EP0046278B1 - Apparatus for making interlaced multifilament yarns - Google Patents

Apparatus for making interlaced multifilament yarns Download PDF

Info

Publication number
EP0046278B1
EP0046278B1 EP81106320A EP81106320A EP0046278B1 EP 0046278 B1 EP0046278 B1 EP 0046278B1 EP 81106320 A EP81106320 A EP 81106320A EP 81106320 A EP81106320 A EP 81106320A EP 0046278 B1 EP0046278 B1 EP 0046278B1
Authority
EP
European Patent Office
Prior art keywords
passage
nozzle
laval nozzle
jet
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81106320A
Other languages
German (de)
French (fr)
Other versions
EP0046278A1 (en
Inventor
Gerhard Prof. Dr.-Ing. Egbers
Helmut Dr.-Ing. Weinsdörfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0046278A1 publication Critical patent/EP0046278A1/en
Application granted granted Critical
Publication of EP0046278B1 publication Critical patent/EP0046278B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams

Definitions

  • the invention relates to a device for producing fixed-point multifilament yarns, with a intermingling unit which has a channel through which the filaments to be intermingled pass and are intermingled with one another, for which purpose this channel has at least one divergent nozzle section opening into the channel having a blowing nozzle that can be fed from a compressed gas source and, given an appropriate feed pressure, a gas jet, in particular an air jet that blows into the channel at supersonic speed, the jet direction being either oblique or perpendicular to the longitudinal direction of the channel.
  • a device of this type is known from US-A-3 750 242.
  • Fixed-point multifilament yarns are yarns that consist of a plurality of endless filaments, which filaments at more or less irregular intervals at so-called fixed points (British: interlaces, entangelements; often referred to in German as “knots", even though it is attached) are not knots) are confused with each other.
  • fixed points Bosh: interlaces, entangelements; often referred to in German as "knots", even though it is attached
  • These confusions that form fixed points are created in such a way that the filaments pass through a channel which prevents them from swerving too much laterally and in which channel they are acted upon by at least one gas jet in such a way that the filaments are swirled with one another and as a result become entangled in the yarn
  • Fixed points result, the filaments between these fixed points running essentially parallel to one another.
  • the fixed points serve to give the filaments of the multifilament yarn sufficient cohesion (thread closure) for further processing.
  • Filament is understood to mean a filament spun from a nozzle hole (also called fibril (in Switzerland), capillary, filaments or continuous fiber).
  • This cohesion of the filaments of the multifilament yarn may be necessary for various reasons, for example to prevent the filaments from spreading too far apart due to electrostatic charges or to avoid splitting and damage of the yarn by the guide teeth during weaving or for other reasons associated with further processing, in particular to make certain further processing possible at all.
  • the material of the filaments can be customary materials that are common with textile multifilament yarns (chemical continuous yarns). These are materials that are used to manufacture the «continuous chemical fibers».
  • filaments In line with Anglo-American usage, chemical filament fibers are now mostly referred to as filaments.
  • the filaments can thus in particular consist of uncrimped or optionally also textured (crimped) synthetic high polymers (for example polyester, polyamide, polyacrylic, etc.) or of regenerated fiber materials (for example viscose, copper or acetate artificial silk) or the like. Other fiber materials are also possible.
  • the filaments are passed through a straight cross-section of the intermingling unit with a circular cross section and a straight channel, and one or more blowing nozzles open into this channel.
  • the air jet flowing out of such a blowing nozzle can therefore at most reach the speed of sound and this only with a large air consumption which is considerably more expensive to manufacture the fixed point multifilament yarns.
  • the fixed point density is lower in the known devices at medium to high filament feed speeds, the higher the feed speed of the filaments.
  • several blowing nozzles were previously provided per channel, whereby the fixed point density could only be increased insignificantly despite the greatly increased compressed air consumption.
