EP0054601A1 - Forced-circulation steam boiler - Google Patents

Forced-circulation steam boiler Download PDF

Info

Publication number
EP0054601A1
EP0054601A1 EP81100601A EP81100601A EP0054601A1 EP 0054601 A1 EP0054601 A1 EP 0054601A1 EP 81100601 A EP81100601 A EP 81100601A EP 81100601 A EP81100601 A EP 81100601A EP 0054601 A1 EP0054601 A1 EP 0054601A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
steam generator
forming
flow
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81100601A
Other languages
German (de)
French (fr)
Other versions
EP0054601B1 (en
EP0054601B2 (en
Inventor
Pawel Miszak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Sulzer AG
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4352617&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0054601(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sulzer AG, Gebrueder Sulzer AG filed Critical Sulzer AG
Publication of EP0054601A1 publication Critical patent/EP0054601A1/en
Publication of EP0054601B1 publication Critical patent/EP0054601B1/en
Application granted granted Critical
Publication of EP0054601B2 publication Critical patent/EP0054601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/12Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating with superimposed recirculation during starting and low-load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes

Definitions

  • the invention relates to a forced-flow steam generator system according to the preamble of claim 1.
  • Systems are known in which part of the working fluid escaping from the combustion chamber wall pipes is returned to their entry into high load ranges.
  • the forced circulation generated in this way ensures that the working medium flow is so high for all loads that good cooling of the exposed combustion chamber wall pipes on the working medium side is guaranteed at all times.
  • the fresh must steam pressure in front of the turbine, adapted to its swallowing characteristics, be throttled. Since such a throttling involves a considerable drop in temperature and since the turbines are sensitive to rapid changes in temperature, the load change speed must be considerably limited in such a concept.
  • this solution necessitates the installation of additional throttle bodies, which can be subject to premature wear due to their high load in the case of prolonged throttle operation.
  • the invention Compared to a solution with wall pipes winding around the combustion chamber, the invention has the advantages of cheaper and faster production and lower production risks.
  • the measure according to claim 2 results in a reduction in the weight and the material requirement of the pressure-carrying parts.
  • the feature according to claim 3 allows the combustion chamber walls to be subjected to higher thermal loads.
  • the side of the tubes exposed to the flame radiation is heated to a greater extent, so that film evaporation can occur on the inside facing this heating, which leads to impermissible pipe wall temperatures.
  • the helically arranged grooves on the inner wall force the tool due to its longitudinal flow to rotate, by means of which the heavier, liquid phase of the tool is centrifuged against the wall. This makes it possible to increase the thermal load-bearing capacity of the pipes beyond what is to be expected from the increase in surface area. This effect is particularly evident when pipes flow vertically upwards.
  • the system contains a condenser 1 in which steam from a turbine group 2 is condensed.
  • An additional water line 3 with an additional water pump 4 and an additional water treatment system 5 is connected to the condenser 1.
  • a condensate line 6 leads via a condensate pump 7, a condensate treatment system 8 and two condensate preheaters 9 and 10 to the entry of a degasser 12 seated on a feed water vessel 13.
  • a feed water line 15 with a feed pump 16 and two high-pressure preheaters 17 and 18 leads to the input of an economizer 20 of a once-through steam generator 22.
  • the outlet of the economizer 20 is connected via a connecting line 23 to the distributor 25 of an evaporator heating surface 26.
  • This consists of tubes 27 which are tightly welded to one another and form a funnel-shaped base 28 and four flat walls 29 of a combustion chamber 30 of the steam generator 22. In the walls 29, the tubes 27 run vertically; in section A they are provided with helical internal grooves.
  • the combustion chamber 30 has a furnace 32.
  • the wall-forming tubes 27 are alternately bent outwards from the walls 29 at the height of one and the other of two horizontal planes E and F and led to collectors 35. These collectors 35 are connected via a line 36 to a final evaporator 40, which consists of a system of finned tubes 41 and is arranged in a flue gas duct 60 starting from the combustion chamber 30 directly below the economizer 20.
  • the outlet of the final evaporator 40 is connected via a line 42 to the inlet of a water separator 44, from the bottom of which a line 45 with a level-controlled valve 46 leads back to the feed water vessel 13.
  • a connecting pipe 50 is connected, which opens into a ring distributor 51, from which wall pipes 53 lead to a ring collector 55.
  • the wall tubes 53 alternately enter the combustion chamber walls 29 in the horizontal planes E and F. They are tightly welded to one another and to the tubes 27, so that the flue gas duct 60 connects seamlessly to the combustion chamber 30.
  • the train 60 is delimited in its uppermost part by uncooled sheet metal walls 62 and a ceiling 63, to which a chimney 65 connects.
  • a second superheater 72 and a final superheater 75 are connected in series to the collector 55 of the wall tubes 53 forming a first superheater, and a live steam line 77 leads from the outlet of the final superheater 75 to a high-pressure turbine 78 connected to an intermediate superheater 82 which is arranged in the flue gas flue 60 between the two superheaters 72 and 75.
  • a return leads from the outlet of the reheater 82 line 84 to a low-pressure turbine 86, which together with the high-pressure turbine 78 and a generator 88, seated on a common shaft, forms the turbine group 2.
  • the condensate treatment system 8 is designed in such a way that the treated condensate has practically no salts, which corresponds to a conductivity of 0.2 ⁇ Siemens, and that the silicon content is below 0.02 ppm. This means that salt deposits in the evaporator are negligible.
  • the additional water treatment system 5 serves to relieve the load on the condensate treatment system 8 and also to protect the condenser 1.
  • the system is particularly suitable for sliding pressure operation, with supercritical pressure preferably prevailing in full load operation.
  • supercritical pressure preferably prevailing in full load operation.
  • the condensate accumulating in the condenser 1 is practically completely desalinated together with the make-up water flowing in via line 3 in the condensate treatment system 8, which preferably contains a cation exchanger, a C0 2 Riesler, an anion exchanger and a mixed bed filter. It is then heated by the two preheaters 9 and 10, which are connected to the two lowermost withdrawals 11 of the low-pressure turbine 86 in a manner not shown, and fed into the degasifier 12, from which it flows into the feed vessel 13.
  • the working fluid - now no longer called condensate, but called feed water - is now transferred from the feed pump to one of the The pressure of the system-dependent pressure, possibly at supercritical pressure during full load operation.
  • the feed water is heated in the two high-pressure preheaters 17 and 18, which are fed with bleed steam from two extraction points 19 of the low-pressure turbine 86.
  • a further heating in the assumed operation with subcritical pressure close to the evaporation temperature, takes place in the economizer 20.
  • the water is then distributed as evenly as possible to the tubes 27.
  • adjustable throttling elements are installed in the mouths of the tubes 27. Since the heating of the individual pipes is not exactly the same among themselves, the working fluid flows of the individual pipes absorb an uneven amount of heat and accordingly an unevenly large amount of water evaporates in the different pipes.
  • the steam / water mixture of different water content flowing into the collector 35 is mixed on its way through the line 36 and - with possibly still considerable differences in the water content - distributed into the parallel pipes 41 of the final evaporator 40. Since the final evaporator 40 is located in a weakly heated area of the flue gas stream, that is, in an area where the flue gas temperature is not much higher than the temperature of the evaporating water ne surface on the flue gas side, even if the work equipment is distributed very unevenly on the pipes, do not assume dangerously high temperatures.
  • the working medium flows, preferably at slightly overheated, into the separator 44. After any water that may still have been separated there, the now dry steam flows through the first superheater at a high speed, which guarantees good heat transfer, and a homogeneous temperature forming wall tubes 53.
  • the temperature difference between the welded tubes 27 of the evaporator 26 and the tubes 53 of the first superheater is mainly determined by the position of the final evaporator 40 in the flue gas stream. This position is chosen so that the temperature difference mentioned does not lead to inadmissibly high thermal stresses.
  • means for influencing the flue gas-side heat supply to the final evaporator can be provided, which can be brought about, for example, by flue gas circulation or through a shunt channel through which flue gases can be directed past the final evaporator.
  • the temperature difference can also be checked by a bypass line to the final evaporator 40 or, for example, by a temperature-controlled injection element in the area of the line 42.
  • the superheated steam flows out of the ring collector 55 the second superheater 72, in which further heating takes place, and then via an injection element 74 in the line 73 through the final superheater 75.
  • the steam in the reheater 82 is reheated and fed to the low-pressure turbine 86, in which it is expanded to the vacuum generated in the condenser 1.
  • the delivery quantity of the feed pump 16 is preferably kept constant for starting and in a load range below a certain limit load.
  • the delivery quantity of the feed pump 16 is preferably kept constant for starting and in a load range below a certain limit load.
  • the outlet of the final evaporator 40 there is a load-dependent water content.
  • the water is separated in the separator 44 and returned to the feed water vessel 13 via the valve 46, which is controlled by the level in the separator 44.
  • a bypass line with a throttle element parallel to the final evaporator 40, so that a partial flow of the working medium can be bypassed the final evaporator during operation with high load.
  • the temperature difference between the tubes 27 and 53 in the region where they are welded to one another can thus be reduced, as a result of which the thermal stresses are reduced.
  • Thermal stresses in the area of levels E and F can also be reduced by welding tubes 27 and 53 directly to one another only over short lengths and the sealing is achieved by a skin construction.
  • the limit load up to which working medium is circulated via the evaporator heating surface is determined according to the dimensions of the steam generator and according to the operating conditions to be expected. If this limit load is low, it may be expedient to return the water removed from the separator directly into the feed water vessel 13, as shown in the drawing. If the limit load is higher, it is preferable to provide a heat exchanger between the line 45 and the feed water line 15, preferably downstream of the high-pressure preheater 18. Instead of such a circulation pump arranged in the flow or in the return flow can also be attached, the two evaporators and also the economizer being able to be included in the circulation circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Die mit fossilen Brennstoffen beheizte Zwanglaufdampferzeugeranlage weist - bezüglich des Arbeitsmittelstroms in Serie geschaltet - eine Aufbereitungsanlage (8) zum Entsalzen des dem Dampferzeuger zugeführten Wassers auf eine Leitfähigkeit von weniger als 0,2 Mikrosiemens/cm und zum Vermindern des Siliziumgehaltes auf unter 0,02 ppm, eine Hochdruckspeisepumpe (16), einen Ekonomiser (20), einen aus dicht verschweißten vertikalen Rohren (27) bestehenden. Brennkammerwände des Dampferzeugers bildenden Verdampfer (26), einen Wasserabscheider (44) und Überhitzerheizflächen (53, 72, 75) auf. Der Wasseraustritt des Abscheiders (44) ist über eine Rückführleitung (45) mit einer im Arbeitsmittelstrom zwischen der Wasseraufbereitungsanlage (8) und dem Verdampfer (26) liegenden Stelle verbunden. Im Arbeitsmittelstrom zwischen dem die Brennkammerwände (29) bildenden Verdampfer (26) und dem Abscheider (44) ist ein Endverdampfer (40) vorgesehen, der in einem von der Brennkammer (30) ausgehenden Rauchgaszug (60) zwischen mindestens einer Überhitzerheizfläche (72, 75) und dem Economiser (20) angeordnet ist. An den Rohren (27) des die Brennkammerwände (29) bildenden Verdampfers (25) sind, dicht miteinander und mit jenen verschweißt, wandbildende Rohre (53) eines ersten Überhitzers angeschlossen, die an den Anschlußstellen (51) mit Dampfaustrittsleitungen (50) des Wasserabscheiders (44) verbunden sind. Die Zwanglaufdampferzeugeranlage ist für den Lastbereich oberhalb 50% der Vollast für einfachen Durchlauf des Arbeitsmittels durch den die Brennkammerwände bildenden Verdampfer (26) ausgelegt. Mit dieser Dampferzeugeranlage wird es möglich, bei Gleitdruckbetrieb einen hohen Betriebswirkungsgrad zu erreichen und einen sicheren Dauerbetrieb mit Teillast zu gewährleisten, wobei überdies schnelle Lastwechsel zugelassen werden können.The forced-flow steam generator system, which is heated with fossil fuels, has a treatment system (8) for the desalination of the water supplied to the steam generator to a conductivity of less than 0.2 microsiemens / cm and for reducing the silicon content to less than 0.02 ppm , a high pressure feed pump (16), an economizer (20), one of tightly welded vertical pipes (27). Combustion chamber walls of the evaporator (26) forming a steam generator, a water separator (44) and superheater heating surfaces (53, 72, 75). The water outlet of the separator (44) is connected via a return line (45) to a point in the flow of working fluid between the water treatment system (8) and the evaporator (26). A final evaporator (40) is provided in the flow of working fluid between the evaporator (26) forming the combustion chamber walls (29) and the separator (44), which is located in a flue gas flue (60) emanating from the combustion chamber (30) between at least one superheater heating surface (72, 75 ) and the economizer (20) is arranged. Connected to the tubes (27) of the evaporator (25) forming the combustion chamber walls (29), tightly to one another and welded to them, are wall-forming tubes (53) of a first superheater, which at the connection points (51) with steam outlet lines (50) of the water separator (44) are connected. The forced-flow steam generator system is designed for the load range above 50% of full load for simple passage of the working medium through the evaporator (26) forming the combustion chamber walls. With this steam generator system, it is possible to achieve a high level of operating efficiency with sliding pressure operation and to ensure safe continuous operation with partial load, whereby fast load changes can also be permitted.

