EP0076459A1 - Magnetventil, insbesondere Kraftstoff-Einspritzventil - Google Patents

Magnetventil, insbesondere Kraftstoff-Einspritzventil Download PDF

Info

Publication number
EP0076459A1
EP0076459A1 EP82108989A EP82108989A EP0076459A1 EP 0076459 A1 EP0076459 A1 EP 0076459A1 EP 82108989 A EP82108989 A EP 82108989A EP 82108989 A EP82108989 A EP 82108989A EP 0076459 A1 EP0076459 A1 EP 0076459A1
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
armature
valve according
plate
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82108989A
Other languages
English (en)
French (fr)
Other versions
EP0076459B1 (de
Inventor
Asta Hascher-Reichl
Hans Kubach
Werner Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0076459A1 publication Critical patent/EP0076459A1/de
Application granted granted Critical
Publication of EP0076459B1 publication Critical patent/EP0076459B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0653Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being an elongated body, e.g. a needle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection

Definitions

  • the invention is based on a solenoid valve, in particular a fuel injection valve according to the preamble of the main claim.
  • Such a fuel injection valve is already known from German patent application P 30 46 889.4, in which the valve part, which is firmly connected to the flat armature, projects through a central guide opening of a guide membrane.
  • the guide membrane guides the valve part in a radial direction to the valve seat.
  • the flat anchor touches the guide membrane under spring tension with a concentric guide edge and is thus guided plane-parallel to the end face of the core designed as a shell core.
  • the fuel is supplied to the valve through radial inflow openings in the valve wall. After flowing through the magnetic part, the unassigned fuel can enter a fuel return flow line via radial discharge openings which are axially offset and sealed with respect to the inflow openings.
  • this fuel injection valve has a large mass overall.
  • the air gaps that form the anchor with the column core are very far apart in terms of their circumference, so that the anchor must have a large diameter, which increases its mass and reduces its bending rigidity.
  • the guidance of the valve part and the armature is not always sufficient, despite the guide membrane.
  • the solenoid valve according to the invention with the characterizing features of the main claim has the advantage that its mass and thus its weight is low. Due to the special design of the magnetic circuit, the solenoid valve has very short switching times.
  • the shape of the armature means that the distance between the air gaps with respect to the diameter of the armature is small.
  • the inner diameter of the magnetic circuit is expanded by the arrangement of the guide bush and the spring within the inner cylinder. This increases the length of the air gaps in the same area, which means that the mag net force grows with constant wall thickness.
  • the one bearing point of the valve tappet in the cylinder bore is in the immediate vicinity of the air gaps, so that only small tilting forces arise due to tolerances in the air gaps.
  • the second bearing point can thus be arranged at a short distance from the first bearing point, so that the armature can be built easily and has a very high and easily damped mechanical natural frequency.
  • the construction according to the invention largely keeps the mechanical forces away from the magnetic circuit, so that the magnetic parts can be made as thin as is optimal for the magnetic circuit alone. Due to the greater mass of the stop plate compared to the mass of the armature with the valve body, the impact is damped mechanically quickly, with the raised parts of the stop plate supporting the damping. The armature strikes the stop plate in the region of the disk-shaped head of the valve body, which is made of antimagnetic and mechanically hard material, so that a long service life is ensured.
  • the functionally important data such as stroke and switching time can be set inexpensively by plastic deformation on the annular grooves in the stop plate and in the annular magnetic plate.
  • This data can be preset by pairing the dimensional tolerances of the ring-shaped magnetic plate and the magnetic armature.
  • the magnetic conductors adjacent to the air gaps are made of magnetic material with high saturation induction, while the remaining parts of the magnetic circuit are made of magnetic material with the most favorable dynamic properties.
  • valve tappet can be machined with the magnetic armature as well as the cylinder bore in the guide bush with the valve seat in one setting, so that circular symmetry is forced.
  • 1 denotes the valve housing.
  • a core 2 made of ferromagnetic material is provided inside the valve housing 1, on which a conductor coil 3 is applied.
  • the core 2 has an inner cylinder 4 and an outer cylinder 5, which are arranged concentrically to one another.
  • Inner cylinder 4 and outer cylinder 5 are magnetically conductively connected to one another on one end face via a yoke 6.
  • the other end face is partially covered by a magnetically conductive annular plate 7 which is magnetically connected to the outer cylinder 5.
  • the inner cylinder 4 carries a coil former 8 on which the conductor coil 3 is wound, which takes up the entire space between the inner and outer cylinders 4, 5.
  • the armature 10 has a plate-shaped part 11 which merges into a hollow cylindrical connecting piece 12.
