EP0068002A1 - Etage de turbine. - Google Patents

Etage de turbine.

Info

Publication number
EP0068002A1
EP0068002A1 EP82900113A EP82900113A EP0068002A1 EP 0068002 A1 EP0068002 A1 EP 0068002A1 EP 82900113 A EP82900113 A EP 82900113A EP 82900113 A EP82900113 A EP 82900113A EP 0068002 A1 EP0068002 A1 EP 0068002A1
Authority
EP
European Patent Office
Prior art keywords
grid
ceiling
floor
fixed grid
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82900113A
Other languages
German (de)
English (en)
Other versions
EP0068002B1 (fr
Inventor
Raymond Bessay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alsthom Atlantique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsthom Atlantique SA filed Critical Alsthom Atlantique SA
Priority to AT82900113T priority Critical patent/ATE12291T1/de
Publication of EP0068002A1 publication Critical patent/EP0068002A1/fr
Application granted granted Critical
Publication of EP0068002B1 publication Critical patent/EP0068002B1/fr
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/20Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/26Special functions trigonometric
    • F05D2200/261Sine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/26Special functions trigonometric
    • F05D2200/262Cosine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2200/00Mathematical features
    • F05D2200/20Special functions
    • F05D2200/26Special functions trigonometric
    • F05D2200/264Cotangent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the present invention relates to a turbine stage comprising a circular fixed grid followed by a circular mobile grid, each grid comprising vanes mounted between a floor and a ceiling.
  • This series of blades thus defines a series of channels traversed by a fluid, each channel being limited by two consecutive blades and by the floor and the ceiling.
  • the direction of radial variation of the static pressure which decreases from the top to the base, amplifies the secondary vortex of the ceiling and opposes the secondary vortex of the plancner, as it is visible in Figure 2.
  • the direction of radial variation of the intergrid static pressure is therefore harmful to the ceiling and favorable to the base.
  • the absolute value of the radial static pressure gradient at the base has no reason to be just that necessary to minimize secondary losses.
  • the invention relates to a turbine stage comprising a circular fixed grid followed by a circular mobile grid, each grid comprising blades mounted between a plancner and a ceiling of revolution around the axis of the turbine, the pitch of the blades of the fixed grid being L S at the ceiling and L B at the plank and the exit angle of the jet of fluid from the fixed grid with the plane of this grid being ⁇ 1S in line with the ceiling and ⁇ 1B in line with the floor, in this case the distance to the axis of the ceiling decreases from the entry of the fixed grid towards the exit of the fixed grid or it has the value r S , then goes increasing from the entry of the movable grid where it has the value r S until leaving the movable grid.
  • Such a turbine stage is known from British Patent No. 596,784.
  • the curvature of the floor and the ceiling is calculated so that the pressure is constant in the intergrid space (at the outlet of the fixed grid) from the bottom to the top of this space, it that is, the radial static pressure gradient is zero.
  • the meridian curvature of the ceiling in line with the intergrid plane is substantially equal
  • the invention also relates to a turbine stage comprising a circular fixed grid followed by a circular mobile grid comprising vanes mounted between a floor and a ceiling of revolution around the axis of the turbine, the pitch of the vanes of the fixed grid being L S at the ceiling and L B at the floor and the exit angle of the jet of fluid from the fixed grid with the plane of this grid being ⁇ 1S to the right of the ceiling and ⁇ 1B to the right of the floor in which the distance to l plancner axis varies continuously from the entry of the fixed grid towards the exit of said fixed grid where it reaches an extremum r composer, then varies in the opposite direction in a continuous way from the entry of the grid mobile where it has the value r B until the mobile grid exits.
  • This turbine stage is also known from British Patent No. 596,784.
  • the meridian curvature of the floor of the fixed grid in line with the intergrid plane is substantially equal to the difference
  • the extremum r B being a minimum when the difference is negative and a maximum when the difference is positive.
  • the radial gradient of intergrid static pressure is not zero, as in the British patent, but is equal to the tangential gradient of intergrid static pressure, which has the effect of confining the disturbed zone to the floor in a relatively small flow passage section.
  • the two measurements can be combined on the ceiling and on the floor so as to confine the disturbed area on the ceiling and that on the floor in a relatively small flow passage section.
  • with ⁇ > 1
  • the tangential gradient of static pressure in the vicinity of the ceiling at the outlet of the fixed grid the meridian curvature of the ceiling the fixed grid to the right of the intergrid plane is substantially equal to
  • the turbine stage comprises the 2 combined variants, which makes it possible, on the one hand, to reduce the intensity of the vortices on the ceiling and on the floor and, on the other hand, to confine in a narrow area.
  • the distance to the axis of the ceiling varies according to a curve having a maximum at the entry of the fixed grid and at the exit of the movable grid and a minimum in the intargrilated plane.
  • FIG. 1 and 2 show part of a fixed grid of a conventional turbine stage.
  • FIG. 3 represents the variation curves of the intergrille pressure as a function of the distance r from the axis.
  • FIG. 4 schematically represents a fixed grid belonging to a turbine stage according to the invention.
  • FIG. 5 shows a section of a fixed grid according to Figure 4 at the ceiling.
  • Figure ⁇ shows a section of a fixed grid according to Figure 4 at floor level.
  • FIG. 7 represents a first embodiment of the stage of this turbine according to the invention.
  • FIG. 8 represents a second embodiment of the turbine stage according to the invention.
  • FIG. 9 shows a third embodiment of the turbine stage according to the invention.
  • FIG. 10 represents a fourth embodiment of the turbine stage according to the invention.
  • FIG. 11 represents a fifth embodiment of the turbine stage according to the invention.
  • Figures 12 and 13 represent a simplified version of the embodiments of Figures 10 and 11.
  • Figures 14 and 15 show a modified turbine still according to the invention comprising means reducing the tangential static pressure gradient of the fixed grid.
  • FIG. 1 there are shown two blades A and B which are part of a fixed grid and whose foot is fixed on a floor 1 and the head on a ceiling 2.
  • the floor and the ceiling are usually cylindrical or frustoconical surfaces .
  • the lower surface of dawn 3, the upper surface of dawn A, the floor 1 and the ceiling 2 define a channel 3.
  • the flow is done by following healthy nets such as (vs).
  • the fluid threads are orthogonal to the isobars and follow the directions shown (1), (m) then begin to swirl as soon as they hit the upper surface of dawn (A ).
  • FIG. 2 it is indicated at the outlet of a fixed grid in the vicinity of the upper surface of dawn At the static pressure p s in the vicinity of the ceiling and the static pressure p B in the vicinity of the floor of the grid fixed blades.
  • the pressure ptician is greater than the pressure p, so that in the vicinity of the ceiling, the secondary vortex is amplified while it is damped in the vicinity of the floor.
  • the static pressure constantly decreases from the ceiling to the floor.
  • the evolution of the intergriile static radial pressure in a conventional turbine is represented in FIG. 3 by the curve in solid schematic line which starts from r B radius of the planoner in the interplan grid up to r S radius of the ceiling in the same plane and the dotted curve diagrams the desired evolution.
  • the meridian of the ceiling and / or the vein plank of the fixed grid must have a curved shape.
  • FIG. 5 there is shown a cylindrical section of the top of the blades A and 3 of a fixed grid.
  • the angle ⁇ 1S designates the injection angle of the jet (in the following mobile grid) with the grid front in line with the ceiling, V 1 the absolute speed intergrille, V u the tangent component of the absolute intergriile speed and V m the projection of the absolute speed intergrille in the meridian plane.
  • L S represents the pitch of the blades on the ceiling
  • the year ⁇ 1S is calculated very easily: from this the relation on ( ⁇ S being the width of the neck between the blades A and B in the vicinity of the ceiling).
  • FIG. 6 there is shown a cylindrical section of the foot of the blades A and B of a fixed grid.
  • the angle ⁇ 1S designates the angle of injection of the jet (in the following mobile grid) with the front of grills.
  • the pitch of vanes A and B on the floor is L B
  • the width of the neck is o ⁇ B
  • the angle ⁇ 1 B can be calculated very easily from the relation
  • the radial gradient of intergriile static pressure is determined by the following formula:
  • ⁇ 1 being the angle of injection of the jet with this grid front at level r and L is the spacing between 2 consecutive blades at the same level. is an experimental coefficient and ⁇ P is the pressure drop in the fixed grid.
  • V 1 2 V u 2 + V m 2
  • FIG 7 there is shown in section a turbine stage according to the invention in which minimized the effect of secondary losses in the vicinity of the ceiling.
  • the fluid for example, goes along the arrow from right to left.
  • the stage comprises a fixed grid 4 followed by a movable grid 5.
  • the fixed grid comprises vane cases 6 mounted between a plancner 1 and a ceiling 2.
  • the movable grid 5 comprises vanes 7 mounted between a floor 11 and a ceiling 12.
  • the ceiling 2 of the grid 4 is a surface of revolution around the axis of the turbine, the meridian of which is a half-arc of a sinusoid which approaches the axis, from the inlet to the outlet.
  • the ceiling 12 of the grid 5 is substantially symmetrical with the ceiling 2 with respect to the intergrid plane which is perpendicular to the axis of the turbine.
  • the floor is that of a conventional turbine.
  • FIGS. 8 and 9 there is shown in section a turbine stage according to the invention in which the effect of the secondary losses in the vicinity of the plancner has been minimized.
  • the numbers of references are those of the references of figure 7 in which one added 100.
  • the floor 101 of the fixed grid 104 is a surface of revolution around the axis of the tooth turbine.
  • the meridian is a half-arc of a sinusoid which moves closer to the axis, from the entry to exit.
  • the floor 111 of the movable grid 105 is substantially symmetrical with the floor 101 with respect to the intergrid plane.
  • the meridian of the floor 111 'of the movable grid 105 is the symmetrical of the meridian of the floor 101' with respect to the intergrid plane.
  • FIG. 10 shows a turbine stage according to the invention with a ceiling similar to that of the stage in FIG. 7 and a plancner similar to that in FIG. 8.
  • the reference numbers have been increased by 200 by compared to those in figure 7.
  • FIG. 11 a turbine stage according to the invention is shown with a ceiling like that of the turbine screen of FIG. 7 and a plank like that of FIG. 9.
  • the numbers of these references have been increased by 100 compared to those of FIG. 9.
  • FIGS. 12 and 13 are variants of FIGS. 10 to 11 in which the meridians of the plancner 311 respectively: 311 ′ and of the ceiling 312 of the movable grid 305 feel straight lines.
  • FIG. 14 shows a neck of a grills fixed by a surface that revolution around the axis comprising means for reduce secondary losses in each channel limited by the upper surface 401 of a blade A and the lower surface 402 of a blade B. These means are described, for example, in Belgian patent n ° 677969.
  • the floor and / or the ceiling were dug in 403 in the vicinity of the upper surface of dawn A, which causes a local reduction in the overpressure at the level of the floor and / or ceiling.
  • material 401 has been brought onto the plank and / or the ceiling in the vicinity of the lower surface of the blade 3, which causes a local decrease in the depression in line with the floor and / or the ceiling.
  • the internal shape of the fixed grid also has a radians periodicity, being the number of blades of the directrix. However, in the exit plane of the grid perpendicular to the axis, the set of channels is tangent to a surface of revolution around the axis.
  • the tangential static pressure gradient in the vicinity of the ceiling is reduced by a factor ⁇ and / or the tangential static pressure gradient in the vicinity of the plancner at the outlet of the fixed grid by a factor of one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Etage de turbine comportant une grille fixe (204) suivi d'une grille mobile (205) comportant des aubes (206, 207) montees entre un plancher (201, 211) et un plafond (202, 212). Les surfaces du plafond (202, 212) et/ou du plancher (201, 211) admettent pour meridienne des sinusoides dont le maximum pour celle du plafond (202, 212), le maximum ou le minimum pour celle du plancher (201, 211) se situent dans le plan intergrille. La courbure de cette sinusoide a la sortie de la grille fixe (204) est calculee de facon a obtenir l'egalite entre les gradients de pression statique tangentiel et radial au plafond et/ou au plancher a la sortie de la grille fixe (204). Les perturbations sont confinees dans des zones restreintes ce qui ameliore le rendement de l'etage.

Description

Etage de turbine
La présente invention a trait à un étage de turbine comprenant une grille fixe circulaire suivie d'une grille mobile circulaire, chaque grille comportant des aubes montées entre un plancher et un plafond. Cette suite d'aubes définit ainsi une suite de canaux parcourus par un fluide, chaque canal étant limité par deux aubes consécutives et par le plancher et le plafond.
On sait que dans un canal donné, suffisamment loin des parois du canal, les filets de fluide suivent des trajectoires sensiblement paralièles aux parois du canal formées par les aubes, intrados pour l'une et extrados pour l'autre.
En tous points de cette trajectoire, l'effort centrifuge qui s'exerce sur une particule est équilibré par les forces de pression. Il en résulte que, globalement, l'intrados de l'aube est en surpression par rapport à l'extrados.
On sait d'autre part que dans la coucne limite située à proximité du plancher et du plafond les vitesses du fluide sent faibles ; il s'ensuit que, les efforts de pression n'étant plus équilibrés, les trajectoires des filets sent des courbes perpendiculaires aux isobares et vont dans chaque canal de l'intrados vers l'extrados en un véritable dérapage bien connu de l'homme de l'art (figure 1).
Ce dérapage engendre un tourbillon de sens trigonométrique au plafond du canal et de sens inverse au plancher pour un observateur placé à l'aval de la grille d'aubes de la figure 1. Ces perturbations s'accompagnent de pertes importantes qui sont connues sous le nom de pertes secondaires qui affectent d'autant plus le rendement d'une grille d'aubes que le rapport entre la hauteur des aubes et la corde est faible.
On peut ici constater que dans le cas d'une grille fixe d'aubes circulaire, l'effet du gradient radial de pression statique qui se développe à la sortie, lorsque l'écoulement méridien est cylindrique, conique ou à courbure faible, vient se superposer au phénomène décrit cidessus.
Ce gradient, résultant de l'accélération centrifuge due à la composante péripnérique de la vitesse absolue à la sortie de la grille, accroît l'importance du tourbillon secondaire au plafond de la veine et la diminue au plancher (figure 2) puisque la pression statique croît radialement de la base au sommet de la grille.
L'évolution de la pression statique intergrille en fonction du rayon a l'allure de la courbe en trait plein continuellement croissante de la figure 3.
La pente de la courbe à la base et au sommet est égale à
p..... Pression statique intergrille r..... Rayon Masse spécifique du fluide V .... Composante tangentielie de la vitesse absolue intergrille.
Le sens de variation radiale de la pression statique, qui diminue du sommet à la base, amplifie le tourbillon secondaire du plafond et s'oppose au tourbillon secondaire du plancner, ainsi qu'il est visible sur la figure 2. Dans le cas classique d'un plancher et d'un plafond de veine linéaires, le sens de variation radiale de la pression statique intergrille est donc néfaste au plafond et favorable à la base. Toutefois, la valeur absolue du gradient radial de pression statique à la base n'a aucune raison d'être juste celle nécessaire à minimiser les pertes secondaires.
L'invention concerne un étage de turbine comprenant une grille fixe circulaire suivie d'une grille mobile circulaire, cnaque grille comportant des aubes montées entre un plancner et un plafond de révolution autour de l'axe de la turbine, le pas des aubes de la grille fixe étant LS au plafond et LB au plancner et l'angle de sortie du jet de fluide de la grille fixe avec le plan de cette grille étant α 1S au droit du plafond et α 1B au droit du plancher, dans lecuei la distance à l'axe du plafond va en décroissant de l ' entrée de la grille fixe vers la sortie de la grille fixe ou elle à la valeur rS, puis va en croissant de l'entrée de la grille mobile où elle a la valeur rS juscu'à la sortie de la grille mobile.
Un tel étage de turbine est connu du brevet britannique n° 596 784.
Dans l'étage décrit dans le brevet britannique, la courbure du plancher et du plafond est calculée de façon que la pression soit constante dans i'espace intergrille (à la sortie de la grille fixe) de bas en haut de cet espace, c'est-à-dire que le gradient radial de pression statique est nul.
Dans l'étage de turbine selon l'invention, la courbure méridienne du plafond au droit du plan intergrille est sensiblement égale
à Ainsi les gradients de pression statique intergrilie radial et cangentiel au voisinage du plafond sont égaux, ce qui a pour effet de confiner la zone perturbée au plafond dans une secticn de passage de flux relativement faible.
L'invention concerne également un étage de turbine comprenant une grille fixe circulaire suivie d'une grille mobile circulaire comportant des aubes montées entre un plancher et un plafond de révolution autour de l'axe de la turbine, le pas des aubes de la grille fixe étant LS au plafond et LB au plancner et l'angle de sortie du jet de fluide de la grille fixe avec le plan de cette grille étant α 1S au droit du plafond et α 1B au droit du plancher dans lequel la distance à l'axe du plancner varie d'une façon continue de l'entrée de la grille fixe vers la sortie de ladite grille fixe où elle atteint un extremum r„, puis varie au sens inverse d'une façon continue de l'entrée de la grille mobile où elle à la valeur rB jusqu'à la sortie de la grille mobile. Cet étage de turbine est également connu du brevet britannique n° 596 784.
Dans l'étage de turbine selon l'invention la courbure méridienne du plancher de la grille fixe au droit du pian intergrille est sensiblement égale à la différence
l'extremum rB étant un minimum lorsque la différence est négative et un maximum lorsque la différence est positive.
Ainsi, au voisinage du plancher, le gradient radial de pression statique intergrille n'est pas nul, comme dans le brevet britannique, mais est égal au gradient tangentiel de pression statique intergrilié, ce qui a pour effet de confiner la zone perturbée au plancher dans une section de passage de flux relativement faible.
Bien évidemment, selon l'invention, on peut combiner les deux mesures au plafond et au plancher de façon à confiner la zone perturbée au plafond et celle au plancher dans une section de passage de flux relativement faible. Selon une première variante de l'invention, lorsque des moyens sont prévus pour diminuer d'un facteur λ (avecλ > 1) le gradient tangentiel de pression statique au voisinage du plafond à la sortie de la grille fixe, la courbure méridienne du plafond de la grille fixe au droit du plan intergrille est sensiblement égal à
ainsi l'égalité entre les gradients de pression statique radial et tangentiel à la sortie de la grille fixe au voisinage du plafond est maintenue.
Selon une seconde variante de l'invention, lorsque des moyens sont prévus pour diminuer d'un facteur A ( λ > 1 ) le gradient de pression statique tangentiel au voisinage du plancher à la sertie de la grille fixe, la courbure méridienne du plancher de la grille fixe au droit du plan intergrille est sensiblement égaie à la valeur absolue de la différence
l'extremum rB étant alors un minimum lorsque la différence est négative et un maximum lorsque la différence est positive, ainsi l'égalité entre les gradients de pression statique radial et tangentiel au voisinage du plancner à la sortie de la grille fixe est maintenue. Selon une réalisation préférentielle de l'invention, l'étage de turbine comporte les 2 variantes combinées , ce qui permet , d ' une part, de diminuer l'intensité des tourbillons au plafond et au plancher et, d'autre part, de les confiner dans une zone étroite.
De préférence, la distance à l'axe du plafond varie selon une courbe présentant un maximum à l'entrée de la grille fixe et à la sortie de la grille mobile et un minimum dans le plan intargrilie.
De même, la distance à l'axe du plancher varie selon une courbe présentant :
- soit un maximum dans le plan intergrille associé à un minimum à l'entrée de la grille fixe et à la sortie de la grille mobile,
- soit un minimum dans le plan intergrille associé à un maximum à l'entrée de la grille fixe et à la sortie de la grille mobile.
Il est néanmoins possible, pour une plus grande facilité de fabrication, de remplacer les méridiennes courbes du plafond et/ou du plancher de la grille mobile par des segments de droites.
La présente invention sera mieux comprise à la lumière de la description qui va suivre et des figures.
Les figures 1 et 2 représentent une partie d'une grille fixe d'un étage de turbine classique. La figure 3 représente les courbes de variation de la pression intergrille en fonction de la distance r à partir de l'axe.
La figure 4 représente schématiquement une grille fixe appartenant à un étage de turbine selon l'invention.
La figure 5 représente une coupe d'une grille fixe selon la figure 4 au niveau du plafond.
La figure β représente une coupe d'une grille fixe selon la figure 4 au niveau du plancher.
La figure 7 représente une première réalisation de l'étage ce turbine selon l'invention. La figure 8 représente une seconde réalisation de l ' étage de turbine selon l ' invention.
La figure 9 représente une troisième réalisation de l'étage de turbine selon l'invention. La figure 10 représente une quatrième réalisation de l'étage de turbine selon l'invention.
La figure 11 représente une cinquième réalisation de l'étage de turbine selon l'invention.
Les figures 12 et 13 représentent une version simplifiée des réalisations des figures 10 et 11.
Les figures 14 et 15 représentent une turbine modifiée toujours selon l'invention comportant des moyens réduisant le gradient de pression statique tangentiel de la grille fixe.
Sur la figure 1 on a représenté deux aubes A et B qui font partie d'une grille fixe et dont le pied est fixé sur un plancher 1 et la tête sur un plafond 2. Le plancher et le plafond sont habituellement des surfaces cylindriques où tronconiques.
L'intrados de l'aube 3, l'extrados de l'aube A, le plancher 1 et le plafond 2 définissent un canal 3. Dans ce eanal, loin des parois, l'écoulement se fait en suivant des filets sains tels que (c). Par contre, au contact du plafond et du plancher, les filets de fluide sont orthogonaux aux isobares et suivent les directions représentées (1), (m) puis commencent à tourbillonner dès qu'ils ont heurté l'extrados de l'aube (A). Sur la figure 2 on a indiqué à la sortie d'une grille fixe au voisinage de l'extrados de l'aube A la pression statique ps au voisinage du plafond et la pression statique pB au voisinage du plancher de la grille d'aubes fixes.
La pression p„ est supérieure à la pression p, si bien qu'au voisinage du plafond, le tourbillon secondaire est amplifié tandis qu'il est amorti au voisinage du plancher.
La pression statique diminue constamment du plafond au plancner. L'évolution de la pression radiale statique intergriile dans une turbine classique est représentée sur la figure 3 par la courbe en trait plein schématisé qui part de rB rayon du planoner dans leplan inter grille jusqu'à rS rayon du plafond dans le même plan et la courbe en pointillés schématise l'évolution désirée.
Sur la figure 4 on a indiqué le résultat à atteindre à la sortie d'une grille d'aubes fixes. Pour confiner la zone perturbée dans une section de passage de flux relativement faible au plafond et/ou au plancher il est nécessaire de réaliser l'égalité des valeurs absolues des gradients de pression statique tangentiel et radial au plafond et/ou au plancher à la sortie de la grille fixe. Au plafond, il faut donc que
et au plancher, il faut que
avec dirigé du plancner vers le plafond et dirige du plafond vers le plancner.
Pour atteindre cet effet, la méridienne du plafond et/ou du plancner de veine de la grille fixe doivent avoir une forme courbe.
Sur la figure 5 on a représenté une coupe cylindrique du sommet des aubes A et 3 d'une grille fixe.
L'angle α1S désigne l'angle d'injection du jet (dans la grille mobile suivante) avec le front de grille au droit du plafond, V1 la vitesse absolue intergrille, Vu la composante tangentieiie de la vitesse absolue intergriile et Vm la projection de la vitesse absolue intergrille dans le plan méridien.
LS représente le pas des aubes au plafond, l'an agle α1S se calcule très ai:sément à partir ce la relation sur ( δS étant la largeur du col entre les aubes A et B au voisinage du plafond).
Sur la figure 6 on a représenté une coupe cylindrique du pied des aubes A et B d'une grille fixe.
L'angle α1S désigne l'angle d'injection du jet (dans la grille mobile suivante) avec le front de grills.
Le pas des aubes A et B au plancher est LB, la largeur du col est o δB, l'angle α 1 B se calcule très aisément à partir de la relation
On va maintenant calculer les rayons de courbure à donner aux lignes courbes méridiennes plancher et plafond à la sortie de la grille fixe (c'est-à-dire dans le plan intergrille).
Le gradient radial de pression statique intergriile est déterminé par la formule suivante :
avec Vm vitesse absolue intergrille dans le plan méridien, la courbure méridienne des filets fluides. p, r, Vu ont la même signification que dans l'équation (1). R est négatif dans l'équation (2) lorsque la méridienne se rapproche de l'axe et R est positif lorsque la méridienne s'éloigne de l'axe.
Or on sait que
α1 étant l'angle d'injection du jet avec ce front de grille au niveau r et L est i'écartement entre 2 aubes consécutives au même niveau. est un coefficient expérimental et ΔP est la chuta de pression dans la grille fixe.
Or selon la loi de Bernouilli
D'autre part V1 2 = Vu 2 + Vm 2
En égalant les valeurs de on trouve
avec le signe (+) lorsqu'il s'agit dû plancher et le signe (-) pour l plafond.
Sur la figure 7 on a représenté en coupe un étage de turbine selon l'invention dans lequel en a minimisé l'effet des pertes secondaires au voisinage du plafond. Le fluide, de la vapeur par exemple, va selon la flècne de droite à gauche. L'étage comprend une grille fixe 4 suivie d'une grille mobile 5. La grille fixe comporte cas aubes 6 montées entre un plancner 1 et un plafond 2.
La grille mobile 5 comporte des aubes 7 montées entre un plancher 11 et un plafond 12.
Le plafond 2 de la grille 4 est une surface de révolution autour de l'axe de la turbine dont la méridienne est un demi-arc de sinusoïde qui va en se rapprochant de l'axe, de l'entrée vers la sortie.
Le plafond 12 de la grille 5 est sensiblement symétrique du plafond 2 par rapport au plan intergrille qui est perpendiculaire à l'axe de la turbine. La courbure de la méridienne du plafond dans le plan intergrille
est On pourrait, à la place d'un demi-arc de sinusoïde pour la méridienne 12, prendre un segment de droite incliné allant en s 'écartant de l'entrée (où il est distant de l'axe de rS) vers la sortie de la grille mobile 5.
Dans la réalisation de la figure 7 le plancher est celui d'une turbine classique.
Sur les figur-es 8 et 9 on a représenté en coupe un étage de turbine selon l'invention dans lequel on a minimisé l'effet des pertes secondaires au voisinage du plancner.
Les nombres de références sont ceux des références de la figure 7 dans lequel on a ajouté 100.
Dans le cas de la figure 8 le plancher 101 de la grille fixe 104 est une surface de révolution autour de l'axe de la turbine dent la méridienne est un demi-arc de sinusoïde qui va en se rapprochant de l'axe, de l'entrée vers la sortie. Le plancher 111 de la grille mobile 105 est sensiblement symétrique du plancher 101 par rapport au plan Intergrille.
On pourrait, comme dans le cas de la figure 7, remplacer l'arc de sinusoïde de la méridienne du plancher 111 par une droite inclinée allant en s'écartant de l'axe de la turbine de l'entrée (où elle est distante de rB) vers la sortie de la grille mobile 105. La courbure du plancner dans le plan intergrilie est
Sur la figure 9 la différence entre
est positive si bien que la méridienne du plancher 101' est pour la grille fixe 104 un demi-arc de sinusoïde qui s'éloigne de l'axe, de l'entrée vers la sortie de la grille.
La méridienne du plancher 111 ' de la grille mobile 105 est le symétrique de la méridienne du plancher 101' par rapport au plan intergrille. On pourrait également avoir une méridienne constituée par un segment de droite incliné se rapprochant de l'axe, de l'entrée (où il est distant de l'axe de rB) vers la sortie de la grille mobile 105.
La courbure dans le plan intergrilie du plancher esc donc égale à
Sur la figure 10 on a représenté un étage de turbine selon l'invention avec un plafond semblable à celui de l'étage de la figure 7 et un plancner semblable à celui de la figure 8. Les nombres de références ont été augmentés de 200 par rapport à ceux de la figure 7.
De même sur la figure 11 on a représenté un étage de turbine selon l'invention avec un plafond ccmme celui de l'ébage de turbine de la figure 7 et un plancner ccmme celui de la figure 9. Les nombres ce références ont été augmentés de 100 par rapport à ceux de la figure 9. Les figures 12 et 13 sont des variantes des figures 10 at 11 dans lesquelles les méridiennes du plancner 311 respectivement: 311' et du plafond 312 de la grille mobile 305 sent des droites.
Sur la figure 14 en a représenté une coune d'une grills fixe par une surface ce révolution autour de l'axe comportant des moyens pour diminuer les pertes secondaires dans cnaque canal limité par l'extrados 401 d'une aube A et l'intrados 402 d'une aube B. Ces moyens sont décrits par exemple dans le brevet belge n° 677969.
On a creusé en 403 le plancher et/ou le plafond au voisinage de l'extrados de l'aube A, ce qui entraîne une diminution locale de la surpression au droit du plancher et/ou plafond.
D'une manière semblable on a amené de la matière en 401 sur le plancner et/ou le plafond au voisinage de l'intrados de l'aube 3, ce qui entraîne une diminution locale de la dépression au droit du plancher et/ou du plafond.
Il s'ensuit une diminution de la différence de pression entre intrados et extrados, ce qui permet une diminution ias pertes secondaires.
La forme intérieure de la grille fixe présente aussi une périodicité radians, étant le nombre d'aubes de la directrice. Toutefois, dans le plan de sortie de la.grille perpendiculaire à l'axe, l'ensemble des canaux est tangent à une surface de révolution autour de l'axe.
Autrement dit, dans ce plan de sortie la veine redevient axisymétrique.
Grâce à ces moyens, on diminue d'un facteur Λ le gradient de pression statique tangentiel au voisinage du plafond et/ou d'un facteur le gradient de pression statique tangentiel au voisinage du plancner à la sortie de la grille fixe.
Pour appliquer l'invention aux cas où le gradient tangentiel est divisé par A il suffit d'appliquer la formule suivante :
Toutes les formules calculées pour la courbure ces étages représentées aux figures 1 à 13 sont valables à condition ce multiplier
Pour fabriquer une telle grille fixe (figure 15) dans laquelle on a diminue r et on peut utiliser des pièces 405 placées sur le plafond (et également d'autres pièces sur le plancher) de la grille. Chaque pièce 405 se termine en 403 sur l'extrados de l'aube A et se termine en 404 sur l'intrados de l'aube B. On a représenté en pointillé le contour de la pièce qu'on aurait pu mettre pour réaliser les grilles représentées aux figures 7 à 13 dans lesquelles aucun moyen n'a été prévu pour diminuer les pertes secondaires dans le rapport A ou Λ .
D'autres moyens que le creusement et l'apport de matière peuvent être employés pour diminuer le gradient de pression statique tangentiel et donc pour diminuer les pertes secondaires d'une grille fixe. De tels moyens sont décrits, par exemple, dans les demandes PCT publiées le 17 avril 1980 sous le n° WO 80/00728 et WO 80/00729.

Claims

REVENDICATIONS
1/ Etage de turbine, comprenant une grille fixe circulaire (4) suivie d'une grille mobile circulaire (5), chaque grille (4, 5) comportant des aubes (6, 7) montées entre un plancher (1, n) et un plafond (2, 12) de révolution autour de l'axe de la turbine, le pas des aubes (6) de la grille fixe (4) étant LS au plafond (2) et LB au plancner (1) et l'angle de sortie du jet de fluide de la grille fixe (4) avec le plan de cette grille étant α1S au droit du plafond (2) et α1B au droit du plancher (1), dans lequel la distance à l'axe du plafond (2) va en décroissant de l'entrée de la grille fixe (4) vers la sortie de la grille fixe (4) où elle à la valeur rS puis va en croissant de l'entrée de la grille mobile (5) où elle a la valeur rS jusou'à la sortie de la grille mobile (5), caractérisé en ce que la courbure méridienne du plafond (2) de la grille fixe (4) au droit du plan intergrille est sensiblement égale à
2/ Etage de turbine comprenant une grille fixe circulaire (104) suivie d'une grille mobile circulaire (105), comportant âes aubes (106, 107) montées entre un plancher et un plafond de révolution autour de l'axe de la turbine, le pas des aubes (106) de la grille fixe ('04) étant LS au plafond (102) et LB au plancher (101, 101') et l'angle de sortie du je de fluide de la grille fixe (104) avec le plan de cette grille (104) étant α 1S au droit du plafond (102) et α1B au droit du plancner (101, 101') dans lequel la distance à l'axe du plancner (101, 101') varie d'un façon continue de l'entrée de la grille fixe (104) vers la sortie d ladite grille fixe (104) où elle atteint un extérieur rB puis varie a sens inverse d'une façon continue de l'entrée de la grille mobile (105) où elle à la valeur rB jusqu'à la sertie de la grille mobile (105), caractérisé en ce que la ccurbure méridienne du plancner (101, 101') de la grille fixe (101) au droit du plan inûergriiie est sensiblement égaie à la différence
l'extérieur rB étant un minimum lorsque la différence est négative et un maximum lorsque la différence est positive.
3/ Etage de turbine, comprenant une grille fixe circulaire (204) suivie d'une grille mobile (205) circulaire chaque grille (204, 205) comportant des aubes (206, 207) montées entre un plancher et un plafond de révolution autour de l'axe de la turbine, le pas des aubes (206) d'une grille fixe considérée étant LS au plafond (202) et LB au plancher (201, 201') et l'angle de sortie du jet de fluide de la grille fixe (204) avec le plan de cette grille (204), étante 1S au droit du plafond (202) et α1B au droit du plancher (201, 201') dans laquelle, d'une part, la distance à l'axe du plafond (202, 212) va en décroissante de l'entrée de la grille fixe (204) vers la sortie de ladite grille fixe ( 204 ) où elle a la valeur rS, puis va en croissant de l'entrée de la grille mobile (208) où elle a la valeur rS jusqu'à la sortie de la grille mobile (205) et, d'autre part, la distance à l'axe du plancher (201, 211, 201', 211') varie d'une façon continue de l'entrée de la grille' fixe (204) vers la sortie- de ladite grille fixe (204) où elle atteint un extremum rB puis varie au sens inverse d'une façon continue de l'entrée de la grille mobile (205) où elle a la valeur rB jusqu'à la sortie de la grille mobile (205), caractérisé en ce que la courbure méridienne du plafond (202) de la grille fixe (204) au droit du plan intergrille est sensiblement égale à
et en ce que la courbure méridienne du plancner (201, 201') de la grille fixe (204) au droit du plan intergrille est sensiblement égale à la différence
l'extremum rB étant un minimum lorsque la différence est négative et un maximum lorsque la différence est positive.
4/ Etage de turbine comprenant une grille fixe circulaire suivie d'une grille mobile circulaire (5) chaque grille (4, 5) comportant des aubes (6, 7) montées entre un plancher (1, 11) et un plafond (2, 12) de révolution autour de l'axe de la' turbine, le pas des aubes (6) de la grille fixe (4) étant LS au plafond (2) et LB au plancner (1) et l'angle de sortie du jet de fluide de la grille fixe (4) avec le plan de cette grille étant α 1S au droit du plafond (2) et α1B au droit du plancher (1) dans lequel la distance à l'axe du plafond (2) va en décroissant de l'entrée de la grille fixe (4) vers la sortie de ladite grille fixe (4) où elle a la valeur rS puis va en croissant de l'entrée de la grille mobile (5) où elle a la valeur rS jusqu'à la sortie de la grille mobile (5) caractérisé en ce que des moyens (403, 404) sont prévus pour diminuer d'un facteur λ (λ >1) is gradient de pression statique tangentiel au voisinage du plafond à la sortie de la grille fixe (204) et en ce que la courbure méridienne du plafond (2) de la grille fixe (4) au droit du plan intergrille est sensiblement égale à
5/ Etage de turbine, comprenant une grille fixe circulaire (104) suivie d'une grille mobile circulaire (105) comportant chacune des aubes (106, 107) montées entre un plancher et un plafond de révolution autour de l'axe de la turbine, le pas des aubes (106) de la grille fixe (104) étant LS au plafond (102) et LB au plancner (101, 101') et l'angle de sortie du jet de fluide de la grille fixe (104) avec le plan de cette grille (104) étant α1S au droit du plafond (102) et α 1B au droit du plancher (101, 101') dans laquelle la distance à l'axe du plancner (101, 101') varie d'une façon continue de l'entrée de la grille fixe (104) vers la sortie de ladite grille fixe (104) où elle atteint un extremum rB puis varie au sens inverse d'une façon continue de l'entrée de la grille mobile (105) où. elle a la valeur rB jusqu'à la sortie de la grille mobile (105) caractérisé en ce que des moyens (403, 404) sont prévus pour diminuer d'un facteur λ' ( λ > 1) le gradient de pression statique tangentiel au voisinage du plancher à la sortie de la grille fixe (204) et en ce que la courbure méridienne du plancher (101, 101') de la grille fixe (104) au droit du plan intergrille est sensiblement égals à la différence
l'extremum rB étant un minimum lorsque la différence est négative et un maximum lorsque la différence est positive. 6/ Etage de turbine, comprenant une grille fixe circulaire (204) suivie d'une grille mobile (205) circulaire, cnaque grille (204, 205) comportant des aubes (206, 207) montées entre un plancher et un plafond de révolution autour de l'axe de la turbine, le pas des aubes (206) de la grille fixe étant LS au plafond (202) et LB au plancher (201, 201') et l'angle de sortie du jet de fluide de la grille fixe (204) avec le plan de cette grille (204) étant α 1S au droit du plafond (202) et α 1B au droit du plancher (201, 201') dans lequel, d'une part, la distance à l'axe du plafond (202, 212) va en décroissant de l'entrée de la grille fixe (204) vers la sortie de ladite grille fixe (204) où elle a la valeur rS puis va en croissant de l'entrée de la grille mobile (205) où elle a la valeur rS jusqu'à la sortie de la grille mobile (205) et, d'autre part, la distance à l'axe du plancher (201, 211, 201', 211') varie d'une façon continue de l'entrée de la grille fixe (204) vers la sortie de ladite grille fixe (204) où elle atteint un extremum rB puis varie au sens inverse d'une façon continue de l'entrée de la grille mobile (205) où elle a la valeur rB jusqu'à la sortie de la grille mobile (205), caractérisé en ce que des moyens (403, 404) sont prévus pour diminuer le gradient de pression statique tangentiel à la sortie de la grille fixe (204) d'un facteur λ ( λ > 1) au voisinage du plafond et d'un facteur λ ' ( λ > 1) au voisinage du plancner, en ce que la courbure mér dienne du plafond de la grille fixe au droit du plan intergrille est sensiblement égale à
et en ce que la courbure méridienne du plancher de la grille fixe au droit du plan intergrille est sensiblement égale à la différence
l'extremum rB étant un minimum lorsque la différence est négative et un maximum lorsque la différence est positive. 7/ Etage de turbine, selon l'une des revendications 1, 3, 4, 6, caractérisé en ce que la distance à l'axe du plafond (2, 12) varie selon une courbe présentant un maximum à l'entrée de la grille fixe (4) et à la sortie de la grille mobile (5) et un minimum dans le plan intergrille. 8/ Etage de turbine selon l'une des revendications 2, 3, 5, 6, caractérisé en ce que la distance à l'axe du plancher (1, 11) varie selon une courbe présentant un maximum respectivement un minimum à l'entrée de la grille fixe (4) et à la sortie de la grille mobile (5) et un minimum respectivement un maximum dans le plan intergrille. 9/ Etage de turbine selon l'une des revendications 1, 3, 4, 6 caractérisé en ce que la distance à l'axe du plafond (302) pour la grille fixe (304) varie selon une courbe présentant un maximum à l'entrée de la grille fixe (304) et un minimum dans le plan intergrille tandis que la distance à l'axe du plafond (312) pour la grille mobile (305) crcît linéairement à partir du minimum dans le plan intergrille. 10/ Turbine à rendement élevé selon l'une des revendications 2, 3, 5, 6 caractérisée en ce que la distance à l'axe du plancher (30', 301') pour la grille fixe (304) varie selon une courbe présentant un maximum, respectivement un minimum, à l'entrée de la grille fixe (304) Etage de turbine.
EP82900113A 1981-01-05 1981-12-30 Etage de turbine Expired EP0068002B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82900113T ATE12291T1 (de) 1981-01-05 1981-12-30 Turbinenstufe.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8100039 1981-01-05
FR8100039 1981-03-17

Publications (2)

Publication Number Publication Date
EP0068002A1 true EP0068002A1 (fr) 1983-01-05
EP0068002B1 EP0068002B1 (fr) 1985-03-20

Family

ID=9253860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82900113A Expired EP0068002B1 (fr) 1981-01-05 1981-12-30 Etage de turbine

Country Status (8)

Country Link
US (2) US4778338A (fr)
EP (1) EP0068002B1 (fr)
JP (1) JPH023003B2 (fr)
AT (1) ATE12291T1 (fr)
DE (1) DE3169495D1 (fr)
IT (1) IT1154402B (fr)
WO (1) WO1982002418A1 (fr)
ZA (1) ZA8234B (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA8234B (en) * 1981-01-05 1982-11-24 Alsthom Atlantique A turbine stage
US5447413A (en) * 1992-03-31 1995-09-05 Dresser-Rand Company Stator endwall for an elastic-fluid turbine
ES2163678T3 (es) * 1996-03-28 2002-02-01 Mtu Aero Engines Gmbh Hoja de paleta para turbinas.
JPH10184304A (ja) * 1996-12-27 1998-07-14 Toshiba Corp 軸流タービンのタービンノズルおよびタービン動翼
EP0943784A1 (fr) * 1998-03-19 1999-09-22 Asea Brown Boveri AG Veine profilée pour une turbomachine axiale
DE10233033A1 (de) * 2002-07-20 2004-01-29 Rolls-Royce Deutschland Ltd & Co Kg Strömungs-Arbeits-Maschine mit überhöhtem Rotor-Stator-Kontraktionsverhältnis
ITTO20030894A1 (it) * 2003-11-11 2005-05-12 Ansaldo Energia Spa Perfezionamenti in statori di turbine assiali.
US7217096B2 (en) * 2004-12-13 2007-05-15 General Electric Company Fillet energized turbine stage
US7134842B2 (en) * 2004-12-24 2006-11-14 General Electric Company Scalloped surface turbine stage
US7249933B2 (en) * 2005-01-10 2007-07-31 General Electric Company Funnel fillet turbine stage
US7220100B2 (en) * 2005-04-14 2007-05-22 General Electric Company Crescentic ramp turbine stage
US7465155B2 (en) * 2006-02-27 2008-12-16 Honeywell International Inc. Non-axisymmetric end wall contouring for a turbomachine blade row
WO2007113149A1 (fr) * 2006-03-31 2007-10-11 Alstom Technology Ltd Aube directrice de turbomachine, notamment de turbine à vapeur
GB0704426D0 (en) * 2007-03-08 2007-04-18 Rolls Royce Plc Aerofoil members for a turbomachine
DE102007020025A1 (de) * 2007-04-27 2008-10-30 Honda Motor Co., Ltd. Form eines Gaskanals in einer Axialströmungs-Gasturbinenmaschine
US8647067B2 (en) * 2008-12-09 2014-02-11 General Electric Company Banked platform turbine blade
US20100303604A1 (en) * 2009-05-27 2010-12-02 Dresser-Rand Company System and method to reduce acoustic signature using profiled stage design
US8312729B2 (en) * 2009-09-21 2012-11-20 Honeywell International Inc. Flow discouraging systems and gas turbine engines
CN102235241A (zh) * 2011-06-28 2011-11-09 北京动力机械研究所 入口带大扩张通道的低压涡轮结构
US8864452B2 (en) * 2011-07-12 2014-10-21 Siemens Energy, Inc. Flow directing member for gas turbine engine
US9267386B2 (en) 2012-06-29 2016-02-23 United Technologies Corporation Fairing assembly
EP2885506B8 (fr) 2012-08-17 2021-03-31 Raytheon Technologies Corporation Surface profilée de chemin d'écoulement
DE102014225689A1 (de) 2014-12-12 2016-07-14 MTU Aero Engines AG Strömungsmaschine mit Ringraumerweiterung und Schaufel
JP6684593B2 (ja) * 2016-01-07 2020-04-22 三菱重工業株式会社 軸流タービン

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735612A (en) * 1956-02-21 hausmann
CA613424A (en) * 1961-01-31 H. Pavlecka Vladimir Method and apparatus of compressing fluid
DE579989C (de) * 1933-07-04 Karl Roeder Dr Ing Kopfringlose Beschaufelung fuer axialbeaufschlagte Dampf- oder Gasturbinen
FR398600A (fr) * 1909-01-18 1909-06-08 Arnold Kienast Perfectionnements aux turbines
US1632907A (en) * 1924-03-03 1927-06-21 Losel Franz High-pressure steam turbine and method of utilizing high-pressure steam therein
FR677969A (fr) * 1929-07-06 1930-03-17 Monture de sac
DE560687C (de) * 1930-08-28 1932-10-06 Escher Wyss Maschf Ag Schaufelung fuer Dampf- und Gasturbinen
GB564336A (en) * 1942-06-29 1944-09-22 Escher Wyss Maschf Ag Multistage axial flow compressor
US2392673A (en) * 1943-08-27 1946-01-08 Gen Electric Elastic fluid turbine
FR996967A (fr) * 1949-09-06 1951-12-31 Rateau Soc Perfectionnement aux aubages de turbomachines
US2859910A (en) * 1954-03-29 1958-11-11 Edward A Stalker Stators for axial flow compressors
US2991929A (en) * 1955-05-12 1961-07-11 Stalker Corp Supersonic compressors
US2846137A (en) * 1955-06-03 1958-08-05 Gen Electric Construction for axial-flow turbomachinery
US2981066A (en) * 1956-04-12 1961-04-25 Elmer G Johnson Turbo machine
FR1442526A (fr) * 1965-05-07 1966-06-17 Rateau Soc Perfectionnements aux canaux courbes parcourus par un gaz ou une vapeur
US3804335A (en) * 1973-05-21 1974-04-16 J Sohre Vaneless supersonic nozzle
FR2438157A1 (fr) * 1978-10-05 1980-04-30 Alsthom Atlantique Grille d'aubes pour turbine ou compresseur
FR2471501A1 (fr) * 1979-12-17 1981-06-19 Inst Francais Du Petrole Dispositif de pompage de fluides diphasiques
US4371311A (en) * 1980-04-28 1983-02-01 United Technologies Corporation Compression section for an axial flow rotary machine
US4460309A (en) * 1980-04-28 1984-07-17 United Technologies Corporation Compression section for an axial flow rotary machine
ZA8234B (en) * 1981-01-05 1982-11-24 Alsthom Atlantique A turbine stage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8202418A1 *

Also Published As

Publication number Publication date
JPS57502074A (fr) 1982-11-18
JPH023003B2 (fr) 1990-01-22
EP0068002B1 (fr) 1985-03-20
DE3169495D1 (en) 1985-04-25
US4832567A (en) 1989-05-23
ATE12291T1 (de) 1985-04-15
IT1154402B (it) 1987-01-21
US4778338A (en) 1988-10-18
WO1982002418A1 (fr) 1982-07-22
IT8267002A0 (it) 1982-01-04
ZA8234B (en) 1982-11-24

Similar Documents

Publication Publication Date Title
EP0068002A1 (fr) Etage de turbine.
EP3084134B1 (fr) Pièce ou ensemble de pièces de turbomachine et turbomachine associée
US5152661A (en) Method and apparatus for producing fluid pressure and controlling boundary layer
US4981414A (en) Method and apparatus for producing fluid pressure and controlling boundary layer
CN104937213B (zh) 含有导流结构的涡轮机
US2484554A (en) Centrifugal impeller
FR2533977A1 (fr) Roue centrifuge a plusieurs etages
EP3477057B1 (fr) Modulation des serrations en extrémité d'aube
US2839239A (en) Supersonic axial flow compressors
EP0475329B1 (fr) Grilles d'aubes pour turbomachine munie de fentes d'aspiration
BE1025961B1 (fr) Passage annulaire entre une virole et une plateforme rotorique de turbomachine
FR2531149A1 (fr) Ventilateur axial
DK145512B (da) Aksialblaeser eller-pumpe
FR2981118A1 (fr) Disque aubage monobloc pourvu d'aubes a profil de pied adapte
CH642148A5 (fr) Compresseur supersonique.
FR2568307A1 (fr) Etage perfectionne pour turbine a vapeur
EP3477050B1 (fr) Compresseur de turbomachine avec virole de contour asymétrique
EP3617527A1 (fr) Aube a protubérance pour compresseur de turbomachine
EP3477049B1 (fr) Compresseur de turbomachine axiale avec virole à bosses
US3877835A (en) High and low pressure hydro turbine
JPS5944482B2 (ja) 軸流タ−ビン
JP3397599B2 (ja) 軸流型タービン翼群
SU779591A1 (ru) Рабочее колесо турбомашины
FR3065497B1 (fr) Canal d'ejection d'air vers le sommet et vers l'aval d'une pale d'aube de turbomachine
JPS5941024B2 (ja) フランシス型ランナ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

17P Request for examination filed

Effective date: 19821228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI LU NL SE

REF Corresponds to:

Ref document number: 12291

Country of ref document: AT

Date of ref document: 19850415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3169495

Country of ref document: DE

Date of ref document: 19850425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19921030

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930922

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931015

Year of fee payment: 13

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 82900113.0

EUG Se: european patent has lapsed

Ref document number: 82900113.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960814

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960903

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960912

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961011

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961029

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

BERE Be: lapsed

Owner name: ALSTHOM-ATLANTIQUE

Effective date: 19971231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST