EP0064181B1 - Kontaktwerkstoff aus einer Kupferlegierung und Verfahren zu deren Herstellung - Google Patents

Kontaktwerkstoff aus einer Kupferlegierung und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP0064181B1
EP0064181B1 EP82103118A EP82103118A EP0064181B1 EP 0064181 B1 EP0064181 B1 EP 0064181B1 EP 82103118 A EP82103118 A EP 82103118A EP 82103118 A EP82103118 A EP 82103118A EP 0064181 B1 EP0064181 B1 EP 0064181B1
Authority
EP
European Patent Office
Prior art keywords
atom
alloy
content
germanium
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82103118A
Other languages
English (en)
French (fr)
Other versions
EP0064181A1 (de
Inventor
Manfred Dr. Wilhelm
Günther Dipl.-Ing. Rauter
Ludwig Dr. Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT82103118T priority Critical patent/ATE11840T1/de
Publication of EP0064181A1 publication Critical patent/EP0064181A1/de
Application granted granted Critical
Publication of EP0064181B1 publication Critical patent/EP0064181B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material

Definitions

  • the invention relates to a contact material made of a low-alloy copper alloy for low-voltage and installation switching devices.
  • the invention further relates to a method for producing this contact material.
  • Materials for electrical contacts must conduct well both electrically and thermally to prevent excessive heating. Your mechanical properties such as Hardness, strength, elastic behavior must be optimally adapted to the respective application. In addition, their susceptibility to corrosive media should be low. In general, tarnish and scale layers and thus high contact resistances can only be avoided on relatively noble materials. In addition, contact materials must neither stick nor weld when switching, and their burn-up and material migration should be low.
  • silver, its alloys and silver-based composites meet these and other requirements for good contact materials to such an extent that these materials have been widely used in low-voltage technology.
  • silver is a relatively expensive material, so efforts are being made to replace it with other, less expensive materials.
  • copper and its alloys are suitable (cf. e.g. BA Keil: “Materials for electrical contacts”, Springer-Verlag, Berlin 1960, especially pages 122 to 143, or D. Stöckel and others: “Materials for electrical contacts", contact &vent Band 43, Expert Verlag, 7031 Grafenau 1 / Württ., 1980).
  • No other contact material achieves the high electrical and thermal conductivity of the copper, combined with favorable mechanical properties, affordable costs and generally good procurement options. Because of its less noble character compared to silver, especially its willingness to oxidize, this material in its pure form, however, often cannot be used to manufacture contact pieces, especially for low-voltage switchgear and installation switching devices such as. B. for contactors, auxiliary contactors, circuit breakers or circuit breakers. By alloying certain elements, the material properties of these materials such as. B. improve the oxidation behavior.
  • contacts made of copper alloys with known alloy partners made of inexpensive materials generally have a relatively high contact resistance after only a few circuits, so that they are usually not suitable for low-voltage switching devices or installation switching devices.
  • the alloy partner of the copper is at least one element from the group of antimony, gallium, germanium, the antimony content between 0.01 and 7 atom% or the gallium content between 0.5 and 20 atom% or the germanium content is between 0.5 and 10 atom%.
  • the alloy partners mentioned have a finite solubility in solid copper.
  • the advantages achieved with the invention can be seen in particular in that the alloying of the substances mentioned to the copper on the one hand increases the corrosion resistance of the contact material and on the other hand contacts with these alloy materials show a tolerable contact resistance in switching tests. Since these contact materials are generally less expensive than the known silver alloys, they can thus advantageously serve as a replacement for the known contact materials based on silver alloys.
  • the copper alloy can also contain at least one further alloy partner.
  • This can be one or more elements from the group cadmium, chromium, cobalt, palladium, silicon, the cadmium content between 0.1 and 2 atom%, the chromium content between 0.01 and 0.8 atom% , the cobalt content between 0.1 and 1.8 atom%, the palladium content between 0.1 and 3 atom% and the silicon content between 0.5 and 10 atom%.
  • the proportion of the further alloy partner should be at most equal to the proportion of antimony or gallium or germanium.
  • FIG. 1 shows frequency curves of the contact voltages of some binary alloys according to the invention.
  • FIG. 2 shows contact voltages for special copper-germanium alloys and the diagram of FIG. 3 shows frequency curves of the contact voltages of some ternary alloys according to the invention.
  • the following table contains information about the scale and corrosion behavior ger binary copper alloys according to the invention compared to pure copper.
  • the alloys mentioned can be melted using chemically pure starting materials under argon in a graphite crucible and annealed at temperatures between 600 ° C and 950 ° C to avoid segregation.
  • the homogeneous bodies made from these alloys can be processed into sheet metal, wires and contact pieces using conventional forming processes such as rolling, hammering or wire drawing. Corresponding sheets were used to test the corrosion resistance.
  • the weight gain Am measured in the table in micrograms per square centimeter of the individual materials can be obtained after oxidation in air after a 24-hour heat treatment at 250 ° C.
  • the frequency curves of contact voltages on contacts made of copper alloys according to the invention lie in the region of the diagram denoted by I, the proportion of alloy in antimony or gallium or germanium in each case being approximately between 1.75 and 7 atom%.
  • a curve designated 11 is entered in the figure, which indicates the frequency of the contact voltages on pure copper contacts.
  • the frequency curve labeled 111 results for contacts from a common contact material based on silver, here for silver-cadmium oxide with a cadmium oxide content of 15% by volume.
  • contact voltages are indicated in a diagram, which are to be measured on contacts made of binary copper-germanium alloys with different germanium concentrations.
  • the germanium concentration in atomic% is plotted on the abscissa and the contact voltage U k in mV on the ordinate for a frequency of 50%.
  • the exemplary embodiment of the figure is based on contact voltages on contacts at 45 A and 110 V AC under ohmic load after 2000 switching of the contacts.
  • the contact voltages and thus the contact resistances are particularly low, in particular at germanium concentrations between 3 and 7 atom%, preferably around 5 atom%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Catalysts (AREA)
  • Manufacture Of Switches (AREA)

