EP0061665B1 - Geschlossener elektrischer Wärmespeicherofen - Google Patents

Geschlossener elektrischer Wärmespeicherofen Download PDF

Info

Publication number
EP0061665B1
EP0061665B1 EP82102233A EP82102233A EP0061665B1 EP 0061665 B1 EP0061665 B1 EP 0061665B1 EP 82102233 A EP82102233 A EP 82102233A EP 82102233 A EP82102233 A EP 82102233A EP 0061665 B1 EP0061665 B1 EP 0061665B1
Authority
EP
European Patent Office
Prior art keywords
heat storage
storage furnace
heat
furnace
core structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82102233A
Other languages
English (en)
French (fr)
Other versions
EP0061665A1 (de
Inventor
Miklós Hárs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miklos Hars Te Boedapest Hongarije
Original Assignee
Licencia Talalmanyokat Ertekesito Vallalat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licencia Talalmanyokat Ertekesito Vallalat filed Critical Licencia Talalmanyokat Ertekesito Vallalat
Priority to AT82102233T priority Critical patent/ATE18095T1/de
Publication of EP0061665A1 publication Critical patent/EP0061665A1/de
Application granted granted Critical
Publication of EP0061665B1 publication Critical patent/EP0061665B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/0208Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply
    • F24H7/0216Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid using electrical energy supply the transfer fluid being air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible

Definitions

  • the invention relates to an electrical heat storage furnace with an outer clothing, a core structure arranged therein and made of heat storage material and fixed in the core structure electrical heating spirals, wherein the core structure is surrounded by an insulating layer and comprises memory blocks, each having a recess for the passage of the heating spirals and in several rows are arranged one above the other.
  • Hungarian patent specification 161 254 describes a brick oven which is heated by electrical energy. Electrical heating elements arranged in bricks are provided in the interior of the furnace jacket, air drafts being formed between the bricks. The inside of the brick kiln is lined with firebricks, in which vertical holes are provided. The radiators are guided through these holes. A fan blower is arranged at the lower end of the draft. The radiators in the form of electrical heating spirals are electrically insulated from the surroundings with the chamotte lining. Inside the brick oven, the fan blower creates a forced flow of air that contacts the radiators directly.
  • Such a brick oven is made to order and has almost no heat storage capacity. Since the forced flow of air directly contacts the radiators, they cool down very quickly. The bricks of the oven store a certain small amount of heat with which the air flow always comes into contact. This heat is only given off by radiation.
  • the heat capacity of heat storage furnaces is created by means of the heating spirals, which are arranged in a core structure with heat storage capacity.
  • DE-A-2 803 388 describes a combined convection and heat storage furnace in which a stack of storage blocks in the form of concrete blocks is arranged in a box-shaped metal housing with ventilation and outlet openings and is used to pass heating elements with corresponding bores are provided.
  • a major disadvantage of this known heat storage furnace is its relatively heavy weight and the difficulty in disassembling and reassembling it in the event of repair or maintenance.
  • the heating elements and the heat accumulator elements are surrounded by an insulating layer, a water jacket which is connected to a hot water circuit being provided on the outside of the insulating layer.
  • the known ovens present two major difficulties. A sufficient amount of heat cannot be stored in them, so they are cold before starting to heat up outside of the peak load. The other difficulty lies in extracting and transferring the heat to the environment.
  • a fan is provided in a known furnace, which is controlled by a thermostat. The air is heated with this blower by direct contact with the heat-storing core structure and blown into the environment. As a result, the heat capacity of the heat storage furnace is discharged relatively quickly.
  • the object on which the invention is based is to create an electrical heat storage furnace which eliminates the disadvantages in known arrangements and which is designed as a closed system, is technically not complex and has a very high heat capacity, can be operated economically and gives a pleasant feeling of warmth.
  • the invention is based on the knowledge that the object can be achieved simply and satisfactorily by heating the core structure in the temperature ranges of the optimal heat storage capacity and by avoiding direct contact between the air flowing through and the core structure.
  • the heating element of the heat storage furnace should also be designed accordingly.
  • U-shaped bricks are provided as storage blocks in cross-section, which are arranged in pairs in each horizontal row so that their mutually facing recesses surround a continuous channel for receiving the heating coils, the bricks being arranged in a row next to one another are arranged in such a way that their small end faces lie against each other and are arranged in adjacent rows with the narrow longitudinal faces of their U-webs, that a large-area heat exchanger is provided between the insulating layer and the outer cladding, and that the outer cladding is composed of module elements.
  • the main advantage of this design of a heat storage furnace is that the draft due to the insulating layer tightly surrounding the core structure, the radiator, i.e. cannot touch the heating coil directly, so that the heat is released and cooled below the critical temperature limit of 500 ° C in a considerably longer time.
  • the heated mass of the core structure is significantly increased and allows a higher end temperature of the heating period.
  • the core structure of the furnace has a higher temperature than the critical temperature of 500 ° C for most or all of the heat emission.
  • the boundary area of the furnace is larger than that of conventional furnaces using the same number of bricks.
  • magnesite silicate is advantageously used for the core structure.
  • the heating coil Because of the higher temperature of the heating coil or the core structure, it is advantageous to make the heating coil from a resistance wire with a diameter of 1 mm or larger.
  • the insulating layer around the core structure is expediently made of mineral wool provided with aluminum foil, which does not age, does not dust, but has the necessary insulating properties.
  • the large-area heat exchanger located between the outer cladding and the insulating layer can consist of parallel channels arranged next to one another. These channels can be tubes arranged side by side and parallel to one another or consist of a correspondingly shaped corrugated sheet.
  • the air flow in the channels can be controlled in such a way that the channels are assigned control elements which are provided in the cover of the furnace.
  • the cover is expediently formed from parallel, fixed and closed profiles which are connected to the channels of the heat exchanger, wing valves being provided in the closed profiles as control elements for the air flow.
  • the air flow control can also be designed such that bores communicating with the channels are provided in the cover, to which a frame that closes the bores is connected.
  • the ceramic outer clothing composed of modular elements so that they can be dismantled.
  • the heating coil is arranged in a stationary manner by means of insulating spacers and insulating beads.
  • the heating coil can be installed in electrically insulating, advantageously cordierite tubes.
  • the heating coil is expediently arranged in four rows in the core structure of the furnace, both ends of the heating coil being fastened to a mounting plate.
  • a switch that controls the heat status of the heating coil can also be provided on this mounting plate, wherein the switch can also be connected to an indicator.
  • the bricks are advantageously stacked in three rows, so that three channels are created in the core structure of the furnace.
  • Three heating coils which can be operated independently of one another are expediently provided.
  • the embodiment of the heat storage furnace shown in FIG. 1 has the shape of a cuboid, which is provided with an outer lining 1.
  • the furnace is supported by stand 8 and covered with a lid 5 at the top.
  • Holding elements 6 are attached to the stands 8 and carry the inner structure of the furnace and the outer lining 1 of the furnace.
  • a heat exchanger in the form of tubes 2 fastened parallel to one another on a strip 10 is provided on the inside of the outer clothing 1.
  • an insulating layer 3 contacting the heat exchanger is arranged in the interior of the furnace, which in this example is made of mineral wool covered with aluminum foil.
  • This insulating layer 3 encloses the core structure of the heat storage furnace, which are made up of bricks 4.
  • the bricks 4 have good heat storage capacity, in the embodiment shown they are made of magnesite silicate.
  • the core structure exists door of the heat storage furnace made up of three rows of bricks stacked on top of each other.
  • the rows are formed in such a way that two bricks 4, each of which have a U-shaped cross section, face one another with their cutouts and the pairs of bricks 4 are arranged next to one another.
  • a rectangular closed space in the form of a channel 9 is formed from the spaces between the legs of the bricks 4.
  • This channel is provided in a line, the respectively adjacent bricks 4 with their smallest area being arranged next to one another.
