EP0054107A1 - Electromagnet - Google Patents

Electromagnet Download PDF

Info

Publication number
EP0054107A1
EP0054107A1 EP81107130A EP81107130A EP0054107A1 EP 0054107 A1 EP0054107 A1 EP 0054107A1 EP 81107130 A EP81107130 A EP 81107130A EP 81107130 A EP81107130 A EP 81107130A EP 0054107 A1 EP0054107 A1 EP 0054107A1
Authority
EP
European Patent Office
Prior art keywords
armature
magnetic
winding
shell core
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81107130A
Other languages
German (de)
French (fr)
Inventor
Hans Dipl.-Ing. Kubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0054107A1 publication Critical patent/EP0054107A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/0642Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto
    • F02M51/0646Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being a short body, e.g. sphere or cube
    • F02M51/065Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature having a valve attached thereto the valve being a short body, e.g. sphere or cube the valve being spherical or partly spherical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • the invention relates to an electromagnet according to the preamble of the main claim.
  • An electromagnet is already known, but because of its dimensions it is very large and does not yet work sufficiently quickly.
  • the electromagnet according to the invention with the characterizing features of the main claim has the advantage that minimizing the size of the magnetic circuit and the magnet winding minimizes the electrical drive power and the armature mass can be achieved with the result of a very small volume enclosing electromagnet that works very quickly and where the efficiency of converting electrical energy into mechanical energy is as high as possible.
  • FIG. 1 shows a fuel injection valve with an electromagnet designed according to the invention
  • FIG. 2 shows a basic illustration of an electromagnet designed according to the invention.
  • the fuel injection valve shown in FIG. 1 for a fuel injection system is used, for example, to inject fuel, in particular with low pressure into the intake manifold of mixture-compressing, spark-ignition internal combustion engines.
  • 1 denotes a valve housing which is manufactured by non-cutting shaping, for example deep drawing, rolling and the like, and has a cup-shaped shape with a base 2, from which a tubular guide stub 3 is formed, which has a guide bore 4, which also has the Bottom 2 penetrates and opens into the interior 5 of the valve housing 1.
  • a shell core 7 made of ferromagnetic material is inserted, which has a smaller diameter than the interior 5 and bears with a collar 8 on an inner shoulder 9 of the valve housing 1.
  • a spacer ring 10 engages, which is adjoined by a guide membrane 11 and a nozzle carrier 12, a flanged edge 13 partially engaging around the end face of the nozzle carrier 12 and exerting an axial clamping force thereon, which fixes the position of the Scha Steering core 7, the spacer ring 10, the guide membrane 11 and the nozzle holder 12 guaranteed.
  • the shell core 7 for example, a commercially available shell core T 26 from Siemens can be used, which has an annular outer core 15 and an annular inner core 17 connected to it via a yoke 16.
  • a magnetic winding 18 can be at least partially enclosed by an insulating carrier body 19, which is inserted with the magnetic winding 18 into the annular space of the shell core 7 formed between the outer core 15 and the inner core 17 and is positively connected to the yoke 16, for example by rivets 20 or a releasable snap connection .
  • the current supply to the magnetic winding 18 is advantageously carried out via contact pins 22, only one of which is shown, which are enclosed in an insulation insert 23, for example glass, the insulation insert 23 being able to be surrounded by a fastening ring 24 which is in a through-bore 25 of the valve housing base 2 used sealingly and soldered, for example.
  • plug connections can be connected either in a manner not shown but known or electrical cables.
  • a contact tab 26 is provided between the magnetic winding 18 and the contact pins 22 for length compensation in the case of thermal expansion.
  • a flat anchor 29 is arranged between the end face 28 of the shell core 7 facing away from the yoke 16 and the guide membrane 11.
  • a movable valve part 30 is connected to the flat anchor, for example soldered or welded.
  • the valve part 30 penetrates a central guide opening 31 in the guide membrane 11 and works together with a fixed valve seat 32 which is formed in a valve seat body 33.
  • the valve seat body 33 is in the nozzle carrier 12 used.
  • the valve part 30 and the flat armature 29 are guided through the central guide opening 31 of the guide membrane 11 in the radial direction on the one hand to the valve seat 32 and on the other hand to the end face 28 of the shell core 7.
  • the guide membrane 11 is not rigidly connected to the valve part 30 or to the flat anchor 29.
  • the flat anchor 29 can be designed as a stamped or pressed part and, for example, have an annular guide ring 34 facing the guide membrane 11, which on the one hand has the rigidity of the flat anchor 29 improved, secondly separates a first working area 36 of the flat anchor, which is assigned to the end face of the outer core 15, from a second working area 37, which is assigned to the end face of the inner core 17, and thirdly forms a guide edge 35 which bears against the guide membrane 11 , whereby the flat anchor 29 is guided plane-parallel to the end face 28 of the shell core 7.
  • the valve part 30 has a spherical section 38 which interacts with the valve seat 32, for example, is flattened as a spherical zone.
  • the guiding membrane 11 is clamped between the spacer ring 10 and the nozzle carrier 12 in a plane which, when the valve part 30 rests against the valve seat 32, passes through the center M or as close as possible to the center M of the spherical section 38.
  • the guide diaphragm 11 bends under tension under tension against the guide edge 35 of the flat armature 29.
  • the valve part 30 is acted upon in the closing direction of the valve by a compression spring 39 which, on the other hand, projects into an inner bore 40 of the shell core 7 and is supported on a slide member 41.
  • the force of the compression spring 39 on the flat armature 29 and the valve part 30 can be influenced by axially displacing the slide member 41.
  • the slide member 41 is pressed into the guide bore 4 of the base 2 and guide socket 3 ′ and has a section with notches 43 in the region of the guide socket 3, for example flat annular grooves, threads, knurls or the like, for better axial fixation to ensure the slide member 41 by pressing the guide connector 3 in the area of the notches 43 inwards, so that material of the guide connector 3 penetrates into the notches 43 of the slide member 41.
  • the end of the slide member 41 facing away from the flat anchor 29 is designed such that it ends within the guide socket 3 and has a pin 44 with a smaller diameter than the guide bore 4. A suitable tool can act on the pin 44 for displacing the slide member 41.
  • the slide member 41 has a longitudinal bore 45 which is open toward the flat armature 29 and which, on the other hand, opens outside the shell core 7 in transverse bores 46 to the periphery of the slide member 41 in the interior 5 of the valve housing 1.
  • the valve part 30 has a cylindrical section 48 connected to the flat armature 29, to which the spherical section 38 of the valve part adjoins. Open toward the flat armature 29, the valve part 30 is provided with a concentric blind hole 49 which leads as far as possible into the spherical section 38.
  • the compression spring 39 which is in contact with the slide member 41, passes through an opening 50 of the flat armature and, on the other hand, is supported in the valve part 30 at the base 51 of the blind hole 49, so that when the magnetic circuit 7, 18, 29 is not excited, the valve part 30 counteracts the spring force of the guide membrane 11 is held sealingly on the valve seat 32.
  • Cross bores 52 run from the circumference of the valve part 30 to the blind bore 49.
  • a collecting space 54 is formed downstream of the valve seat 32, the volume of which should be as small as possible and which is delimited by the valve seat body 33, the spherical section 38 and a swirl body 55 arranged downstream of the valve seat body 33.
  • a flange 56 of the nozzle carrier 12 engages around a surface of the swirl body 55 facing away from the valve seat body 33, as a result of which the valve seat body 33 and the swirl body 55 are fixed in their position.
  • the swirl body 55 has a projection 57 protruding into the collecting space 54, the end face of which is flattened facing the valve part 30 and from whose lateral, for example conical circumferential wall 58 branch off to the swirl channels 59 which open towards the collecting space 54 and which "are known" at an angle to the valve axis can be inclined and open into a swirl chamber 60.
  • the swirl channels 59 can open tangentially into the swirl chamber 60 and serve for metering the fuel in.
  • the fuel film forming on the wall of the swirl chamber 60 tears at the sharp end of the swirl chamber 60, which into the Intake manifold opens, and thus enters conically into the air flow of the intake manifold, which ensures good preparation of the fuel, especially at low fuel pressures.
  • the fuel injection valve mounted in a holding body 62 can be fixed in position, for example, by a claw or a cover 63 and has a first annular groove 64 in the valve housing 1 and offset in the axial direction and sealed off from the first annular groove 64, and a second annular groove 65 seals it.
  • a fuel supply line 66 is formed, which opens into the first annular groove 64.
  • a fuel return line 67 is formed in the holding body 62, which with the second annular groove 65 is connected.
  • Radial inflow openings 68 in the wall of the cylindrical, tubular part of the valve housing 1 connect the first annular groove 64 to a flow channel 69 which is formed between the outer core 15 and the inner wall of the valve housing 1.
  • the part of the interior 5 lying above the shell core 7 is connected to the second annular groove 65 via radially extending drain openings 70 formed in the cylindrical, tubular part of the valve housing and is separated from the flow channel 69 by a sealing body 71.
  • the guide membrane 11 has flow openings 73, as 29 flow openings 74 can also be formed in the flat armature.
  • the fuel flowing into the flow channel 69 via the inflow openings 68 can flow via openings 75 in the collar 8 and the throughflow openings 73 in the guide membrane 11 to the valve seat 32, from where it reaches the collecting space 54 when the valve part 30 is lifted off the valve seat 32 and there via the Swirl channels 59 is metered.
  • the unmeasured part of the fuel can flow via the transverse bores 52 into the blind bore 49 of the valve part 30 and from there via the inner bore 40 or the longitudinal bore 45 of the slide member 41 and the transverse bores 46 into the part of the interior 5 above the shell core 7 with the receptacle the heat generated in the magnetic circuit arrives and from there flow out into the fuel return line 67 via the drain openings 70 and the second annular groove 65.
  • the following values are specified in this formula, namely the resistance R, as mentioned above, by the maximum current strength of the control electronics, the specific resistance ⁇ L by the material of the magnetic winding 18, for which copper or a copper alloy is preferably used, and the number of turns W of the magnetic winding 18 due to the required magnetic induction B in the outer air gap 85 between the outer core 15 and the flat armature 29 and in the inner air gap 86 between the inner core 17 and the flat armature 29.
  • the filling factor K L representing the density of the packing of the magnet winding line and the filling the window area A through the mag Window filling factor K F representing network development 18 should be chosen to be as large as possible, ie close to 1.