Description

  • Die Erfindung bezieht sich auf einen Kontaktwerkstoff aus einer niedriglegierten Kupferlegierung für Niederspannungs- und Installationsschaltgeräte. Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieses Kontaktwerkstoffes.
  • Werkstoffe für elektrische Kontakte müssen zur Verhinderung starker Erwärmung elektrisch und thermisch gut leiten. Ihre mechanischen Eigenschaften wie z.B. Härte, Festigkeit, elastisches Verhalten sind dem jeweiligen Anwendungszweck optimal anzupassen. Außerdem sollte ihre Anfälligkeit gegenüber korrosiven Medien gering sein. Im allgemeinen lassen sich nur auf verhältnismäßig edlen Werkstoffen Anlauf- und Zunderschichten und damit hohe Kontaktwiderstände vermeiden. Darüber hinaus dürfen Kontaktwerkstoffe beim Schalten weder kleben noch verschweißen, und ihr Abbrand sowie ihre Materialwanderung sollten gering sein.
  • Diese und noch weitere, an gute Kontaktwerkstoffe zu stellende Anforderungen werden von Silber, seinen Legierungen sowie von Verbundwerkstoffen auf Silberbasis dank hervorragender physikalischer und chemischer Eigenschaften in einem Maße erfüllt, daß diese Materialien in der Niederspannungstechnik eine breite Anwendung gefunden haben. Silber ist jedoch ein verhältnismäßig teures Material, so daß man bestrebt ist, es durch andere, kostengünstigere Materialien zu ersetzen. Hierbei bieten sich Kupfer und seine Legierungen an (vgl. z. B. A. Keil: »Werkstoffe für elektrische Kontakte«, Springer-Verlag, Berlin 1960, insbesondere Seiten 122 bis 143, oder D. Stöckel u. a.: »Werkstoffe für elektrische Kontakte«, Kontakt & Studium Band 43, Expert Verlag, 7031 Grafenau 1/Württ., 1980). Die hohe elektrische und thermische Leitfähigkeit des Kupfers, verbunden mit günstigen mechanischen Eigenschaften, tragbaren Kosten und im allgemeinen guter Beschaffungsmöglichkeit werden von keinem anderen Kontaktmaterial erreicht. Wegen seines im Vergleich zum Silber unedleren Charakters, insbesondere seiner Oxidationsfreudigkeit, kann jedoch dieser Werkstoff in reiner Form vielfach nicht zur Fertigung von Kontaktstücken, insbesondere für Niederspannungsschaltgeräte und Installationsschaltgeräte wie z. B. für Schütze, Hilfsschütze, Leistungsschalter oder Schutzschalter herangezogen werden. Zwar lassen sich durch Zulegierung bestimmter Elemente die Werkstoffeigenschaften dieser Materialien wie z. B. das Oxidationsverhalten verbessern. Jedoch haben Kontakte aus Kupferlegierungen mit bekannten Legierungspartnern aus kostengünstigen Materialien bereits nach wenigen Schaltungen im allgemeinen einen verhältnismäßig hohen Kontaktwiderstand, so daß sie für Niederspannungsschaltgeräte oder Installationsschaltgeräte meistens nicht geeignet sind.
  • Aufgabe der vorliegenden Erfindung ist es deshalb, einen Kontaktwerkstoff aus einer kostengünstigen Kupferlegierung anzugeben, der einerseits im Vergleich zum reinen Kupfer wesentlich niedrigere Zunderraten zeigt und andererseits gleichzeitig zumindest annähernd ähnliche Kontakteigenschaften hat wie die bekannten, für Kontakte von Niederspannungs- und Installationsschaltgeräten verwendeten Silberlegierungen. Insbesondere soll ein verhältnismäßig niedriger Kontaktwiderstand gewährleistet sein.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Legierungspartner des Kupfers mindestens ein Element aus der Gruppe Antimon, Gallium, Germanium ist, wobei der Antimon-Gehalt zwischen 0,01 und 7 Atom-% bzw. der Gallium-Gehalt zwischen 0,5 und 20 Atom-% bzw. der Germanium-Gehalt zwischen 0,5 und 10 Atom-% liegen.
  • Die genannten Legierungspartner besitzen eine endliche Löslichkeit in festem Kupfer.
  • Die mit der Erfindung erreichten Vorteile sind insbesondere darin zu sehen, daß durch das Zulegieren der genannten Stoffe zu dem Kupfer einerseits die Korrosionsbeständigkeit des Kontaktwerkstoffes erhöht wird und andererseits Kontakte mit diesen Legierungsmaterialien in Schaltversuchen einen tolerierbaren Kontaktwiderstand zeigen. Da diese Kontaktwerkstoffe im allgemeinen kostengünstiger als die bekannten Silber-Legierungen sind, können sie somit vorteilhaft als Ersatz für die bekannten Kontaktwerkstoffe auf Silberlegierungsbasis dienen.
  • Gemäß einer vorteilhaften Weiterbildung des Kontaktwerkstoffs nach der Erfindung kann die Kupferlegierung noch mindestens einen weiteren Legierungspartner enthalten. Dieser kann ein oder mehrere Elemente aus der Gruppe Cadmium, Chrom, Kobalt, Palladium, Silizium sein, wobei der Cadmium-Gehalt zwischen 0,1 und 2 Atom-%, der Chrom-Gehalt zwischen 0,01 und 0,8 Atom-%, der Kobalt-Gehalt zwischen 0,1 und 1,8 Atom-%, der Palladium-Gehalt zwischen 0,1 und 3 Atom-% und der Silizium-Gehalt zwischen 0,5 und 10 Atom-% liegen.
  • Der Anteil des weiteren Legierungspartners soll dabei höchstens gleich dem Anteil an Antimon oder Gallium oder Germanium sein.
  • Zur weiteren Erläuterung der Erfindung und deren in den Unteransprüchen gekennzeichneten Weiterbildungen wird auf die Tabelle und die Diagramme der Zeichnung Bezug genommen, aus denen Eigenschaften von Kontaktwerkstoffen nach der Erfindung zu entnehmen sind. Dabei zeigt das Diagramm der Fig. 1 Häufigkeitskurven der Kontaktspannungen einiger binärer Legierungen nach der Erfindung. In dem Diagramm der Fig. 2 sind Kontaktspannungen für spezielle Kupfer-Germanium-Legierungen und in dem Diagramm der Fig. 3 sind Häufigkeitskurven der Kontaktspannungen einiger ternärer Legierungen nach der Erfindung wiedergegeben.
  • In der nachfolgenden Tabelle sind Angaben über das Zunder- bzw. Korrosionsverhalten einiger binärer Kupferlegierungen nach der Erfindung im Vergleich zu reinem Kupfer zu entnehmen. Die genannten Legierungen können unter Verwendung chemisch reiner Ausgangsmaterialien unter Argon in einem Graphittiegel erschmolzen und bei Temperaturen zwischen 600°C und 950°C zur Vermeidung von Seigerungen getempert werden. Die homogenen Körper aus diesen Legierungen lassen sich nach gebräuchlichen Umformverfahren wie Walzen, Hämmern oder Drahtziehen zu Blechen, Drähten und Kontaktstücken verarbeiten. Entsprechende Bleche dienten zur Prüfung der Korrosionsbeständigkeit. Die in der Tabelle in Mikrogramm pro Quadratzentimeter gemessene Gewichtszunahme Am der einzelnen Materialien ist nach Oxidation an Luft nach einer 24stündigen Wärmebehandlung bei 250° C zu erhalten.
    Figure imgb0001
  • In der Tabelle sind die Anteile der jeweiligen Legierungszusätze zu dem Kupfer in Atom-% vermerkt. Wie der Tabelle zu entnehmen ist, haben die Legierungen nach der Erfindung eine wesentlich geringere Zunderneigung als reines Kupfer.
  • Anhand der Kurven in dem Diagramm der Fig. 1 können Aussagen über den Kontaktwiderstand von Kontaktstücken aus Werkstoffen gemäß der Erfindung gemacht werden. In diesem Diagramm ist auf der Abszisse die Kontaktspannung Uk in Millivolt angegeben, während auf der Ordinate die kumulative Häufigkeit W der an einem Schützkontakt gemessenen Kontaktspannung gemäß der sogenannten Weibull-Statistik aufgetragen ist. Dem Ausführungsbeispiel der Figur ist ein Schütz mit Kontakten zugrundegelegt, die unter einer mittleren Belastung von 45 A bei 110 V Wechselspannung unter ohmscher Last etwa 2000 mal geschaltet wurden.
  • In dem mit I bezeichneten Bereich des Diagramms liegen die Häufigkeitskurven von Kontaktspannungen an Kontakten aus Kupferlegierungen nach der Erfindung, wobei der Legierungsanteil an Antimon bzw. Gallium bzw. Germanium jeweils etwa zwischen 1,75 und 7 Atom-% beträgt. Zum Vergleich ist in der Figur eine mit 11 bezeichnete Kurve eingetragen, welche die Häufigkeit der Kontaktspannungen an reinen Kupferkontakten angibt. Die mit 111 bezeichnete Häufigkeitskurve ergibt sich für Kontakte aus einem gebräuchlichen Kontaktmaterial auf Silberbasis, hier für Silber-Cadmiumoxid mit einem Cadmiumoxidgehalt von 15 Volumen-%.
  • Dem Diagramm der Fig. 1 ist zu entnehmen, daß die Kontaktspannungen der Werkstoffe und damit auch die am Kontakt anfallenden Übertemperaturen Kontaktspannungen bzw. Kontakterwärmungen bisher gebräuchlicher Materialien zumindest weitgehend entsprechen. Mit den genannten, verhältnismäßig kostengünstigen Werkstoffen können somit teurere Kontaktwerkstoffe auf Silberbasis ersetzt werden.
  • In Fig. 2 sind in einem Diagramm Kontaktspannungen angegeben, die an Kontakten aus binären Kupfer-Germanium-Legierungen mit unterschiedlicher Germanium-Konzentration zu messen sind. Dabei sind auf der Abszisse die Germanium-Konzentration in Atom-% und auf der Ordinate die Kontaktspannung Uk in mV für eine Häufigkeit von 50% aufgetragen. Dem Ausführungsbeispiel der Figur sind Kontaktspannungen an Kontakten bei 45 A und 110 V Wechselspannung unter ohmscher Belastung nach 2000 Schaltungen der Kontakte zugrundegelegt. Wie aus dem Diagramm dieser Figur abzulesen ist, sind insbesondere bei Germanium-Konzentrationen zwischen 3 und 7 Atom-%, vorzugsweise bei etwa 5 Atom-%, die Kontaktspannungen und somit die Kontaktwiderstände besonders niedrig. Diese Tatsache ist insofern überraschend, da der spezifische elektrische Widerstand der Legierungen bei einem Germanium-Gehalt von etwa 5 Atom-% kein Minimum zeigt, sondern einen Wert von etwa 18 µΩ · cm annimmt. Dieser Widerstand ist größer als der einer Legierung mit einem unter 5 Atom-% liegenden Germaniumanteil. Hieraus läßt sich ersehen, daß ein niedriger Kontaktwiderstand auch mit Materialien mit verhältnismäßig hohem spezifischen elektrischen Widerstand erreicht wird, wenn nur der Fremdschichtwiderstand niedrig ist (vgl. z. B. die genannten Bücher von A. Keil und D. Stöckei).
  • Bei den Ausführungsbeispielen in der Tabelle und den beiden Figuren wurde von Kontaktwerkstoffen ausgegangen, die aus einer binären Kupferlegierung bestehen. Gegebenenfalls können diesen Legierungen noch weitere Elemente hinzugefügt sein, so daß dann beispielsweise ternäre oder quaternäre Legierungen gebildet sind. Hiermit läßt sich z. B. das Korrosionsverhalten oder der Kontaktwiderstand gegenüber den binären Legierungen noch weiter verbessern. Als solche zusätzlichen Legierungsbestandteile sind insbesondere die folgenden Materialien geeignet:
    • Cadmium mit einem Gehalt zwischen 0,1 und 2 Atom-% oder Chrom mit einem Gehalt zwischen 0,01 und 0,8 Atom-% oder Kobalt mit einem Gehalt zwischen 0,1 und 1,8 Atom-% oder Palladium mit einem Gehalt zwischen 0,1 und 3 Atom-% oder Silizium mit einem Gehalt zwischen 0,5 und 10 Atom-%. Selbstverständlich kann als dritter Legierungsbestandteil auch ein Element aus der Gruppe Antimon, Gallium, Germanium innerhalb der im Zusammenhang mit den binären Legierungen genannte Grenzen der Legierungsanteile ausgewählt werden. Der in Atom-% angegebene Anteil der zusätzlichen, dritten und/oder vierten Legierungsbestandteile ist dabei i. a. kleiner oder höchstens gleich dem zweiten Legierungsbestandteil an Antimon oder Gallium oder Germanium. Einige Ausführungsbeispiele solcher ternärer, Germanium enthaltender Legierungen sind den in dem Diagramm der Fig. 3 wiedergegebenen Kurven zugrundegelegt, wobei Meßbedingungen wie bei den Ausführungsbeispielen gemäß dem Diagramm der Fig. 1 gewählt sind. In dem Diagramm der Fig. 3 ist auf der Abszisse die Kontaktspannung Uk in mV angegeben, während auf der Ordinate die kumulative Häufigkeit der zu messenden Kontaktspannungen aufgetragen ist. Als Kontaktmaterialien sind drei spezielle CuGe3―xXx-Legierungen mit x Atom-% als Ausführungsbeispiele ausgewählt, nämlich:
      • CuGe2,5Co0,5 (Kurve a), CuGe2,5Sb0,5 (Kurve b) und CuGe2,9Cr0,1 (Kurve c). Außerdem sind zum Vergleich das binäre CuGe3,0 (Kurve d) und ferner ein bekanntes Kontaktmaterial auf Silberbasis, nämlich AgCdO (Kurve e) aufgeführt. Aus dem Verlauf der Kurven a bis c in dem Diagramm ist ersichtlich, daß auch ternäre Kupferlegierungen Kontaktwiderstände aufweisen, die ohne weiteres in der Größenordnung von Kontaktmaterialien auf Silberbasis liegen. Einen besonders geringen Kontaktwiderstand haben die Legierungen mit Kobalt als drittem Partner (Kurve a).
  • Auch die genannten Zusätze zu den binären Kupfer-Antimon- oder Kupfer-Gallium-Legierungen ergeben ähnliche Kontaktspannungsverhältnisse.
  • Bei den genannten Ausführungsbeispielen von binären oder ternären Kupferlegierungen als Kontaktwerkstoffen gemäß der Erfindung wurde davon ausgegangen, daß diese Legierungen auf schmelzmetallurgischem Wege hergestellt sind. Es ist jedoch ebenso möglich, diese Legierungen pulvermetallurgisch herzustellen. Danach wird ein Gemisch aus Pulvern der entsprechenden Elemente in dem gewünschten Konzentrationsverhältnis durch Anwendung von Druck und durch eine Wärmebehandlung, beispielsweise durch Strangpressen, verdichtet und so homogenisiert, daß durch Feststoffdiffusion die genannten Legierungen gebildet werden.

Claims (10)

1. Kontaktwerkstoff aus einer niedriglegierten Kupferlegierung für Niederspannungs- und Installationsschaltgeräte, dadurch gekennzeichnet, daß der Legierungspartner des Kupfers mindestens ein Element aus der Gruppe Antimon, Gallium, Germanium ist, wobei der Antimon-Gehalt zwischen 0,01 und 7 Atom-% bzw. der Gallium-Gehalt zwischen 0,5 und 20 Atom-% bzw. der Germanium-Gehalt zwischen 0,5 und 10 Atom-% liegen.
2. Kontaktwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Kupferlegierung mindestens einen weiteren Legierungspartner enthält, und zwar ein oder mehrere Elemente aus der Gruppe Cadmium, Chrom, Kobalt, Palladium, Silizium, wobei der Cadmium-Gehalt zwischen 0,1 und 2 Atom-% bzw. der Chrom-Gehalt zwischen 0,01 und 0,8 Atom-% bzw. der Kobalt-Gehalt zwischen 0,1 und 1,8 Atom-% bzw. der Palladium-Gehalt zwischen 0,1 und 3 Atom-% bzw. der Silizium-Gehalt zwischen 0,5 und 10 Atom-% liegen und wobei der Anteil des weiteren Legierungspartners höchstens gleich dem Anteil an Antimon oder Gallium oder Germanium ist.
3. Kontaktwerkstoff aus einer Kupfer-Germanium-Legierung nach Anspruch 1 oder 2, gekennzeichnet durch einen Germanium-Gehalt der Legierung zwischen 3 und 7 Atom-%.
4. Kontaktwerkstoff nach Anspruch 3, gekennzeichnet durch einen Germanium-Gehalt der Legierung von etwa 5 Atom-%.
5. Kontaktwerkstoff nach Anspruch 3 oder 4, dadurch gekennzeichent, daß der Anteil des Germaniums teilweise durch Kobalt ersetzt ist.
6. Verfahren zur Herstellung eines Kontaktwerkstoffs nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Legierung erschmolzen wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Erschmelzung unter Schutzgasatmosphäre vorgenommen wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die erschmolzene Legierung einer thermischen Nachbehandlung unterzogen wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die erschmolzene Legierung bei Temperaturen zwischen 600°C und 950°C thermisch nachbehandelt wird.
10. Verfahren zur Herstellung eines Kontaktwerkstoffes nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Kupfer und der mindestens eine Legierungspartner in Pulverform zusammengepreßt werden und daß in einer thermischen Behandlung die Legierung durch Feststoffdiffusion gebildet wird.
EP82103118A 1981-04-27 1982-04-13 Kontaktwerkstoff aus einer Kupferlegierung und Verfahren zu deren Herstellung Expired EP0064181B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82103118T ATE11840T1 (de) 1981-04-27 1982-04-13 Kontaktwerkstoff aus einer kupferlegierung und verfahren zu deren herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813116680 DE3116680A1 (de) 1981-04-27 1981-04-27 Kontaktwerkstoff aus einer kupferlegierung und verfahren zu seiner herstellung
DE3116680 1981-04-27

Publications (2)

Publication Number Publication Date
EP0064181A1 EP0064181A1 (de) 1982-11-10
EP0064181B1 true EP0064181B1 (de) 1985-02-13

Family

ID=6130913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82103118A Expired EP0064181B1 (de) 1981-04-27 1982-04-13 Kontaktwerkstoff aus einer Kupferlegierung und Verfahren zu deren Herstellung

Country Status (11)

Country Link
EP (1) EP0064181B1 (de)
JP (1) JPS57181348A (de)
AT (1) ATE11840T1 (de)
DE (2) DE3116680A1 (de)
DK (1) DK184382A (de)
ES (1) ES8304213A1 (de)
FI (1) FI820583L (de)
GR (1) GR75432B (de)
NO (1) NO821339L (de)
PT (1) PT74797B (de)
ZA (1) ZA822858B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130748A (ja) * 1982-01-29 1983-08-04 Tanaka Kikinzoku Kogyo Kk 直流小型モータの整流子用すり接点材料
JPS58144557A (ja) * 1982-02-19 1983-08-27 Tanaka Kikinzoku Kogyo Kk すり接点材料
JPS58145008A (ja) * 1982-02-23 1983-08-29 田中貴金属工業株式会社 直流小型モータの整流子用すり接点材料
DE3523935A1 (de) * 1985-07-04 1987-01-15 Rau Gmbh G Verfahren zur herstellung eines kontaktformstuecks und kontaktformstueck hierzu
WO1995014112A1 (en) * 1993-11-15 1995-05-26 Apecs Investment Castings Pty. Ltd. Silver alloy compositions
HUP0001984A3 (en) * 2000-05-23 2002-05-28 Kourganov Konstantin Copper-base contact material, contact stud and method for producing contact stud

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084351A (de) *
DE755481C (de) * 1936-11-13 1954-12-20 Deutsche Edelstahlwerke Ag Legierung fuer Schweisselektroden und Schalterkontakte
FR1213453A (fr) * 1957-08-01 1960-04-01 Siemens Ag Matière de contact pour interrupteurs électriques
DE1159740B (de) * 1959-10-20 1963-12-19 Rca Corp Lot zum vakuumdichten Verloeten von Metall- und/oder Isolierteilen und Verfahren dazu
GB1106706A (en) * 1964-07-25 1968-03-20 Eugen Durrwachter A material for electrical sliding contacts
AT271918B (de) * 1966-05-11 1969-06-25 Olin Mathieson Verfahren zur Herstellung einer hochoxydationsbeständigen Legierung auf Kupferbasis
US3475227A (en) * 1966-10-04 1969-10-28 Olin Mathieson Copper base alloys and process for preparing same
DD100106A1 (de) * 1972-10-26 1973-09-05
FR2277156A1 (fr) * 1974-07-02 1976-01-30 Olin Corp Procede pour ameliorer la resistance au fluage et la resistance a la detente des tensions des alliages a base de cuivre
FR2294527A1 (fr) * 1974-12-10 1976-07-09 Plessey Handel Investment Ag Materiau pour contacts electriques et son procede de preparation
US4047978A (en) * 1975-04-17 1977-09-13 Olin Corporation Processing copper base alloys
CH603797A5 (de) * 1976-01-16 1978-08-31 Bbc Brown Boveri & Cie
US4025367A (en) * 1976-06-28 1977-05-24 Olin Corporation Process for treating copper alloys to improve thermal stability
US4110132A (en) * 1976-09-29 1978-08-29 Olin Corporation Improved copper base alloys
US4279649A (en) * 1978-06-16 1981-07-21 Nippon Telegraph And Telephone Public Corporation Electrical contact material

Also Published As

Publication number Publication date
PT74797B (de) 1983-11-07
ZA822858B (en) 1983-03-30
EP0064181A1 (de) 1982-11-10
ES511703A0 (es) 1983-02-16
PT74797A (de) 1982-05-01
ATE11840T1 (de) 1985-02-15
FI820583L (fi) 1982-10-28
GR75432B (de) 1984-07-17
NO821339L (no) 1982-10-28
DE3116680A1 (de) 1982-11-18
DE3262286D1 (en) 1985-03-28
JPS57181348A (en) 1982-11-08
ES8304213A1 (es) 1983-02-16
DK184382A (da) 1982-10-28

Similar Documents

Publication Publication Date Title
DE2428147C2 (de) Silber-Metalloxid-Werkstoff für elektrische Kontakte
DE2924238C2 (de) Elektrisches Kontaktmaterial und Verfahren zu seiner Herstellung
DE2604291A1 (de) Werkstoffanordnung fuer elektrische schwachstromkontakte
DE1521591B2 (de) Verfahren zur bildung einer kontaktflaeche auf einer schalterzunge
EP0064181B1 (de) Kontaktwerkstoff aus einer Kupferlegierung und Verfahren zu deren Herstellung
EP0064191B1 (de) Verbundwerkstoff für elektrische Kontakte und Verfahren zu seiner Herstellung
DE3304637A1 (de) Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete
DE69219397T2 (de) Metalloxidmaterial auf Silberbasis für elektrische Kontakte
DE2218460C3 (de) Elektrisches Kontaktmaterial
DE2156024A1 (de) Kontaktmaterial
DE69520762T2 (de) Kontaktmaterial für Vakuumschalter und Verfahren zu dessen Herstellung
DE1282184B (de) Schutzrohrankerkontakt
DE69923789T2 (de) Elektrisch leitende keramikschichten
DE7418086U (de) Kontakt für elektrische Schalter
DE2639771A1 (de) Verfahren zur herstellung von dispersionsverfestigten elektrischen silberkontakten
DE2303050B2 (de) Metallegierung für elektrische Kontakte
DE2432335C3 (de) Werkstoff für elektrische Kontakte
EP0164664B1 (de) Sinterkontaktwerkstoff für Niederspannungsschaltgeräte der Energietechnik
DE3224439A1 (de) Elektrisches kontakmaterial und hestellungsverfahren fuer ein solches
DE2403048A1 (de) Elektrischer schwachstromkontakt
DE3516702A1 (de) Elektrischer kontakt fuer elektrische unterbrecher
DE1139281B (de) Verbundwerkstoff fuer elektrische Kontakte
DE3116442C2 (de) Sinterkontaktwerkstoff
DE1930859A1 (de) Pulvermetallzusammensetzungen und Verfahren zu ihrer Herstellung
DE3314652C2 (de) Silber-Metalloxid-Legierung und ihre Verwendung als elektrischer Kontaktwerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19830307

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19850213

Ref country code: NL

Effective date: 19850213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19850213

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19850213

REF Corresponds to:

Ref document number: 11840

Country of ref document: AT

Date of ref document: 19850215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3262286

Country of ref document: DE

Date of ref document: 19850328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19850413

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920625

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101