  • the other two similarly designed rows are stacked on top of one another, the bricks 4 standing on their narrow longitudinal surfaces. This creates a narrow, long and not very high shape of the core structure and the entire heat storage furnace.
  • the heating element of the heat storage furnace is provided in the channels 9 formed between the brick pairs.
  • the heating element consists of three heating spirals 13 which can be operated independently of one another.
  • the fixed position of the heating spiral 13 in the channel 9 is determined by spacers 12 and a mounting plate 14 arranged at one end of the channel 9.
  • the two ends of the heating coil 13 and a switch 15 are attached to this mounting plate 14. With the switch 15, the heat condition of the heating coil 13 and thus that of the entire heating element can be checked.
  • the spacers 12 and the mounting plate 14 are fastened with a tube 11.
  • the bricks 4 are held together by an angle steel frame 37 in the core structure, which is supported at the bottom by core holders 7 which are connected to the holding elements 6. In this way, the construction of the heat storage furnace is stable and safe.
  • Fig. 2 part of the cover 5 is shown on a larger scale.
  • a thermostat 16 and an indicator 17 are arranged on this cover 5.
  • the thermostat 16 is a bimetallic switch which is switched on between the heating coils 13 and the electrical network.
  • the indicator 17 shows the operating state of the heat storage furnace and the operational readiness of the heating coil 13.
  • FIG. 2 shows an advantageous embodiment for regulating the draft in the channels of the heat exchanger.
  • Bores are provided in the cover 5, which communicate with channels, in this example with the tubes 2, and can be locked with the aid of a frame 18.
  • the frame 18 is provided with bolts 22 which are in engagement with an inclined slideway of a lever 21.
  • the lever 21 can be moved along the vertical and shorter edge of the cover 5.
  • the same device can be provided on the other of the cover 5, which is parallel to the previous edge.
  • Fig. 3 two module elements of the outer clothing 1 of the heat storage furnace are shown.
  • a groove 20 is provided, half of which is occupied by a tube 19.
  • the outer clothing 1 can be dismantled in that the free groove 20 of one module element is occupied by the tube 19 of the adjacent module element and a rod can be pushed through the tubes 19.
  • the tube 19 and the groove 20 are provided on the one side at the top and the tube 19 and the groove 20 at the bottom on the other side.
  • FIG. 4 shows a circuit of the indicator 17 with LED diodes 25.
  • the switches 15 are indicated by their inputs.
  • Resistors 23, diodes 24 and capacitors 26 are interconnected in the circuit in a manner known per se.
  • an insulating bead 27 is shown in side view, in the central bore indicated by the dashed line, a bracing wire 29 is guided.
  • the resistance wire of the heating coil 13 is wound on the jacket of the insulating bead 27.
  • the spacer 12 shown in FIG. 7 has bores.
  • the heating coil 13 is carried out in its upper and lower bore, and the tube 11 is carried out in the central bore.
  • the arrangement of the heating coil 13 in the channel 9 of the core structure is shown in FIG. 8, the end of the channel 9 opposite the end provided with the mounting plate 14 being shown.
  • the spacers 12 are supported, in the lower bores the heating coil 13 and the middle bore the tube 11 are performed.
  • the heating coil 13 is wound on the insulating beads 27, the windings of which at dangerous points, e.g. in the curvatures of the heating coil 13, are separated from one another by insulating plates 28 (FIG. 6), so that a possible short circuit is avoided. Since the bracing wire 29 is passed through the bore of the insulating beads 27, the insulating beads 27 are drawn opposite.
  • FIG. 8 Two variants are shown in FIG. 8 for holding the spacers 12 to the tube 11.
  • two nuts 31 a are arranged on both sides of the spacer 12, the tube 11 being provided with a thread at this point.
  • the tube 11 On the right spacer 12 in Fig. 8, the tube 11 is provided with an internal thread, into which a threaded pin 31 b is screwed. On this set screw 31 b, the tube 11 is tightened on both sides of the spacer 12.
  • the heating coil 13 can additionally be encased by beads 30.
  • the core structure of the heat storage furnace is heated to a higher temperature than before.
  • the heating elements are heated to a higher temperature, which would be harmful in known designs.
  • a resistance wire with a minimum diameter of 1 mm is therefore used in the heat storage furnace. In this case, however, a much longer resistance wire must be installed to ensure the resistance required for the heating power.
  • heating coil 9 shows three heating coils 13 which can be operated independently of one another before being inserted into the channels 9.
  • the heating coil 13 is moved back and forth four times in a heating element.
  • the four courses of the heating coil 13 are arranged in four cordierite tubes 32 placed side by side. In this way, a four times longer heating coil 13 is provided in each channel 9 compared to its length.
  • the mounting plate 14 and the switch 15 are also shown.
  • the cover 5 is formed from closed profiles 36 which are fastened next to one another and communicate with the channels of the heat exchanger, in this example with the tubes 2.
  • wing valves 35 are provided as control elements which have a common axis and can be opened or closed with a lever arm 34.
  • the thermostat 16 and the indicator which in this case comprises glow lamps 33, are also shown.
  • the glow lamps 33 according to FIG. 10 are provided.
  • the switches 15 provided on the mounting plates 14, the thermostat 16 and the heating coil are shown with symbols.
  • the heat storage furnace is heated, the heating spirals 13 being traversed by electrical current.
  • the other is the cooling period of the heat storage furnace, the heating spirals 13 being disconnected from the electrical network and the heat being released from the core structure.
  • the critical temperature of 500 ° C can be exceeded considerably during the heating period, and temperatures of 1000 to 1050 ° C can also be reached. This is possible on the one hand because the core structure is thermally insulated from the outside by the insulating layer 3, and on the other hand because the heating elements can also endure this elevated temperature.
  • the insulating layer 3 is dimensioned such that the outer surface contacting the heat exchanger also becomes warm.
  • the in the channels, i.e. Air in the tubes 2 of the heat exchanger is heated, after which there is a gravitational flow of the warm air upwards without any means, e.g. Blower or the like to have to use. This air flow can be regulated by the control elements, by the frame 18 or by the wing valves 35.
  • the insulating layer 3 ensures that the heat-storing core structure, i.e. the bricks 4, even in the last hours before the start of the next heating period, are still warmer than (the critical) 500 ° C.
  • the greater heat storage capacity means that the bricks 4 made of magnesite silicate can store a larger amount of heat than below 500 ° C with the same energy consumption. With the same energy consumption, the heat storage stove can heat the surrounding room much better than was previously possible. It follows inevitably that less energy is used for this better heatability.
  • the switches 15 located on the mounting plates 14 control the thermal state of the heating elements.
  • the LED diodes 25 or glow lamps 33 provided in the indicator 17 light up when one or more heating coils 13 have become defective.
  • the temperature on the cover 5 is felt by the thermostat 16. This prevents the heat storage furnace from possibly overheating, e.g. when the stove is switched on in warm weather. On the other hand, the furnace can be disconnected from the electrical power supply by means of the thermostat 16.
  • the complete heat storage stove can be delivered in a single package and assembled at the place of installation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Central Heating Systems (AREA)
  • Resistance Heating (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Furnace Details (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