Description

Die Erfindung betrifft eine Zwanglaufdampferzeugeranlage nach dem Oberbegriff des Anspruchs 1. Es sind solche Anlagen bekannt, bei denen bis in hohe Lastbereiche hinein ein Teil des aus den Brennkammerwandrohren austretenden Arbeitsmittels an deren Eintritt zurückgeführt wird. Durch den so erzeugten Zwangumlauf wird bei allen Lasten ein so hoher Arbeitsmitteldurchfluss sichergestellt, dass jederzeit eine gute arbeitsmittelseitige Kühlung der exponierten Brennkammerwandrohre gewährleistet ist.The invention relates to a forced-flow steam generator system according to the preamble of claim 1. Systems are known in which part of the working fluid escaping from the combustion chamber wall pipes is returned to their entry into high load ranges. The forced circulation generated in this way ensures that the working medium flow is so high for all loads that good cooling of the exposed combustion chamber wall pipes on the working medium side is guaranteed at all times.

Da es bei vertikaler Rohrführung kaum zu vermeiden ist, dass die einzelnen Rohre unterschiedlich beheizt werden, werden diese bekannten Anlagen im ganzen Lastbereich mit überkritischem Druck betrieben. Dadurch wird die mit stärkerer Beheizung einhergehende stärkere Dampfbildung, die bei unterkritischem Druck zu Strömungsinstabilität führen kann, unterbunden.Since with vertical pipe routing it can hardly be avoided that the individual pipes are heated differently, these known systems are operated with supercritical pressure in the entire load range. This prevents the increased vapor formation associated with stronger heating, which can lead to flow instability at subcritical pressure.

Wird.im Dampferzeuger der überkritische Druck auch auf das niedrige Teillastgebiet ausgedehnt, so muss der Frischdampfdruck vor der Turbine, ihrer Schluckcharakteristik angepasst, gedrosselt werden. Da mit einer solchen Drosselung ein erheblicher Temperaturabfall verbunden ist und da die Turbinen auf rasche Temperaturänderungen empfindlich sind, muss bei einem solchen Konzept die Laständerungsgeschwindigkeit erheblich limitiert werden. Es ist allerdings bekannt, die lastabhängige Entspannung des Dampfdruckes in den Dampferzeuger hinein, vorzugsweise an den Ueberhitzereintritt, zu verlegen und die Temperatur am Kesselaustritt, z.B. durch Einspritzregelung, konstant zu halten. Diese Lösung bedingt aber den Einbau zusätzlicher Drosselorgane, die bei langdauerndem Drosselbetrieb wegen ihrer hohen Belastung vorzeitigem Verschleiss unterworfen sein können.If the supercritical pressure in the steam generator is also extended to the low partial load range, the fresh must steam pressure in front of the turbine, adapted to its swallowing characteristics, be throttled. Since such a throttling involves a considerable drop in temperature and since the turbines are sensitive to rapid changes in temperature, the load change speed must be considerably limited in such a concept. However, it is known to relocate the load-dependent relaxation of the steam pressure into the steam generator, preferably to the superheater inlet, and to keep the temperature at the boiler outlet constant, for example by means of injection control. However, this solution necessitates the installation of additional throttle bodies, which can be subject to premature wear due to their high load in the case of prolonged throttle operation.

Es ist nun Aufgabe der Erfindung, einen Dampferzeuger nach dem Oberbegriff des Anspruchs 1 zu schaffen, der durch Gleitdruckbetrieb einen hohen Betriebswirkungsgrad aufweist, einen sicheren Dauerbetrieb mit Teillast gewährleistet und überdies schnelle Lastwechsel erlaubt. Dieses Ziel wird durch die Kombination der Merkmale im Kennzeichen des Anspruchs 1 erreicht.It is an object of the invention to provide a steam generator according to the preamble of claim 1, which has a high operating efficiency due to sliding pressure operation, ensures safe continuous operation with partial load and moreover allows rapid load changes. This goal is achieved by the combination of the features in the characterizing part of claim 1.

Gegenüber einer Lösung mit, sich um die Brennkammer herumwindenden Wandrohren hat die Erfindung die Vorteile einer billigeren und rascheren Fertigung sowie geringerer Fertigungsrisiken.Compared to a solution with wall pipes winding around the combustion chamber, the invention has the advantages of cheaper and faster production and lower production risks.

Die Massnahme nach Anspruch 2 ergibt eine Verkleinerung des Gewichtes und des Materialbedarfs der druckführenden Teile.The measure according to claim 2 results in a reduction in the weight and the material requirement of the pressure-carrying parts.

Das Merkmal nach Anspruch 3 schliesslich gestattet, die Brennkammerwände thermisch höher zu belasten. Bei vertikalen Brennkammerwänden wird ja die der Flammenstrahlung ausgesetzte Seite der Rohre stärker beheizt, sodass auf der dieser Beheizung zugewendeten Innenseite Filmverdampfung auftreten kann, die zu unzulässigen Rohrwandtemperaturen führt. Durch die schraubenlinig angeordneten Nuten an der Innenwand wird dem Arbeitsmittel wegen seiner Längsströmung eine Rotation aufgezwungen, durch welche die schwerere, flüssige Phase des Arbeitsmittels an die Wand zentrifugiert wird. Es gelingt dadurch, die thermische Belastbarkeit der Rohre, über das durch die Oberflächenvergrösserung zu erwartende Mass hinaus, zu erhöhen. Dieser Effekt stellt sich besonders bei vertikal aufwärts durchströmten Rohren ein.Finally, the feature according to claim 3 allows the combustion chamber walls to be subjected to higher thermal loads. In the case of vertical combustion chamber walls, the side of the tubes exposed to the flame radiation is heated to a greater extent, so that film evaporation can occur on the inside facing this heating, which leads to impermissible pipe wall temperatures. The helically arranged grooves on the inner wall force the tool due to its longitudinal flow to rotate, by means of which the heavier, liquid phase of the tool is centrifuged against the wall. This makes it possible to increase the thermal load-bearing capacity of the pipes beyond what is to be expected from the increase in surface area. This effect is particularly evident when pipes flow vertically upwards.

Vor Jahrzehnten, als die heutige Wasseraufbereitungstechnik noch nicht bekannt war, traten in den Endpartien der Verdampferrohre wasserseitig Salzbeläge auf, welche die Rohre vom kühlenden Arbeitsmittel isolierten, sodass sie sich zu hoch erhitzten und platzten. Um diese Erscheinung zu vermeiden, wurden die Endpartien des Verdampfers in ein schwach beheiztes Gebiet des Dampferzeugers verlegt. Dadurch wurde zweierlei erreicht: wiegen der geringeren Temperaturdifferenz zwischen Rauchgas und Arbeitsmittel dehnte sich die Endverdampfung auf eine erheblich längere Rohrstrecke aus, wodurch der Aufbau des Belages viel langsamer vor sich ging. Wegen der geringeren Wärmebelastung ergaben selbst mehrfach dickere Salzbeläge noch keine unzulässige Ueberhitzung der Rohre. Es wurde dadurch möglich, Rohrreisser zu vermeiden, indem die Salzablagerungen periodisch ausgespült wurden.Decades ago, when today's water treatment technology was not yet known, salt deposits appeared in the end sections of the evaporator tubes on the water side, which insulated the tubes from the cooling working fluid, causing them to overheat and burst. In order to avoid this phenomenon, the end parts of the evaporator were moved to a weakly heated area of the steam generator. This achieved two things: because of the lower temperature difference between the flue gas and the working fluid, the final evaporation extended to a considerably longer pipe section, which caused the build-up of the covering to take place much more slowly. Because of the lower heat load, even salt layers that were several times thicker did not yet result in inadmissible overheating of the pipes. This made it possible to avoid pipe tears by periodically flushing out the salt deposits.

Mit dem Aufkommen der modernen Wasseraufbereitungstechniken, die zu den im Anspruch angegebenen hohen Reinheitswerten führten, wurde das Anbringen des Endverdampfers im schwachbeheizten Gebiet wegen einiger Nachteile aufgegeben. Ein besonderer Nachteil war, dass dadurch die Wärmeaufnahmefähigkeit der als Verdampferwände ausgelegten Brennkammerwände verringert wurde. Durch die erwähnte neue Aufgabenstellung führt nun das an sich bekannte Merkmal in Kombination mit den weiteren Merkmalen des Anspruchs 1 zu den aufgeführten neuen Vorteilen.With the advent of modern water treatment techniques, which led to the high purity values specified in the claim, the attachment of the final evaporator in the weakly heated area was abandoned due to some disadvantages. A particular disadvantage was that this reduced the heat absorption capacity of the combustion chamber walls designed as evaporator walls. By the new one mentioned Task now leads the known feature in combination with the other features of claim 1 to the new advantages listed.

Eine der früher sehr erwünschten Eigenschaften der Endverdampfung im schwach beheizten Gebiet, nämlich die Erstreckung der Wärmeaufnahme auf eine grössere Heizfläche, ist bei der neuen Aufgabestellung nachteilig, da sie zu höherem Kesselgewicht führt. Diese nun störende Eigenschaft kann durch Anwendung der Merkmale nach Anspruch 2 entschärft werden.One of the previously very desirable properties of final evaporation in the weakly heated area, namely the extension of the heat absorption to a larger heating surface, is disadvantageous in the new task, since it leads to a higher boiler weight. This now disruptive property can be mitigated by using the features of claim 2.

Die Erfindung wird nun an einem in der Zeichnung schematisch dargestellten Ausführungsbeispiel näher erläutert: Die Anlage enthält einen Kondensator 1, in dem Dampf einer Turbinengruppe 2 kondensiert wird. Am Kondensator 1 ist eine Zusatzwasserleitung 3 mit Zusatzwasserpumpe 4 und einer Zusatzwasser-Aufbereitungsanlage 5 angeschlossen. Vom Sumpf des Kondensators führt eine Kondensatleitung 6 über eine Kondensatpumpe 7, eine Kondensataufbereitungsanlage 8 und zwei Kondensatvorwärmer 9 und 10 zum Eintritt eines auf einem Speisewassergefäss 13 sitzenden Entgasers 12.The invention will now be explained in more detail using an exemplary embodiment shown schematically in the drawing: The system contains a condenser 1 in which steam from a turbine group 2 is condensed. An additional water line 3 with an additional water pump 4 and an additional water treatment system 5 is connected to the condenser 1. From the sump of the condenser, a condensate line 6 leads via a condensate pump 7, a condensate treatment system 8 and two condensate preheaters 9 and 10 to the entry of a degasser 12 seated on a feed water vessel 13.

Aus dem Wasserbereich des Speisewasserbehälters 13 führt eine Speisewasserleitung 15 mit einer Speisepumpe 16 und zwei Hochdruckvorwärmern 17 und 18 zum Eingang eines Economisers 20 eines Zwangdurchlaufdampferzeugers 22.From the water area of the feed water tank 13, a feed water line 15 with a feed pump 16 and two high-pressure preheaters 17 and 18 leads to the input of an economizer 20 of a once-through steam generator 22.

Der Austritt des Economisers 20 ist über eine Verbindungsleitung 23 am Verteiler 25 einer Verdampferheizfläche 26 angeschlossen. Diese besteht aus miteinander dicht verschweissten Rohren 27, die einen trichterartig ausgebildeten Boden 28 und vier ebene Wände 29 einer Brennkammer 30 des Dampferzeugers 22 bilden. In den Wänden 29 verlaufen die Rohre 27 vertikal; in einem Abschnitt A sind sie mit schraubenlinig verlaufenden Innennuten versehen. Die Brennkammer 30 weist eine Feuerung 32 auf.The outlet of the economizer 20 is connected via a connecting line 23 to the distributor 25 of an evaporator heating surface 26. This consists of tubes 27 which are tightly welded to one another and form a funnel-shaped base 28 and four flat walls 29 of a combustion chamber 30 of the steam generator 22. In the walls 29, the tubes 27 run vertically; in section A they are provided with helical internal grooves. The combustion chamber 30 has a furnace 32.

Die wandbildenen Rohre 27 sind abwechslungsweise auf der Höhe der einen und der anderen von zwei horizontalen Ebenen E und F aus den Wänden 29 nach aussen abgebogen und zu Sammlern 35 geführt. Diese Sammler 35 sind über eine Leitung 36 mit einem Endverdampfer 40 verbunden, der aus einem System von Rippenrohren 41 besteht und in einem von der Brennkammer 30 ausgehenden Rauchgaszug 60 unmittelbar unterhalb des Economisers 20 angeordnet ist. Der Austritt des Endverdampfers 40 ist über eine Leitung 42 mit dem Eingang eines Wasserabscheiders 44 verbunden, von dessen Grunde eine Leitung 45 mit niveaugesteuertem Ventil 46 zum Speisewassergefäss 13 zurückführt.The wall-forming tubes 27 are alternately bent outwards from the walls 29 at the height of one and the other of two horizontal planes E and F and led to collectors 35. These collectors 35 are connected via a line 36 to a final evaporator 40, which consists of a system of finned tubes 41 and is arranged in a flue gas duct 60 starting from the combustion chamber 30 directly below the economizer 20. The outlet of the final evaporator 40 is connected via a line 42 to the inlet of a water separator 44, from the bottom of which a line 45 with a level-controlled valve 46 leads back to the feed water vessel 13.

Am Dampfaustritt des Abscheiders 44 ist ein Verbindungsrohr 50 angeschlossen, das in einen Ringverteiler 51 mündet, von dem aus Wandrohre 53 zu einem Ringsammler 55 führen. Die Wandrohre 53 treten abwechslungsweise in den Horizontalebenen E und F in die Brennkammerwände 29 ein. Sie sind miteinander und mit den Rohren 27 dicht verschweisst, sodass der Rauchgaszug 60 sich nahtlos an die Brennkammer 30 anschliesst. Der Zug 60 ist in seiner obersten Partie durch ungekühlte Blechwände 62 und eine Decke 63 begrenzt, an die sich ein Kamin 65 anschliesst.At the steam outlet of the separator 44, a connecting pipe 50 is connected, which opens into a ring distributor 51, from which wall pipes 53 lead to a ring collector 55. The wall tubes 53 alternately enter the combustion chamber walls 29 in the horizontal planes E and F. They are tightly welded to one another and to the tubes 27, so that the flue gas duct 60 connects seamlessly to the combustion chamber 30. The train 60 is delimited in its uppermost part by uncooled sheet metal walls 62 and a ceiling 63, to which a chimney 65 connects.

Am Sammler 55 der einen ersten Ueberhitzer bildenden Wandrohre 53 sind über Leitungsabschnitte 70 und 73 ein zweiter Ueberhitzer 72 und ein Endüberhitzer 75 in Reihe angeschlossen, und vom Austritt des Endüberhitzers 75 führt eine Frischdampfleitung 77 zu einer Hochdruckturbine 78. Deren Austritt ist über eine Zuleitung 80 mit einem Zwischenüberhitzer 82 verbunden, der im Rauchgaszug 60 zwischen den beiden Ueberhitzern 72 und 75 angeordnet ist. Vom Austritt des Zwischenüberhitzers 82 führt eine Rückleitung 84 zu einer Niederdruckturbine 86, die zusammen mit der Hochdruckturbine 78 und einem Generator 88, auf einer gemeinsamen Welle sitzend, die Turbinengruppe 2 bildet.A second superheater 72 and a final superheater 75 are connected in series to the collector 55 of the wall tubes 53 forming a first superheater, and a live steam line 77 leads from the outlet of the final superheater 75 to a high-pressure turbine 78 connected to an intermediate superheater 82 which is arranged in the flue gas flue 60 between the two superheaters 72 and 75. A return leads from the outlet of the reheater 82 line 84 to a low-pressure turbine 86, which together with the high-pressure turbine 78 and a generator 88, seated on a common shaft, forms the turbine group 2.

Die Kondensataufbereitungsanlage 8 ist derart ausgelegt, dass das behandelte Kondensat praktisch keine Salze mehr aufweist, was einer Leitfähigkeit von 0,2 uSiemens entspricht, und dass der Siliziumgehalt unter 0,02 ppm liegt. Damit sind Salzabscheidungen im Verdampfer vernächlässigbar.The condensate treatment system 8 is designed in such a way that the treated condensate has practically no salts, which corresponds to a conductivity of 0.2 μSiemens, and that the silicon content is below 0.02 ppm. This means that salt deposits in the evaporator are negligible.

Die Zusatzwasseraufbereitungsanlage 5 dient der Entlastung der Kondensataufbereitungsanlage 8 wie auch dem Schutze des Kondensators 1.The additional water treatment system 5 serves to relieve the load on the condensate treatment system 8 and also to protect the condenser 1.

Die Anlage eignet sich unter anderem vorzüglich für Gleitdruckbetrieb, wobei im Vollastbetrieb vorzugsweise überkritischer Druck herrschen kann. Bei der nun folgenden Beschreibung der Wirkungsweise der Anlage wird zunächst vorausgesetzt, die Speisepumpe liefere unterkritischen Druck, da dieser Zustand bei Teillast auch in im Gleitdruck betriebenen Anlagen auftritt, die bei Vollast mit überkritischem Druck gefahren werden.The system is particularly suitable for sliding pressure operation, with supercritical pressure preferably prevailing in full load operation. In the following description of the operation of the system, it is initially assumed that the feed pump delivers subcritical pressure, since this condition also occurs at part load in systems operated under sliding pressure, which are operated at full load with supercritical pressure.

Im Normalbetrieb wird das im Kondensator 1 anfallende Kondensat zusammen mit dem über Leitung 3 zuströmenden Zusatzwasser in der Kondensataufbereitungsanlage 8, die vorzugsweise einen Kationenaustauscher, einenC02-Riesler, einenAnionenaustauscher und einen Mischbettfilter enthält, praktisch völlig entsalzt. Anschliessend wird es durch die beiden Vorwärmer 9 und 10, die an den beiden untersten Entnahmen 11 der Niederdruckturbine 86 auf nicht gezeichnete Weise angeschlossen sind, erwärmt und in den Entgaser 12 eingespeist, aus dem es in das Speisegefäss 13 fliesst. Das Arbeitsmittel -jetzt nicht mehr Kondensat, sondern Speisewasser genannt- wird nun von der Speisepumpe auf einen von der Last der Anlage abhängigen Druck, bei Vollastbetrieb gegebenenfals überkritischen Druck, gebracht.. In den beiden Hochdruckvorwärmern 17 und 18 , die von zwei Entnahmestellen 19 der Niederdruckturbine 86 aus mit Anzapfdampf gespeist werden wird das Speisewasser erhitzt. Eine weitere Erhitzung, bei dem angenommenen Betrieb mit unterkritischem Druck bis nahe an die Verdampfungstemperatur, erfolgt im Economiser 20. Anschliessend wird das Wasser möglichst gleichmässig auf die Rohre 27 aufgeteilt. Zur Vergleichmässigung der Mengenströme sind in den Mündungen der Rohre 27 einstellbare Drosselorgane eingebaut. Da die Beheizung der einzelnen Rohre unter sich nicht genau gleich ist, nehmen die Arbeitsmittelströme der einzelnen Rohre ungleich viel Wärme auf und dementsprechend verdampft in den verschiedenen Rohren eine ungleich grosse Wassermenge.In normal operation, the condensate accumulating in the condenser 1 is practically completely desalinated together with the make-up water flowing in via line 3 in the condensate treatment system 8, which preferably contains a cation exchanger, a C0 2 Riesler, an anion exchanger and a mixed bed filter. It is then heated by the two preheaters 9 and 10, which are connected to the two lowermost withdrawals 11 of the low-pressure turbine 86 in a manner not shown, and fed into the degasifier 12, from which it flows into the feed vessel 13. The working fluid - now no longer called condensate, but called feed water - is now transferred from the feed pump to one of the The pressure of the system-dependent pressure, possibly at supercritical pressure during full load operation. The feed water is heated in the two high-pressure preheaters 17 and 18, which are fed with bleed steam from two extraction points 19 of the low-pressure turbine 86. A further heating, in the assumed operation with subcritical pressure close to the evaporation temperature, takes place in the economizer 20. The water is then distributed as evenly as possible to the tubes 27. In order to equalize the flow rates, adjustable throttling elements are installed in the mouths of the tubes 27. Since the heating of the individual pipes is not exactly the same among themselves, the working fluid flows of the individual pipes absorb an uneven amount of heat and accordingly an unevenly large amount of water evaporates in the different pipes.

Durch passende Einstellung der Drosselorgane versucht man, die Arbeitsmittelsträme in den Rohren des Verdampfers 26 so einzustellen, dass am Ende jedes Verdampferrohres 27 ein gleicher Wasseranteil unverdampft bleibt. Da wegen Aenderungen der Flamnenlage oder wegen variierender rauchgasseitiger Verschmutzung der Rohre die Beheizung der einzelnen Rohre sich verändert, ist der Verdampfer 26 so klein bemessen, dass mit sehr grosser Wahrscheinlichkeit auch bei Teillastbetrieb selbst im Austrittquerschnitt desjenigen Rohres 27 mit ungünstigsten Verhältnissen noch ein kleiner Anteil unverdampften Wassers strömt. Auf diese Weise ist vermieden, dass einzelne Rohre eine überhöhte Temperatur annehmen.By appropriately adjusting the throttling elements, an attempt is made to adjust the flows of working fluid in the tubes of the evaporator 26 so that at the end of each evaporator tube 27 the same amount of water remains undevaporated. Since the heating of the individual pipes changes due to changes in the flame position or due to varying contamination of the pipes on the flue gas side, the evaporator 26 is dimensioned so small that it is very likely that even under partial load operation, even in the outlet cross section of the pipe 27 with the most unfavorable conditions, a small proportion of unevaporated Water flows. In this way it is avoided that individual pipes assume an excessive temperature.

Das nun in die Sammler 35 einströmende Dampf/Wasser-Gemisch unterschiedlichen Wassergehaltes wird auf seinem Wege durch die Leitung 36 durchmischt und - mit gegebenenfalls noch erheblichen Unterschieden im Wassergehalt - in die parallelgeschalteten Rohre 41 des Endverdampfers 40 verteilt. Da der Endverdampfer 40 in einem schwach beheizten Gebiet des Rauchgasstromes angeordnet ist, das heisst in einem Gebiet, wo die Rauchgastemperatur nicht viel höher ist als die Temperatur des verdampfenden Wassers, kann seine rauchgasseitige Oberfläche, selbst bei sehr ungleichmässiger Verteilung des Arbeitsmittels auf die Rohre, keine gefährlich hohe Temperaturen annehmen.The steam / water mixture of different water content flowing into the collector 35 is mixed on its way through the line 36 and - with possibly still considerable differences in the water content - distributed into the parallel pipes 41 of the final evaporator 40. Since the final evaporator 40 is located in a weakly heated area of the flue gas stream, that is, in an area where the flue gas temperature is not much higher than the temperature of the evaporating water ne surface on the flue gas side, even if the work equipment is distributed very unevenly on the pipes, do not assume dangerously high temperatures.

Beim Entwurf des Endverdampfers 40 kann ein Optimum angestrebt werden bezüglich des Aufwandes für gute Verteilung des Dampf/Wasser-Gemisches am Eintritt der Parallelrohre des Endverdampfers 40 oder bezüglich der Heizflächengrösse des Endverdampfers 40.When designing the final evaporator 40, an optimum can be striven for with regard to the expenditure for a good distribution of the steam / water mixture at the inlet of the parallel tubes of the final evaporator 40 or with regard to the heating surface size of the final evaporator 40.

Aus dem Endverdampfer 40 strömt das Arbeitsmittel, bei Vollast vorzugsweise leicht überhitzt, in den Abscheider 44. Nachdem dort eventuell noch vorhandenes Wasser abgeschieden worden ist, strömt der nun trockene Dampf mit hoher, einen guten Wärmeübergang garantierender Geschwindigkeit und homogener Temperatur durch die den ersten Ueberhitzer bildenden Wandrohre 53.From the final evaporator 40, the working medium flows, preferably at slightly overheated, into the separator 44. After any water that may still have been separated there, the now dry steam flows through the first superheater at a high speed, which guarantees good heat transfer, and a homogeneous temperature forming wall tubes 53.

Die'Temperaturdifferenz zwischen den miteinander verschweissten Rohren 27 des Verdampfers 26 und den Rohren 53 des ersten Ueberhitzers ist hauptsächlich durch die Lage des Endverdampfers 40 im Rauchgasstrom bestimmt. Diese Lage wird so gewählt, dass die genannte Temperaturdifferenz zu keinen unzulässig hohen Wärmespannungen führt. Zur Begrenzung der Temperaturdifferenz können Mittel zur Beeinflussung des rauchgasseitigen Wärmeangebotes an den Endverdampfer vorgesehen sein, was beispielsweise durch Rauchgasumwälzung bewirkt werden kann oder durch einen Nebenschlusskanal, durch den Rauchgase am Endverdampfer vorbeigeleitet werden können. Arbeitsmittelseitig lässt sich die Temperaturdifferenz ebenfalls durch eine Bypassleitung zum Endverdampfer 40 oder etwa durch ein temperaturgesteuertes Einspritzorgan im Bereich der Leitung 42 kontrollieren.The temperature difference between the welded tubes 27 of the evaporator 26 and the tubes 53 of the first superheater is mainly determined by the position of the final evaporator 40 in the flue gas stream. This position is chosen so that the temperature difference mentioned does not lead to inadmissibly high thermal stresses. To limit the temperature difference, means for influencing the flue gas-side heat supply to the final evaporator can be provided, which can be brought about, for example, by flue gas circulation or through a shunt channel through which flue gases can be directed past the final evaporator. On the working medium side, the temperature difference can also be checked by a bypass line to the final evaporator 40 or, for example, by a temperature-controlled injection element in the area of the line 42.

Aus dem Ringsammler 55 strömt der überhitzte Dampf durch den zweiten Ueberhitzer 72, in dem eine weitere Erwärmung stattfindet, und sodann über ein Einspritzorgan 74 in der Leitung 73 durch den Endüberhitzer 75. An der anschliessenden Frischdampfleitung 77 ist ein nicht gezeichnetes Temperaturmessorgan vorgesehen, das über nicht gezeichnete Regelmittel auf das Einspritzorgan 74 einwirkt.The superheated steam flows out of the ring collector 55 the second superheater 72, in which further heating takes place, and then via an injection element 74 in the line 73 through the final superheater 75.

Nach einer ersten mit einer Temperatursenkung verbundenen Entspannung in der Hochdruckturbine 78 wird der Dampf im Zwischenüberhitzer 82 erneut erhitzt und der Niederdruckturbine 86 zugeführt, in der er auf das im Kondensator 1 erzeugte Vakuum entspannt wird.After a first expansion in the high-pressure turbine 78 associated with a drop in temperature, the steam in the reheater 82 is reheated and fed to the low-pressure turbine 86, in which it is expanded to the vacuum generated in the condenser 1.

Während im Normalbetrieb die Speisewassermenge beispielsweise von der Austrittstemperatur des Endverdampfers 40 beeinflusst wird, wird zum Anfahren und in einem unter einer bestimmten Grenzlast liegenden Lastbereich die Fördermenge der Speisepumpe 16 vorzugsweise konstant gehalten. Am Austritt des Endverdampfers 40 ergibt sich dabei ein lastabhängiger Wassergehalt. Das Wasser wird im Abscheider 44 ausgeschieden und über das Ventil 46, das vom Niveau im Abscheider 44 gesteuert wird, in das Speisewassergefäss 13 zurückgeführt.While in normal operation the feed water quantity is influenced, for example, by the outlet temperature of the final evaporator 40, the delivery quantity of the feed pump 16 is preferably kept constant for starting and in a load range below a certain limit load. At the outlet of the final evaporator 40, there is a load-dependent water content. The water is separated in the separator 44 and returned to the feed water vessel 13 via the valve 46, which is controlled by the level in the separator 44.

Bei Anlagen für überkritischen Betrieb kann es zweckmässig sein, parallel zum Endverdampfer 40 eine Bypassleitung mit Drosselorgan anzuordnen, sodass bei Betrieb mit hoher Last ein Teilstrom des Arbeitsmittels im Nebenschluss am Endverdampfer vorbei geführt werden kann. Damit kann die Temperaturdifferenz zwischen den Rohren 27 und 53 im Bereich, wo sie miteinander verschweisst sind, herabgesetzt werden, wodurch die Wärmespannungen verringert werden.In systems for supercritical operation, it may be expedient to arrange a bypass line with a throttle element parallel to the final evaporator 40, so that a partial flow of the working medium can be bypassed the final evaporator during operation with high load. The temperature difference between the tubes 27 and 53 in the region where they are welded to one another can thus be reduced, as a result of which the thermal stresses are reduced.

Wärmespannungen im Bereich der Ebenen E und F lassen sich auch herabsetzen, indem die Rohre 27 und 53 jeweils nur über kurze Längen miteinander direkt verschweisst werden und die Abdichtung durch eine Skin-Konstruktion erzielt wird.Thermal stresses in the area of levels E and F can also be reduced by welding tubes 27 and 53 directly to one another only over short lengths and the sealing is achieved by a skin construction.

Beim Auslegen des erfindungsgemässen Dampferzeugers setzt man die Grenzlast, bis zu der Arbeitsmittel über die Verdampferheizfläche umgewälzt wird, nach den Abmessungen des Dampferzeugers und nach den zu erwartenden Betriebsverhältnissen fest. Liegt diese Grenzlast tief, so kann es zweckmässig sein, das dem Abscheider entnommene Wasser - wie in der Zeichnung dargestellt - direkt ins Speisewassergefäss 13 zurückzuführen. Bei höher liegender Grenzlast ist es vorzuziehen, zwischen der Leitung 45 und der Speisewasserleitung 15, vorzugsweise stromunterhalb des Hochdruckvorwärmers 18, einen Wärmeübertrager vorzusehen. An Stelle eines solchen kann auch eine im Vorlauf oder im Rücklauf angeordnete Umwälzpumpe angebracht werden, wobei die beiden Verdampfer und auch der Economiser in den Umwälzkreislauf einbezogen sein können.When designing the steam generator according to the invention, the limit load up to which working medium is circulated via the evaporator heating surface is determined according to the dimensions of the steam generator and according to the operating conditions to be expected. If this limit load is low, it may be expedient to return the water removed from the separator directly into the feed water vessel 13, as shown in the drawing. If the limit load is higher, it is preferable to provide a heat exchanger between the line 45 and the feed water line 15, preferably downstream of the high-pressure preheater 18. Instead of such a circulation pump arranged in the flow or in the return flow can also be attached, the two evaporators and also the economizer being able to be included in the circulation circuit.

Claims (3)

l. Zwanglaufdampferzeugeranlage zurBeheizung mit fossilen Brennstoffen mit - in der nachstehendenfeihenfolge bezüglich eines Arbeismittelstroms in Serie geschaltete - - einer Aufbereitungsanlage zum Entsalzen des einem Dampferzeuger als Arbeitsmittelstrom zugeführten Wassers auf eine Leitfähigkeit von weniger als 0,2. Mikrosiemens/cm und zur Verminderung des Siliziumgehaltes im Arbeitsmittelstrom auf unter 0,02 ppm, - einer Hochdruckspeisepumpe - einem Ekonomiser des Dampferzeugers - einem aus dicht verschweissten vertikalen Rohren bestehenden, Brennkammerwände des Dampferzeugers bildenden Verdampfer, - Mitteln zum Abscheiden von Wasser aus dem Arbeitsmittelstrom, - Ueberhitzerheizflächen des Dampferzeugers,
wobei der Wasseraustritt der Mittel zum Abscheiden von Wasser durch eine Rückführleitung mit einer im Arbeitsmittelstrom zwischen der Wasseraufbereitungsanlage und dem Verdampfer liegenden Stelle verbunden ist,
dadurch gekennzeichnet, - dass im Arbeitsmittelstrom zwischen dem Brennkammerwände (29) bildenden Verdampfer (26) und den Mitteln (44) zum Abscheiden von Wasser ein Endverdampfer (40) vorgesehen ist, der in einem von der Brennkammer (30) ausgehenden Rauchgaszug (60) zwischen mindestens einer Ueberhitzerheizfläche (72, 75) und dem Economiser (20) angeordnet ist, - dass an den Brennkammerwände bildenden Verdampferrohren (27), dicht miteinander und mit jenen verschweisst, wandbildende Ueberhitzerrohre (53) eines ersten Ueberhitzers angeschlossen sind, wobei diese Ueberhitzerrohre (53) an den Anschlussstellen (51) mit Dampfaustrittsleitungen (50) der wasserabscheidenden Mittel (44) verbunden sind und - dass die Zwanglaufdmapferzeugeranlage für den Lastbereich oberhalb 50% der Vollast für einfachen Durchlauf des Arbeitsmittels durch die Verdampferheizfläche (26) ausgelegt ist.
l. Forced steam generator system for heating with fossil fuels with - connected in series in the following order with respect to a stream of working fluid - - A treatment plant for desalting the water supplied to a steam generator as a working medium flow to a conductivity of less than 0.2. Microsiemens / cm and to reduce the silicon content in the flow of working fluid to below 0.02 ppm, - a high pressure feed pump - an economizer of the steam generator an evaporator consisting of tightly welded vertical pipes and forming the combustion chamber walls of the steam generator, - means for separating water from the flow of working fluid, Superheater heating surfaces of the steam generator,
wherein the water outlet of the means for separating water is connected through a return line to a point in the flow of working fluid between the water treatment system and the evaporator,
characterized, - That in the flow of working fluid between the combustion chamber walls (29) forming the evaporator (26) and the means (44) for separating water, a final evaporator (40) is provided which in a flue gas flue (60) emanating from the combustion chamber (30) between at least one Superheater heating surface (72, 75) and the economizer (20) is arranged, - that on the combustion chamber walls forming evaporator tubes (27) tightly with one another and with those of welded, wall-forming superheater pipes (53) of a first superheater are connected, said superheater pipes (53) nschlussstellen to A (51) with vapor from step lines (50) of the water-separating means (44) are connected and - That the Zwanglaufdmapferzeugeranlage is designed for the load range above 50% of full load for simple passage of the working fluid through the evaporator heating surface (26).
2. Zwanglaufdampferzeugeranlage nach Anspruch 1, dadurch gekennzeichnet, dass die den Endverdampfer (40) bildende Heizfläche aus Rohren besteht, deren gasseitige Oberfläche durch Rippen vergrössert ist, die sich vorzugsweise in Umfangsrichtung der Rohre erstrecken.2. A forced-flow steam generator system according to claim 1, characterized in that the heating surface forming the final evaporator (40) consists of tubes, the gas-side surface of which is enlarged by ribs, which preferably extend in the circumferential direction of the tubes. 3. Zwanglaufdampferzeugeranlage nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die den ersten Verdampfer (26) bildenden Rohre (27) mindestens im Bereich (A) des höchsten Wärmeeinfalls schraubenförmig verlaufende Innennuten aufweisen.3. forced-flow steam generator system according to one of claims 1 and 2, characterized in that the tubes (27) forming the first evaporator (26) have helically running internal grooves at least in the region (A) of the highest heat input.
EP81100601A 1980-12-23 1981-01-28 Forced-circulation steam boiler Expired - Lifetime EP0054601B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH949780 1980-12-23
CH9497/80 1980-12-23

Publications (3)

Publication Number Publication Date
EP0054601A1 true EP0054601A1 (en) 1982-06-30
EP0054601B1 EP0054601B1 (en) 1984-09-19
EP0054601B2 EP0054601B2 (en) 1991-08-28

Family

ID=4352617

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81100601A Expired - Lifetime EP0054601B2 (en) 1980-12-23 1981-01-28 Forced-circulation steam boiler

Country Status (8)

Country Link
US (1) US4430962A (en)
EP (1) EP0054601B2 (en)
JP (1) JPS57117705A (en)
AU (1) AU542220B2 (en)
CA (1) CA1176517A (en)
DE (1) DE3166099D1 (en)
FI (1) FI68458C (en)
YU (1) YU238181A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024803A1 (en) * 1995-02-09 1996-08-15 Siemens Aktiengesellschaft Method and device for starting a continuous steam generator
DE19528438A1 (en) * 1995-08-02 1997-02-06 Siemens Ag Method and system for starting a once-through steam generator
WO2014048779A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
CN109269138A (en) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 A kind of multi-line system and its control method for preventing compressor from returning liquid
DE102010038883C5 (en) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Forced once-through steam generator

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH657675A5 (en) * 1982-09-17 1986-09-15 Sulzer Ag PRESSURE MEDIUM-ACTUATED ACTUATOR ARRANGEMENT.
DE3447265A1 (en) * 1984-12-22 1986-06-26 L. & C. Steinmüller GmbH, 5270 Gummersbach METHOD AND DEVICE FOR GENERATING HIGH-VOLTAGE AND OVERHEATED STEAM
JPH0539282Y2 (en) * 1985-01-29 1993-10-05
DE3511877A1 (en) * 1985-04-01 1986-10-02 Kraftwerk Union AG, 4330 Mülheim CONTINUOUS STEAM GENERATOR
US4843824A (en) * 1986-03-10 1989-07-04 Dorothy P. Mushines System for converting heat to kinetic energy
US4896496A (en) * 1988-07-25 1990-01-30 Stone & Webster Engineering Corp. Single pressure steam bottoming cycle for gas turbines combined cycle
JP2516661B2 (en) * 1988-07-25 1996-07-24 三菱重工業株式会社 Reheat type exhaust gas boiler
US5048466A (en) * 1990-11-15 1991-09-17 The Babcock & Wilcox Company Supercritical pressure boiler with separator and recirculating pump for cycling service
SE469606B (en) * 1991-12-20 1993-08-02 Abb Carbon Ab PROCEDURE AT STARTING AND LOW-LOAD OPERATION OF THE FLOWING PAN AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
EP0595009B1 (en) * 1992-09-30 1996-01-10 Siemens Aktiengesellschaft Method of operating a power plant and power plant working according to this method
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
US5713311A (en) * 1996-02-15 1998-02-03 Foster Wheeler Energy International, Inc. Hybrid steam generating system and method
US6675747B1 (en) * 2002-08-22 2004-01-13 Foster Wheeler Energy Corporation System for and method of generating steam for use in oil recovery processes
US20030167769A1 (en) * 2003-03-31 2003-09-11 Desikan Bharathan Mixed working fluid power system with incremental vapor generation
US7487640B2 (en) * 2004-01-20 2009-02-10 Siemens Aktiengesellschaft Method and device for removing water from a steam plant
US7093566B2 (en) * 2004-11-12 2006-08-22 Maxitherm Inc. Vapor generator
US7874140B2 (en) * 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US7621237B2 (en) * 2007-08-21 2009-11-24 Hrst, Inc. Economizer for a steam generator
EP2182278A1 (en) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Continuous-flow steam generator
JP5054642B2 (en) * 2008-09-09 2012-10-24 アクアインテック株式会社 Pipe line repair system
EP2589760B1 (en) * 2011-11-03 2020-07-29 General Electric Technology GmbH Steam power plant with high-temperature heat reservoir
KR101245088B1 (en) * 2012-08-13 2013-03-18 서영호 Power generator using electrical furnace
RU2525569C2 (en) * 2012-09-10 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный университет Combined-cycle topping plant for steam power plant with subcritical steam parameters
RU2533601C2 (en) * 2012-12-04 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Power plant with combined-cycle plant
EP2746656A1 (en) 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Drainage of a power plant assembly
ES2846148T3 (en) * 2015-04-21 2021-07-28 General Electric Technology Gmbh Molten Salt Single Pass Steam Generator
FI128782B (en) * 2016-01-28 2020-12-15 Andritz Oy Arrangement for heat recovery surfaces in a recovery boiler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382220A (en) * 1920-02-04 1921-06-21 Thomas E Murray Circulation-tube for water-tube steam-boilers
DE736611C (en) * 1940-10-01 1943-06-23 Duerrwerke Ag Forced-through steam generator with a superheater connected directly to the evaporation heating surface
DE1000828B (en) * 1954-04-30 1957-01-17 Siemens Ag Desalination device for forced flow steam generator and process for this
DE1015818B (en) * 1955-11-15 1957-09-19 Siemens Ag Forced flow steam generator for very high operating pressures, especially for supercritical pressure
FR1231916A (en) * 1958-06-26 1960-10-04 Babcock & Wilcox France Improvements to tubular boilers and improved method of forming a tubular wall
FR1574394A (en) * 1967-07-13 1969-07-11
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3511402Y1 (en) * 1958-07-23 1960-05-26
US3789806A (en) * 1971-12-27 1974-02-05 Foster Wheeler Corp Furnace circuit for variable pressure once-through generator
JPS5472301A (en) * 1977-11-21 1979-06-09 Mitsubishi Heavy Ind Ltd Boiler
CH635184A5 (en) * 1978-12-22 1983-03-15 Sulzer Ag STEAM GENERATOR SYSTEM.
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1382220A (en) * 1920-02-04 1921-06-21 Thomas E Murray Circulation-tube for water-tube steam-boilers
DE736611C (en) * 1940-10-01 1943-06-23 Duerrwerke Ag Forced-through steam generator with a superheater connected directly to the evaporation heating surface
DE1000828B (en) * 1954-04-30 1957-01-17 Siemens Ag Desalination device for forced flow steam generator and process for this
DE1015818B (en) * 1955-11-15 1957-09-19 Siemens Ag Forced flow steam generator for very high operating pressures, especially for supercritical pressure
FR1231916A (en) * 1958-06-26 1960-10-04 Babcock & Wilcox France Improvements to tubular boilers and improved method of forming a tubular wall
FR1574394A (en) * 1967-07-13 1969-07-11
CH477651A (en) * 1967-07-13 1969-08-31 Sulzer Ag High-pressure once-through steam generator system with a combustion chamber consisting of gas-tight welded tubes and a method for operating the system
GB2007340A (en) * 1977-11-07 1979-05-16 Foster Wheeler Energy Corp Vapour generating system utilizing intergral separators and angulary arranged furnace boundary wall fluid flow tubeshaving rifled bores

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024803A1 (en) * 1995-02-09 1996-08-15 Siemens Aktiengesellschaft Method and device for starting a continuous steam generator
US5983639A (en) * 1995-03-02 1999-11-16 Siemens Aktiengesellschaft Method and system for starting up a continuous flow steam generator
DE19528438A1 (en) * 1995-08-02 1997-02-06 Siemens Ag Method and system for starting a once-through steam generator
DE19528438C2 (en) * 1995-08-02 1998-01-22 Siemens Ag Method and system for starting a once-through steam generator
DE102010038883C5 (en) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Forced once-through steam generator
WO2014048779A1 (en) * 2012-09-28 2014-04-03 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
US9962664B2 (en) 2012-09-28 2018-05-08 Siemens Aktiengesellschaft Method for recovering process wastewater from a steam power plant
CN109269138A (en) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 A kind of multi-line system and its control method for preventing compressor from returning liquid
CN109269138B (en) * 2018-09-03 2020-10-30 南京天加环境科技有限公司 Multi-split system for preventing liquid return of compressor and control method thereof

Also Published As

Publication number Publication date
US4430962A (en) 1984-02-14
YU238181A (en) 1984-02-29
FI813379L (en) 1982-06-24
JPS57117705A (en) 1982-07-22
AU542220B2 (en) 1985-02-14
JPH0348402B2 (en) 1991-07-24
CA1176517A (en) 1984-10-23
FI68458B (en) 1985-05-31
EP0054601B1 (en) 1984-09-19
FI68458C (en) 1985-09-10
DE3166099D1 (en) 1984-10-25
EP0054601B2 (en) 1991-08-28
AU7836481A (en) 1982-07-01

Similar Documents

Publication Publication Date Title
EP0054601B1 (en) Forced-circulation steam boiler
EP1848925B1 (en) Horizontally positioned steam generator
EP0944801B1 (en) Steam generator
DE2430208C3 (en) Nuclear power plant with steam generator and reheater for partially expanded steam
EP1710498A1 (en) Steam generator
WO1993013356A1 (en) Fossil-fuelled continuous steam generator
DE19717158C2 (en) Continuous steam generator and method for starting up a continuous steam generator
EP1701091A1 (en) Once-through steam generator
DE69733812T2 (en) BOILER
WO2015039831A2 (en) Combined cycle gas turbine plant having a waste heat steam generator
CH653758A5 (en) Once-through boiler.
EP2676072B1 (en) Method for operating a once-through steam generator
DE647193C (en) Pipe steam generator
DE3121297C2 (en) Device for regulating the temperature of a corrosive gas, in particular synthesis gas
DE2039180A1 (en) Steam boiler operated with a fluidized fuel bed
EP2564117B1 (en) Steam generator
DE3004093C2 (en) Steam generator with optional burners for two fuels of different intensity flame radiation
WO1983002658A1 (en) Method and device for operating a high pressure steam boiler
EP0812407B1 (en) Process and system for starting a continuous steam generator
DE889597C (en) Steam generator with indirect heating of the working medium
DE832293C (en) Device to prevent pipe cracks in water tube boilers with automatic water circulation
AT213913B (en) Device for increasing the storage capacity of once-through boilers
AT128483B (en) Process for steam generation in radiant tube walls.
AT132508B (en) Device for superheating steam.
DE677900C (en) Two-drum water tube boiler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810128

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR IT NL SE

REF Corresponds to:

Ref document number: 3166099

Country of ref document: DE

Date of ref document: 19841025

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19850614

NLR1 Nl: opposition has been filed with the epo

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19850614

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.01/86,PAGE 120 CORR.:SIEMENS AG

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19910828

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR IT NL SE

NLR2 Nl: decision of opposition
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931222

Year of fee payment: 14

ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950129

EAL Se: european patent in force in sweden

Ref document number: 81100601.4

EUG Se: european patent has lapsed

Ref document number: 81100601.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961217

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961223

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO