EP0073830B1 - Brennstoffkopf - Google Patents

Brennstoffkopf Download PDF

Info

Publication number
EP0073830B1
EP0073830B1 EP82901239A EP82901239A EP0073830B1 EP 0073830 B1 EP0073830 B1 EP 0073830B1 EP 82901239 A EP82901239 A EP 82901239A EP 82901239 A EP82901239 A EP 82901239A EP 0073830 B1 EP0073830 B1 EP 0073830B1
Authority
EP
European Patent Office
Prior art keywords
chamber
oxidiser
combustion
fuel
head end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82901239A
Other languages
English (en)
French (fr)
Other versions
EP0073830A4 (de
EP0073830A1 (de
Inventor
John A. Hardgrove
Charles L. Dailey
Hideo Iwata
Douglas B. Sheppard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Space and Mission Systems Corp
Original Assignee
TRW Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Inc filed Critical TRW Inc
Publication of EP0073830A1 publication Critical patent/EP0073830A1/de
Publication of EP0073830A4 publication Critical patent/EP0073830A4/de
Application granted granted Critical
Publication of EP0073830B1 publication Critical patent/EP0073830B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/006Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion
    • F23C3/008Combustion apparatus characterised by the shape of the combustion chamber the chamber being arranged for cyclonic combustion for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/08Liquid slag removal