  • the quotient A / l should be chosen as small as possible to achieve the required resistance R of the magnetic winding 18.
  • the reduction in the dimensions of the magnetic circuit 7, 18, 29 according to the invention also results in a reduction in the leakage flux, the eddy currents and the hysteresis losses, which reduce the force acting on the flat armature 29 during the tightening or falling of the flat armature.
  • the determination of A and 1mnach the definition of A / l m is carried out in a known manner by optimization of b / d.
  • the aim is further to keep the magnetic energy stored when the flat armature 29 is tightened as low as possible by saturating the magnetic circuit.
  • This magnetic energy is built up during the tightening time of the flat armature 29, but is not converted into a mechanical drive power. It is known that in the ideal and saturated magnetic circuit (without copper and iron losses) at best half of the electrical energy consumed is converted into mechanical energy and the other half into useless magnetic energy if the magnetic circuit is supplied with constant current. In contrast, in the magnetic circuit operated exclusively in saturation, the electrical power consumed can be converted 100% into mechanical energy in the limit case, because when the air gap is closed, the magnetic field energy is reduced, while it increases in the unsaturated case.
  • the magnetic circuit 7, 18, 29 is formed such that when the flat armature 29 begins to pull in the area of the air gaps 85, 86 between the Flat anchor 29 and the shell core 7 there is a magnetic induction B of about 70% of the saturation induction. This measure minimizes the energy stored in the attracted magnetic circuit so that the electrical power consumed during the suit is largely converted into drive power. On the other hand, there is still sufficient increase in force to accelerate the flat anchor during the tightening movement. Before the flat armature 29 falls from the shell core, a significantly lower magnetic energy is thus to be destroyed, so that the fall time can be reduced with constant extinguishing power of the control electronics.
  • the two air gaps 85, 86 are provided between the flat anchor 29 with the lowest possible mass and the shell core 7, which act in the axial direction and whose magnetically active surfaces A 1 and A 2 are approximately the same size.
  • the doubling of the air gaps A 1 and A 2 acting in the axial direction leads to a doubling of the tightening force and thus to a very fast acting electromagnet.
  • the approximately equally large design of the magnetically effective surfaces A 1 and A 2 in the area of the air gaps 85, 86 also ensures, with the above dimensioning rule about the saturation, that the air gaps are saturated to such an extent that an unintentional slight inclination of the flat anchor is caused by magnetic forces triggered thereby; is not reinforced excessively.
  • the narrowing of the cross sections of the magnetic circuit in the area of the two air gaps 85, 86 can be achieved, for example, by providing a recess 87 as shown on the end face of the inner core 17 or as shown in broken lines at 88 on the outer core 15, the outer circumference of the shell core 7 taper conically in the axial direction towards the air gaps 85, 86.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electromagnets (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Es wird ein Elektromagnet vorgeschlagen, der insbesondere zur Steuerung eines Kraftstoffeinspritzventiles für Brennkraftmaschinen dient. Der Elektromagnet umfaßt einen Flachanker (29) und eine auf einem Schalenkern (7) aus ferromagnetischem Material aufgebrachte Magnetwicklung (18), wobei zur Minimierung der räumlichen Abmessungen des Magnetkreises (7, 18, 29) und zur Verbeserung der Schnelligkeit des Elektromagneten der Quotient A/Im mit A als Fensterfläche des Schalenkerns (7) und Im als mittlerer Windungslänge der Magnetspule (18), so klein wie möglich gewählt wird. Weiterhin ist der Magnetkreis (7, 18, 29) so ausgebildet, daß bei Beginn der Anzugsbewegung des Flachankers (29) im Bereich der beiden axial wirkenden Luftspalte (85, 86) mit etwa gleich großen magnetischen Flächen A1, A2 eine magnetische Induktion B von etwa 70% der Sättigungsinduktion herrscht.An electromagnet is proposed, which is used in particular to control a fuel injection valve for internal combustion engines. The electromagnet comprises a flat armature (29) and a magnet winding (18) applied to a shell core (7) made of ferromagnetic material, the quotient A being used to minimize the spatial dimensions of the magnetic circuit (7, 18, 29) and to improve the speed of the electromagnet / Im chosen as small as possible with A as the window area of the shell core (7) and Im as the mean winding length of the magnet coil (18). Furthermore, the magnetic circuit (7, 18, 29) is designed such that when the flat armature (29) begins to pull in the area of the two axially acting air gaps (85, 86) with magnetic surfaces A1, A2 of approximately the same size, a magnetic induction B of about 70% of the saturation induction prevails.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Elektromagneten nach der Gattung des Hauptanspruchs. Es ist schon ein Elektromagnet bekannt, der jedoch aufgrund seiner Dimensionierung sehr groß bauend ist und noch nicht ausreichend schnell arbeitet..The invention relates to an electromagnet according to the preamble of the main claim. An electromagnet is already known, but because of its dimensions it is very large and does not yet work sufficiently quickly.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße Elektromagnet mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß sich durch Minimierung der Größe des Magnetkreises und der Magnetwicklung eine Minimierung der elektrischen Ansteuerleistung und der Ankermasse erzielen läßt mit dem Ergebnis eines ein sehr kleines Volumen umschließenden Elektromagneten, der sehr schnell arbeitet und bei dem der Wirkungsgrad der Umsetzung von elektrischer Energie in mechanische Energie möglichst hoch ist.The electromagnet according to the invention with the characterizing features of the main claim has the advantage that minimizing the size of the magnetic circuit and the magnet winding minimizes the electrical drive power and the armature mass can be achieved with the result of a very small volume enclosing electromagnet that works very quickly and where the efficiency of converting electrical energy into mechanical energy is as high as possible.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Elektromagneten möglich.The measures listed in the subclaims allow advantageous developments and improvements of the electromagnet specified in the main claim.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein Kraftstoffeinspritzventil mit einem erfindungsgemäß ausgebildeten Elektromagneten, Figur 2 eine prinzipielle Darstellung eines erfindungsgemäß ausgebildeten Elektromagneten.Embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description. FIG. 1 shows a fuel injection valve with an electromagnet designed according to the invention, FIG. 2 shows a basic illustration of an electromagnet designed according to the invention.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Das in Figur 1 dargestellte Kraftstoffeinspritzventil für eine Kraftstoffeinspritzanlage dient beispielsweise zur Einspritzung von Kraftstoff, insbesondere mit niederem Druck in das Saugrohr von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen. Dabei ist mit 1 ein Ventilgehäuse bezeichnet, das durch spanlose Formgebung, z.B. Tiefziehen, Rollen und ähnliches gefertigt ist und eine topfförmige Gestalt mit einem Boden 2 hat, von dem ausgehend ein rohrförmiger Führungsstutzen 3 ausgebildet ist, der eine Führungsbohrung 4 aufweist, die ebenfalls den Boden 2 durchdringt und im Innenraum 5 des Ventilgehäuses 1 mündet. In den Innenraum 5 des Ventilgehäuses 1 ist ein Schalenkern 7 aus ferromagnetischem Material eingesetzt, der einen geringeren Durchmesser als der Innenraum 5 hat und mit einem Bund 8 an einem Innenansatz 9 des Ventilgehäuses 1 anliegt. Auf der dem Innenansatz 9 abgewandten Seite des Bundes 8 greift ein Distanzring 10 an, an den sich eine Führungsmembran 11 und ein Düsenträger 12 anschließt, wobei eine Bördelkante 13 teilweise die Stirnfläche des Düsenträgers 12 umgreift und auf diesen eine axiale Spannkraft ausübt, die eine Lagefixierung des Schalenkerns 7, des Distanzringes 10, der Führungsmembran 11 und des Düsenträgers 12 gewährleistet. Als Schalenkern 7 kann z.B. ein handelsüblicher Schalenkern T 26 der Firma Siemens Verwendung finden, der einen ringförmigen Außenkern 15 und einen mit diesem über ein Joch 16 verbundenen ringförmigen Innenkern 17 hat. Eine Magnetwicklung 18 kann mindestens teilweise von einem isolierenden Trägerkörper 19 umschlossen sein, der mit der Magnetwicklung 18 in den zwischen Außenkern 15 und Innenkern 17 gebildeten Ringraum des Schalenkerns 7 eingeschoben und formschlüssig, z.B. durch Nieten 20 oder eine lösbare Schnappverbindung mit dem Joch 16 verbunden ist. Die Stromzuführung zur Magnetwicklung 18 erfolgt vorteilhafterweise über Kontaktstifte 22, von denen nur einer dargestellt ist, die in einem Isolationseinsatz 23, z.B. Glas, eingefaßt sind, wobei der Isolationseinsatz 23 von einem Befestigungsring 24 umgeben sein kann, der in einer Durchführungsbohrung 25 des Ventilgehäusebodens 2 dichtend eingesetzt und beispielsweise verlötet ist. Mit den Kontaktstiften 22 können entweder in nicht dargestellter, aber bekannter Weise Steckanschlüsse verbunden sein oder elektrische Kabel. Zum Längenausgleich bei Wärmedehnungen ist zwischen Magnetwicklung 18 und den Kontaktstiften 22 jeweils eine Kontaktfahne 26 vorgesehen.The fuel injection valve shown in FIG. 1 for a fuel injection system is used, for example, to inject fuel, in particular with low pressure into the intake manifold of mixture-compressing, spark-ignition internal combustion engines. 1 denotes a valve housing which is manufactured by non-cutting shaping, for example deep drawing, rolling and the like, and has a cup-shaped shape with a base 2, from which a tubular guide stub 3 is formed, which has a guide bore 4, which also has the Bottom 2 penetrates and opens into the interior 5 of the valve housing 1. In the interior 5 of the valve housing 1, a shell core 7 made of ferromagnetic material is inserted, which has a smaller diameter than the interior 5 and bears with a collar 8 on an inner shoulder 9 of the valve housing 1. On the side of the collar 8 facing away from the inner shoulder 9, a spacer ring 10 engages, which is adjoined by a guide membrane 11 and a nozzle carrier 12, a flanged edge 13 partially engaging around the end face of the nozzle carrier 12 and exerting an axial clamping force thereon, which fixes the position of the Scha Steering core 7, the spacer ring 10, the guide membrane 11 and the nozzle holder 12 guaranteed. As the shell core 7, for example, a commercially available shell core T 26 from Siemens can be used, which has an annular outer core 15 and an annular inner core 17 connected to it via a yoke 16. A magnetic winding 18 can be at least partially enclosed by an insulating carrier body 19, which is inserted with the magnetic winding 18 into the annular space of the shell core 7 formed between the outer core 15 and the inner core 17 and is positively connected to the yoke 16, for example by rivets 20 or a releasable snap connection . The current supply to the magnetic winding 18 is advantageously carried out via contact pins 22, only one of which is shown, which are enclosed in an insulation insert 23, for example glass, the insulation insert 23 being able to be surrounded by a fastening ring 24 which is in a through-bore 25 of the valve housing base 2 used sealingly and soldered, for example. With the contact pins 22, plug connections can be connected either in a manner not shown but known or electrical cables. A contact tab 26 is provided between the magnetic winding 18 and the contact pins 22 for length compensation in the case of thermal expansion.