  • the connecting piece 12 faces one end face of the inner cylinder 4.
  • the first air gap 13 lies between the two.
  • the edge of the plate-shaped part 11 projects beyond the annular plate 7 and forms with it the second air gap 14 his disk-shaped head 16 pressed into the plate-shaped part 11 of the armature 10. It is guided with two bearing points 18, 19 in the cylinder bore 20 of a guide bush 21.
  • the guide bushing 21 merges into an anti-magnetic part 22, which has the inlet 23 and the outlet bores 24 in extension to the cylinder bore 20 of the guide bushing 21.
  • the drain holes 24 open into a cavity 25, which is formed by the anti-magnetic part 22 and the core 2.
  • the inlet 23 ends in a valve chamber 26 which is connected to the cavity 25 by a connecting bore 27.
  • the valve body 15 cooperates with its spherical end 28 with a valve seat 29 which is arranged between the valve chamber 26 and the inlet 23.
  • the 0-rings 30 seal the high pressure in the area 31 against the low liquid pressure (return pressure) in the valve chamber 26, the connecting bore 27, the cavity 25, the drain holes 24 and all other cavities of the solenoid valve.
  • a gap 32 is provided between the anti-magnetic part 22, a part of the outer cylinder 5 and the valve housing 1.
  • a pressure relief bore 33 is located between the cavity 25 and the gap 32.
  • the coil space 34 is cooled with liquid via the gap 32 and a bore 50 which is provided in the outer cylinder and connects the coil space 34 with the gap 32.
  • the guide bushing 21 has a recess on its outer jacket, into which a spring 35 is let in and which at its other end presses against the disk-shaped head 16 of the valve body 15 let into the plate-shaped part 11 of the armature 10.
  • the spring 35 supports the hydraulic pressure on the spherical end 28 of the plunger 17 in such a way that the valve opens quickly when the power is switched off and remains in this position even without pressure.
  • a stop plate 36 is provided above the armature 10 and the annular plate 7. With the help of this stop plate 36, the impact is quickly dampened when the valve is opened.
  • the stop plate 36 has a raised shoulder 37 in the area of the impact, so that the anchor 10 only strikes a defined surface area.
  • This approach 37 is opposed to the disk-shaped head 16 made of hard antimagnetic material, which is pressed into the armature 10, so that wear is only very slight even when the solenoid valve is used for a long time.
  • a groove 38 is provided in the stop plate 36, which weakens the anti-magnetic stop plate 36 to such an extent that it can be plastically deformed there for adjusting the system.
  • Another groove 39 is provided in the annular plate 7 made of magnetic material, which can be plastically deformed at the point in such a way that the second air gap 14 can be set functionally. This deformation should be possible after assembly of the stop plate 36, so that the stop plate 36 is broken through to apply the forces to the top of the annular plate 7.
  • the solenoid valve is closed off by a metallic cover plate 40 and by an electrically insulating plastic part 41 applied above it, which are let into the valve housing 1.
  • the connecting pins 43 are injected into the plastic part 41 with the plug guides 42.
  • the electrical connection of the connecting pins 43 to the coil 3 takes place via the current leads 44. These are injected into the coil body 8.
  • the electrical conductor wires 45 of the coil 3 are wound at their ends around a pin 46, which is part of the coil body 8, in order to ensure strain relief.
  • the end of the conductor wire 45 is welded to a not shown flag of the power supply 44.
  • the power supply 44 is inserted into the electrically conductive connector pin 43 via a bend 47 for strain relief.
  • the valve When the valve is blocked, a high pressure is created in the inlet 23, which acts as a force on the area 31 of the antimagnetic part 22.
  • the antimagnetic part 22 in the region 48 is made so strong that the force can be guided onto the circumference of the outer cylinder 5, although it is as thin as it is with regard to switching times, optimal magnet design is required.
  • a bore 49 is provided in the disk-shaped head 16 of the armature 10, through which the liquid displaced during the filling stroke of the plunger 17 can flow back, just as through the pressure relief bore 33.
  • the shoulder 51 of the magnetic outer cylinder 5 and the pole 52 of the magnetic inner cylinder 4 facing the first air gap 13 are of equal height in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird ein Magnetventil, insbesondere ein Kraftstoffeinspritzventil für Brennkraftmaschinen vorgeschlagen, das ein Ventilgehäuse, eine auf einen Kern aus ferromagnetischem Material aufgebrachte Leiterspule und einen Anker, der einen mit einem Ventilsitz zusammenwirkenden Ventilkörper trägt, aufweist. Der Kern weist einen Innen- und einen Außenzylinder auf, die an der einen Stirnseite über ein Joch magnetisch leitend miteinander verbunden sind. An der anderen Stirnseite ist eine kreisringförmige Platte mit dem Außenzylinder magnetisch leitend verbunden. Der Magnetkreis wird zwischen kreisringförmiger Platte und Innezylinder über einen Anker geschlossen, der ein tellerförmiges Teil und einen hohlzylindrischen Stutzen aufweist. Der Stutzen liegt dem Innenzylinder gegenüber und bildet mit ihm einen ersten Luftspalt. Der Rand des tellerförmigen Teils des Ankers liegt der kreisringförmigen Platte gegenüber und bildet mit ihr einen zweiten Luftspalt.

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Magnetventil, insbesondere Kraftstoffeinspritzventil nach der Gattung des Hauptanspruchs.
  • Aus der deutschen Patentanmeldung P 30 46 889.4 ist schon ein derartiges Kraftstoffeinspritzventil bekannt, bei dem das mit dem Flachanker fest verbundene Ventilteil eine zentrale Führungsöffnung einer Führungsmembran durchragt. Die Führungsmembran führt das Ventilteil in radialer Richtung zum Ventilsitz. Der Flachanker berührt unter Federspannung mit einer konzentrischen Führungskante die Führungsmembran und wird so planparallel zur Stirnfläche des als Schalenkern ausgebildeten Kerns geführt. Die Kraftstoffzufuhr zum Ventil erfolgt durch radiale Zuströmöffnungen in der Ventilwand. Der nicht zugemessene Kraftstoff kann nach Durchströmen des Magnetteiles über axial gegenüber den Zufluß- öffnungen versetzte und abgedichtete radiale Abflußöffnungen in eine Kraftstoffrückströmleitung gelangen.
  • Dieses Kraftstoffeinspritzventil weist jedoch insgesamt eine große Masse auf. Die Luftspalte, die den Anker mit dem Srhalenkern bilden, liegen in bezug auf den Umfang sehr weit aaseinander, so daß der Anker einen großen Durchmesser haben muß, was seine Masse vergrößert und seine Biegesteifigkeit reduziert. Außerdem ist die Führung des Ventilteils und des Ankers trotz der Führungsmembran nicht immer ausreichend.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Magnetventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß seine Masse und damit sein Gewicht gering ist. Durch die besondere Ausbildung des Magnetkreises weist das Magnetventil sehr kurze Schaltzeiten auf. Die Form des Ankers bringt es mit sich, daß der Abstand der Luftspalte in bezug auf den Durchmesser des Ankers gesehen, gering ist. Damit werden die Vorteile des bekannten Flachankers ausgenutzt (doppelte Kraft bei gleichem Magnetfluß durch zwei krafterzeugende Luftspaite) ohne dessen Nachteil, nämlich die Tatsache, daß der äußere Spalt geometrisch sehr weit auslädt, was die Ankermasse vergrößert und die Biegesteifigkeit des Ankers reduziert, mit sich zu bringen. Eine ausreichende räumliche Trennung zur Reduzierung des magnetischen Streuflusses ist in der vorliegenden Erfindung dadurch vorhanden, daß die Luftspalte, in axialer Richtung gesehen, versetzt sind.
  • Durch die in den Unteransprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen möglich. Durch die Anordnung der Führungsbuchse und der Feder innerhalb des Innenzylinders wird der Innendurchmesser des Magnetkreises konstruktiv aufgeweitet. Damit wird die umfangmäßige Länge der Luftspalte bei gleicher Fläche vergrößert, wodurch die Magnetkraft bei konstanter Wandstärke wächst. Die eine Lagerstelle des Ventilstößels in der Zylinderbohrung liegt in unmittelbarer Nähe der Luftspalte, so daß nur geringe Kippkräfte durch Toleranzen der Luftspalte entstehen. Damit kann die zweite Lagerstelle in kurzem Abstand zur ersten Lagerstelle angeordnet werden, so daß der Anker leicht gebaut werden kann und eine sehr hohe und leicht zu dämpfende mechanische Eigenfrequenz erhält.
  • Durch die erfindungsgemäße Konstruktion werden die mechanischen Kräfte weitgehend vom Magnetkreis ferngehalten, so daß die magnetischen Teile so dünn ausgeführt werden können, wie es allein für den Magnetkreis optimal ist. Durch die größere Masse der Anschlagplatte im Vergleich zur Masse des Ankers mit dem Ventilkörper wird der Aufschlag mechanisch schnell gedämpft, wobei die erhabenen Teile der Anschlagplatte die Dämpfung unterstützen. Der Anker trifft im Bereich des scheibenförmigen Kopfes des Ventilkörpers auf die Anschlagplatte, der aus antimagnetischem und mechanisch hartem Material besteht, so daß eine große Lebensdauer gewährleistet ist.
  • Die funktional wesentlichen Daten wie Hub- und Schaltzeit können durch plastische Verformung an den kreisringförmigen Nuten in der Anschlagplatte und in der kreisringförmigen magnetischen Platte kostengünstig eingestellt werden. Eine Voreinstellung dieser Daten ist durch Paarung der Maßtoleranzen der ringförmigen magnetischen Platte und des magnetischen Ankers möglich.
  • Die an die Luftspalte angrenzenden Magnetleiter wie Anker, kreisringförmige Platte, und Innenzylinder sind aus Magnetmaterial mit hoher Sättigungsinduktion hergestellt, während die restlichen Teile des Magnetkreises aus Magnetmaterial mit möglichst günstigen dynamischen Eigenschaften hergestellt sind.
  • Dadurch wird neben hoher Kraft bei kleinem Magnetfluß eine große Änderung des Magnetflusses in Abhängigkeit vom Hub im Bereich des Aufschlags erzielt.
  • Der Ventilstößel kann mit dem Magnetanker ebenso wie die Zylinderbohrung in der Führungsbuchse mit dem Ventilsitz in je einer Aufspannung bearbeitet werden, so daß Kreissymmetrie erzwungen wird.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigt die einzige Figur einen Schnitt durch das erfindungsgemäße Magnetventil.
  • Beschreibung des Ausführungsbeispiels
  • Bei dem in der Figur dargestellten erfindungsgemäßen Magnetventil ist mit 1 das Ventilgehäuse bezeichnet. Innerhalb des Ventilgehäuses 1 ist ein Kern 2 aus ferromagnetischem Material vorgesehen, auf dem eine Leiterspule 3 aufgebracht ist. Der Kern 2 weist einen Innenzylinder 4 und einen Außenzylinder 5 auf, die konzentrisch zueinander angeordnet sind. Innenzylinder 4 und Außenzylinder 5 sind an der einen Stirnfläche über ein Joch 6 magnetisch leitend miteinander verbunden. Die andere Stirnfläche ist teilweise durch eine magnetisch leitende kreisringförmige Platte 7 abgedeckt, die magnetisch leitend mit dem Außenzylinder 5 verbunden ist. Der Innenzylinder 4 trägt einen Spulenkörper 8, auf den die Leiterspule 3 gewickelt ist, die den gesamten Raum zwischen Innen-und Außenzylinder 4, 5 einnimmt. Zwischen Leiterspule 3 und Joch 6 liegt eine Isolierfolie 9, die einen kleinen Wärmewiderstand aufweist. Der zwischen dem Innenzylinder 4 und der kreisringförmigen Platte 7 unterbrochene Magnetkreis wird durch einen Anker 10 überbrückt. Der Anker 10 weist ein tellerförmiges Teil 11 auf, das in einen hohlzylindrischen Stutzen 12 übergeht. Der Stutzen 12 steht der einen Stirnfläche des Innenzylinders 4 gegenüber. Zwischen beiden liegt der erste Luftspalt 13. Der Rand des tellerförmigen Teils 11 ragt über die kreisringförmige Platte 7 hinaus und bildet mit ihr den zweiten Luftspalt 14. Ein Ventilkörper 15 aus antimagnetischem Material, der einen scheibenförmigen Kopf 16 und einen Stößel 17 aufweist, ist mit seinem scheibenförmigen Kopf 16 in das tellerförmige Teil 11 des Ankers 10 eingepreßt. Er wird mit zwei Lagerstellen 18, 19 in der Zylinderbohrung 20 einer Führungsbuchse 21 geführt. Die Führungsbuchse 21 geht in ein antimagnetisches Teil 22 über, das in Verlängerung zur Zylinderbohrung 20 der Führungsbuchse 21 den Zulauf 23 und die Ablaufbohrungen 24 aufweist. Die Ablaufbohrungen 24 münden in einen Hohlraum 25, der durch das antimagnetische Teil 22 und den Kern 2 gebildet wird. Der Zulauf 23 endet in einer Ventilkammer 26, die durch eine Verbindungsbohrung 27 mit dem Hohlraum 25 verbunden ist. Der Ventilkörper 15 arbeitet mit seinem kugelförmigen Ende 28 mit einem Ventilsitz 29 zusammen, der zwischen Ventilkammer 26 und Zulauf 23 angeordnet ist. Die 0-Ringe 30 dichten den Hochdruck im Bereich 31 gegen den niedrigen Flüssigkeitsdruck (Rücklaufdruck) in der Ventilkammer 26, der Verbindungsbohrung 27, dem Hohlraum 25, den Ablaufbohrungen 24 und allen anderen Hohlräumen des Magnetventils ab. Zwischen antimagnetischem Teil 22, einem Teil des Außenzylinders 5 und dem Ventilgehäuse 1 ist ein Spalt 32 vorgesehen. Zwischen Hohlraum 25 und Spalte 32 befindet sich eine Druckentlastungsbohrung 33. Der Spulenraum 34 wird über den Spalt 32 und eine Bohrung 50, die im Außenzylinder vorgesehen ist und Spulenraum 34 mit Spalt 32 verbindet, mit Flüssigkeit gekühlt.
  • Die Führungsbuchse 21 weist an seinem Außenmantel eine Aussparung auf, in die eine Feder 35 eingelassen ist und die mit ihrem anderen Ende gegen den in das tellerförmige Teil 11 des Ankers 10 eingelassenen scheibenförmigen Kopf 16 des Ventilkörpers 15 drückt. Die Feder 35 unterstützt den hydraulischen Druck auf das kugelförmige Ende 28 des Stößels 17 in der Weise, daß das Ventil bei Stromabschaltung schnell öffnet und auch ohne Druck in dieser Lage verbleibt.
  • Oberhalb des Ankers 10 und der kreisringförmigen Platte 7 ist eine Anschlagplatte 36 vorgesehen. Mit Hilfe dieser Anschlagplatte 36 wird der Aufschlag bei Öffnen des Ventils schnell gedämpft. Die Anschlagplatte 36 hat im Bereich des Aufschlages einen erhabenen Ansatz 37, so daß der Anker 10 nur auf einen definierten Flächenbereich auftrifft. Dieser Ansatz 37 liegt dem in den Anker 10 eingepreßten scheibenförmigen Kopf 16 aus hartem antimagnetischem Material gegenüber, so daß auch bei langem Gebrauch des Magnetventils eine Abnützung nur sehr gering ist. In der Anschlagplatte 36 ist eine Nut 38 vorgesehen, die die antimagnetische Anschlagplatte 36 so weit schwächt, daß diese zur Justierung des Systems dort plastisch verformt werden kann.
  • Eine weitere Nut 39 ist in der kreisringförmigen Platte 7 aus magnetischem Material vorgesehen, die an der Stelle in der Weise plastisch verformt werden kann, daß der zweite Luftspalt 14 funktional eingestellt werden kann. Diese Verformung soll nach der Montage der Anschlagplatte 36 möglich sein, so daß zur Aufbringung der Kräfte auf die Oberseite der kreisringförmigen Platte 7 die Anschlagplatte 36 durchbrochen ist.
  • Das Magnetventil wird durch eine metallische Deckplatte 40 und durch ein darüber aufgebrachtes elektrisch isolierendes Kunststoffteil 41 abgeschlossen, die in das Ventilgehäuse 1 eingelassen sind. In das Kunststoffteil 41 mit den Steckerführungen 42 sind die Anschlußstifte 43 eingespritzt. Die elektrische Verbindung der Anschlußstifte 43 mit der Spule 3 erfolgt über die Stromzuführungen 44. Diese sind in den Spulenkörper 8 eingespritzt. Die elektrischen Leiterdrähte 45 der Spule 3 werden an ihren Enden um einen Zapfen 46, der Bestandteil des Spulenkörpers 8 ist, geschlungen, um eine Zugentlastung zu gewährleisten. Das Ende des Leiterdrahtes 45 ist an eine nicht dargestellte Fahne der Stromzuführung 44 angeschweißt. Die Stromzuführung 44 ist über eine Abknickung 47 zur Zugentlastung in den elektrisch leitenden Anschlußstift 43 eingeführt.
  • Bei Sperrung des Ventils entsteht in dem Zulauf 23 ein hoher Druck, der als Kraft auf den Bereich 31 des antimagnetischen Teils 22 wirkt. Um störende mechanische Verformungen des Außenzylinders 5 und des Innenzylinders 4 durch diese Kraft auszuschließen, ist das antimagnetische Teil 22 im Bereich 48 so kräftig ausgeführt, daß die Kraft auf den Umfang des Außenzylinders 5 geführt werden kann, obwohl dieser so dünn ist, wie es eine in bezug auf Schaltzeiten optimale Magnetauslegung erfordert.
  • Im scheibenförmigen Kopf 16 des Ankers 10 ist eine Bohrung 49 vorgesehen, durch die ebenso wie durch die Druckentlastungsbohrung 33 die beim Füllhub des Stößels 17 verdrängte Flüssigkeit zurückströmen kann.
  • Zur Erleicherung der Paarung der Maßtoleranzen von ringförmiger Platte 7 und Anker 11 sind die Schulter 51 des magnetischen Außenzylinders 5 und der dem ersten Luftspalt 13 zugewandte Pol 52 des magnetischen Innenzylinders 4 in axialer Richtung gleich hoch.

Claims (21)

1. Magnetventil, insbesondere Kraftstoffeinspritzventil für Kraftstoffeinspritzanlagen von Brennkraftmaschinen mit einem Ventilgehäuse, einer auf einem Kern aus ferromagnetischem Material aufgebrachten Leiterspule und einem Anker, der einen mit einem Ventilsitz zusammenwirkenden Ventilkörper trägt, dadurch gekennzeichnet, daß der Anker (10) ein tellerförmiges Teil (11) und einen Stutzen (12) aufweist, wobei der Stutzen (12) mit dem Kern (2) einen ersten Luftspalt (13) und der Rand des tellerförmigen Teils (11) mit dem Kern (2) einen zweiten Luftspalt (14) bilden.
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, daß der Kern (2) einen Innen- und Außenzylinder (4, 5) aufweist, die konzentrisch zueinanderliegen und zwischen denen die Leiterspule (3) angeordnet ist, wobei an der einen Stirnfläche der Innenzylinder (4) und der Außenzylinder (5) über ein Joch (6) magnetisch leitend miteinander verbunden sind und die andere Stirnfläche teilweise durch eine kreisringförmige magnetisch leitende Platte (7) abgedeckt ist, die magnetisch leitend mit dem Außenzylinder (5) verbunden ist.
3. Magnetventil nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß der Stutzen (12) des Ankers (10) dem Innenzylinder (4) gegenüberliegt und zwischen ihnen der erste Luftspalt (13) angeordnet ist und daß der Rand des tellerförmigen Teils (11) des Ankers (10) der kreisringförmigen Platte (7) gegenüberliegt und zwischen ihnen der zweite Luftspalt (14) angeordnet ist.
4. Magnetventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Innzylinder (4), die kreisringförmige Platte (7) und der Anker (10) aus einem Material mit hoher magnetischer Sättigungsinduktion bestehen.
5. Magnetventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Ventilkörper (15) aus antimagnetischem Material einen Stößel (17) und einen scheibenförmigen Kopf (16) aufweist, der im Bereich des tellerförmigen Teils (11) mit dem Anker (10) verbunden ist, wobei der Stößel (17) in der Zylinderbohrung (20) einer Führungsbuchse (21) geführt ist.
6. Magnetventil nach Anspruch 5, dadurch gekennzeichnet, daß der scheibenförmige Kopf (16) in das tellerförmige Teil (11) des Ankers (10) eingepreßt und/oder eingeschweißt ist.
7. Magnetventil nach Anspruch 5 oder Anspruch 6, dadurch gekennzeichnet, daß in der Führungsbuchse (21) eine Aussparung zur Aufnahme einer Feder (35) vorgesehen ist, die gegen den Anker (10) drückt und die den Anker (10) ohne Stromzufuhr zur Leiterspule (3) in der Weise hält, daß der Ventilkörper (15) vom Ventilsitz (29) abgehoben ist.
8. Magnetventil nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Führungsbuchse (21) und die Feder (35) innerhalb des Innenzylinders (4) des Kerns (2) angeordnet sind.
9. Magnetventil nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, daß der Stößel (17) zwei Lagerstellen (18, 19) aufweist, durch die er in der Zylinderbohrung (20) der Führungsbuchse (21) geführt wird, wobei eine Lagerstelle (18) in unmittelbarer Nähe des ersten Luftspalts (13) liegt.
10. Magnetventil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß oberhalb des Ankers (10) eine Anschlagplatte (36) aus hartem antimagnetischem Material vorgesehen ist, auf die der Anker (10) auftrifft.
11. Magnetventil nach Anspruch 10, dadurch gekennzeichnet, daß der Anker (10) im Bereich des scheibenförmigen Kopfes (16) auf die Anschlagplatte (36) auftrifft.
12. Magnetventil nach Anspruch 10 oder Anspruch 11, dadurch gekennzeichnet, daß die Anschlagplatte (36) eine ringförmige Nut (38) aufweist.
13. Magnetventil nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß die kreisringförmige Platte (7) eine ringförmigen Nut (39) aufweist.
14. Magnetventil nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß die Masse der Anschlagplatte (36) viel größer als die Masse des Ankers (10) mit Ventilkörper (15) ist.
15. Magnetventil nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß ein Teil des Bereiches der Anschlagplatte (36), in dem der Anker (10) auftrifft, erhaben ausgebildet ist.
16. Magnetventil nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß die Anschlagplatte (36) durchbrochen ist.
17. Magnetventil nach einem der Ansprüche 5 bis 16, dadurch gekennzeichnet, daß die Führungsbuchse (21) in das Gehäuseteil (22) übergeht, das den Ventilsitz (29) und die hydraulischen Zu- und Abflüsse (23, 24) aufweist.
18. Magnetventil nach einem der Ansprüche 2 bis 17, dadurch gekennzeichnet, daß der Spulenraum (34) zwischen Innen- und Außenzylinder, Joch (6) und kreisringförmiger Platte (7) einen etwa quadratischen Querschnitt aufweist.
19. Magnetventil nach einem im Ansprüche 1 bis 18, dadurch gekennzeichnet, daß eine Bohrung (50) vorgesehen ist, durch die die Flüssigkeit in den Spulenraum (34) gelangt.
20. Magnetventil nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß der Ventilsitz (29) und Zylinderbohrung (20) der Führungsbuchse (21) in einer Aufspannung bearbeitet werden.
21. Magnetventil nach Anspruch 20, dadurch gekennzeichnet, daß die Schulter (51) des Außenzylinders (5) und der dem erste Luftspalt (13) zugewandte Pol (52) des Innenzylinders (4) in derselben Aufspannung in axialer Richtung gleich hoch bearbeitet werden.
EP82108989A 1981-10-06 1982-09-29 Magnetventil, insbesondere Kraftstoff-Einspritzventil Expired EP0076459B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3139669 1981-10-06
DE19813139669 DE3139669A1 (de) 1981-10-06 1981-10-06 Magnetventil, insbesondere kraftstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP0076459A1 true EP0076459A1 (de) 1983-04-13
EP0076459B1 EP0076459B1 (de) 1986-02-19

Family

ID=6143492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82108989A Expired EP0076459B1 (de) 1981-10-06 1982-09-29 Magnetventil, insbesondere Kraftstoff-Einspritzventil

Country Status (4)

Country Link
US (1) US4475690A (de)
EP (1) EP0076459B1 (de)
JP (1) JPS5872782A (de)
DE (2) DE3139669A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178427A2 (de) * 1984-09-14 1986-04-23 Robert Bosch Gmbh Elektrisch gesteuerte Kraftstoffeinspritzpumpe für Brennkraftmaschinen
FR2574129A1 (fr) * 1984-11-30 1986-06-06 Lucas Ind Plc Valve electromagnetique pour systeme d'injection de carburant
EP0200373A2 (de) * 1985-04-01 1986-11-05 Nippondenso Co., Ltd. Zusammenbau eines Magnetsteuerventiles für Hochdruckfluid mit zwei koaxial angeordneten Ventilen
FR2594493A1 (fr) * 1986-02-19 1987-08-21 Weber Srl Vanne electromagnetique de dosage et d'atomisation d'un combustible pour un dispositif d'alimentation d'un moteur a combustion interne
GB2245764A (en) * 1990-06-29 1992-01-08 Weber Srl Solenoid operated fuel injection valves
WO2000017551A1 (de) * 1998-09-24 2000-03-30 Robert Bosch Gmbh Elektromagnetisch betätigbares, hydraulisches proportionalventil
FR2820800A1 (fr) * 2001-02-14 2002-08-16 Bosch Gmbh Robert Soupape de commande de pression pour un systeme de distribution de carburant a injection directe d'un moteur a combustion interne

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8300018A (nl) * 1983-01-04 1984-08-01 Wientjes Kunststoff Hydropneumatisch massagebad met pulserende-circulatiewater-straalsysteem.
DE3332822A1 (de) * 1983-09-12 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart Magnetventil mit unelastischer ventildichtung
DE3523536A1 (de) * 1984-09-14 1986-03-27 Robert Bosch Gmbh, 7000 Stuttgart Elektrisch gesteuerte kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE3442750A1 (de) * 1984-11-23 1986-05-28 Robert Bosch Gmbh, 7000 Stuttgart Magnetventil zur fluidsteuerung
DE3500449A1 (de) * 1985-01-09 1986-07-10 Robert Bosch Gmbh, 7000 Stuttgart Magnetventil zur fluidsteuerung
DE3510222A1 (de) * 1985-03-21 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Magnetventil, insbesondere kraftstoffmengensteuerventil
JPS62151681A (ja) * 1985-12-25 1987-07-06 Nippon Denso Co Ltd 流体制御用電磁弁
JPS6313977A (ja) * 1986-07-07 1988-01-21 Nippon Denso Co Ltd ソレノイド装置
DE3810826A1 (de) * 1988-03-30 1989-10-12 Pierburg Gmbh Elektromagnetisches einspritzventil fuer brennkraftmaschinen
DE3834444A1 (de) * 1988-10-10 1990-04-12 Mesenich Gerhard Elektromagnetisches einspritzventil mit membranfeder
DE4111886C2 (de) * 1991-04-09 1993-10-28 Mannesmann Ag Magnetventil
WO1996041947A1 (en) * 1995-06-08 1996-12-27 Siemens Automotive Corporation Method of adjusting a solenoid air gap
US5927614A (en) * 1997-08-22 1999-07-27 Touvelle; Matthew S. Modular control valve for a fuel injector having magnetic isolation features
DE19852980A1 (de) * 1998-11-17 2000-05-18 Bosch Gmbh Robert Ventil zum dosierten Einleiten von verflüchtigtem Brennstoff
US6360960B1 (en) * 2000-05-17 2002-03-26 Siemens Automotive Corporation Fuel injector sac volume reducer
US6681728B2 (en) * 2001-11-05 2004-01-27 Ford Global Technologies, Llc Method for controlling an electromechanical actuator for a fuel air charge valve
JP4072696B2 (ja) * 2005-12-21 2008-04-09 東海ゴム工業株式会社 流体封入式能動型防振装置
JP5948792B2 (ja) * 2011-10-27 2016-07-06 アイシン精機株式会社 燃料電池用排気排水弁
JP6103096B2 (ja) * 2016-03-14 2017-03-29 アイシン精機株式会社 燃料電池用排気排水弁
CN114263553B (zh) * 2021-12-21 2022-06-21 南岳电控(衡阳)工业技术股份有限公司 用于空气辅助缸内直喷***且采用电磁控制的燃料喷嘴

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1206142A (fr) * 1957-05-10 1960-02-08 Bendix Aviat Corp Injecteur de combustible
DE1451955A1 (de) * 1962-06-07 1969-01-30 Ass Eng Ltd Brennstoffeinspritzsystem
DE1476146A1 (de) * 1962-12-03 1969-07-10 Ass Eng Ltd Brennstoffeinspritzventil fuer Brennkraftmaschinen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2342109C2 (de) * 1973-08-21 1983-10-27 Robert Bosch Gmbh, 7000 Stuttgart Elektromechanisch gesteuertes Kraftstoffeinspritzventil für Brennkraftmaschinen
JPS5439907B2 (de) * 1973-09-11 1979-11-30
US4373671A (en) * 1981-04-13 1983-02-15 Ford Motor Company Electromagnetic fuel injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1206142A (fr) * 1957-05-10 1960-02-08 Bendix Aviat Corp Injecteur de combustible
DE1451955A1 (de) * 1962-06-07 1969-01-30 Ass Eng Ltd Brennstoffeinspritzsystem
DE1476146A1 (de) * 1962-12-03 1969-07-10 Ass Eng Ltd Brennstoffeinspritzventil fuer Brennkraftmaschinen

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178427A2 (de) * 1984-09-14 1986-04-23 Robert Bosch Gmbh Elektrisch gesteuerte Kraftstoffeinspritzpumpe für Brennkraftmaschinen
EP0178427A3 (en) * 1984-09-14 1987-12-09 Robert Bosch Gmbh Electrically controlled fuel injection pump for internalelectrically controlled fuel injection pump for internal combustion engines combustion engines
FR2574129A1 (fr) * 1984-11-30 1986-06-06 Lucas Ind Plc Valve electromagnetique pour systeme d'injection de carburant
EP0200373A2 (de) * 1985-04-01 1986-11-05 Nippondenso Co., Ltd. Zusammenbau eines Magnetsteuerventiles für Hochdruckfluid mit zwei koaxial angeordneten Ventilen
EP0200373A3 (en) * 1985-04-01 1987-12-09 Nippondenso Co., Ltd. High-pressure fluid control solenoid valve assembly withhigh-pressure fluid control solenoid valve assembly with coaxially arranged two valves coaxially arranged two valves
US4753212A (en) * 1985-04-01 1988-06-28 Nippondenso Co., Ltd. High-pressure fluid control solenoid valve assembly with coaxially arranged two valves
FR2594493A1 (fr) * 1986-02-19 1987-08-21 Weber Srl Vanne electromagnetique de dosage et d'atomisation d'un combustible pour un dispositif d'alimentation d'un moteur a combustion interne
GB2245764A (en) * 1990-06-29 1992-01-08 Weber Srl Solenoid operated fuel injection valves
WO2000017551A1 (de) * 1998-09-24 2000-03-30 Robert Bosch Gmbh Elektromagnetisch betätigbares, hydraulisches proportionalventil
FR2820800A1 (fr) * 2001-02-14 2002-08-16 Bosch Gmbh Robert Soupape de commande de pression pour un systeme de distribution de carburant a injection directe d'un moteur a combustion interne

Also Published As

Publication number Publication date
US4475690A (en) 1984-10-09
JPS5872782A (ja) 1983-04-30
EP0076459B1 (de) 1986-02-19
JPH0345267B2 (de) 1991-07-10
DE3269204D1 (de) 1986-03-27
DE3139669A1 (de) 1983-04-21

Similar Documents

Publication Publication Date Title
EP0076459A1 (de) Magnetventil, insbesondere Kraftstoff-Einspritzventil
DE112006001605B4 (de) Elektromagnetische Betätigungsvorrichtung und Verfahren zur Steuerung eines Strömungsmittelflusses
DE3709505C2 (de)
EP2684200B1 (de) Elektromagnetischer aktor
DE3834444A1 (de) Elektromagnetisches einspritzventil mit membranfeder
DE10131201A1 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
EP2307699B1 (de) Magnetventil für einen kraftstoff-injektor sowie kraftstoff-injektor
DE3335169C2 (de) Kraftstoffeinspritzvorrichtung
DE4428869C2 (de) Magnetventil
EP3409984B1 (de) Kolbenschieberventil
DE112011104463T5 (de) Solenoidaktuator und Kraftstoffinjektor mit demselben
DE68913209T2 (de) Elektrisch betätigbares ventil für kraftstoff-einspritzanlagen für brennkraftmaschinen.
DE102008017764B4 (de) Ventil
DE102013100440A1 (de) Hochdruckventil
DE68908423T2 (de) Elektromagnetisches düsenklappenventil für kraftstoffeinspritzung in kraftfahrzeugen.
DE102004060532A1 (de) Vorrichtung mit Formgedächtniselement
DE10394029B4 (de) Elektromagnetisches Stellglied für eine Kraftstoffeinspritzvorrichtung mit einem integralen Magnetkern und Einspritzventilkörper
DE2040199A1 (de) Schnellschaltendes,lecksicheres elektromagnetisch betaetigtes Ventil
EP2752858A2 (de) Magnetsteuerventil und Verfahren zur Herstellung desselben
DE19739324A1 (de) Elektromagnetisch betätigbares Ventil
DE102010040914A1 (de) Brennstoffeinspritzventil
EP1382047B1 (de) Magnetspulenanordnung
EP0303589A2 (de) Kraftstoff-Einspritzdüse mit Nadelhubsensor
DE10005182A1 (de) Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
WO2002031342A1 (de) Magnetventilbetätigtes steuermodul zur fluidkontrolle bei einspritzsystemen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820929

AK Designated contracting states

Designated state(s): DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3269204

Country of ref document: DE

Date of ref document: 19860327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011128

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020928

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020928