Definitions

  • This invention relates generally to fuel combustors, and, more particularly, to a slagging combustor in which the fuel is pulverized coal.
  • the fuel is pulverized coal.
  • non-combustible ash and mineral components cannot be allowed to accumulate within the combustion chamber, or serious operational problems will be experienced.
  • the temperature in the chamber is maintained high enough to allow the slag to be removed in liquid form by the action of shear forces and/or gravitational forces acting on the slag.
  • This slagging capability will also have benefits related to operation of downstream equipment interacting with the product flowstream.
  • a slagging combustor may have different requirements, such as overall stoichiometry, imposed on it by the characteristics of a downstream process utilizing the products of combustion.
  • an ideal slagging combustor should have good slag recovery characteristics and should operate at a relattively low temperature, to minimize heat losses and maximize efficiency.
  • the degree of combustion of the coal in a slagging combustor will depend in part on the intended application of the gaseous products of combustion. For example, if the combustor is to be employed to produce gas for use as a fuel in a conventional power generation plant, or in chemical processes, the gases exiting from the combustion chamber should still be relatively rich in combustibles. Accordingly, if a coal combustor is to be used as such a gas generator, the combustion process should take place in a relatively fuel-rich environment. In terms of stoichiometry, a stoichiometric ratio as low as 0.3 might be desirable for subsequent combustion in a boiler or use as feed stock in a chemical process.
  • the gas were to be immediately employed in a combustion or heat exchange process, it might be desirable to provide a gas at a higher temperature, but with a lower equivalent heat value in the combustibles in the gas. This could be done by more completely combusting the coal in the slagging combustor, i.e. at a higher stoichiometric ratio.
  • the desired stoichiometry of a slagging combustor would be substantially different if the output gases were to be used in a magnetohydrodynamic (MHD) electric power generator.
  • An MHD generator utilizes a high-temperature, high-velocity plasma which is passed through a magnetic field to generate electricity directly, without the use of rotating machinery.
  • the gaseous products from the slagging combustion stage may be lower in combustibles content and higher in temperature and heat content.
  • the products of combustion may then be subject to further combustion after leaving the slagging combustor. Additional oxidizer, and sometimes additional fuel, may be added to the exiting gases for this purpose.
  • the slagging combustor should still ideally provide good slag recovery and relatively low operating temperatures.
  • the desired stoichiometry of the combustion process will depend on the requirements of the downstream application. Acceptable combustor operation and combustion product properties will also be dependent on the temperature and composition of the oxidizer gas, and the type and size of the coal particles. Selection of the appropriate parameters, to satisfy the requirements of the downstream application, typically involves a number of practical design trade-offs. For example, preheating the oxidizer gas to a higher temperature and thereby permitting reactions at a lower stoichiometric ratio might still meet the requirements of the downstream application, but would obviously require either the consumption of more energy in the preheating stage or the addition of a heat exchanger. The first of these alternatives may or may not comport with the overall energy requirements of the application, and the second may not even be feasible.
  • the stoichiometric ratio in a slagging combustor is of critical importance to the rate of slag recovery. If the ratio is too low, temperatures will also tend to be low, and the slag may not liquify sufficiently to facilitate recovery. Conversely, if the ratio is too high, the temperature may be so high that a significant proportion of the slag is lost by vaporization. In theory at least, the effective slagging range has been thought to lie about 0.4 and up to 1.0 for the combustor as a whole. However, the stoichiometry desired to meet the requirements of the downstream application may not fall within this theoretical slagging range. For example, if the combustor is to act as a gas generator, a stoichiometric ratio as low as 0.3 might be preferred.
  • a coal combustor of this general type should ideally be capable of matching the overall combustor stoichiometry, and other characteristics of the slagging combustor, with the requirements of the downstream application of the combustor.
  • the slagging combustor should provide a high rate of slag recovery, a relatively low heat loss, and therefore a relatively high thermal efficiency.
  • prior art combustors it has not been possible to satisfy all of these objectives simultaneously. For example, good slag recovery, in conventional combustors, is not consistent with a relatively low temperature and low stoichiometric ratio.
  • a fuel combustor comprising a combustion chamber having a head end and an opposite exit end, fuel inlet means for feeding particulate solid fuel into said chamber at said head end, oxidizer inlet means for feeding oxidizer into the chamber in a substantially tangential direction to produce high velocity rotational flow within the chamber, an outlet for exhausting combustion products from the exit end of said chamber, a slagging baffle between said ends and a slag tap for removing slag from said chamber; said com- 'bustor being characterised in that said oxidizer inlet means is located between said ends and is adapted to effect flow of a portion of the oxidizer toward said head end of said chamber and flow of the remainder of the entering oxidizer toward said exit end of the chamber in such proportions that said fuel and said oxidizer portion react within said head end of the chamber in a first phase of combustion at a relatively low stoichiometric ratio and a correspondingly low temperature to allow liquefaction of the slag content
  • the present invention resides in a slagging coal combustor, having a head end and an exit end, in which oxidizer is introduced in such a manner that at least a portion of it flows away from the exit end and toward the head end, coal being introduced into the oxidizer flowing toward the head end, to provide an initial phase of combustion in the head end. Combustion in this first phase can take place at a stoichiometric ratio much less than that of the combustor as a whole.
  • the invention has application as well to combustors of other fuels.
  • the essential elements of the invention in its broadest sense are means for introducing oxidizer in such a manner that a portion of it flows toward the head end, and means for injecting fuel into this oxidizer portion to provide the first phase of combustion in the head end.
  • the means for injecting oxidizer gas and pulverized coal are so configured that a portion of the oxidizer gas stream flows toward the head end of the chamber and is there reacted with the coal fuel in the first phase of combustion.
  • gases from the first phase of combustion are further combusted with the remaining portion of the oxidizer gas, which flows toward the exit end of the chamber.
  • the stoichiometric ratio in the first phase of combustion in the head end which is approximately one half of the overall ratio for the combustor, may, for example, be as low as 0.3 for some designs. Contrary to generally accepted practice with respect to effective slag removal, extremely good slag removal characteristics can be obtained in this low stoichiometric range.
  • the combustor of the invention When used for supplying high-temperature gases to an MHD generator, the combustor of the invention operates at an overall stoichiometric ratio selected to provide the best combination of slag recovery characteristics in the head end and exit gas conditions matching the requirements of the MHD generator. In a presently preferred embodiment, an overall ratio of approximately 0.6 is used, with a ratio of approximately 0.3 in the head end.
  • the oxidizer gas when introduced tangentially into the combustion chamber, splits into two streams.
  • One stream has an axial velocity component directed toward the exit end of the chamber while the other portion has an axial velocity component directed toward the head end, into which the fuel is injected.
  • the two streams are approximately equal in volumetric flow rates. Because the fuel is initially combusted with a relatively low volume of oxidizer, first-phase combustion at the head end of the chamber takes place at a relatively low stoichiometric ratio. There is a correspondingly low reaction temperature and a relatively high efficiency, because of the reduced heat loss at the lower temperature. However, highly effective slag removal is obtained in these conditions.
  • the slagging stage is more efficient thermodynamically, and provides excellent slag recovery. Unburned gases from the first combustion phase then react with the remaining or exit-end stream of the oxidizer gas, and this second phase of combustion takes place at a higher stoichiometric ratio.
  • the overall ratio can be approximately 0.6 to 0.9, with a corresponding head-end ratio of 0.3 to 0.45. Because of a relatively high temperature in the exit end, it may be made relatively shorter in length than is possible in a conventional combustor of the same type. This reduces the heat loss from the chamber and improves the overall thermodynamic efficiency of the combustor.
  • Coal injection into the first-phase combustion zone can be effected by a pintle nozzle disposed axially in the head end and directing fuel flow into that portion of the oxidizer gas flowing toward the head end.
  • fuel can be injected through fuel inlets disposed peripherally around the chamber, to direct the flow into the head-end portion of the oxidizer gas flow.
  • the means for removing slag from the chamber includes a slag port disposed at the bottom portion of the cylindrical wall of the chamber.
  • the head end of the chamber is the lowermost end and the exit is the uppermost.
  • the slag port is located at the head-end.
  • the invention in its broadest terms comprises the steps of injecting oxidizer gas peripherally into a chamber having a head end and an exit end, in such a manner that a portion of the flow is directed towards the head end, injecting fuel, such as pulverized coal, into the head end in such a manner that combustion takes place initially at a relatively low stoichiometric ratio and low temperature, regardless of the end use of the gaseous products of combustion and regardless of the overall stoichiometry of the combustor, removing any non-combustible slag from the chamber, and allowing the essentially gaseous products of combustion to exit the chamber.
  • fuel such as pulverized coal
  • the steps of injecting oxidizer gas and injecting pulverized coal include injecting the oxidizer gas tangentially into the chamber at a point between the head end and the exit end of the chamber such that the oxidizer gas flow splits into two approximately equal portions having opposite axial components, and injecting the pulverized coal into the oxidizer gas portion flowing toward the head end, wherein a first phase of combustion occurs in the head end at a stoichiometric ratio of approximately one half of the overall stoichiometric ratio for the combustor.
  • the present invention represents a significant advance in the field of coal combustion and gasification.
  • a novel coal combustor achieves good slag removal rates while attaining high thermodynamic efficiency, low heat loss and complete burning of carbon.
  • the combustor of the invention allows for convenient matching of its thermodynamic characteristics with those of a desired downstream process.
  • the present invention is principally concerned with a pulverized coal combustor, and more particularly with a slagging coal combustor.
  • slagging coal combustors the non-combustible ash and mineral components of the coal are removed in liquid form, so that these constituents do not remain in the gases produced by the combustor.
  • a coal combustor should be adaptable to provide gas to an MHD generator, or to provide fuel gas for subsequent burning in boilers or in other chemical processes, and still should maintain a high rate of slag recovery and a high thermal efficiency.
  • Prior coal combustors have traditionally employed an oxidizer flow pattern having an axial component directed towards the exit end, and have not been able to achieve the desired combination of ideal characteristics.
  • a coal combustor is provided with fuel and oxidizer injection means which cooperate in such a manner that combustion takes place initially in the head end of the combustor at a relatively low stoichiometric ratio, regardless of the end use of the gaseous products of combustion and regardless of the overall stoichiometry of the combustor.
  • Extremely good slag recovery is provided at the relatively low local stoichiometric ratio in the head end, and heat losses are minimized, with a corresponding maximization of efficiency.
  • a second combustion phase may optionally be provided to yield a higher overall stoichiometric ratio, for use in conjunction with an MHD generator, for example. If the second combustion phase is omitted, a relatively low overall stoichiometric ratio is then provided, such as when the combustor is operating as a synthesis gas generator.
  • the apparatus of the invention includes a slagging coal combustor, indicated generally by reference numeral 10, and having a tangential oxidizer inlet 12 and an axial coal inlet 14.
  • the combustor 10 comprises a generally cylindrical reaction chamber 16, shown as being disposed with its longitudinal axis horizontal, the cylinder having an exit end 18 through which the products of combustion leave the chamber, and a head end 20 into which the pulverized coal fuel is introduced.
  • the exit end 18 includes an exit assembly 22 usually referred to as the symmetrical type.
  • a symmetrical exit is one in which the exit path followed by the products of combustion is symmetrical with respect to the axis of the combustor, i.e. the exit path extends from the center of the exit assembly, rather than being tangential or volute.
  • the illustrative embodiment of Fig. 1 also includes a further exit combustion stage 24 into which further oxidizer and/or fuel may be introduced, through the inlet 26.
  • This exit stage 24 is illustrative of a typical environment for the combustor, but is not essential to the present invention, since the slagging combustor will operate equally well without the exit stage.
  • unburned minerals or ash are removed as liquid slag from the chamber 16, through a slag port located low on the cylindrical wall of the chamber close to the exit end 18.
  • the port is connected to a slag removal assembly 28, the details of which are not critical to the present invention.
  • the entire chamber 16 and the oxidizer inlet 12 are cooled by a fluid, such as water, passed through coolant inlets 30 on top of the cylinder and emerging from coolant exits at the bottom, some of which are shown at 32. Cooling of the combustion chamber 16 produces a solidified layer of slag on the chamber walls.
  • the solid layer of slag protects the chamber walls from erosion by liquid slag and by burning fuel particles, and also provides a relatively low conductivity insulating layer to reduce heat losses from the chamber.
  • the walls have a large number of upstanding pins affixed to them, as shown at 34 in Fig. 5.
  • the pins 34 are approximately 1/8 inch (3.2 mm) in diameter and 1/4 inch (6.4 mm) long, welded to the chamber walls at approximately 3/4 inch (19.2 mm) spacing.
  • the exit combustion stage 24 is used only in the event that it is required for matching the thermodynamic characteristics of the combustor with some downstream process, such as an MHD generator.
  • Fig. 2 shows in diagrammatic form the basic configuration of the slagging combustor.
  • Oxidizer gas is introduced tangentially into the combustion chamber 16 through a rectangular port located between the head end 20 and the exit end 18.
  • Fuel from the coal inlet 14 is dispersed along a generally conical spray having a substantial radial velocity component.
  • a half angle of approximately 60° with respect to the central axis of the cylinder 16 is used.
  • air from the oxidizer inlet 12 diverges into two separate paths, with respect to the axial component of flow of the oxidizer.
  • That portion of the oxidizer flowing back towards the head end 20 will encounter fuel from the coal inlet 14, and combustion will take place in the head end at a stoichiometric ratio of approximately half the overall ratio for the entire combustor. Fuel particles leaving the nozzle 14 will be substantially heated as they traverse the head end to meet the oxidizer gas near the chamber walls. Thus, if the overall stoichiometric ratio is 0.58, as in an MHD generator application, the stoichiometric ratio in the first combustion phase in the head end will be approximately 0.29. For this MHD application, additional oxidizer is added in the inlet to the MHD generator (not shown).
  • This rotational or cyclonic flow is important in that it provides a relatively long path over which burning of the fuel particles can take place and slag can be formed.
  • the swirling action enhances fuel and oxidizer mixing, and directs entrained material outward to the wall surfaces.
  • An annular baffle 40 prevents, for all practical purposes, any flow of slag beyond the exit end 18 of the slagging combustor.
  • Liquified slag principally from the head end 20, flows towards the slag tap 28 under the effects of graviational force and shear force between the slag and the adjacent moving combustion gases.
  • an additive material may be injected axially with the coal fuel, as indicated at 41 in Fig. 2, to increase the electrical conductivity of the resultant exiting gases or to otherwise modify the exhaust gas species.
  • Flow of the additive material has no significance in the present invention, however, except to the extent that it may be injected with sufficient velocity to avoid being captured in outflowing slag and to react with the hot exhaust gases.
  • Fig. 3 shows in sectional form a typical pintle nozzle structure.
  • the pintle 14 is cylindrical in shape and has a number of annular elements defining an axial passage 42 for the additive material, two concentric annular passages 43 and 44 joined in fluid communication at the end of the pintle, as shown at 45, to provide a cooling fluid path, and a surrounding annular fuel passage 46.
  • the annular fuel passage 46 terminates in conical exit port 48 extending in a continuous circle around the periphery of the pintle. Coal is ejected in a conical sheet from the exit port 48.
  • An additional annular cooling passage 49 is provided between the fuel passage 46 and the outside surface of the pintle.
  • Figs. 5-11 the invention may be used in a variety of embodiments, depending on the needs of the associated downstream application.
  • Fig. 5 there is shown a basic configuration utilizing the principles of the invention. Included are the coal pintle nozzle for injection of coal 14, a tangential inlet 12, slag tap 28, and an exit shown at 22a.
  • the coal could be alternatively injected by means of peripheral fuel inlet ports, such as those shown at 60 in Figs. 10 and 11.
  • the exit 22a is a volute exit shown in more detail in Fig. 5a.
  • the radius of the exit assembly increases from a minimum value to a maximum value, and an exit duct merges tangentially with the assembly at its point of maximum radius.
  • This is to be distinguished from the symmetrical exit (Fig. 6a), wherein an exit duct merges with a cylindrical exit assembly symmetrically, i.e., along a radius.
  • the object is to provide a uniform, non-swirling flow in the exit duct.
  • Figs. 6 and 6a differs from that of Fig. 5 in two respects.
  • a simpler symmetrical exit 22b is shown.
  • the exit 22b is located much closer to the inlet, i.e., the overall length of the slagging stage is reduced. This reduction is made possible because the second phase of combustion, in the exit end 18 of the chamber 16, takes a relatively short time, since it involves only gaseous components at a high temperature, the solid fuel having been practically completely combusted in the head end.
  • the more compact design of the Fig. 6 embodiment results in a further reduced heat loss and increased efficiency, while still maintaining good slag recovery.
  • Figs. 7 and 7a The embodiment shown in Figs. 7 and 7a is similar to that shown in Fig. 6, except that the exit end combustion phase takes place in an even smaller volume, since the oxidizer inlet, referred to as 12c, is moved much closer to the exit end 18 of the chamber 16, as a consequence of locating the slag tap 28c at the head end.
  • the coal injector has been accordingly lengthened and effectively moved towards the exit end with the inlet 12c.
  • the head end volume is correspondingly increased by relocation of the slag tap, and, as in all of the embodiments shown, most of the slag removal function is taking place in the first phase of combustion, at the head end. In this manner, heat loss through the slag tap 28c is reduced, because of the lower temperature in the head end region.
  • Placement of the slag tap 28c at the head end 20 also results in a higher slag removal efficiency, since there should be reduced slag volatilization because of the lower temperature of the head end.
  • the slag deposited on the head-end walls should be more easily convected toward the slag tap by the axial component of the inlet flow entering the head end 20.
  • Figs. 8 and 8a represents a further refinement of the embodiment shown in Fig. 7.
  • the tangential oxidizer gas inlet has been replaced by a volute inlet 12d, usually referred to as the recessed volute type.
  • the same volume of oxidizer gas can be introduced through the volute inlet as through the tangential inlet, but with an effective reduction in axial length of the inlet, since the volute inlet duct can be larger, measured in a radial direction, than a tangential inlet to a cylinder of the same size.
  • This shorter axial length can reduce heat losses from the combustor, and thereby increase efficiency.
  • the recessed volute 12d shown in more detail in Fig.
  • Fig. 10 shows a vertically oriented combustion chamber 16 having a recessed volute inlet 12f, a symmetrical outlet 22f, coal injectors 60 disposed peripherally about the chamber 16 at a location slightly towards the head end 20f from the inlet 12f, and a slag tap 28f located in an axial orientation in the head end.
  • the principle of operation is the same as that of the basic configurations already described.
  • Coal is injected into the portion of the inlet flow proceeding towards the head end 20f of the chamber 16, and a first phase of combustion occurs at the head end at a relatively low stoichiometric ratio.
  • a second stage of combustion can then occur in the exit end of the combustor before the products of combustion exit through the symmetrical exit 22f.
  • any of the aforedescribed embodiments may be modified for operation as gas generators by including means for diverting the entire oxidizer gas flow towards the head end 20 of the combustor.
  • the vertically oriented embodiment of Fig. 10 is shown as having a head end 20g and a cylindrical baffle 62 disposed in the oxidizer inlet 12g to act as a flow diverter, ensuring that the oxidizer flow has an axial component directed only toward the head end, as shown by the arrows 64.
  • the inlet flow is, of course, adjusted to provide a desired stoichiometric ratio for generating combustible gas.
  • the present invention represents a significant advance in the field of coal combustors.
  • the invention provides a slagging combustor operating with desirable slag removal characteristics at a relatively low stoichiometric ratio, and therefore providing for reduced heat losses and increased efficiency.
  • the combustor is easily adaptable to match the requirements of various downstream processes, such as MHD generators or processes requiring synthetic fuel gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Feeding And Controlling Fuel (AREA)

Claims (21)

1. Brennstoffkopf, enthaltend eine Brennkammer (16) mit einem Kopfende (20) und einem entgegengesetzten Ausgangsende (18), einer Brennstoffeinlaßeinrichtung (14) zum Zuführen von partikelhaftem, festem Brennstoff in die Kammer an dem genannten Kopfende (20), einer Oxidationsmitteleinlaßeinrichtung (12) zum Zuführen eines Oxidationsmittels in die Kammer in einer im wesentlichen horizontalen Richtung, um eine Rotationsströmung hoher Geschwindigkeit in der Kammer zu erzeugen, einem Auslaß (22) zum Abgeben von Verbrennungsprodukten vom Auslaßende der genannten Kammer, einer Schlackenprallwand (40) zwischen den genannten Enden und einem Schlackenabzug (28) zum Abziehen von Schlacke aus der Kammer, dadurch gekennzeichnet, daß die Oxidationsmitteleinlaßeinrichtung (12) zwischen den genannten Enden angeordnet ist und dazu eingerichtet ist, eine Strömung eines Teils des Oxidationsmittels gegen das Kopfende (20) der Kammer und eine Strömung des Restes des eintretenden Oxidationsmittels gegen das Auslaßende (18) der Kammer in solchen Proportionen hervorzurufen, daß der Brennstoff und der genannte Oxidationsmittelteil innerhalb des Kopfendes (20) der Kammer in einer ersten Verbrennungsphase bei einem relativ niedrigen stöchiometrischen Verhältnis und einer entsprechend niedrigen Temperatur reagieren, um eine Verflüssigung des Schlackenanteils des eintretenden Brennstoffs mit minimaler Verdampfung zu ermöglichen, wobei die rotierende Strömung bewirkt, daß die flüssige Schlacke auf die Kammerwand geschleudert wird, um von dem Schlakenabzug abgezogen zu werden, wobei der Rest des eintretenden Oxidationsmittelgases mit den Verbrennungsprodukten der ersten Verbrennungsphase nahe dem Austrittsende (18) der Kammer in einer zweiten Verbrennungsphase reagiert, um ein stöchiometrisches Gesamtverhältnis zu erzeugen, das wesentlich höher ist, als das der ersten Phase.
2. Brennstoffkopf nach Anspruch 1, weiterhin dadurch gekennzeichnet, daß die Oxidationsmitteleinlaßeinrichtung (12) derart zwischen den Kammerenden angeordnet ist, daß die Strömung des Teils des Oxidationsmittelgases im wesentlichen in einem Gegenströmungsverhältnis zu der Strömung des Brennstoffs und der Verbrennungsprodukte der ersten Phase durch die Kammer stattfindet.
3. Brennstoffkopf nach einem der Ansprüche 1 oder 2, weiterhin dadurch gekennzeichnet, daß die Oxidationsmitteleinlaßeinrichtung (12) so angeordnet ist, daß sie einen größeren Anteil des eintretenden Oxidationsmittelgases gegen das Kopfende (20) richtet.
4. Brennstoffkopf nach einem der Ansprüche 1 oder 2, weiterhin dadurch gekennzeichnet, daß die Oxidationsmitteleinlaßeinrichtung (12) so angeordnet ist, daß sie ungefähr die Hälfte der eintretenden Oxidationsmittelgasströmung zum Kopfende (20) richtet, um der ersten Verbrennungsphase ein stöchiometrisches Verhältnis von etwa der Hälfte des Gesamtverhältnisses für den Brenner zu verleihen.
5. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin dadurch gekennzeichnet, daß die Oxidationsmitteleinlaßeinrichtung (12) einen vertieften, schneckenförmigen Oxidationsmitteleinlaß enthält.
6. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin dadurch gekennzeichnet, daß die Auslaßeinrichtung (22) sich axial durch das Kammerauslaßende öffnet.
7. Brennstoffkopf nach einem der Ansprüche 1 bis 5, weiterhin dadurch gekennzeichnet, daß der Auslaß (22) eine schneckenförmige Auslaßöffnung enthält, die sich tangential von dem Kammerauslaßende erstreckt.
8. Brennstoffkopf nach einem der Ansprüche 1 bis 5, weiterhin dadurch gekennzeichnet, daß der Auslaß (22) sich quer von dem Kammerauslaßende öffnet.
9. Brennstoffkopf nach einem der Ansprüche 2 bis 8, weiterhin dadurch gekennzeichnet, daß der Oxidationsmitteleinlaß (12) dichter am Kopfende (20) als an der Prallwand (40) gelegen ist, und daß der Schlackenabzug (28) der Prallwand (40) benachbart angeordnet ist.
10. Brennstoffkopf nach einem der Ansprüche 2 bis 8, weiterhin dadurch gekennzeichnet, daß der Oxidationsmitteleinlaß (12) etwa in der Mitte zwischen dem Kopfende (20) und der Prallwand (40) angeordnet ist, und daß der Schlackenabzug (28) der Prallwand (40) benachbart gelegen ist.
11. Brennstoffkopf nach einem der Ansprüche 2 bis 8, weiterhin dadurch gekennzeichnet, daß der Oxidationsmitteleinlaß (12) näher zur Prallwand (40) als zum Kammerkopfende (20) angeordnet ist, und daß der Schlackenabzug (28) dem Kammerkopfende (20) benachbart gelegen ist.
12. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin gekennzeichnet durch eine zweite Brennkammer mit einem Auslaßende, das sich in das Auslaßende der ersterwähnten Brennkammer öffnet, und einem gegenüberliegende Kopfende, einer zweiten Brennstoff- und einer zweiten Oxidationsmitteleinlaßeinrichtung zum Zuführen von partikelhaftem, festem, kohlenstoffhaltigem Brennstoff in das Kopfende der zweiten Kammer und zum Zuführen von Oxidationsmittelgas in letztgenannte Kammer, um darin eine Strömung hoher Geschwindigkeit zu erzeugen, einem Auslaß zum Auslassen der Verbrennungsprodukte vom Auslaßende der zweiten Kammer, einem Schlackenabzug zum Abziehen von Schlacke aus der zweiten Kammer, und weiterhin dadurch gekennzeichnet, daß die zweite Kammereinlaßeinrichtung eine Strömung von wenigstens einem Teil des eintretenden Oxidationsgases gegen das Kopfende der zweiten Kammer und eine Strömung des Restes des eintretenden Oxidationsgases gegen das Austrittsende der zweiten Kammer in solchen Proportionen bewirkt, daß der Oxidationsmittelgasteil und der eintretende Brennstoff innerhalb des Kopfendes der zweiten Kammer in einer ersten Verbrennungsphase bei relativ niedrigem stöchiometrischen Verhältnis und dementsprechend niedriger Temperatur reagieren, um eine Verflüssigung des Schlackenanteils des eintretenden Brennstoffs mit minimaler Verdampfung zu ermöglichen und das Schleudern der flüssigen Schlacke auf die Kammerwand zum Abzug durch den Schlackenabzug zu ermöglichen, wobei der Rest des eintretenden Oxidationsmittelgases innerhalb des Auslaßendes der zweiten Kammer mit den Verbrennungsprodukten der ersten Verbrennungsphase in einer zweiten Verbrennungsphase reagiert, um der zweiten Brennkammer ein stöchiometrisches Gesamtverhältnis zu vermitteln, das wesentlich höher als das stöchiometrische Verhältnis der ersten Phase in der zweiten Kammer ist.
13. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin dadurch gekennzeichnet, daß die Brennkammer vertikal angeordnet ist mit dem Austrittsende an oberster Stelle und dem Kopfende an unterster Stelle.
14. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin dadurch gekennzeichnet, daß die Brennstoffeinlaßeinrichtung mehrere Brennstoffeinlaßöffnungen aufweist, die in Umfangsrichtung um das Kopfende der Brennkammer verteilt angeordnet sind.
15. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin dadurch gekennzeichnet, daß der Schlackenabzug in der Mitte an der Unterseite der Brennkammer angeordnet ist.
16. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin gekennzeichnet durch Einrichtungen, die an den Wänden der Brennkammer befestigt sind, um das Anhaften verfestigter Schlacke daran zu begünstigen.
17. Brennstoffkopf nach einem der vorhergehenden Ansprüche, weiterhin dadurch gekennzeichnet, daß die Oxidationsmitteleinlaßeinrichtung dazu eingerichtet ist, ein stöchiometrisches Gesamtverhältnis zu erzeugen, das ausreichend hoch ist, um eine im wesentlichen vollständige Vergasung des Brennstoffs zu erzielen, wobei die Verbrennungstemperaturen ausreichend niedrig sind, um eine Verdampfung der flüssigen Schlacke zu vermeiden.
18. Verbrennungsverfahren, enthaltend: Zuführen partikelhaften, festen, kohlenstoffhaltigen Brennstoffs und eines Oxidationsmittels in eine Reaktionskammer mit einem Kopfende und einem gegenüberliegenden Auslaßende in einer solchen Weise, daß eine rotierende Strömung hoher Geschwindigkeit innerhalb der Kammer erzeugt wird, Auslassen der Verbrennungsprodukte vom Auslaßende der Kammer und Abziehen der Schlacke aus der Kammer, gekennzeichnet durch die folgenden Schritte: Zuführen des Brennstoffs derart, daß er am Kopfende der Kammer eintritt, Zuführen des Oxidationsmittels zu einem Einlaß zwischen den genannten Enden und Aufteilen desselben derart, daß ein erster Teil des eintretenden Oxidationsmittels gegen das Kopfende der Kammer strömt und der Rest des Oxidationsmittels gegen das Austrittsende der Kammer strömt, in solchen Proportionen, daß der erste Teil im Kopfende der Kammer mit dem eintretenden Brennstoff in einer ersten Verbrennungsphase bei relativ niedrigem stöchiometrischen Verhältnis und einer entsprechend niedrigen Temperatur reagiert, so daß der Schlackenanteil des Brennstoffs mit minimaler Verdampfung verflüssigt wird und die flüssige Schlacke auf die Kammerwand zum Abzug aus der Kammer geschleudert wird, und der Rest des eintretenden Oxidationsmittels mit den Verbrennungsprodukten der ersten Phase in einer zweiten Verbrennungsphase nahe dem Austrittsende der Kammer reagiert, um ein stöchiometrisches Gesamtverhältnis zu ergeben, das wesentlich höher ist, als das der ersten Phase.
19. Verfahren nach Anspruch 18, weiterhin dadurch gekennzeichnet, daß das Oxidationsmittel tangential in die Brennkammer zwischen dem Kopfende und dem Austrittsende in solcher Weise eingespritzt wird, daß die eintretende Oxidationsmittelströmung sich aufteilt, um einen ersten Oxidationsmittelteil zu erzeugen, der gegen das Kopfende strömt, während der restliche Teil gegen das Austrittsende strömt.
20. Verfahren nach Anspruch 18 oder 19, weiterhin dadurch gekennzeichnet, daß die Oxidationsmittelzuführung derart ist, daß die erste Verbrennungsphase bei einem stöchiometrischen Verhältnis stattfindet, das etwa die Hälfte des Gesamtverhältnisses für den Brenner ist.
21. Verfahren nach Anspruch 18 oder 19, weiterhin dadurch gekennzeichnet, daß im wesentlichen das gesamte eintretende Oxidationsmittel gegen das Kopfende der Kammer gerichtet wird.
EP82901239A 1981-03-17 1982-03-11 Brennstoffkopf Expired EP0073830B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24455381A 1981-03-17 1981-03-17
US244553 1981-03-17

Publications (3)

Publication Number Publication Date
EP0073830A1 EP0073830A1 (de) 1983-03-16
EP0073830A4 EP0073830A4 (de) 1985-10-14
EP0073830B1 true EP0073830B1 (de) 1988-01-13

Family

ID=22923231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82901239A Expired EP0073830B1 (de) 1981-03-17 1982-03-11 Brennstoffkopf

Country Status (13)

Country Link
EP (1) EP0073830B1 (de)
JP (1) JPS58500420A (de)
AU (1) AU551776B2 (de)
CA (1) CA1181998A (de)
DE (1) DE3237454C2 (de)
DK (1) DK509582A (de)
IL (1) IL65224A0 (de)
IT (1) IT1155634B (de)
MX (1) MX160386A (de)
NL (1) NL8220118A (de)
PL (1) PL235462A1 (de)
WO (1) WO1982003261A1 (de)
ZA (1) ZA821798B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3128903C2 (de) * 1981-07-22 1983-09-08 L. & C. Steinmüller GmbH, 5270 Gummersbach "Verfahren zum Eintragen von Additiv in einen Reaktionsgasstrom"
EP0111874B1 (de) * 1982-12-15 1987-04-22 Gewerkschaft Sophia-Jacoba Steinkohlenbergwerk Einrichtung zum Verbrennen insbesondere von reaktionsträgem Kohlenstaub
US4660478A (en) * 1984-11-13 1987-04-28 Trw Inc. Slagging combustor with externally-hot fuel injector
DE3689922T2 (de) * 1986-10-27 1994-12-08 Trw Inc Schmelzfeuerungsanlage.
DE19517529A1 (de) * 1995-05-12 1996-11-14 Petersen Hugo Verfahrenstech Brenner

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1698555A (en) * 1922-06-24 1929-01-08 Babcock & Wilcox Co Apparatus for burning finely-divided fuel
US2357301A (en) * 1941-03-07 1944-09-05 Babcock & Wilcox Co Fuel burning method and apparatus
GB690365A (en) * 1950-09-06 1953-04-15 Babcock & Wilcox Ltd Improvements in furnaces
US2738776A (en) * 1951-06-13 1956-03-20 Pollopas Patents Ltd Furnace burners
GB716669A (en) * 1951-06-15 1954-10-13 Babcock & Wilcox Ltd Improvements in or relating to combustion apparatus adapted to burn solid fuel in suspension and to a method of generating heat and recovering ash from particles separated from gases from such apparatus
GB747929A (en) * 1953-05-02 1956-04-18 Babcock & Wilcox Ltd Improvements in combustion apparatus of the kind including a cyclone furnace
DE1238148B (de) * 1953-07-22 1967-04-06 Siemens Ag Brennkammer fuer mit Kohlenstaub betriebene Feuerungen
DE1208443B (de) * 1953-11-03 1966-01-05 Giovanni Hilgers Dr Ing Vorrichtung zur Vergasung von staubfoermiger oder feinkoerniger Kohle
US2842105A (en) * 1955-07-20 1958-07-08 Babcock & Wilcox Co Cyclone fired vapor generating unit with downcomer support for the cyclone furnace
US2971480A (en) * 1957-10-08 1961-02-14 Babcock & Wilcox Co Cyclone furnace
GB874059A (en) * 1959-02-17 1961-08-02 Foster Wheeler Ltd Improved cyclone furnaces
US3199476A (en) * 1963-04-30 1965-08-10 Nettel Frederick Apparatus and method for compound cyclone combustion of coal and other fuels
DE1526190B2 (de) * 1965-08-11 1972-08-03 Feuerung fuer einen dampferzeuger
GB1180929A (en) * 1966-04-28 1970-02-11 English Electric Co Ltd Combustion Apparatus, for example for Gas Turbines.
US3568612A (en) * 1968-03-25 1971-03-09 Torrax Systems Combustion chamber
US3777678A (en) * 1971-06-14 1973-12-11 Mac Millan Bloedel Ltd Cyclonic type fuel burner
US3727563A (en) * 1971-07-02 1973-04-17 Gen Electric Incinerator
US3797413A (en) * 1973-04-23 1974-03-19 Gen Electric Incinerator
US3865054A (en) * 1973-10-30 1975-02-11 Du Pont Cyclonic incinerator
US3837303A (en) * 1973-11-09 1974-09-24 Mill Conversion Contractors In Wood and gas fuel burner
US4060041A (en) * 1975-06-30 1977-11-29 Energy Products Of Idaho Low pollution incineration of solid waste
US4132180A (en) * 1975-07-31 1979-01-02 Fredrick William L Apparatus and method for enhancing combustibility of solid fuels
JPS5380836A (en) * 1976-12-27 1978-07-17 Hokkaido Sugar Co Method of dustless combustion and combustion furnace therefor
US4144019A (en) * 1977-03-24 1979-03-13 Combustion Equipment Associates, Inc. Vortex type burner
US4217132A (en) * 1977-09-27 1980-08-12 Trw Inc. Method for in-flight combustion of carbonaceous fuels
US4206712A (en) * 1978-06-29 1980-06-10 Foster Wheeler Energy Corporation Fuel-staging coal burner

Also Published As

Publication number Publication date
DE3237454T1 (de) 1983-07-28
DK509582A (da) 1982-11-16
JPS58500420A (ja) 1983-03-17
ZA821798B (en) 1983-04-27
AU551776B2 (en) 1986-05-08
JPH0259362B2 (de) 1990-12-12
NL8220118A (nl) 1983-02-01
AU8331382A (en) 1982-10-06
IT8267327A0 (it) 1982-03-16
CA1181998A (en) 1985-02-05
PL235462A1 (de) 1982-11-08
EP0073830A4 (de) 1985-10-14
WO1982003261A1 (en) 1982-09-30
EP0073830A1 (de) 1983-03-16
IT1155634B (it) 1987-01-28
DE3237454C2 (de) 1995-09-14
MX160386A (es) 1990-02-14
IL65224A0 (en) 1982-05-31

Similar Documents

Publication Publication Date Title
US4685404A (en) Slagging combustion system
CA1141595A (en) Process for the partial combustion of solid fuel and burner for carrying out the process
US5581998A (en) Biomass fuel turbine combuster
EP0107225B1 (de) Verfahren und Brenner für die Teilverbrennung von Festbrennstoff
CN101865470B (zh) 具有内冷却的燃气涡轮机预混合器
CA2126474C (en) Controlled flame fuel jet combustion
US4785746A (en) Carbonaceous slurry combustor
EP0073830B1 (de) Brennstoffkopf
CA1233431A (en) Method and means for partial combustion and gasification of carbonaceous material
US4519321A (en) Burner for the partial combustion of solid fuel
EP0289487B1 (de) Schmelzfeuerungsanlage
JP2527922B2 (ja) 微粉炭の酸素燃焼バ―ナ
RU2145039C1 (ru) Способ подачи горючего в камеру теплового двигателя и устройство для его реализации
US4782770A (en) Combustor for fine particulate coal
JPH0615924B2 (ja) 石炭焚mhd発電用燃焼器
JP3349380B2 (ja) 湿式炉用バーナ
JPH026962B2 (de)
RU2047049C1 (ru) Форсунка
SU1257361A1 (ru) Способ сжигани пылеугольного топлива
SU1490385A1 (ru) Вихрева пылеугольна горелка
JP2664996B2 (ja) 石炭だき二段燃焼器
JPH0238904Y2 (de)
CA1262839A (en) Slagging combustion system
JP3595395B2 (ja) ガス化炉の固体燃料バーナ
JP2001065804A (ja) ボイラのリパワリング装置とリパワリング方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19821027

AK Designated contracting states

Designated state(s): BE CH FR GB LI LU SE

17Q First examination report despatched

Effective date: 19860228

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH FR GB LI LU SE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940131

Year of fee payment: 13

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82901239.2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010202

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010301

Year of fee payment: 20

Ref country code: FR

Payment date: 20010301

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010321

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010417

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20020311 *TRW INC.

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020310

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020310

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020310

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020310

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 82901239.2