Zwischen der dem Joch 16 abgewandten Stirnfläche 28 des Schalenkerns 7 und der Führungsmembran 11 ist ein Flachanker 29 angeordnet. Im mittleren Bereich des Flachankers 29 ist mit dem Flachanker ein bewegliches Ventilteil 30 verbunden, z.B. verlötet oder verschweißt. Das Ventilteil 30 durchdringt eine zentrale Führungsöffnung 31 in der Führungsmembran 11 und arbeitet mit einem festen Ventilsitz 32 zusammen, der in einem Ventilsitzkörper 33 ausgebildet ist. Der Ventilsitzkörper 33 ist in den Düsenträger 12 eingesetzt. Das Ventilteil 30 und der Flachanker 29 werden durch die zentrale Führungsöffnung 31 der Führungsmembran 11 in radialer Richtung einerseits zum Ventilsitz 32 und andererseits zur Stirnfläche 28 des Schalenkerns 7 geführt. Eine starre Verbindung der Führungsmembran 11 besteht weder mit dem Ventilteil 30 noch mit dem Flachanker 29. Der Flachanker 29 kann als Stanz- oder Preßteil.ausgebildet sein und beispielsweise einen ringförmigen, der Führungsmembran 11 zugewandten Führungskranz 34 aufweisen, der zum einen die Steifigkeit des Flachankers 29 verbessert, zum zweiten einen ersten Arbeitsbereich 36 des Flachankers, der der Stirnfläche des Außenkerns 15 zugeordnet ist, von einem zweiten Arbeitsbereich 37, der der Stirnfläche des Innenkerns 17 zugeordnet ist, trennt und drittens eine Führungskante 35 bildet, die an der Führungsmembran 11 anliegt, wodurch der Flachanker 29 planparallel zur Stirnfläche 28 des Schalenkerns 7 geführt wird. Das Ventilteil 30 hat einen mit dem Ventilsitz 32 zusammenwirkenden kugelförmigen Abschnitt 38, beispielsweise als Kugelzone abgeflacht ausgebildet. Die Einspannung der Führungsmembran 11 zwischen dem Distanzring 10 und dem Düsenträger 12 erfolgt in einer Ebene, die bei am Ventilsitz 32 anliegenden Ventilteil 30 durch den Mittelpunkt M bzw. möglichst nahe am Mittelpunkt M des kugelförmigen Abschnittes 38 verläuft. Bei am Ventilsitz 32 anliegendem Ventilteil 30 liegt die Führungsmembran 11 durchgebogen unter Spannung an der Führungskante 35 des Flachankers 29 an. Das Ventilteil 30 wird in Schließrichtung des Ventiles durch eine Druckfeder 39 beaufschlagt, die andererseits in eine Innenbohrung 40 des Schalenkernes 7 ragt und sich an einem Schieberglied 41 abstützt. Die Kraft der Druckfeder 39 auf den Flachanker 29 und das Ventilteil 30 ist durch axiales Verschieben des Schiebergliedes 41 beeinflußbar.A flat anchor 29 is arranged between the end face 28 of the shell core 7 facing away from the yoke 16 and the guide membrane 11. In the central area of the flat anchor 29, a movable valve part 30 is connected to the flat anchor, for example soldered or welded. The valve part 30 penetrates a central guide opening 31 in the guide membrane 11 and works together with a fixed valve seat 32 which is formed in a valve seat body 33. The valve seat body 33 is in the nozzle carrier 12 used. The valve part 30 and the flat armature 29 are guided through the central guide opening 31 of the guide membrane 11 in the radial direction on the one hand to the valve seat 32 and on the other hand to the end face 28 of the shell core 7. The guide membrane 11 is not rigidly connected to the valve part 30 or to the flat anchor 29. The flat anchor 29 can be designed as a stamped or pressed part and, for example, have an annular guide ring 34 facing the guide membrane 11, which on the one hand has the rigidity of the flat anchor 29 improved, secondly separates a first working area 36 of the flat anchor, which is assigned to the end face of the outer core 15, from a second working area 37, which is assigned to the end face of the inner core 17, and thirdly forms a guide edge 35 which bears against the guide membrane 11 , whereby the flat anchor 29 is guided plane-parallel to the end face 28 of the shell core 7. The valve part 30 has a spherical section 38 which interacts with the valve seat 32, for example, is flattened as a spherical zone. The guiding membrane 11 is clamped between the spacer ring 10 and the nozzle carrier 12 in a plane which, when the valve part 30 rests against the valve seat 32, passes through the center M or as close as possible to the center M of the spherical section 38. When the valve part 30 is in contact with the valve seat 32, the guide diaphragm 11 bends under tension under tension against the guide edge 35 of the flat armature 29. The valve part 30 is acted upon in the closing direction of the valve by a compression spring 39 which, on the other hand, projects into an inner bore 40 of the shell core 7 and is supported on a slide member 41. The force of the compression spring 39 on the flat armature 29 and the valve part 30 can be influenced by axially displacing the slide member 41.

Das Schieberglied 41 ist an seinem dem Flachanker abgewandten Ende in die Führungsbohrung 4 von Boden 2 und Führungsstutzen 3'eingepreßt und hat im Bereich des Führungsstutzens 3 einen Abschnitt mit Kerben 43, beispielsweise flache Ringnuten, Gewinde, Rändel oder ähnliches, um eine bessere axiale Fixierung des Schiebergliedes 41 zu gewährleisten, indem der Führungsstutzen 3 im Bereich der Kerben 43 nach Innen verpreßt wird, so daß Material des Führungsstutzens 3 in die Kerben 43 des Schiebergliedes 41 eindringt. Das dem Flachanker 29 abgewandte Ende des Schiebergliedes 41 ist so ausgebildet, daß es innerhalb des Führungsstutzens 3 endet und einen Zapfen 44 mit geringerem Durchmesser hat, als die Führungsbohrung 4. An dem Zapfen 44 kann zur Verschiebung des Schiebergliedes 41 ein geeignetes Werkzeug angreifen. Das Schieberglied 41 hat eine zum Flachanker 29 hin offene Längsbohrung 45, die andererseits außerhalb des Schalenkerns 7 in Querbohrungen 46 zum Umfang des Schiebergliedes 41 im Innenraum 5 des Ventilgehäuses 1 mündet.At its end facing away from the flat anchor, the slide member 41 is pressed into the guide bore 4 of the base 2 and guide socket 3 ′ and has a section with notches 43 in the region of the guide socket 3, for example flat annular grooves, threads, knurls or the like, for better axial fixation to ensure the slide member 41 by pressing the guide connector 3 in the area of the notches 43 inwards, so that material of the guide connector 3 penetrates into the notches 43 of the slide member 41. The end of the slide member 41 facing away from the flat anchor 29 is designed such that it ends within the guide socket 3 and has a pin 44 with a smaller diameter than the guide bore 4. A suitable tool can act on the pin 44 for displacing the slide member 41. The slide member 41 has a longitudinal bore 45 which is open toward the flat armature 29 and which, on the other hand, opens outside the shell core 7 in transverse bores 46 to the periphery of the slide member 41 in the interior 5 of the valve housing 1.

Das Ventilteil 30 hat einen mit dem Flachanker 29 verbundenen zylindrischen Abschnitt 48, an den sich der kugelförmige Abschnitt 38 des Ventilteiles anschließt. Zum Flachanker 29 hin offen ist das Ventilteil 30 mit einer konzentrischen Sacklochbohrung 49 versehen, die möglichst weit in den kugelförmigen Abschnitt 38 führt. Die an dem Schieberglied 41 einerseits anliegende Druckfeder 39 durchgreift eine Öffnung 50 des Flachankers und stützt sich andererseits in dem Ventilteil 30 am Grund 51 der Sacklochbohrung 49 ab, wodurch bei nicht erregtem Magnetkreis 7, 18, 29 das Ventilteil 30 entgegen der Federkraft der Führungsmembran 11 dichtend am Ventilsitz 32 gehalten wird. Vom Umfang des Ventilteiles 30 verlaufen zur Sacklochbohrung 49 hin Querbohrungen 52.The valve part 30 has a cylindrical section 48 connected to the flat armature 29, to which the spherical section 38 of the valve part adjoins. Open toward the flat armature 29, the valve part 30 is provided with a concentric blind hole 49 which leads as far as possible into the spherical section 38. The compression spring 39, which is in contact with the slide member 41, passes through an opening 50 of the flat armature and, on the other hand, is supported in the valve part 30 at the base 51 of the blind hole 49, so that when the magnetic circuit 7, 18, 29 is not excited, the valve part 30 counteracts the spring force of the guide membrane 11 is held sealingly on the valve seat 32. Cross bores 52 run from the circumference of the valve part 30 to the blind bore 49.

Stromabwärts des Ventilsitzes 32 ist ein Sammelraum 54 ausgebildet, dessen Volumen möglichst klein sein soll und der durch den Ventilsitzkörper 33, den kugelförmigen Abschnitt 38 und einen stromabwärts des Ventilsitzkörpers 33 angeordneten Drallkörper 55 begrenzt wird. Eine Bördelung 56 des Düsenträgers 12 umgreift eine den Ventilsitzkörper 33 abgewandte Fläche des Drallkörpers 55, wodurch der Ventilsitzkörper 33 und der Drallkörper 55 in ihrer Lage fixiert werden. Der Drallkörper 55 hat einen in den Sammelraum 54 hineinragenden Vorsprung 57, dessen Stirnfläche dem Ventilteil 30 zugewandt abgeflacht ist und von dessen seitlicher, beispielsweise konisch verlaufender Umfangswandung 58 zum Sammelraum 54 hin offene Drallkanäle 59 abzweigen, die "in bekannter Weise unter einem Winkel zur Ventilachse geneigt sein können und in eine Drallkammer 60 münden. Die Drallkanäle 59 können dabei beispielsweise tangential in die Drallkammer 60 münden und dienen zur Zumessung des Kraftstoffes. Der sich an der Wandung der Drallkammer 60 bildende Kraftstoffilm reißt am scharfen Ende der Drallkammer 60, die in das Saugrohr mündet, ab und tritt so kegelförmig in den Luftstrom des Saugrohres ein, wodurch eine gute Aufbereitung des Kraftstoffes, insbesondere bei niederen Kraftstoffdrücken gewährleistet ist.A collecting space 54 is formed downstream of the valve seat 32, the volume of which should be as small as possible and which is delimited by the valve seat body 33, the spherical section 38 and a swirl body 55 arranged downstream of the valve seat body 33. A flange 56 of the nozzle carrier 12 engages around a surface of the swirl body 55 facing away from the valve seat body 33, as a result of which the valve seat body 33 and the swirl body 55 are fixed in their position. The swirl body 55 has a projection 57 protruding into the collecting space 54, the end face of which is flattened facing the valve part 30 and from whose lateral, for example conical circumferential wall 58 branch off to the swirl channels 59 which open towards the collecting space 54 and which "are known" at an angle to the valve axis can be inclined and open into a swirl chamber 60. The swirl channels 59 can open tangentially into the swirl chamber 60 and serve for metering the fuel in. The fuel film forming on the wall of the swirl chamber 60 tears at the sharp end of the swirl chamber 60, which into the Intake manifold opens, and thus enters conically into the air flow of the intake manifold, which ensures good preparation of the fuel, especially at low fuel pressures.

Das in einem Haltekörper 62 gelagerte Kraftstoffeinspritzventil kann beispielsweise durch eine Pratze oder einen Deckel 63 in seiner Lage fixiert sein und hat im Ventilgehäuse 1 eine erste Ringnut 64 und in axialer Richtung versetzt und gegenüber der ersten Ringnut 64 abgedichtet eine zweite Ringnut 65. In dem Haltekörper 62 ist eine Kraftstoffzuflußleitung 66 ausgebildet, die in der ersten Ringnut 64 mündet. Weiterhin ist in dem Haltekörper 62 eine Kraftstoffrückströmleitung 67 ausgebildet, die mit der zweiten Ringnut 65 in Verbindung steht. Radiale Zuflußöffnungen 68 in der Wandung des zylindrischen, rohrförmigen Teiles des Ventilgehäuses 1 verbinden die erste Ringnut 64 mit einem Strömungskanal 69, der zwischen dem Außenkern 15 und der Innenwandung des Ventilgehäuses 1 ausgebildet ist. Der oberhalb des Schalenkerns 7 liegende Teil des Innenraums 5 steht über in dem zylindrischen, rohrförmigen Teil des Ventilgehäuses ausgebildete radial verlaufende Abflußöffnungen 70 mit der zweiten Ringnut 65 in Verbindung und ist durch einen Dichtkörper 71 von dem Strömungskanal 69 getrennt. Die Führungsmembran 11 besitzt Durchströmöffnungen 73, wie auch im Flachanker 29 Durchströmöffnungen 74 ausgebildet sein können. Der über die Zuflußöffnungen 68 in den Strömungskanal 69 strömende Kraftstoff kann über Öffnungen 75 im Bund 8 und die Durchströmöffnungen 73 in der Führungsmembran 11 zum Ventilsitz 32 strömen, von wo er bei vom Ventilsitz 32 abgehobenem Ventilteil 30 in den Sammelraum 54 gelangt und dort über die Drallkanäle 59 zugemessen wird. Der nicht zugemessene Teil des Kraftstoffes kann über die Querbohrungen 52 in die Sacklochbohrung 49 des Ventilteiles 30 strömen und von dort über die Innenbohrung 40 bzw. die Längsbohrung 45 des Schiebergliedes 41 und die Querbohrungen 46 in den Teil des Innenraumes 5 oberhalb des Schalenkernes 7 unter Aufnahme der i Magnetkreis entstehenden Wärme gelangen und von dort über die Abflußöffnungen 70 und die zweite Ringnut 65 in die Kraftstoffrückströmleitung 67 abströmen.The fuel injection valve mounted in a holding body 62 can be fixed in position, for example, by a claw or a cover 63 and has a first annular groove 64 in the valve housing 1 and offset in the axial direction and sealed off from the first annular groove 64, and a second annular groove 65 seals it. In the holding body 62, a fuel supply line 66 is formed, which opens into the first annular groove 64. Furthermore, a fuel return line 67 is formed in the holding body 62, which with the second annular groove 65 is connected. Radial inflow openings 68 in the wall of the cylindrical, tubular part of the valve housing 1 connect the first annular groove 64 to a flow channel 69 which is formed between the outer core 15 and the inner wall of the valve housing 1. The part of the interior 5 lying above the shell core 7 is connected to the second annular groove 65 via radially extending drain openings 70 formed in the cylindrical, tubular part of the valve housing and is separated from the flow channel 69 by a sealing body 71. The guide membrane 11 has flow openings 73, as 29 flow openings 74 can also be formed in the flat armature. The fuel flowing into the flow channel 69 via the inflow openings 68 can flow via openings 75 in the collar 8 and the throughflow openings 73 in the guide membrane 11 to the valve seat 32, from where it reaches the collecting space 54 when the valve part 30 is lifted off the valve seat 32 and there via the Swirl channels 59 is metered. The unmeasured part of the fuel can flow via the transverse bores 52 into the blind bore 49 of the valve part 30 and from there via the inner bore 40 or the longitudinal bore 45 of the slide member 41 and the transverse bores 46 into the part of the interior 5 above the shell core 7 with the receptacle the heat generated in the magnetic circuit arrives and from there flow out into the fuel return line 67 via the drain openings 70 and the second annular groove 65.

Aus Übersichtlichkeitsgründen ist in Figur 2 der auch bei dem Kraftstoffeinspritzventil nach Figur 1 verwendete Magnetkreis 7, 18, 29 noch einmal vereinfacht dargestellt. Maßgebend für die Dimensionierung des Magnetkreises ist die maximale Stromstärke, die von einer nicht dargestellten Ansteuerelektronik geliefert wird und die möglichst klein sein soll. Mit der von der Ansteuerelektronik gelieferten maximalen Stromstärke läßt sich nach dem ohmschen Gesetz der Widerstand R der Magnetwicklung 18 bestimmen. Der Widerstand R der Magnetwicklung 18 läßt sich ebenfalls durch folgende Formel darstellen:

Figure imgb0001
In der Formel bedeuten:

  • R ohmscher Widerstand der Magnetwicklung 18
  • δL spezifischer Widerstand des Wicklungsdrahtes
  • 1m = π. amittlere Windungslänge mit a als mittlerem Durchmesser der Magnetwicklung 18
  • W Windungszahl der Magnetwicklung 18
  • KL (≤1) Füllfaktor der Magnetwicklung 18
  • KF (=1) Fensterfüllfaktor
  • A = b . d Fensterfläche des Schalenkerns 7 mit b als Breite des Fensters und d als Höhe des Fensters.
For reasons of clarity, the magnetic circuit 7, 18, 29 also used in the fuel injection valve according to FIG. 1 is shown once again in simplified form in FIG. Decisive for the dimensioning of the magnetic circuit is the maximum current, which is not shown control electronics is supplied and should be as small as possible. The resistance R of the magnetic winding 18 can be determined with the maximum current supplied by the control electronics in accordance with Ohm's law. The resistance R of the magnetic winding 18 can also be represented by the following formula:
Figure imgb0001
In the formula:
  • Ohmic resistance of the magnetic winding 18
  • δ L specific resistance of the winding wire
  • 1 m = π. average winding length with a as the mean diameter of the magnet winding 18
  • W number of turns of the magnetic winding 18
  • K L (≤1) fill factor of the magnetic winding 18
  • K F ( = 1) window fill factor
  • A = b. d window area of the shell core 7 with b as the width of the window and d as the height of the window.

In dieser Formel sind die folgenden Werte vorgegeben, nämlich der Widerstand R wie oben erwähnt durch die maximale Stromstärke der Ansteuerelektronik, der spezifische Widerstand δL durch das Material der Magnetwicklung 18, für das vorzugsweise Kupfer oder eine Kupferlegierung Verwendung findet und die Windungszahl W der Magnetwicklung 18 durch die erforderliche magnetische Induktion B in dem äusseren Luftspalt 85 zwischen dem Außenkern 15 und dem Flachanker 29 und in dem inneren Luftspalt 86 zwischen dem Innenkern 17 und dem Flachanker 29. Der die Dichte der Packung der Magnetwicklungsleitung darstellende Füllfaktor K L sowie der die Ausfüllung der Fensterfläche A durch die Magnetwicklung 18 darstellende Fensterfüllfaktor KF sollen möglichst groß gewählt werden, also nahe 1 liegen. Um nun einen möglichst kleinen Magnetkreis 7, 18, 29 mit kleinster Ankermasse zu erhalten, soll zur Erzielung des erforderlichen Widerstandes R der Magnetwicklung 18 der Quotient A/l so klein wie möglich gewählt werden. Durch die erfindungsgemässe Verkleinerungen der Abmessungen des Magnetkreises 7, 18, 29 ergeben sich außerdem eine Verkleinerung des Streuflusses, der Wirbelströme und der Hystereseverluste, welche die auf den Flachanker 29 wirkende Kraft während des Anzuges oder Abfalles des Flachankers verkleinern. Die Bestimmung von A und 1mnach der Festlegung von A/lm erfolgt in bekannter Weise durch Optimierung von b/d.The following values are specified in this formula, namely the resistance R, as mentioned above, by the maximum current strength of the control electronics, the specific resistance δ L by the material of the magnetic winding 18, for which copper or a copper alloy is preferably used, and the number of turns W of the magnetic winding 18 due to the required magnetic induction B in the outer air gap 85 between the outer core 15 and the flat armature 29 and in the inner air gap 86 between the inner core 17 and the flat armature 29. The filling factor K L representing the density of the packing of the magnet winding line and the filling the window area A through the mag Window filling factor K F representing network development 18 should be chosen to be as large as possible, ie close to 1. In order to obtain the smallest possible magnetic circuit 7, 18, 29 with the smallest armature mass, the quotient A / l should be chosen as small as possible to achieve the required resistance R of the magnetic winding 18. The reduction in the dimensions of the magnetic circuit 7, 18, 29 according to the invention also results in a reduction in the leakage flux, the eddy currents and the hysteresis losses, which reduce the force acting on the flat armature 29 during the tightening or falling of the flat armature. The determination of A and 1mnach the definition of A / l m is carried out in a known manner by optimization of b / d.

Erfindungsgemäß wird weiterhin angestrebt, die beim Anzug des Flachankers 29 gespeicherte magnetische Energie durch Sättigung des Magnetkreises so klein wie möglich zu halten. Diese magnetische Energie wird während der Anzugszeit des Flachankers 29 aufgebaut, jedoch nicht in eine mechanische Antriebsleistung umgesetzt. Es ist bekannt, daß beim idealen und gesättigten Magnetkreis.(ohne Kupfer- und Eisenverluste) günstigstenfalls die Hälfte der aufgenommenen elektrischen Energie in mechanische Energie und die andere Hälfte in nutzlose magnetische Energie umgesetzt wird, falls der Magnetkreis mit konstantem Strom gespeist wird. Dagegen kann beim ausschließlich in Sättigung betriebenen Magnetkreis im Grenzfalle die aufgenommene elektrische Leistung zu 100 % in mechanische Energie umgesetzt werden, weil mit dem Schließen des Luftspaltes die magnetische Feldenergie abgebaut wird, während sie sich im ungesättigten Falle erhöht. Erfindungsgemäß wird der Magnetkreis 7, 18, 29 so ausgebildet, daß bei Beginn der Anzugsbewegung des Flachankers 29 im Bereich der Luftspalte 85, 86 zwischen dem Flachanker 29 und dem Schalenkern 7 eine magnetische Induktion B von etwa 70 % der Sättigungsinduktion herrscht. Durch diese Maßnahme wird die im angezogenen Magnetkreis gespeicherte Energie so minimiert, daß die beim Anzug aufgenommene elektrische Leistung weitgehend in Antriebsleistung umgesetzt wird. Andererseits ist zur Beschleunigung des Flachankers während der Anzugsbewegung noch ausreichend Kraftzuwachs vorhanden. Vor dem Abfall des Flachankers 29 vom Schalenkern ist somit eine wesentlich geringere magnetische Energie zu vernichten, so daß die Abfallzeit bei konstanter Löschleistung der Ansteuerelektronik reduziert werden kann.According to the invention, the aim is further to keep the magnetic energy stored when the flat armature 29 is tightened as low as possible by saturating the magnetic circuit. This magnetic energy is built up during the tightening time of the flat armature 29, but is not converted into a mechanical drive power. It is known that in the ideal and saturated magnetic circuit (without copper and iron losses) at best half of the electrical energy consumed is converted into mechanical energy and the other half into useless magnetic energy if the magnetic circuit is supplied with constant current. In contrast, in the magnetic circuit operated exclusively in saturation, the electrical power consumed can be converted 100% into mechanical energy in the limit case, because when the air gap is closed, the magnetic field energy is reduced, while it increases in the unsaturated case. According to the invention, the magnetic circuit 7, 18, 29 is formed such that when the flat armature 29 begins to pull in the area of the air gaps 85, 86 between the Flat anchor 29 and the shell core 7 there is a magnetic induction B of about 70% of the saturation induction. This measure minimizes the energy stored in the attracted magnetic circuit so that the electrical power consumed during the suit is largely converted into drive power. On the other hand, there is still sufficient increase in force to accelerate the flat anchor during the tightening movement. Before the flat armature 29 falls from the shell core, a significantly lower magnetic energy is thus to be destroyed, so that the fall time can be reduced with constant extinguishing power of the control electronics.

Erfindungsgemäß sind zwischen dem Flachanker 29 mit möglichst geringer Masse und dem Schalenkern 7 die beiden Luftspalte 85, 86 vorgesehen, die in axialer Richtung wirken und deren magnetisch wirksame Flächen A1 und A2 etwa gleich groß sind. Die Verdoppelung der in axialer Richtung wirkenden Luftspalte A1 und A2 führt zu einer Verdoppelung der Anzugskraft und damit zu einem sehr schnell wirkenden Elektromagneten. Die etwa gleich große Ausbildung der magnetisch wirksamen Flächen A1 und A2 im Bereich der Luftspalte 85, 86 gewährleistet ebenfalls mit der obigen Dimensionierungsvorschrift über die Sättigung die Luftspalte soweit magnetisch zu sättigen, daß eine unbeabsichtigte leichte Schräglage des Flachankers durch davon ausgelöste Magnetkräfte ; nicht exzessiv verstärkt wird. Es sind daher keine aufwendigen Führungen des Flachankers 29 erforderlich, um eine sehr schräge und unreproduzierbare Bewegung des Flachankers zu vermeiden. Die Verdoppelung der Anziehungskraft infolge der beiden Luftspalte 85, 86 und die erfindungsgemäße Minimierung des Magnetkreises 7, 18, 29 ermöglicht den Einsatz hochwertiger Materialen im Magnetkreis. Der größte magnetische Fluß tritt im Joch 16 des Schalenkerns 7 auf, während der magnetische Fluß im Bereich der beiden Luftspalte 85, 86 wesentlich geringer ist, so daß die Querschnitte des Außenkerns 15 und des Innenkerns 17 im Bereich der Luftspalte 85, 86 vorteilhafterweise eingeengt sein können. Die Einengung der Querschnitte des Magnetkreises im Bereich der beiden Luftspalte 85, 86 kann beispielsweise dadurch erfolgen, daß wie an der Stirnseite des Innenkerns 17 dargestellt ist, ein Einstich 87 vorgesehen ist oder wie am Außenkern 15 gestrichelt bei 88 dargestellt ist, kann sich der Außenumfang des Schalenkernes 7 zu den Luftspalten 85, 86 hin in axialer Richtung konisch verjüngen.According to the invention, the two air gaps 85, 86 are provided between the flat anchor 29 with the lowest possible mass and the shell core 7, which act in the axial direction and whose magnetically active surfaces A 1 and A 2 are approximately the same size. The doubling of the air gaps A 1 and A 2 acting in the axial direction leads to a doubling of the tightening force and thus to a very fast acting electromagnet. The approximately equally large design of the magnetically effective surfaces A 1 and A 2 in the area of the air gaps 85, 86 also ensures, with the above dimensioning rule about the saturation, that the air gaps are saturated to such an extent that an unintentional slight inclination of the flat anchor is caused by magnetic forces triggered thereby; is not reinforced excessively. There is therefore no need for complex guides for the flat anchor 29 in order to avoid a very oblique and unreproducible movement of the flat anchor. The doubling of the attractive force as a result of the two air gaps 85, 86 and the minimization of the magnetic circuit 7, 18, 29 according to the invention enables the use of high-quality materials in the magnetic circuit. The largest magnetic flux occurs in the yoke 16 of the shell core 7 during the Magnetic flux in the area of the two air gaps 85, 86 is substantially less, so that the cross sections of the outer core 15 and the inner core 17 can advantageously be narrowed in the area of the air gaps 85, 86. The narrowing of the cross sections of the magnetic circuit in the area of the two air gaps 85, 86 can be achieved, for example, by providing a recess 87 as shown on the end face of the inner core 17 or as shown in broken lines at 88 on the outer core 15, the outer circumference of the shell core 7 taper conically in the axial direction towards the air gaps 85, 86.

Claims (4)

1. Elektromagnet, insbesondere zur Steuerung eines Kraftstoffeinspritzventiles für Brennkraftmaschinen, mit einem Anker und einer auf einem Schalenkern aus ferromagnetischem Material aufgebrachten Magnetwicklung, dadurch gekennzeichnet, daß der Magnetkreis (7, 18, 29) nach der Formel
Figure imgb0002
derart dimensioniert wird, daß bei gegebenem ohmschen Widerstand der Magnetwicklung (18), spezifischem Widerstand δL des Wicklungsmaterials (18), gegebener Windungszahl W der Magnetwicklung (18), gegebenem Füllfaktor KL der Magnetwicklung (18) und gegebenem Fensterfüllfaktor KF der Quotient A/lm, mit A als Fensterfläche des Schalenkerns (7) und lm als mittlerer Windungslänge, so klein wie möglich gewählt wird.
1. Electromagnet, in particular for controlling a fuel injection valve for internal combustion engines, with an armature and a magnetic winding applied to a shell core made of ferromagnetic material, characterized in that the magnetic circuit (7, 18, 29) according to the formula
Figure imgb0002
is dimensioned such that given the ohmic resistance of the magnet winding (18), specific resistance δ L of the winding material (18), given number of turns W of the magnet winding (18), given fill factor K L of the magnet winding (18) and given window fill factor K F the quotient A / l m , with A as the window area of the shell core (7) and l m as the mean winding length, is chosen to be as small as possible.
2. Elektromagnet nach Anspruch 1, dadurch gekennzeichnet, daß der Magnetkreis (7, 18, 29) so ausgebildet ist, daß bei Beginn der Anzugsbewegung des Ankers (29) im Bereich des Luftspaltes (85, 86) zwischen Anker (29) und Schalenkern (7) eine magnetische Induktion B von etwa 70 % der Sättigungsinduktion herrscht.2. Electromagnet according to claim 1, characterized in that the magnetic circuit (7, 18, 29) is designed such that when the armature (29) starts to move in the area of the air gap (85, 86) between the armature (29) and the shell core (7) there is a magnetic induction B of approximately 70% of the saturation induction. 3. Elektromagnet nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anker als Flachanker (29) ausgebildet ist und zwischen den beiden Stirnflächen des Schalenkerns (7) und dem Flachanker (29) zwei in axialer Richtung wirkende Luftspalte (85, 86) vorgesehen sind, deren magnettisch wirksame Flächen (A1, A2) etwa gleich groß sind.3. Electromagnet according to claim 1 or 2, characterized in that the armature is designed as a flat armature (29) and between the two end faces of the shell core (7) and the flat armature (29) provided two air gaps (85, 86) acting in the axial direction are, the magnetically effective areas (A 1 , A 2 ) are approximately the same size. 4. Elektomagnet nach Anspruch 3, dadurch gekennzeichnet, daß die Querschnitte des Magnetkreises im Bereich der beiden Luftspalte (85, 86) eingeengt sind.4. Electromagnet according to claim 3, characterized in that the cross sections of the magnetic circuit in the region of the two air gaps (85, 86) are narrowed.
EP81107130A 1980-12-12 1981-09-10 Electromagnet Withdrawn EP0054107A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3046891 1980-12-12
DE19803046891 DE3046891A1 (en) 1980-12-12 1980-12-12 ELECTROMAGNET

Publications (1)

Publication Number Publication Date
EP0054107A1 true EP0054107A1 (en) 1982-06-23

Family

ID=6119026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107130A Withdrawn EP0054107A1 (en) 1980-12-12 1981-09-10 Electromagnet

Country Status (5)

Country Link
US (1) US4390857A (en)
EP (1) EP0054107A1 (en)
JP (1) JPS57124407A (en)
BR (1) BR8108056A (en)
DE (1) DE3046891A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140627A (en) * 1983-04-25 1984-11-28 Gerhard Mesenich Electromagnet for valves
EP0191376A1 (en) * 1985-02-11 1986-08-20 INTERATOM Gesellschaft mit beschränkter Haftung Valve drive with hydraulic transmission
US4984549A (en) * 1984-03-05 1991-01-15 Coltec Industries Inc. Electromagnetic injection valve
US5088467A (en) * 1984-03-05 1992-02-18 Coltec Industries Inc Electromagnetic injection valve
DE4108758A1 (en) * 1991-03-18 1992-09-24 Kloeckner Humboldt Deutz Ag SOLENOID VALVE FOR A FUEL INJECTOR
EP2574768A1 (en) * 2011-09-27 2013-04-03 Hitachi Automotive Systems, Ltd. Fuel injector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600529A (en) * 1992-11-24 1997-02-04 Harrow Products, Inc. Electromagnetic lock
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
KR20130139876A (en) * 2010-09-20 2013-12-23 리텐스 오토모티브 파트너쉽 Electromagnet and electromagnetic coil assembly
US9677523B2 (en) * 2014-05-30 2017-06-13 Cummins Inc. Fuel injector including an injection control valve having an improved stator core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273073A (en) * 1940-02-28 1942-02-17 Empire Electric Brake Corp Electromagnet
US3644932A (en) * 1969-10-08 1972-02-22 Synergistics Inc High-speed indenting recorder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472141A (en) * 1966-12-12 1969-10-14 Pentacon Dresden Veb Photographic camera shutter control
US3745496A (en) * 1970-11-19 1973-07-10 Deutsch Co Elec Comp Magnetic relay members with grain of the material extending longitudinally thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273073A (en) * 1940-02-28 1942-02-17 Empire Electric Brake Corp Electromagnet
US3644932A (en) * 1969-10-08 1972-02-22 Synergistics Inc High-speed indenting recorder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140627A (en) * 1983-04-25 1984-11-28 Gerhard Mesenich Electromagnet for valves
US4810985A (en) * 1983-04-25 1989-03-07 Colt Industries, Inc. Electromagnet for valves
US4984549A (en) * 1984-03-05 1991-01-15 Coltec Industries Inc. Electromagnetic injection valve
US5088467A (en) * 1984-03-05 1992-02-18 Coltec Industries Inc Electromagnetic injection valve
EP0191376A1 (en) * 1985-02-11 1986-08-20 INTERATOM Gesellschaft mit beschränkter Haftung Valve drive with hydraulic transmission
EP0244878A3 (en) * 1985-02-11 1987-12-23 Interatom Gesellschaft Mit Beschrankter Haftung Electromagnetic-hydraulic valve drive for an internal-combustion engine
DE4108758A1 (en) * 1991-03-18 1992-09-24 Kloeckner Humboldt Deutz Ag SOLENOID VALVE FOR A FUEL INJECTOR
DE4108758C2 (en) * 1991-03-18 2000-05-31 Deutz Ag Solenoid valve for a fuel injector
EP2574768A1 (en) * 2011-09-27 2013-04-03 Hitachi Automotive Systems, Ltd. Fuel injector

Also Published As

Publication number Publication date
DE3046891A1 (en) 1982-07-15
US4390857A (en) 1983-06-28
BR8108056A (en) 1982-09-21
JPS57124407A (en) 1982-08-03

Similar Documents

Publication Publication Date Title
DE3118898C2 (en)
EP0944769B1 (en) Fuel injection valve
DE3427526C2 (en)
DE102005052255B4 (en) Fuel injector
EP0352444B1 (en) Electromagnetically operated valve and method for its production
EP0352445B1 (en) Electromagnetically operated valve
EP0054108B1 (en) Electromagnetically actuated valve, in particular a fuel injection valve for fuel injection systems
DE3336010C2 (en)
EP0772738A1 (en) Electromagnetically operated valve
DE2936853A1 (en) ELECTROMAGNETICALLY ACTUABLE VALVE
EP0687811B1 (en) Electromagnetically actuable fuel injection valve
DE3139669A1 (en) SOLENOID VALVE, ESPECIALLY FUEL INJECTION VALVE
EP0496844B1 (en) Method of adjusting a valve, and valve which can be adjusted by this method
EP0054107A1 (en) Electromagnet
DE10394029B4 (en) An electromagnetic actuator for a fuel injector having an integral magnetic core and injector body
WO1986006442A1 (en) Fuel injection nozzle for internal combustion engines
DE2644135A1 (en) Fuel injection valve cooled by fuel - has supply sealed from return by spring loaded ring between fixed tube and hollow valve needle
DE3207917C2 (en)
DE3500449A1 (en) SOLENOID VALVE FOR FLUID CONTROL
EP0906632A1 (en) Magnetic coil
DE3111938A1 (en) ELECTROMAGNET
DE4023826A1 (en) METHOD FOR ADJUSTING A VALVE AND VALVE
EP0200865A1 (en) Injection valve
DE102005043363B4 (en) Fuel injection valve
EP1102931B1 (en) Fuel injection valve and method for producing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19810910

AK Designated contracting states

Designated state(s): DE FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19831126

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUBACH, HANS, DIPL.-ING.