  • Die Erfindung betrifft einen elektrischen Wärmespeicherofen mit einer Aussenbekleidung, einer darin angeordneten und aus Wärmespeichermaterial gefertigten Kernstruktur und in der Kernstruktur befestigten elektrischen Heizspiralen, wobei die Kernstruktur von einer Isolierschicht umgeben ist und Speicherblöcke umfasst, die je eine Aussparung für den Durchgang der Heizspiralen aufweisen und in mehreren Reihen übereinander angeordnet sind.
  • In der ungarischen Patentschrift 161 254 ist ein Ziegelofen beschrieben, der mit elektrischer Energie geheizt ist. Im Inneren des Ofenmantels sind in Ziegeln angeordnete elektrische Heizkörper vorgesehen, wobei zwischen den Ziegeln Luftzüge ausgebildet sind. Der Ziegelofen ist innen mit Schamottesteinen ausgefüttert, in denen vertikale Bohrungen vorgesehen sind. Durch diese Bohrungen sind die Heizkörper geführt. Am unteren Ende des Luftzuges ist ein Lüftergebläse angeordnet. Die Heizkörper in der Form von elektrischen Heizspiralen sind mit der Schamotteausfütterung gegen die Umgebung elektrisch isoliert. Im Inneren des Ziegelofens erzeugt das Lüftergebläse eine Zwangsströmung der Luft, welche die Heizkörper direkt kontaktiert.
  • Ein solcher Ziegelofen wird in Einzelfertigung hergestellt und hat fast kein Wärmespeichervermögen. Da die Zwangsströmung der Luft die Heizkörper direkt kontaktiert, kühlen sie sehr schnell ab. Die Ziegel des Ofens speichern eine gewisse geringe Wärmemenge, mit welcher die Luftströmung immer in Berührung kommt. Diese Wärme wird also nur durch Strahlung abgegeben.
  • Die Wärmekapazität von Wärmespeicheröfen wird mittels der Heizspiralen geschaffen, welche in einer Kernstruktur mit Wärmespeicherfähigkeit angeordnet sind.
  • So ist in der DE-A-2 803 388 ein kombinierter Konvektions- und Wärmespeicherofen beschrieben, bei welchem in einem kastenförmigen Metallgehäuse mit Belüftungs- und Austrittsöffnungen ein Stapel von Speicherblöcken in der Form von Betonklötzen angeordnet ist, die zum Durchgang von Heizelementen mit entsprechenden Bohrungen versehen sind. Ein wesentlicher Nachteil dieses bekannten Wärmespeicherofens besteht in seinem relativ schweren Gewicht und in der Schwierigkeit, im Falle einer Reparatur bzw. Wartung ihn auseinander- und wieder zusammenzubauen.
  • Bei dem aus der DE-A-2430051 bekannten Wärmespeicher sind die Heizelemente und die Wärmespeicherelemente von einer Isolierschicht umgeben, wobei an die Isolierschicht aussen angrenzend ein Wassermantel vorgesehen ist, der an einen Warmwasserkreislauf angeschlossen ist.
  • Die bekannten Öfen bereiten aber zwei grosse Schwierigkeiten. In ihnen kann nicht eine ausreichende Wärmemenge gespeichert werden, sie sind also kalt, bevor mit dem Aufheizen ausser der Belastungsspitze begonnen wird. Die andere Schwierigkeit liegt in der Gewinnung und Weiterleitung der Wärme in die Umgebung. Für diesen Zweck ist bei einem bekannten Ofen ein Gebläse vorgesehen, das durch einen Thermostat gesteuert ist. Die Luft wird mit diesem Gebläse durch direkte Kontaktierung mit der wärmespeichernden Kernstruktur aufgeheizt und in die Umwelt geblasen. Demzufolge wird die Wärmekapazität des Wärmespeicherofens verhältnismässig schnell entladen.
  • Neuere Versuche mit wärmespeichernden Materialien haben bewiesen, dass die Wärmekapazität von Magnesitsilikat bei einer Temperatur von 500°C oder höher sprunghaft ansteigt. Das ist gleichzeitig ein Grund für die geringe Wärmekapazität der bekannten Öfen. Die dort verwendete Heizvorrichtung kann nicht höher als auf z.B. 700 bis 750°C erhitzt werden; je dünner der Widerstandsdraht der Heizspirale ist, umso grösser sind ihr Widerstand und die Wärmeleistung. Das bedeutet eine Begrenzung in der Bemessung. In den herkömmlichen Öfen sind Heizspiralen eingesetzt, die kurz und dünner als 0,5 mm sind. Sie können also nicht über maximal 750°C erhitzt werden, weil sie sonst verbrennen würden. Ausserdem würde das Metallgehäuse der Heizkörper korrodieren und zerstört werden. Demzufolge kann aber nur eine beschränkte Masse der Kernstruktur verwendet werden, da diese geringere Wärmemenge nicht ausreichend ist, um grössere Kernstrukturen zu heizen.
  • Die der Erfindung zugrundeliegende Aufgabe besteht darin, unter Ausschaltung der Nachteile bei bekannten Anordnungen einen elektrischen Wärmespeicherofen zu schaffen, der als geschlossenes System ausgebildet ist, technisch nicht aufwendig ist und eine sehr hohe Wärmekapazität hat, wirtschaftlich betrieben werden kann und ein angenehmes Wärmegefühl verleiht.
  • Die Erfindung beruht auf der Erkenntnis, dass die gestellte Aufgabe durch Aufheizen der Kernstruktur in den Temperaturbereichen der optimalen Wärmespeicherfähigkeit und durch Vermeiden der direkten Berührung zwischen der durchströmenden Luft und der Kernstruktur einfach und befriedigend gelöst werden kann. Auch das Heizelement des Wärmespeicherofens soll dementsprechend ausgebildet werden.
  • Demzufolge wird die Aufgabe erfindungsgemäss dadurch gelöst, dass als Speicherblöcke im Querschnitt U-förmige Ziegel vorgesehen sind, die in jeder Horizontalreihe paarweise so angeordnet sind, dass ihre zueinander weisenden Aussparungen einen durchgehenden Kanal zur Aufnahme der Heizspiralen umgeben, wobei die Ziegel in einer Reihe nebeneinander so angeordnet sind, dass sie mit ihren kleinen Endflächen aneinanderliegen und in benachbarten Reihen mit den schmalen Längsflächen ihrer U-Stege aufeinander angeordnet sind, dass zwischen der Isolierschicht und der Aussenbekleidung ein grossflächiger Wärmetauscher vorgesehen ist, und dass die Aussenbekleidung aus Modulelementen zusammengesetzt ist.
  • Der wesentliche Vorteil dieser Ausbildung eines Wärmespeicherofens besteht darin, dass der Luftzug wegen der die Kernstruktur dicht umschliessenden Isolierschicht den Heizkörper, d.h. die Heizspirale nicht direkt berühren kann, so dass die Abgabe der Wärme und die Abkühlung unter die kritische Temperaturgrenze von 500°C in beträchtlich längerer Zeit erfolgt. Die geheizte Masse der Kernstruktur ist wesentlich vergrössert und erlaubt eine grössere Endtemperatur der Aufheizperiode. Damit hat die Kernstruktur des Ofens während des grössten Teils oder der ganzen Zeit der Wärmeabgabe eine höhere Temperatur als die kritische Temperatur von 500°C. Infolge der Anordnung der Ziegel in der Kernstruktur ist die Begrenzungsfläche des Ofens grösser als die bei herkömmlichen Öfen unter Benutzung der gleichen Zahl von Ziegeln.
  • Als gute Wärmespeicherfähigkeit aufweisendes Material ist für die Kernstruktur vorteilhaft Magnesitsilikat verwendet.
  • Wegen der höheren Temperatur der Heizspirale bzw. der Kernstruktur ist es vorteilhaft, die Heizspirale aus einem Widerstandsdraht mit einem Durchmesser von 1 mm oder grösser auszuführen.
  • Die Isolierschicht um die Kernstruktur ist zweckmässig aus mit Aluminiumfolie versehener Mineralwolle ausgeführt, welche nicht altert, nicht staubt, jedoch die nötige Isoliereigenschaft aufweist.
  • Nach einer vorteilhaften Ausführungsform kann der zwischen der Aussenbekleidung und der Isolierschicht befindliche grossflächige Wärmetauscher aus nebeneinander angeordneten parallelen Kanälen bestehen. Diese Kanäle können nebeneinander und parallel zueinander angeordnete Rohre sein oder aus einem entsprechend geformten Wellblech bestehen. Das Steuern der Luftströmung in den Kanälen kann dabei so erfolgen, dass den Kanälen Regelelemente zugeordnet sind, die in dem Deckel des Ofens vorgesehen sind.
  • Zweckmässig ist der Deckel aus parallelen zueinander fixierten und geschlossenen Profilen ausgebildet, die mit den Kanälen des Wärmetauschers verbunden sind, wobei als Steuerelemente für die Luftströmung Flügelventile in den geschlossenen Profilen vorgesehen sind. Die Luftströmungssteuerung kann auch so ausgebildet sein, dass in dem Deckel mit den Kanälen kommunizierende Bohrungen vorgesehen sind, denen ein die Bohrungen abschliessender Rahmen angeschlossen ist.
  • Aus ästhetischen Gründen, aber besonders der leichten Beförderbarkeit halber ist es vorteilhaft, die aus Modulelementen zusammengesetzte Aussenbekleidung aus Keramik zerlegbar auszubilden.
  • Nach einem weiteren Merkmal ist die Heizspirale mittels isolierender Abstandhalter und Isolierperlen ortsfest angeordnet. Die Heizspirale kann in elektrisch isolierenden, vorteilhaft Cordieritröhren eingebaut sein.
  • Zweckmässig ist die Heizspirale in der Kernstruktur des Ofens in vier Reihen angeordnet, wobei beide Enden der Heizspirale an einer Montageplatte befestigt sind. An dieser Montageplatte kann auch ein den Wärmezustand der Heizspirale kontrollierender Schalter vorgesehen sein, wobei der Schalter weiterhin mit einem Anzeiger verbunden sein kann.
  • Die Ziegel sind vorteilhaft in drei Reihen aufeinander gestapelt, so dass entsprechend drei Kanäle in der Kernstruktur des Ofens geschaffen werden. Zweckmässig sind drei voneinander unabhängig betreibbare Heizspiralen vorgesehen.
  • Das Überhitzen des Ofens kann vermieden und eine zusätzliche Einstellmöglichkeit geschaffen werden, indem ein Thermostat vorgesehen ist, welcher an die Heizspirale angeschlossen ist.
  • Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der beigefügten Zeichnung näher erläutert. In der Zeichnung zeigen:
    • Fig. 1 perspektivisch einen teilweise geschnittenen Wärmespeicherofen,
    • Fig. 2 einen Bereich der Fig. 1 im grösseren Massstab, nämlich einen Ausschnitt des Deckels,
    • Fig. 3 perspektivisch zwei Modulelemente der Aussenbekleidung der Ausführungsform nach Fig.1,
    • Fig. 4 eine elektrische Schaltung der Vorrichtung nach Fig. 1,
    • Fig. 5 eine Seitenansicht einer Isolierperle,
    • Fig. 6 eine Isolierplatte,
    • Fig. 7 perspektivisch einen Abstandhalter der Ausführungsform nach Fig. 1,
    • Fig. 8 schematisch einen Teil der Heizspirale der Ausführungsform nach Fig. 1,
    • Fig. 9 ein Heizelement der Ausführungsform nach Fig. 1,
    • Fig. 10 eine Teilansicht ähnlich Fig. 2, jedoch einer anderen Ausführungsform,
    • Fig. 11 eine elektrische Schaltung des Wärmespeicherofens für eine Ausführungsform mit Glimmlampen als Anzeiger.
  • Die in Fig. 1 gezeigte Ausführungsform des Wärmespeicherofens weist die Form eines Quaders auf, der mit einer Aussenbekleidung 1 versehen ist. Der Ofen ist durch Ständer 8 gestützt und oben mit einem Deckel 5 abgedeckt. An den Ständern 8 sind Halteelemente 6 befestigt, welche die innere Struktur des Ofens und die Aussenbekleidung 1 des Ofens tragen. An der Innenseite der Aussenbekleidung 1 ist ein Wärmetauscher in der Form von parallel zueinander an einer Leiste 10 befestigten Rohren 2 vorgesehen.
  • Weiterhin ist im Inneren des Ofens eine den Wärmetauscher berührende Isolierschicht 3 angeordnet, die in diesem Beispiel aus mit Aluminiumfolie überzogener Mineralwolle gefertigt ist. Diese Isolierschicht 3 umschliesst die Kernstruktur des Wärmespeicherofens, die aus Ziegeln 4 aufgebaut sind. Die Ziegel 4 haben eine gute Wärmespeicherfähigkeit, in der gezeigten Ausführungsform sind sie aus Magnesitsilikat gefertigt.
  • Wie in Fig. 1 gezeigt ist, besteht die Kernstruktur des Wärmespeicherofens aus drei aufeinander gestapelten Ziegelreihen. Die Reihen sind so gebildet, dass zwei Ziegel 4, die je einen U-förmigen Querschnitt aufweisen, mit ihren Aussparungen zueinander gewandt und die Paare der Ziegel 4 nebeneinander angeordnet sind. Von den Zwischenräumen der Schenkel der Ziegel 4 wird auf diese Weise ein rechteckiger geschlossener Raum in Form eines Kanals 9 ausgebildet. Dieser Kanal ist in einer Linie vorgesehen, wobei die jeweils benachbarten Ziegel 4 mit ihrer kleinsten Fläche aneinander angeordnet sind. Die anderen beiden ähnlich ausgebildeten Reihen sind aufeinander gestapelt, wobei die Ziegel 4 auf ihren schmalen Längsflächen stehen. Damit ist eine schmale, lange und nicht sehr hohe Form der Kernstruktur und des ganzen Wärmespeicherofens geschaffen. In den zwischen den Ziegelpaaren ausgebildeten Kanälen 9 ist das Heizelement des Wärmespeicherofens vorgesehen.
  • In dem Ausführungsbeispiel nach Fig. 1 besteht das Heizelement aus drei voneinander unabhängig betreibbaren Heizspiralen 13. Die ortsfeste Lage der Heizspirale 13 ist in dem Kanal 9 durch Abstandhalter 12 und eine an einem Ende des Kanals 9 angeordnete Montageplatte 14 bestimmt. Die beiden Enden der Heizspirale 13 sowie ein Schalter 15 sind an dieser Montageplatte 14 befestigt. Mit dem Schalter 15 kann der Wärmezustand der Heizspirale 13 und damit der des ganzen Heizelementes kontrolliert werden. In Längsrichtung sind die Abstandhalter 12 und die Montageplatte 14 mit einem Rohr 11 befestigt.
  • Die Ziegel 4 werden von einem Winkelstahlrahmen 37 in der Kernstruktur zusammengehalten, welche unten durch Kernhalter 7 abgestützt ist, die mit den Halteelementen 6 verbunden sind. Auf diese Weise ist die Konstruktion des Wärmespeicherofens stabil und sicher.
  • In Fig. 2 ist ein Teil des Deckels 5 in grösserem Massstab dargestellt. An diesem Deckel 5 ist ein Thermostat 16 und ein Anzeiger 17 angeordnet. Der Thermostat 16 ist ein Bimetallschalter, der zwischen den Heizspiralen 13 und dem elektrischen Netz eingeschaltet ist. Mit dem Anzeiger 17 wird der Betriebszustand des Wärmespeicherofens und die Betriebsbereitschaft der Heizspirale 13 angezeigt.
  • In Fig. 2 ist eine vorteilhafte Ausführung zur Regelung des Luftzuges in den Kanälen des Wärmetauschers dargestellt. In dem Deckel 5 sind Bohrungen vorgesehen, die mit Kanälen, in diesem Beispiel mit den Rohren 2 kommunizieren und mit Hilfe eines Rahmens 18 abschliessbar sind. Der Rahmen 18 ist mit Bolzen 22 versehen, die mit einer geneigten Gleitbahn eines Hebels 21 in Eingriff stehen. Der Hebel 21 kann längs der vertikalen und kürzeren Kante des Deckels 5 bewegt werden. Die gleiche Vorrichtung kann an der anderen, zur vorherigen parallelen Kante des Deckels 5 vorgesehen sein.
  • In Fig. 3 sind zwei Modulelemente der Aussenbekleidung 1 des Wärmespeicherofens gezeigt. In der Kantenfläche dieser Modulelemente ist eine Nut 20 vorgesehen, deren Hälfte mit einem Rohr 19 besetzt ist. Die Zerlegbarkeit der Aussenbekleidung 1 ist dadurch gegeben, dass die frei bleibende Nut 20 des einen Modulelementes mit dem Rohr 19 des benachbarten Modulelementes besetzt wird und durch die Rohre 19 eine Stange durchschiebbar ist. In Fig. 3 sind in der einen Seite oben das Rohr 19 und unten die Nut 20 und an der anderen Seite unten das Rohr 19 und oben die Nut 20 vorgesehen.
  • In Fig. 4 ist eine Schaltung des Anzeigers 17 mit LED-Dioden 25 wiedergegeben. Die Schalter 15 sind durch ihre Eingänge angedeutet. In der Schaltung sind Widerstände 23, Dioden 24 und Kondensatoren 26 in an sich bekannter Weise zusammengeschaltet.
  • In Fig. 5 ist eine Isolierperle 27 in Seitenansicht gezeigt, in deren durch gestrichelte Linie angedeuteter zentraler Bohrung ein Verspannungsdraht 29 geführt ist. Auf dem Mantel der Isolierperle 27 ist der Widerstandsdraht der Heizspirale 13 gewickelt.
  • Der in Fig. 7 gezeigte Abstandhalter 12 weist Bohrungen auf. In seiner oberen und unteren Bohrung wird die Heizspirale 13, in der zentralen Bohrung das Rohr 11 durchgeführt.
  • Die Anordnung der Heizspirale 13 in dem Kanal 9 der Kernstruktur ist in Fig. 8 gezeigt, wobei das dem mit der Montageplatte 14 versehenen Ende entgegengesetzte Ende des Kanals 9 gezeigt ist. An den Seitenwänden des Kanals 9 sind die Abstandhalter 12 abgestützt, in deren unteren Bohrungen die Heizspirale 13 und mittlerer Bohrung das Rohr 11 durchgeführt sind. Die Heizspirale 13 ist auf den Isolierperlen 27 aufgewickelt, deren Windungen an den gefährlichen Stellen, z.B. in den Krümmungen der Heizspirale 13, durch lsolierplatten 28 (Fig. 6) voneinander getrennt sind, so dass ein eventueller Kurzschluss vermieden wird. Da durch die Bohrung der Isolierperlen 27 der Verspannungsdraht 29 durchgeführt ist, sind die Isolierperlen 27 gegenüber gezogen.
  • Zum Festhalten der Abstandhalter 12 zu dem Rohr 11 sind in Fig. 8 zwei Varianten gezeigt. Am linken Abstandhalter 12 sind zwei Schraubmuttern 31 a an beiden Seiten des Abstandhalters 12 angeordnet, wobei das Rohr 11 an dieser Stelle mit einem Gewinde versehen ist. Am rechten Abstandhalter 12 in Fig. 8 ist das Rohr 11 mit einem Innengewinde versehen, in welches ein Gewindestift 31 b geschraubt ist. An diesem Gewindestift 31 b ist das Rohr 11 an beiden Seiten des Abstandhalters 12festgezogen.
  • Die Heizspirale 13 kann zusätzlich von Perlen 30 umhüllt sein.
  • Die Kernstruktur des Wärmespeicherofens wird auf eine höhere Temperatur erhitzt als zuvor. Somit werden auch die Heizelemente auf eine höhere Temperatur erhitzt, welche bei bekannten Konstruktionen schädlich wäre. In dem Wärmespeicherofen wird deshalb ein Widerstandsdraht mit einem minimalen Durchmesser von 1 mm verwendet. In diesem Fall muss aber ein viel längerer Widerstandsdraht eingebaut werden, um den für die Heizleistung benötigten Widerstand zu gewährleisten.
  • In Fig. 9 sind drei, voneinander unabhängig betreibbare Heizspiralen 13 vor dem Einlegen in die Kanäle 9 gezeigt. In einem Heizelement ist die Heizspirale 13 viermal hin- und hergeführt. Die vier Gänge der Heizspirale 13 sind in vier nebeneinander gelegten Cordieritröhren 32 angeordnet. Auf diese Weise ist in jedem Kanal 9 im Vergleich mit seiner Länge eine viermal längere Heizspirale 13 vorgesehen. Die Montageplatte 14 und der Schalter 15 sind ebenfalls gezeigt.
  • In Fig. 10 ist eine andere Ausführungsform des Deckels 5 und des Steuerelementes der Luftströmung in dem Wärmetauscher des Wärmespeicherofens dargestellt. Der Deckel 5 ist hier aus nebeneinander befestigten geschlossenen Profilen 36 gebildet, die mit den Kanälen des Wärmetauschers kommunizieren, in diesem Beispiel mit den Rohren 2. An einem oder beiden Enden der geschlossenen Profile 36 sind Flügelventile 35 als Steuerelemente vorgesehen, die eine gemeinsame Achse haben und mit einem Hebelarm 34 geöffnet oder geschlossen werden können. Der Thermostat 16 und der Anzeiger, der in diesem Fall Glimmlampen 33 umfasst, sind ebenfalls gezeigt.
  • Bei der Schaltung nach Fig. 11 für den Wärmespeicherofen sind die Glimmlampen 33 nach Fig. 10 vorgesehen. Die an den Montageplatten 14 vorgesehenen Schalter 15, der Thermostat 16 sowie die Heizspirale sind mit Symbolen gezeigt.
  • Im Betrieb des erfindungsgemässen Wärmespeicherofens werden zwei Perioden unterschieden. In der einen Periode wird der Wärmespeicherofen aufgeheizt, wobei die Heizspiralen 13 mit elektrischem Strom durchflossen sind. Die andere ist die Abkühlungsperiode des Wärmespeicherofens, wobei die Heizspiralen 13 von dem elektrischen Netz getrennt sind und die Wärme der Kernstruktur abgegeben wird.
  • Durch die Ausbildung der Kernkonstruktion kann die kritische Temperatur von 500°C während der Aufheizperiode erheblich überschritten werden, auch können Temperaturen von 1000 bis 1050°C erreicht werden. Das ist einerseits möglich, weil die Kernstruktur von aussen durch die Isolierschicht 3 wärmeisoliert ist, und andererseits, weil die Heizelemente auch diese erhöhte Temperatur ertragen können. Die Isolierschicht 3 ist so bemessen, dass die den Wärmetauscher kontaktierende äussere Fläche auch warm wird. Die in den Kanälen, d.h. in den Röhren 2 des Wärmetauschers befindliche Luft wird erwärmt, wonach eine Gravitationsströmung der warmen Luft nach oben entsteht, ohne irgendein Hilfsmittel, z.B. Gebläse o.dgl. verwenden zu müssen. Diese Luftströmung kann durch die Steuerelemente, durch den Rahmen 18 oder durch die Flügelventile 35 geregelt werden. Während der Abkühlperiode des Wärmespeicherofens wird durch die lsolierschicht 3 sichergestellt, dass die wärmespeichernde Kernstruktur, d.h. die Ziegel 4, auch in den letzten Stunden vor dem Beginn der nächsten Aufheizperiode noch wärmer als (die kritischen) 500°C sind.
  • Die grössere Wärmespeicherfähigkeit bedeutet, dass die Ziegel 4 aus Magnesitsilikat bei gleichem Energieverbrauch eine grössere Wärmemenge speichern können als unter 500°C. Bei dem gleichen Energieverbrauch kann der Wärmespeicherofen den umgebenden Raum viel besser erwärmen als dies bislang möglich war. Es folgt zwangsläufig, dass für diese bessere Heizfähigkeit auch weniger Energie verbraucht wird.
  • Die auf den Montageplatten 14 befindlichen Schalter 15 steuern den Wärmezustand der Heizelemente. Die in dem Anzeiger 17 vorgesehenen LED-Dioden 25 oder Glimmlampen 33 leuchten auf, wenn eine oder mehrere Heizspiralen 13 schadhaft geworden sind.
  • Mit dem Thermostat 16 wird die Temperatur am Deckel 5 gefühlt. Damit wird verhindert, dass der Wärmespeicherofen eventuell überhitzt wird, z.B. wenn der Ofen bei warmem Wetter eingeschaltet ist. Andererseits kann der Ofen mit Hilfe des Thermostats 16 von dem elektrischen Stromnetz abgetrennt werden.
  • Durch die Zusammensetzung des Wärmespeicherofens aus Modulelementen und aus den Ziegeln 4 kann die Herstellung wesentlich vereinfacht und die Ausbaumöglichkeiten mit verschiedenen Leistungen erweitert werden. Der komplette Wärmespeicherofen kann in einem Einheitspaket geliefert und an dem Ort der Aufstellung zusammengebaut werden.
  • Die bei einem Versuch mit dem Wärmespeicherofen durchgeführten Messungen haben bewiesen, dass er unter gleichen Bedingungen und Charakteristiken eine 1,25-fach grössere Wärmespeicherfähigkeit als die herkömmlichen Wärmespeicheröfen aufweist. Wegen des grossen Wärmeunterschiedes zwischen den beiden Seiten der Kanäle des Wärmetauschers erfolgt ein intensiver Wärmeaustausch mit der in den Kanälen befindlichen Luft. Es ist also kein Zirkulationsmittel für die Luft notwendig, wodurch das Wärmegefühl in dem mit diesem Wärmespeicherofen geheizten Raum viel angenehmer und dem eines mit Heisswasser betriebenen Heizkörpers ähnlich ist.

Claims (19)

1. GeschlossenerelektrischerWärmespeicherofen mit einer Aussenbekleidung (1), einer darin angeordneten und aus Wärmespeichermaterial gefertigten Kernstruktur und in der Kernstruktur befestigten elektrischen Heizspiralen (13), wobei die Kernstruktur von einer Isolierschicht (3) umgeben ist, und Speicherblöcke umfasst, die je eine Aussparung für den Durchgang der Heizspiralen aufweisen und in mehreren Reihen übereinander angeordnet sind, dadurch gekennzeichnet, dass als Speicherblöcke im Querschnitt U-förmige Ziegel (4) vorgesehen sind, die in jeder Horizontalreihe paarweise so angeordnet sind, dass ihre zueinander weisenden Aussparungen einen durchgehenden Kanal (9) zur Aufnahme der Heizspiralen (13) umgeben, wobei die Ziegel (4) in einer Reihe nebeneinander so angeordnet sind, dass sie mit ihren kleinen Endflächen aneinanderliegen und in benachbarten Reihen mit den schmalen Längsflächen ihrer U-Stege aufeinander angeordnet sind, dass zwischen der Isolierschicht (3) und der Aussenbekleidung (1) ein grossflächiger Wärmetauscher vorgesehen ist, und dass die Aussenbekleidung (1) aus Modulelementen zusammengesetzt ist.
2. Wärmespeicherofen nach Anspruch 1, dadurch gekennzeichnet, dass die wärmespeichernde Kernstruktur aus Magnesitsilikat gebildet ist.
3. Wärmespeicherofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizspirale (13) aus einem Widerstandsdraht mit einem minimalen Durchmesser von 1 mm gefertigt ist.
4. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Isolierschicht (3) aus mit Aluminiumfolie versehener Mineralwolle ausgebildet ist.
5. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der zwischen der Aussenbekleidung (1) und der Isolierschicht (3) befindliche grossflächige Wärmetauscher aus nebeneinander angeordneten parallelen Kanälen gebildet ist.
6. Wärmespeicherofen nach Anspruch 5, dadurch gekennzeichnet, dass die Kanäle aus nebeneinander und parallel zueinander angeordneten Rohren (2) oder aus einem entsprechend geformten Wellblech ausgeführt sind.
7. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass den Kanälen des Wärmetauschers die Luftströmung steuernde Regelelemente (18, 35) zugeordnet sind.
8. Wärmespeicherofen nach Anspruch 7, dadurch gekennzeichnet, dass die Regelelemente (18, 35) für die Luftströmung in einem Deckel (5) des Wärmespeicherofens ausgebildet sind.
9. Wärmespeicherofen nach Anspruch 8, dadurch gekennzeichnet, dass der Deckel (5) aus parallelen zueinander fixierten und geschlossenen Profilen (26) gebildet ist, die mit den Kanälen des Wärmetauschers verbunden sind, und dass als Steuerelemente für die Luftströmung Flügelventile (35) in den geschlossenen Profilen (36) vorgesehen sind.
10. Wärmespeicherofen nach Anspruch 8, dadurch gekennzeichnet, dass in dem Deckel (5) mit den Kanälen (9) des Wärmetauschers kommunizierende Bohrungen vorgesehen sind, wobei das Steuerelement für die Luftströmung als ein diese Bohrungen abschliessender Rahmen (18) ausgeführt ist.
11. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die aus Modulelementen zusammengesetzte Aussenbekleidung (1) aus Keramik besteht und zerlegbar ist.
12. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizspiralen (13) durch isolierende Abstandhalter (12) und durch Isolierperlen (27) ortsfest angeordnet sind.
13. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizspirale (13) in isolierenden Cordieritröhren (32) eingebaut ist.
14. Wärmespeicherofen nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Heizspirale (13) in der Kernstruktur in vier Reihen angeordnet ist, wobei beide Enden der Heizspirale (13) an einer Montageplatte (14) befestigt sind.
15. Wärmespeicherofen nach Anspruch 14, dadurch gekennzeichnet, dass ein den Wärmezustand der Heizspirale (13) kontrollierender Schalter (15) an der Montageplatte (14) vorgesehen ist.
16. Wärmespeicherofen nach Anspruch 15, dadurch gekennzeichnet, dass der Schalter (15) mit einem Anzeiger (17) verbunden ist.
17. Wärmespeicherofen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ziegel (4) in drei Reihen übereinander angeordnet sind.
18. Wärmespeicherofen nach Anspruch 17, dadurch gekennzeichnet, dass drei unabhängig voneinander betreibbare Heizspiralen (13) vorgesehen sind.
19. Wärmespeicherofen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein an die Heizspirale (13) angeschlossener Thermostat vorgesehen ist.
EP82102233A 1981-03-27 1982-03-18 Geschlossener elektrischer Wärmespeicherofen Expired EP0061665B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82102233T ATE18095T1 (de) 1981-03-27 1982-03-18 Geschlossener elektrischer waermespeicherofen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HU8181744A HU180406B (en) 1981-03-27 1981-03-27 Electric storage heater of closed system
HU77481 1981-03-27

Publications (2)

Publication Number Publication Date
EP0061665A1 EP0061665A1 (de) 1982-10-06
EP0061665B1 true EP0061665B1 (de) 1986-02-19

Family

ID=10951276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82102233A Expired EP0061665B1 (de) 1981-03-27 1982-03-18 Geschlossener elektrischer Wärmespeicherofen

Country Status (6)

Country Link
EP (1) EP0061665B1 (de)
JP (1) JPS57184849A (de)
AT (1) ATE18095T1 (de)
CA (1) CA1169460A (de)
DE (1) DE3269118D1 (de)
HU (1) HU180406B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332622A1 (de) * 1993-09-24 1995-03-30 Kulmbacher Klimageraete Elektrospeicherheizgerät
ES2242525B1 (es) * 2004-02-27 2006-12-16 Miguel Marin Camara Radiador electrico modular.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7138091U (de) * 1972-06-22 Stettner & Co Heizplatte für Wärmespeicheröfen
CH104271A (de) * 1923-06-06 1924-04-01 Strasser Albert Elektrischer Heizkörper.
DE1940250U (de) * 1966-02-15 1966-06-08 Licentia Gmbh Kernstein fuer elektrische waermespeicheroefen.
DE1978693U (de) * 1967-09-14 1968-02-15 Licentia Gmbh Mantelrohrheizstab fuer elektrische waermespeicheroefen.
DE2430051A1 (de) * 1974-06-22 1976-01-08 Wilhelm Gobbers Waermeerzeuger, insbesondere waermespeicherofen
DE2431318A1 (de) * 1974-06-29 1976-01-15 Bauknecht Gmbh G Speicherheizgeraet
GB1591036A (en) * 1977-02-04 1981-06-10 Prl Soc Combined convector and thermal storage space heater

Also Published As

Publication number Publication date
DE3269118D1 (en) 1986-03-27
ATE18095T1 (de) 1986-03-15
HU180406B (en) 1983-03-28
CA1169460A (en) 1984-06-19
JPS57184849A (en) 1982-11-13
EP0061665A1 (de) 1982-10-06

Similar Documents

Publication Publication Date Title
EP2247906B1 (de) Wärmespeichereinrichtung
DE3100074A1 (de) Rekuperativer waermetauscher mit zyklusumschaltung und verwendung desselben zur waermerueckgewinnung aus den rauchgasen von flammoefen
EP0061665B1 (de) Geschlossener elektrischer Wärmespeicherofen
DE2036731A1 (de) Anlage zum Reinigen von Fluiden Mm Ptoctor & Schwartz. Inc , Philadel phia, Pa (VStA)
DE2852152A1 (de) Einsatz fuer offene kamine
DE2528435B2 (de) Combi-backofen
EP0072530A2 (de) Heizeinsatz für Kachelöfen
DE3118598A1 (de) Heizvorrichtung
EP0082306B1 (de) Lokale Heizanlage
EP1342962B1 (de) Speicherofen
AT260379B (de) Elektrische Wärmespeicherofenanlage
DE3309482A1 (de) Ein mit einem fluessigen oder gasfoermigen medium beheizbarer kachelofen
DE9419506U1 (de) Wärmespeicherofen
AT373682B (de) Dauerbrandspeicherofen fuer zentralheizungen
AT346539B (de) Ofen mit eingebautem gasbrenner
WO1991000481A1 (de) Heizkessel
DE516480C (de) Elektrischer Waermespeicherofen, dessen Waermespeichermasse von Kanaelen durchzogen ist, die von einem die in den Massen aufgespeicherte Waerme den Verbrauchsstellen zufuehrenden Gasstrom durchflossen werden
AT399759B (de) Heizung mit wärmespeicher
AT162536B (de) Elektrischer Heizspeicherofen
DE1679324C (de) Kachelofen Mehrraumluftheizung
EP0155339A2 (de) Elektrisches Speicherheizgerät
WO2007131751A1 (de) Vakuum-trockenschrank
AT162505B (de) Elektrischer Hochleistungsheizofen
AT377353B (de) Luftheizkoerper
DE3004601A1 (de) Durchbrandofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 18095

Country of ref document: AT

Date of ref document: 19860315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3269118

Country of ref document: DE

Date of ref document: 19860327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860331

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860526

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;MIKLOS HARS

NLS Nl: assignments of ep-patents

Owner name: MIKLOS HARS TE BOEDAPEST, HONGARIJE.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870331

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880331

Ref country code: CH

Effective date: 19880331

BERE Be: lapsed

Owner name: LICENCIA TALALMANYOKAT ERTEKESITO VALLALAT

Effective date: 19880331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881121

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19881201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890331

EUG Se: european patent has lapsed

Ref document number: 82102233.2

Effective date: 19881206