können noch durch unter den Reaktionsbedingungen inerte Gruppen und/oder Atome, z.B. Alkylgruppen und Alkoxygruppen mit jeweils 1 bis 4 Kohlenstoffatomen, Phenylreste substituierende Bromatome, Fluoratome, Chloratome, substituiert sein.
  • Die Ausgangsstoffe Ia können leicht durch Umsetzung von 2,3,7-Triaza-6-oxa-tricyclo-[5.2.1.05.9]-deca-2,7-dienen der Formel Ib
    Figure imgb0005
    worin R die vorgenannte Bedeutung hat, mit einem organischen Peroxid bei einer Temperatur von -10 bis +130°C, vorzugsweise 20 bis 100°C, insbesondere 50 bis 90°C, drucklos oder unter Druck, kontinuierlich oder diskontinuierlich, in Abwesenheit oder Anwesenheit von organischen Lösungsmitteln wie Halogenkohlenwasserstoffe und Ether, erhalten werden. Das Peroxid kann in stöchiometrischer Menge oder im Überschuß, bevorzugt in einem Verhältnis von 1 bis 10, insbesondere 1 bis 1,5 Mol Peroxid je Mol Ausgangsstoff umgesetzt werden.
  • Die Ausgangsstoffe Ib können leicht erhalten werden, indem man in einem ersten Schritt Nitriloxide der Formel Ic
    Figure imgb0006
    worin R1 die vorgenannte allgemeine und bevorzugte Bedeutung hat, mit N,N'-Dicarbalkoxy-2,3-diaza-bicyclo-[2.2.1]-hept-2-enen der Formel Id
    Figure imgb0007
    worin die einzelnen Reste R 2 gleich oder verschieden sein können und jeweils ein Wasserstoffatom oder einen aliphatischen Rest bedeuten umsetzt, und dann in einem 2. Schritt die so erhaltenen N,N'-Dicarbalkoxy-isoxazolino-Verbindungen der Formel Ie
    Figure imgb0008
    worin R1 die vorgenannte Bedeutung besitzt, nach üblicher Methode verseift, decarboxyliert und zu den Ausgangsstoffen III oxidiert.
  • Die Ausgangsstoffe Ic sind leicht durch die in Houben-Weyl, Methoden der Organischen Chemie, Band 10/3, Seiten 841 bis 853, beschriebenen Arbeitsweise, z.B. durch Dehydrierung von Aldoximen oder aus Hydroxamsäurederivaten oder Nitrolsäuren zugänglich. Die Ausgangsstoffe Id erhält man z.B. durch Umsetzung von Cyclopentadien mit Azodicarbonsäuredimethylestern nach den in Ann. 443, 242 bis 262 (1925) beschriebenen Verfahren. Der Sauerstoff der Azoxigruppe kann sowohl am einen wie am anderen Stickstoffatom der Azogruppierung gebunden sein. Daher können als Ausgangsstoffe Ia die reinen Isomere
    Figure imgb0009
    Figure imgb0010
    zweckmäßig das Isomerengemisch, wie es bei der Herllung anfällt, verwendet werden.
  • So kommen beispielsweise die folgenden AusgangsstoffeIa infrage: 2,3-Azoxi-6-oxa-7-aza-tricyclo-[5.2.1.05,9]-deca--2,7-dien und seine in 8-Stellung durch die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl, tert.-Butyl-, Cyclohexyl-, Cyclopentyl-, Benzyl-, Phenyl-, 2'-Chlorphenyl-, 3'-Chlorphenyl-, 4'-Chlorphenyl-, 2'-Methylphenyl-, 3'-Methylphenyl-, 4'-Methylphenyl-, 2'-Methoxyphenyl-, 3'-Methoxyphenyl-, 4'-Methoxyphenyl-, 2'-Ethylphenyl-, 3'-Ethylphenyl-, 4'-Ethylphenyl-, 2'-Ethoxyphenyl-, 3'-Ethoxyphenyl-, 4'-Ethoxyphenylgruppe substituierten Homologen.
  • Die Umsetzung wird bei einer Temperatur von 140 bis 600°C, vorzugsweise 150 bis 500 c, im Falle von Ausgangsstoffen Ia mit R in der Bedeutung Wasserstoff, aliphatischem, cycloaliphatischem, araliphatischem Rest zweckmäßig bei einer Temperatur von 200 bis 600, vorzugsweise 250 bis 500, insbesondere 300 bis 450°C, im Falle von Ausgangsstoffen Ia mit R in der Bedeutung aromatischem Rest von 140 bis 200o C, vorzugsweise 150 bis 190°C, insbesondere 160 bis 180°C, drucklos, mit Unterdruck oder unter Druck, diskontinuierlich oder kontinuierlich durchgeführt. Man kann unter den Reaktionsbedingungen inerte, organische Lösungsmittel verwenden oder schon aus wirtschaftlichen Gründen zweckmäßigerweise in Abwesenheit organischer Lösungsmittel umsetzen.
  • Die Reaktion kann wie folgt durchgeführt werden: Der Ausgangsstoff Ia wird während einer Sekunde bis 21 Stunden bei der Reaktionstemperatur gehalten. Dann werden das 1-Hydroxipyrazol und das Isoxazol aus dem Reaktionsgemisch in üblicher Weise, z.B. durch fraktionierte Destillation bzw. Kondensation, Extraktion oder Kristallisation, abgetrennt.
  • 1-Hydroxipyrazol kann beispielsweise auf folgendem Wege erhalten werden:
    • 97 Gew.Teile 8-Methyl-2,3-azoxi-6-oxa-7-aza-tricyclo- -[5.2.1.05.9]-decy-2,7-dien werden innerhalb von 2 Stunden bei 455°C und 5 mbar durch einen mit 300 Teilen Quarzringe gefüllten Rohrreaktor geführt. Das Reaktionsgemisch wird in 2 Vorlagen fraktioniert kondensiert. In der ersten auf 5°C gekühlten Vorlage erhält man 47 Gew.Teile (97 % der Theorie) 1-Hydroxipyrazol vom Fp 750C (aus Ligroin). Die zweite auf -70°C gekühlte Vorlage enthält 46 Gew.Teile (95 % der Theorie) 3-Methyl-isoxazol vom Kp 1170 C.
  • Die folgenden Beispiele A bis D erläutern die Herstellung erfindungsgemäßer Verbindungen des Typs I.
  • Beispiel
  • A. Zu 20 Gew.-Teilen 1-Hydroxipyrazol und 50 Gew.-Teilen Na2CO3 in 700 Gew.-Teilen Methylenchlorid gibt man eine Lösung von 42 Gew.-Teilen Brom in 300 Gew.-Teilen Methylenchlorid unter Rühren bei 0°C. Nach der Zugabe wird noch 1 Stunde nachgerührt. Anschließend filtriert man ab, engt das Filtrat im Rotationsverdampfer bei 20 bis 40°C/20 mbar ein und kristallisiert den so erhaltenen Rückstand aus Ligroin um. Austrag: 39 Gew.-Teile (91 % der Theorie) 1-Hydroxi-4--brompyrazol: Fp. 136°C.
  • B. Zu 4 Gew.-Teilen 1-Hydroxipyrazol und 10 Gew.-Teilen Na2CO3 in 1000 Gew.-Teilen Chloroform fügt man bei Rückflußtemperatur unter Rühren eine Lösung von 36 Teilen Iod in 1500 Teilen Chloroform. Nach der Zugabe rührt man noch 24 Stunden unter Rückfluß nach. Anschließend wird das Festprodukt abgesaugt, in 200 Gew.-Teilen Wasser suspendiert und mit 10 proz. Salzsäure auf pH = 4 angesäuert. Das Festprodukt wird abgesaugt, in Methylenchlorid gelöst, die Lösung mit Magnesiumsulfat getrocknet, abfiltriert und im Rotationsverdampfer bei 20 bis 40°C und 20 mbar eingeengt. Der Rückstand wird in Toluol umkristallisiert. Austrag: 13,5 Gew.-Teile (61 % der Theorie) 1-Hydroxi--3,4,5-triiodpyrazol; Fp. 153°C (Zers.).
  • C. Zu 3 Gew.-Teilen 1-Hydroxipyrazol und 1 Gew.-Teil Ethylendiamin (als 60 proz. wäßrige Lösung) in 10 Gew.-Teilen Ethanol fügt man unter Rühren bei 20°C 9 Gew.-Teile Iod in 50 Gew.-Teilen gesättigter wäßriger Kaliumiodidlösung. Nach der Zugabe wird noch 2 Stunden nachgerührt. Das Reaktionsgemisch wird anschließend in eine verdünnte wäßrige Natriumthiosulfatlösung gegossen. Das Festprodukt wird abgesaugt, in Methylenchlorid gelöst, die Lösung mit Magnesiumsulfat getrocknet und im Rotationsverdampfer bei 20 bis 40°C und 20 mbar eingeengt. Der Rückstand wird aus Ligroin umkristallisiert. Austrag: 6 Gew.-Teile (80 % der Theorie) 1-Hydroxi-4--iodpyrazol; Fp. 126 oC.
  • D. Zu 30 Gew.-Teilen 1-Hydroxi-4-chlorpyrazol und 0,5 Gew.-Teilen Eisenpulver in 300 Gew.-Teilen 1,2-Dichlorethan fügt man unter Rühren bei 60°C 81 Gew.-Teile Brom. Danach rührt man noch 2 Stunden bei 60°C nach. Anschließend wird das Festprodukt abgesaugt und aus Ligroin umkristallisiert. Austrag: 55 Gew.-Teile (78 % der Theorie) 1-Hydroxi- -3,5-dibrom-4-chlorpyrazol; Fp. 160°C.
  • Entsprechend den Beispielen A, B, C oder D können folgende Verbindungen der Formel I erhalten werden:
    Figure imgb0011
    Figure imgb0012
    Durch Umsetzung der halogenierten 1-Hydroxipyrazole der Formel I mit Phosphorsäureesterhalogeniden IIa erhält man 1-Pyrazolylphosphorsäureester (II), die sich zur Bekämpfung von tierischen Schädlingen eignen und sich durch eine besonders hohe spezifische Wirksamkeit auszeichnen. 1-Pyrazolyl-phosphorsäureester sind bisher in der Literatur nicht beschrieben. Bekannt sind lediglich 4- bzw. 5-Pyrazolyl-phosphorsäureester (DE-PS 910 652, EP-OS 12 344).
  • Die Phosphorsäureester der Formel II
    Figure imgb0013
    in der R1, R2 und R3 die obengenannten Bedeutungen haben und R4 und R5 gleiche oder verschiedene C1-C6-Alkylreste, X und Y Sauerstoff oder Schwefel bedeuten, können in an sich bekannter Weise erhalten werden, wenn man (Thio)-Phosphorsäure-(thio)esterhalogenide der Formel IIa
    Figure imgb0014
  • in der R4, R5, X und Y die obengenannten Bedeutungen haben und Hal für Halogen steht, mit 1-Hydroxipyrazolderivaten der Formel I
    Figure imgb0015
    in der R1, R2 und R3 die obengenannten Bedeutungen haben, in Anwesenheit von Säureakzeptoren oder mit Salzen von 1-Hydroxipyrazolderivaten umsetzt.
  • Unverzweigte oder verzweigte C1-C6-Alkylreste für R4 und R 5 in Formel I sind Methyl, Ethyl, n-Propyl, i-Propyl, i-Butyl, n-Butyl, s-Butyl, n-Pentyl, i-Pentyl, n-Hexyl, i-Hexyl; bevorzugt sind CI-C4-Alkylreste, insbesondere Ethyl.
  • Die Umsetzung wird bevorzugt in Gegenwart von Lösungsmitteln durchgeführt. Geeignet sind alle inerten Solventien, wie aliphatische und aromatische, gegebenenfalls chlorierte Kohlenwasserstoffe, z.B. Benzin, Toluol, Xylol, Methylenchlorid, Chloroform, Chlorbenzol, Ether, wie Diethyl- oder Dibutylether, Tetrahydrofuran und Dioxan, Ketone, wie Aceton, Methylethyl-, Methylisopropyl-und Methylisobutylketon, und Nitrile, wie Acetonitril oder Propionitril.
  • Als Säureakzeptoren lassen sich die allgemein üblichen Säurebindemittel einsetzen, wie z.B. Alkalicarbonate bzw. -alkoholate oder aliphatische, aromatische bzw. heterocyclische Amine.
  • Die Reaktionstemperatur kann zwischen 0 und 100°C variieren; vorzugsweise liegt sie in einem Temperaturbereich zwischen 10 und 60°C.
  • Die Ausgangsstoffe werden gewöhnlich in äquimolaren Mengen eingesetzt, können aber auch im molaren Unter- oder Überschuß vorliegen.
  • Die Aufarbeitung des Reaktionsgemisches erfolgt nach üblichen Methoden, z.B. Filtrieren und Abdestillieren des Lösungsmittels, gegebenenfalls nach Extraktion der organischen Phase mit Wasser oder wäßriger NaHC03- bzw. Sodalösung. Bei Verwendung von wasserlöslichen Solventien gibt man vor der Extraktion ein mit Wasser nicht mischbares Lösungsmittel zu.
  • Die (Thio)Phosphorsäure-(thio)esterhalogenide sind bekannt und können nach bekannten Verfahren hergestellt werden (DE-OS 26 42 982; J. Org. Chem. 30, 3217 (1965)).
  • Herstellung von 0-Pyrazol-1-yl-0,0-diethylthiophosphat
  • Zu 55 Teilen 1-Hydroxipyrazol und 50 Teilen Soda in 600 Teilen Acetonitril gibt man unter Rühren bei 25°C 112 Teile Diethoxi-thiophosphorsäurediesterchlorid. Nach der Zugabe rührt man noch 12 Stunden nach. Das Festprodukt wird abgesaugt und zweimal mit 50 Teilen Acetonitril gewaschen. Das Filtrat wird im Rotationsverdampfer bei 20 bis 40°C und 20 mbar eingeengt. Den Rückstand löst man in 300 Gew.-Teilen Methylenchlorid, extrahiert die organische Phase dreimal mit je 50 Gew.-Teilen gesättigter wäßriger NaHCO3-Lösung, trocknet die Methylenchloridlösung mit Magnesiumsulfat und zieht das Lösungsmittel im Rotationsverdampfer bei 20 bis 40°C und 20 mbar ab.
  • Austrag: 127,5 Gew.-Teile (91 % der Theorie) O-Pyrazol-1-yl-O,O--diethyl-thiophosphat, H1-NMR (δ in ppm): 1.3 (t, 6H); 4.3 (m, 4H); 6.2 (m, 1H); 7.25 (m, 1H); 7.4 (m, 1H).
  • Die in der Tabelle angegebenen Substituenten beziehen sich auf jeweils eine Verbindung der Formel II
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
  • Bekämpfbare Insekten und Spinnentiere, Formulierungshinweise und Angaben über empfehlenswerte Mischungspartner können den Angaben in der DE-OS 30 39 080 bzw. der EP-Veröffentlichung 0050219 entnommen werden, die sich mit strukturell verwandten Wirkstoffen beschäftigt.
  • Wie die folgenden Testergebnisse zeigen, eignen sich diese 1-Pyrazolylphosphorsäureester zur Bekämpfung von Schädlingen aus der Klasse der Insekten und Spinnentiere. Die Numerierung der Wirkstoffe entspricht der der tabellarischen Auflistung.
  • Beispiel 1
  • Fraß- und Kontaktwirkung auf Raupen der Kohlschabe (Plutella maculipennis)
  • Blätter von jungen Kohlpflanzen werden 3 Sekunden lang in die wäßrige Wirkstoffemulsion getaucht und nach kurzem Abtropfen auf einen angefeuchteten Filter in eine Petrischale gelegt. Das Blatt wird darauf mit 10 Raupen des 4. Stadiums belegt. Nach 48 Stunden beurteilt man die Wirkung.
  • In diesem Test zeigen die Wirkstoffe Nr. l, 2, 3, 6, 14, 16 eine überlegene Wirkung gegenüber dem Vergleichsmittel.
  • Beispiel 2
  • Kontaktwirkung auf Schaben (Blatta orientalis)
  • Der Boden eines 1 1-Einmachglases wird mit der acetonischen Lösung des Wirkstoffs behandelt. Nach dem Verdunsten des Lösungsmittels setzt man je Glas 5 adulte Schaben. Die Mortalitätsrate wird nach 48 Stunden bestimmt.
  • In diesem Test zeigen die Wirkstoffe Nr. 2, 6, 7, 11, 12, 14, 15, 16, 18 eine gute Wirkung.
  • Beispiel 3
  • Kontaktwirkung auf Zecken (Ornithodorus moubata)
  • Geprüft wird an jungen Zecken, die erst einmal Blut aufgenommen haben. Dazu taucht man je 5 Tiere, die sich in einem Papierbeutel befinden, für 5 Sekunden in die wäßrige Wirkstoffaufbereitung. Die Beutel werden frei aufgehängt. Die Versuchstemperatur beträgt 25 bis 26°C. Nach 48 Stunden ermittelt man die Mortalitätsrate.
  • In diesem Test zeigen die Wirkstoffe Nr. 2, 6, 7, 14, 15, 16, 17, 18 eine bessere Wirkung als das Vergleichsmittel.
  • Beispiel 4
  • Kontaktwirkung auf Baumwollwanzen (Dysdercus intermedius)
  • Petrischalen von 10 cm Durchmesser werden mit 1 ml acetonischer Wirkstofflösung ausgekleidet.
  • Nach dem Verdunsten des Lösungsmittels besetzt man die Schalen mit je 20 Larven des vorletzten Stadiums und registriert die Wirkung nach 24 Stunden.
  • In diesem Test zeigen die Wirkstoffe Nr. 1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18 und 20 gute Wirkung.
  • Beispiel 5
  • Systemische Wirkung auf Raupen (Prodenia litura)
  • 200 ml Quarzsand werden in 250 ml-Kunststoffbecher in Paletten zu 8 Gefäßen gegeben. Man belegt jeden Becher mit 5 Maiskörnern (ca. 1 cm unter die Oberfläche). Darauf befeuchtet man mit je 50 ml Wasser und deckt mit einer passenden transparenten Kunststoffhaube ab. Nach 8 Tagen werden die Paletten abgedeckt, nach 10 Tagen erfolgt die Behandlung. Dabei gießt man 40 ml der wäßrigen Wirkstoffaufbereitung an die Pflanzen und deckt nach einem weiteren Tag mit 50 ml trockenem Quarzsand ab. Hierdurch soll ein Kontakt der Versuchstiere mit der behandelten Oberfläche vermieden werden.
  • Auf jeden Becher stellt man einen Plastik-Zylinder (Durchmesser 7 cm), belegt mit je 5 Raupen im 3. Larvenstadium und deckt den Zylinder mit einem Drahtgazedeckel ab. Nach 4 Tagen beurteilt man Fraß und Mortalität in den Gefäßen.
  • In diesem Test zeigen die Wirkstoffe Nr. 2, 3, 6, 9, 13, 14, 16, eine bessere Wirkung als das Vergleichsmittel.
  • Beispiel 6
  • Kontaktwirkung auf Blattläuse (Aphis fabae); Spritzversuch
  • Getopfte Bohnenpflanzen (Vicia faba) mit starken Blattlaufkolonien werden in einer Spritzkammer mit wäßrigen Wirkstoffaufbereitungen tropfnaß gespritzt. Die Auswertung erfolgt nach 24 Stunden.
  • In diesem Test zeigen die Wirkstoffe Nr. 1, 2, 3, 6, 7, 12, 13, 14, 15, 16, 17, 18 und 20 eine gute Wirkung.
  • Beispiel 7
  • Kontaktwirkung auf Stubenfliegen (Musca domestiea); Dauerkontakt
  • Beide Teile einer Petrischale von 10 cm Durchmesser werden mit insgesamt 2 ml der acetonischen Wirkstofflösung ausgekleidet. Nach dem Verdunsten des Lösungsmittels (ca. 30 Minuten) bringt man je 20 4-Tage alte Fliegen in die Schalen. Die Mortalitätsrate wird nach 4 Stunden festgestellt.
  • In diesem Test wird mit den Wirkstoffen Nr. 1, 2, 6, 7, 13, 14, 15, 16, 18 und 20 eine höhere Mortalitätsrate erzielt als mit dem Vergleichsmittel.
  • Beispiel 8
  • Kontaktwirkung auf Stubenfliegen (Musca domestica); Applikationstest
  • 4-Tage alte Imagines erhalten in leichter C02-Narkose 1/ul der acetonischen Lösung des Wirkstoffes auf das ventrale Abdomen appliziert. Hierzu wird eine Mikrometerspitze verwendet.
  • Je 20 Versuchstiere mit gleicher Behandlung bringt man dann in einen Folienbeutel von ca. 500 ml Inhalt. Nach 4 Stunden zählt man die Tiere in Rückenlage aus und ermittelt graphisch die LD 50.
  • Die LD 50 der Wirkstoffe Nr. 6, 7, 15, 16 ist niedriger als die des Vergleichsmittel.

Claims (8)

1. Halogenierte 1-Hydroxipyrazole der Formel
Figure imgb0020
in der R1, R2 und R3 unabhängig voneinander Wasserstoff, Chlor, Brom oder Iod bedeuten, mit der Maßgabe, daß R1, R2 und R3 nicht gleichzeitig für Wasserstoff stehen.
2. 1-Pyrazolyl-phosphorsäureester der Formel
Figure imgb0021
in der
R 1, R 2, R 3 gleich oder verschieden sind und Wasserstoff, Chlor, Brom oder Iod,
R4, R5 gleiche oder verschiedene C1-C6-Alkylreste bedeuten und
X, Y für Sauerstoff oder Schwefel stehen.
3. 1-Pyrazolyl-phosphorsäureester der Formel II gemäß Anspruch 2, dadurch gekennzeichnet, daß R1 Wasserstoff, Chlor oder Brom, R2 Wasserstoff, R3 Wasserstoff, R4 Ethyl, R5 Ethyl, X Sauerstoff und Y Sauerstoff oder Schwefel bedeuten.
4. Verfahren zur Herstellung von 1-Pyrazolyl-phosphorsäureestern der Formel II gemäß Anspruch 2, dadurch gekennzeichnet, daß man (Thio)Phosphorsäure-(thio)-esterhalogenide der Formel
Figure imgb0022
in der
R 4, R5, X und Y die im Anspruch2 genannten Bedeutungen haben und Hal für Halogen steht, mit 1-Hydroxipyrazol bzw. -derivaten der Formel
Figure imgb0023
in der
R 1, R 2 und R3 die im Anspruch 2 genannten Bedeutungen haben, in Anwesenheit von Säureakzeptoren oder mit Salzen von 1-Hydroxipyrazol bzw. -derivaten umsetzt.
5. Schädlingsbekämpfungsmittel, enthaltend einen 1-Pyrazolyl-phosphorsäureester der Formel a gemäß Anspruch 2.
6. Schädlingsbekämpfungsmittel, enthaltend inerte Zusatzstoffe und einen 1-Pyrazolyl-phosphorsäureester der Formel II gemäß Anspruch 2.
7. Verwendung von 1-Pyrazolyl-phosphorsäureestern der Formel II gemäß Anspruch 2 zur Bekämpfung von Schädlingen.
8. Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, daß man eine wirksame Menge eines 1-Pyrazolylphosphorsäureesters der FormelII gemäß Anspruch 2 auf die Schädlinge und/oder deren Lebensraum einwirken läßt.
EP83101128A 1982-02-16 1983-02-07 Halogenierte 1-Hydroxypyrazole und Verfahren zu ihrer Herstellung Withdrawn EP0087615A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3205455 1982-02-16
DE19823205456 DE3205456A1 (de) 1982-02-16 1982-02-16 Halogenierte 1-hydroxipyrazole und verfahren zu ihrer herstellung
DE19823205455 DE3205455A1 (de) 1982-02-16 1982-02-16 1-pyrazolyl-phosphorsaeureester, verfahren zu ihrer herstellung und ihre verwendung zur bekaempfung von schaedlingen
DE3205456 1982-02-16

Publications (1)

Publication Number Publication Date
EP0087615A1 true EP0087615A1 (de) 1983-09-07

Family

ID=25799625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101128A Withdrawn EP0087615A1 (de) 1982-02-16 1983-02-07 Halogenierte 1-Hydroxypyrazole und Verfahren zu ihrer Herstellung

Country Status (2)

Country Link
US (1) US4511723A (de)
EP (1) EP0087615A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160804A1 (de) * 1984-03-14 1985-11-13 BASF Aktiengesellschaft Nitrifikationsinhibierende 1-Hydroxypyrazol-Derivate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888462A (en) * 1957-11-07 1959-05-26 Lilly Co Eli Trichloromethylmercaptopyrazoles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888462A (en) * 1957-11-07 1959-05-26 Lilly Co Eli Trichloromethylmercaptopyrazoles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANIC CHEMISTRY, Band 45, Nr. 1, 1980, Seiten 76-80, American Chemical Society, USA *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160804A1 (de) * 1984-03-14 1985-11-13 BASF Aktiengesellschaft Nitrifikationsinhibierende 1-Hydroxypyrazol-Derivate

Also Published As

Publication number Publication date
US4511723A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
EP0096263B1 (de) Difluormethoxiphenylthiophosphorsäureester
DE2260015B2 (de) Triazolylphosphor-derivate, verfahren zu ihrer herstellung und diese enthaltende schaedlingsbekaempfungsmittel
DE1695273C3 (de) Pyrimidinj !phosphorsäureester, Verfahren zu deren Herstellung und diese enthaltende Schädlingsbekämpfungsmittel
DE1239695B (de) Verfahren zur Herstellung von Phosphor-, Phosphon-, Thionophosphor- oder Thiono-phosphonsaeureestern
DE1078124B (de) Verfahren zur Herstellung von Thionophosphonsaeureestern
DE2163392C3 (de) Neue Phosphorsäureester sowie Verfahren zu deren Herstellung
EP0091598B1 (de) Fluorethoxyphenyl-(di)thiophosphorsäureester, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schädlingen
DE1445717B1 (de) Verfahren zur Herstellung von Phosphon- und Thionophosphonsaeureestern
EP0087615A1 (de) Halogenierte 1-Hydroxypyrazole und Verfahren zu ihrer Herstellung
DE1099533B (de) Verfahren zur Herstellung von Dithio- oder Thiolphosphor-, -phosphon- oder -phosphinsaeureestern
DE1138048B (de) Verfahren zur Herstellung von (Thiono)Phosphon- bzw. (Thiono)Phosphinsaeureestern der ª‡- und ª‰-Naphthole
DE2118495C3 (de) Insektizides Mittel
EP0150822B1 (de) Oximinophosphorsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schädlingen
EP0201807B1 (de) Oximinophosphorsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schädlingen
DE1643608C3 (de)
DE3205456A1 (de) Halogenierte 1-hydroxipyrazole und verfahren zu ihrer herstellung
DE1024509B (de) Verfahren zur Herstellung von O, O-Dialkyl-thiol-phosphorsaeure- und -thiol-thiono-phsphorsaeureestern
DE2363208C3 (de) Thiolphosphorsäureester
EP0115318B1 (de) Oximinophosphorsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schädlingen
DE2101687C3 (de) Organische Phosphorsäureester, Ver-, fahren zu deren Herstellung und deren Verwendung zur Bekämpfung von Insekten und Pilzen
DE1263748B (de) Verfahren zur Herstellung von 2, 2-Dichlor-vinyl-phosphorsaeureestern
EP0224217B1 (de) Phosphorsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schädlingen
AT257268B (de) Mischungen zur Schädlingsbekämpfung
EP0201764B1 (de) Oximinophosphorsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schädlingen
DE2010396A1 (de) Phosphorsäureesterderivate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19830922

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19880903

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEBER, NORBERT, DR.

Inventor name: BOEHM, HEINRICH, DR.

Inventor name: ADOLPHI, HEINRICH, DR.