  • the blowing nozzle should first have a nozzle section with a constant cross section and then a divergent nozzle section, the maximum cross section at the mouth of the Blow nozzle is said to lie in the channel, whereby supersonic speeds occur at the point where the diverging nozzle section merges into the channel.
  • the known device requires feed pressures in the range from 6.6 to 12.4 bar, which indicate a relatively high gas consumption.
  • blowing nozzle is a Laval nozzle and in that the widening nozzle section of the Laval nozzle extends to the circumferential wall surface of the channel and extends over the 0.2 to 0.5 times in particular extends over about 0.35 times the circumference of this channel.
  • the gas jet flowing out of the Laval nozzle can preferably have supersonic speeds.
  • particularly high fixed point densities can be achieved at high feed speeds of the filaments, specifically at much lower feed pressures than in the device according to US Pat. No. 3,750,242, so that higher feed speeds of the filaments can be used than before.
  • the gas jet blown out by the Laval nozzle can still achieve relatively high fixed point densities even in the subsonic speed range, so that in many cases it is even sufficient to operate the Laval nozzle in the subsonic speed range.
  • the compressed gas can preferably be air, but other gases can also be used, preferably water vapor or possibly a gas that physically and / or chemically influences the multifilament yarn. If necessary, an inert gas, e.g. Nitrogen.
  • the device according to the invention makes it possible to use higher filament feed speeds than previously possible, it can also be used in processes in which the known devices could not be used successfully because of high filament feed speeds, e.g. in the so-called «rapid spinning», in which so-called POY yarns are produced. With this rapid spinning, the filaments are immediately pre-oriented immediately after melt spinning, so that the later drawing can be correspondingly low.
  • the fixed points produced by the device according to the invention in the multifilament yarn have very good cohesion, so that the fixed point multifilament yarn can be subjected to heavy loads during further processing.
  • Another important advantage of the device according to the invention is that the filaments can still be relatively taut when passing through the intermingling unit, even at high feed speeds. This further extends the possible uses of the device according to the invention.
  • the gas jet generated by the Laval nozzle on the wall surface of the channel to which it is directed splits into two main swirling currents or vortex currents rotating in opposite directions.
  • the inner circumferential surface of the channel of the intermingling unit can preferably have a non-round, cylindrical shape, since a circular cross-section has proven to be less good, although circular cross-sections can still produce useful results in some cases.
  • the wall surface of the channel that the gas jet impinges upon exiting the Laval nozzle can advantageously be slightly concave in cross-section, the radius of curvature of this concave curvature being greater than 3 mm, at least in the nearer area of its center. Designs of the inner circumferential surface of the channel have proven to be particularly favorable, which can lead to the above-mentioned splitting of the gas jet into two main swirl currents rotating in opposite directions to one another.
  • the circumferential half of the channel opposite the Laval nozzle has an approximately rectangular cross section or that this circumferential half has a central heart-shaped bulge towards which the longitudinal center axis of the Laval nozzle is directed.
  • the circumferential half of the channel which has the inflow opening for the gas flow can preferably have an approximately semicircular or rectangular cross section.
  • the Laval nozzle can be of any suitable design.
  • its nozzle section which widens in cross section and in which supersonic speed can arise, can be approximately frustoconical.
  • the opening angle of this truncated cone-shaped nozzle section, which continuously widens in cross section, can expediently be 1 to 10 °, preferably 3 to 7 °.
  • the nozzle section upstream of the constantly expanding nozzle section of the Laval nozzle is a fluidically well rounded nozzle section, which decreases in the downstream direction with a steadily three-degree diameter.
  • the Laval nozzle can preferably be arranged such that its outlet mouth forms the inlet opening in the peripheral wall of the channel for the gas jet flowing out of it.
  • the Laval nozzle is arranged in such a way that it blows the gas jet freely into the channel through a hole in its peripheral wall.
  • the gas jet is blown into a central longitudinal region of the channel.
  • the longitudinal center axis of the Laval nozzle can be directed into this duct at an angle of 60-90 ° to the longitudinal center axis of the duct, the axial velocity component of the gas jet flowing out of it being directed in the running direction of the filaments.
  • the invention when used in a device according to DE-A-2 840 177, which is characterized in that the channel is provided with a lockable side slot which serves to thread the multifilament bundle, the side slot being blocked by a pneumatic one Actuator can be effected that the servomotor is connected to the compressed air supply line of the Laval nozzle in such a way that when the compressed air supply to the Laval nozzle is opened, the servomotor can be actuated simultaneously by the compressed air to shut off the side slot and thus to bring the channel into operational readiness.
  • Devices according to the invention can be integrated into machines and systems which serve for the production and / or processing of multifilament yarns or can also be provided on a machine which only serves to produce fixed-point multifilament yarns and which can preferably have a large number of such devices.
  • the individual multifilament bundle can preferably be untwisted, i.e. that its filaments do not yet have any mutual cohesion caused by twisting.
  • a multifilament bundle entering the intermingling unit has such a small twist that it does not prevent the formation of the fixed points with a sufficiently high fixed point density.
  • Such twisted or untwisted multifilament bundles are also called multifilament yarns.
  • the cross section of the channel of the swirling unit can preferably be approximately constant over its length. However, in some cases it is also expedient to change the cross section of the channel along its length, preferably to widen it continuously or stepwise in the running direction of the filaments. Narrowing (chicaning) of the canal and / or local widening can also result in minor advantages in some cases.
  • the channel can preferably have a straight curvature or, in special cases, also a weak curvature.
  • the rapid spinning system 10 has a melt spinning nozzle 11, a single filament 12 being spun from each nozzle hole of this spinning nozzle 11.
  • This multifilament bundle 13 runs at a high feed rate to a swirling unit 14 and through its straight channel 15.
  • the multifilament bundle 13 is subjected to an air flow which preferably has supersonic speed, as a result of which the filaments 12 are intermingled to form fixed points 16 (FIG. 7A, FIG. 7C) which occur at more or less irregular, short intervals.
  • the fixed-point multifilament yarn 13 ′ produced in this way then runs through a thread guide 18 to a package winding device 17, where it is wound up to a package 19.
  • this fixed-point multifilament yarn 13 'to pass through at least one treatment station for further treatment, for example to stretch it and only then to wind it up.
  • FIG. 7 A shows an electrostatically charged fixed point filament yarn 13 'which was drawn after an original fixed point multifilament yarn produced by means of a swirling unit 14 according to FIGS. 2-4.
  • the filaments 12 forming it are spread in the intermediate areas 19 'between adjacent fixed points 16, so that it can clearly be seen that the filaments 12 are not connected to one another in these intermediate areas 19'.
  • the filaments are connected to one another at the fixed points 16 and
  • FIG. 7C shows an example of such a fixed point 16 drawn according to a microscope image.
  • the filaments 12 obviously do not form any loops (loops), nor any protruding loops at such a fixed point 16, but cross each other only with serpentine laying within the fixed point 16.
  • the filaments 12, on the other hand lie approximately parallel to one another in each intermediate region 19 'between two adjacent fixed points in the case of a non-twisted fixed-point multifilament yarn 13', if this is not electrostatically charged .
  • the thickness of the fixed point multifilament yarn 13 ' hardly differs in this intermediate region 19' from the thickness of the fixed points 16, so that the fixed points 16 are often difficult to see or can only be seen under microscopic observation.
  • the channel 15 of the swirling aggregate 14 according to FIGS. 1-4 which externally forms a compact cuboid body, is cylindrical with the non-circular cross-section that can be clearly seen from FIG. 4.
  • a Laval nozzle 20 opens into this channel 15 approximately at the level of its longitudinal center.
  • the unit 14 consists of two rigid, one-piece parts connected to one another by screws, namely the main part 21 containing the Laval nozzle 20 and the cover 22.
  • the Laval nozzle 20 is connected to a compressed air source 24 via a compressed air line 23 containing a pressure reducing valve 25.
  • a pressure reducing valve 25 By means of the pressure reducing valve 25, the feed pressure of the Laval nozzle 20 can be set differently.
  • the two essentially cuboid parts 21, 22 of the swirling unit 14 can be made of rigid metal and lie tightly against one another on a flat butt joint 26 under pressure.
  • a circumferential half of the straight channel 15 is embedded as a straight channel 29, 29 'of constant cross section.
  • the trough 29 of the main part 21 has a semicircular cross section in this exemplary embodiment and the trough of the cover 22 has an approximately M-shaped cross section.
  • the channel 15 formed by these two channels 29, 29 ' has a longitudinal center plane of symmetry 30 into which its longitudinal center axis falls and which passes through the convex projection 28 of the circumferentially M-shaped circumferential half 29' of the channel 15 projecting into the channel 15 and also passes through it is a longitudinal center plane of symmetry of Laval nozzle 20.
  • the inlet section 31 is not drawn to scale in FIG. 4.
  • the largest diameter d 3 of the inlet section 31 was 8.4 mm.
  • the nozzle section 32 does not protrude beyond the circumferential wall of the channel 15 and its outlet opening extends approximately 0.35 times the circumference of the channel 15.
  • a supersonic flow in the form of a sharply focused beam 38 the diameter of which can be operated is significantly smaller than the diameter of the outlet mouth of the continuously widening nozzle section 32.
  • the cross section of the channel 15 is drawn to scale in FIG. 4 according to a swirling unit 14 examined in the experiment. Its diameter in the plane of the butt joint 26 was 3 mm.
  • the opening angle c of the widening nozzle section 32 of the Laval nozzle 20 was approximately 6 ° in this device investigated in the experiment according to FIGS. 2-4.
  • the length L of the widening nozzle section 32 was approximately 9 mm.
  • the diameter of the circular inlet opening of the nozzle section 32 was approximately 1.6 mm.
  • the length of the channel 15 was 35 mm in a first test model and 25 mm in a second test model with the Laval nozzle 20 unchanged.
  • a compressor with a pressure of 10 bar was used as the compressed air source 24.
  • this pressure was reduced to approx. 2 to 2.5 bar by means of the pressure reducing valve 25, i.e. that this was the Laval nozzle 20 feed pressure.
  • the supersonic air flow generated in this way caused the multifilament bundle 13 and yarn 13 'to break.
  • the pressure of the compressed air flowing into the Laval nozzle 20 was therefore reduced by means of the reducing valve 25 and at a pressure of 1.1 bar the air jet from the Laval nozzle flowed out at subsonic speed and the multifilament bundle 13 and yarn 13 'became no longer damaged by this air flow, but good fixed point multifilament yarns 13 'with relatively high fixed point densities were created.
  • the multifilament yarn stood in channel 15 under a thread tension of 8 cN. With a feed speed of the yarn 13 'of 1000 m / min, an average fixed point density of 51 / meter was achieved.
  • a feed speed of the yarn 13 'of 1000 m / min an average fixed point density of 51 / meter was achieved.
  • a feed pressure of 1.5 bar only fixed point densities of 20 / meter
  • a feed pressure of 3 bar Fixed point densities of 41 / meter can be achieved, and this despite the higher feed pressure and the resulting higher compressed air consumption and further increases in the feed pressure did not result in a significant increase in the fixed point density.
  • the multifilament yarns examined had a total titer of 22 dtex in each of these tests and each consisted of seven polyamide 6.6 filaments.
  • the fixed point densities were measured using a device developed by the applicant, which is known to the public as the “Reutlinger Interlace Counter”.
  • a cover 22 which contains no channel at all, so that when it is attached to the main part 21 of the unit according to FIGS. 2-4, which has a semi-circular cross-section 29, it results in a channel 15 which has a semi-circular cross-section with a flat surface Floor.
  • the channel 29, which forms a circumferential half of the channel 15, of the main part 21 containing the Laval nozzle 20 has a rectangular cross section. It is also possible to combine this main part 21 of FIG. 6 with other lids, for example with the lids 22 according to FIGS. 2 and 5A-5F.
  • Laval nozzle 2-4 can also be replaced by a Laval nozzle of other suitable designs, preferably by a Laval nozzle whose starting section leading to the widening nozzle section 32 is progressively degressive in the downstream direction up to the nozzle section 32 tapered, as is usual with the known Laval nozzles.
  • the sharply bundled supersonic air jet 38 flowing out of the Laval nozzle 20 can split into two oppositely rotating, roughly equal swirl main flows on the circumferential wall half of the channel 15 opposite the Laval nozzle 20.
  • the longitudinal central axis of the Laval nozzle 20 is approximately perpendicular to the straight longitudinal central axis of the channel 15 cut by it, and the longitudinal central symmetry plane of the Laval nozzle 20 is also a longitudinal central symmetry plane of the channel 15
  • the longitudinal center symmetry plane 30 of the Laval nozzle 20 is directed approximately perpendicular to the longitudinal center axis of the channel 15, so that the angle a shown in FIG. 2 is approximately 90 °.
  • this angle a can be made less than 90 °. It can preferably be 60-90 °.
  • the angle a can be provided at an obtuse angle in special cases, preferably if several Laval nozzles open into the channel, with this angle a being greater than 90 ° in one of these Laval nozzles and in the other nozzle or nozzles this angle a can be provided approximately 90 ° or less than 90 °.
  • the channel 15 It is also expedient to give the channel 15 a relatively small diameter, preferably a few millimeters.
  • This channel 15 prevents the filaments from excessive lateral deflection and also serves to direct the gas flow, it preferably being able to be designed in such a way that it splits it into two main swirling flows rotating in opposite directions at the point of injection. Depending on the blow-in conditions and the like, each of these two main swirl flows can then flow from the point of origin to the same or different proportions in both axial directions of the channel or, if appropriate, only in one axial direction.
  • the cut-out Laval nozzle 20 is incorporated into the cuboid-shaped main body 40 of a swirling unit, which is shown only partially and broken and partially cut away Channel 15 opens into this channel 15 through which the multifilament bundle with swirling passes to the multifilament yarn.
  • This main body 40 is penetrated by a circular cylindrical through bore 42 running perpendicular to the image plane and in it a cylindrical rotating body 43 in the form of a straight pin is rotatably supported with very little plain bearing play.
  • a continuous longitudinal groove 44 is incorporated, into which a hard metal rod 45 with a rectangular cross section is inserted to form the flat longitudinal rear wall 46 of the channel 15, so that the peripheral section of the channel 15 located in this rotating body 43 consists of its flat rear wall 46 and the two flat, mutually parallel, perpendicular to the rear wall 46 side walls 47 and the remaining circumference of the channel is formed by the relevant peripheral portion of the through hole 42, in which the outlet mouth 41 of the Laval nozzle.
  • a continuous side slot 49 is arranged in the rigid main body 40 with respect to the longitudinal axis of the Laval nozzle at an angle of 90 °, which is used for threading the multifilament bundle from the outside into the channel 15, for which purpose the rotating body 43 from the fully drawn position 90 ° can be pivoted in the clockwise direction, in which angular position of the rotating body 43 the channel area located in the rotating body 43 is openly opposite the side slot 49, so that the multifilament bundle can be threaded laterally into the channel 15. By pivoting the rotating body 43 through 90 °, the operating position of the channel 15 then occurs.
  • This return of the rotating body 43 into its operating position can be brought about in this preferred exemplary embodiment by means of a cylinder 52 having a piston 50 with a piston rod 51, the piston rod 51 being connected to a lever 53 which is fixedly arranged on an end face of the rotating body 43 by means of a into a slot 54 of the Lever 53 engaging driver 55 is articulated.
  • the working space 56 of the cylinder 52 which in this exemplary embodiment is single-acting, is connected via a compressed air branch line 23 ′ to the compressed air supply line 23 to the Laval nozzle 20 downstream of a shut-off valve, not shown.
  • the rotating body 43 In order to thread a multifilament bundle into the channel 15, the rotating body 43 is rotated manually by means of the lever 53 into the angular position used to thread the multifilament bundle. If the compressed air supply to the Laval nozzle 20 is then opened in time after threading, then compressed air is also introduced into the working space 56 of the cylinder 52, which moves the piston 50 into the position shown, so that the rotating body 43 thereby opens the compressed air supply the Laval nozzle 20 is automatically rotated from the threading position into its operating position. In operation, as already described, the air jet flowing out of the Laval nozzle in channel 15 splits into two mutually rotating swirl flows.
  • the swirling unit shown in detail and in section in FIG. 9 is similar to that in FIG. 8, but the means for rotating the rotating body 43 are not shown. These can be the same or similar to the device according to FIG. 8.
  • the longitudinal rear wall 46 'of the channel 15 is not flat, but rather slightly concave.
  • the radius of curvature of the cross-sectional contour of this rear wall 46 'of the channel 15 is greater than 3 mm, preferably considerably greater than 3 mm.

Description

Die Erfindung betrifft eine Einrichtung zum Herstellen von Fixpunkt-Multifilamentgarnen, mit einem Verwirbelungsaggregat, das einen Kanal aufweist, den die miteinander zu verwirbelnden Filamente durchlaufen und dabei miteinander verwirbelt werden, zu welchem Zweck diesem Kanal mindestens eine einen in den Kanal mündenden divergenten Düsen-Abschnitt aufweisende, von einer Druckgasquelle speisbare und bei angemessenem Speisedruck einen Gasstrahl insbesondere einen Luftstrahl mit Überschallgeschwindigkeit in den Kanal einblasende Blasdüse zugeordnet ist, wobei die Strahlrichtung entweder schräg oder senkrecht zur Längsrichtung des Kanals gerichtet ist. Eine Einrichtung dieser Art ist aus der US-A-3 750 242 bekannt.The invention relates to a device for producing fixed-point multifilament yarns, with a intermingling unit which has a channel through which the filaments to be intermingled pass and are intermingled with one another, for which purpose this channel has at least one divergent nozzle section opening into the channel having a blowing nozzle that can be fed from a compressed gas source and, given an appropriate feed pressure, a gas jet, in particular an air jet that blows into the channel at supersonic speed, the jet direction being either oblique or perpendicular to the longitudinal direction of the channel. A device of this type is known from US-A-3 750 242.

Unter Fixpunkt-Multifilamentgarnen sind Garne verstanden, die aus einer Mehrzahl von endlosen Filamenten bestehen, welche Filamente in mehr oder weniger unregelmässigen Abständen an sogenannten Fixpunkten (britisch: interlaces, entangelements; in der deutschen Sprache oft auch als «Knoten» bezeichnet, obwohl es an sich keine Knoten sind) miteinander verwirrt sind. Diese Fixpunkte bildenden Verwirrungen werden auf die Weise erzeugt, indem die Filamente einen Kanal durchlaufen, der sie an zu starkem seitlichen Ausweichen hindert und in welchem Kanal sie durch mindestens einen Gasstrahl so beaufschlagt werden, dass die Filamente miteinander verwirbelt werden und sich hierdurch im Garn die Fixpunkte ergeben, wobei die Filamente zwischen diesen Fixpunkten im wesentlichen zueinander parallel verlaufen.Fixed-point multifilament yarns are yarns that consist of a plurality of endless filaments, which filaments at more or less irregular intervals at so-called fixed points (British: interlaces, entangelements; often referred to in German as "knots", even though it is attached) are not knots) are confused with each other. These confusions that form fixed points are created in such a way that the filaments pass through a channel which prevents them from swerving too much laterally and in which channel they are acted upon by at least one gas jet in such a way that the filaments are swirled with one another and as a result become entangled in the yarn Fixed points result, the filaments between these fixed points running essentially parallel to one another.

Die Fixpunkte dienen dazu, den Filamenten des Multifilamentgarnes einen für die Weiterverarbeitung ausreichenden Zusammenhalt (Fadenschluss) zu geben. Unter Filament ist ein aus einem Düsenloch gesponnenes Filament (auch Fibrille (in der Schweiz), Kapillare, Elementarfäden oder Endlosfaser genannt) verstanden. Dieser Zusammenhalt der Filamente des Multifilamentgarnes kann aus unterschiedlichen Gründen notwendig sein, beispielsweise um zu starkes Auseinanderspreizen der Filamente durch elektrostatische Aufladungen zu vermeiden oder um beim Weben das Aufspalten und Beschädigen des Garnes durch die Führungszähne zu vermeiden oder aus sonstigen mit der Weiterverarbeitung zusammenhängenden Gründen, insbesondere um bestimmte Weiterverarbeitungen überhaupt zu ermöglichen.The fixed points serve to give the filaments of the multifilament yarn sufficient cohesion (thread closure) for further processing. Filament is understood to mean a filament spun from a nozzle hole (also called fibril (in Switzerland), capillary, filaments or continuous fiber). This cohesion of the filaments of the multifilament yarn may be necessary for various reasons, for example to prevent the filaments from spreading too far apart due to electrostatic charges or to avoid splitting and damage of the yarn by the guide teeth during weaving or for other reasons associated with further processing, in particular to make certain further processing possible at all.

Bei dem Material der Filamente kann es sich um übliche Materialien handeln, die bei textilen Multifilamentgarnen (Chemie-Endlosgarnen) üblich sind. Es handelt sich um Materialien, wie sie zur Herstellung der «Chemie-Endlosfasern» dienen.The material of the filaments can be customary materials that are common with textile multifilament yarns (chemical continuous yarns). These are materials that are used to manufacture the «continuous chemical fibers».

In Anlehnung an den anglo-amerikanischen Sprachgebrauch bezeichnet man Chemie-Endlosfasern heute meist als Filamente. Die Filamente können also insbesondere aus ungekräuselten oder gegebenenfalls auch texturierten (gekräuselten) synthetischen Hochpolymeren (beispielsweise Polyester, Polyamid, Polyacryl usw.) oder aus Regeneratfaserstoffen (z.B. Viskose-, Kupfer-oder Acetat-Kunstseide) oder dergl. bestehen. Auch andere Faserstoffe kommen infrage.In line with Anglo-American usage, chemical filament fibers are now mostly referred to as filaments. The filaments can thus in particular consist of uncrimped or optionally also textured (crimped) synthetic high polymers (for example polyester, polyamide, polyacrylic, etc.) or of regenerated fiber materials (for example viscose, copper or acetate artificial silk) or the like. Other fiber materials are also possible.

Bei manchen Einrichtungen zum Herstellen von Fixpunkt-Multifilamentgarnen (US- PS 2 985 995; US-PS 4 069 565) werden die Filamente durch einen im Querschnitt kreisrunden, geraden Kanal konstanten Querschnittes des Verwirbelungsaggregates hindurchgeleitet und in diesen Kanal münden eine oder mehrere Blasdüsen, deren lichten Querschnitte über ihre axiale Länge konstant sind und deren Blasrichtungen senkrecht zur Längsmittelachse des Kanales gerichtet sind. Der aus einer solchen Blasdüse ausströmende Luftstrahl kann also höchstens Schallgeschwindigkeit erreichen und dies auch nur mit grossem, die Herstellung der Fixpunkt-Multifilamentgarne erheblich verteuernden Luftverbrauch.In some devices for producing fixed-point multifilament yarns (US Pat. No. 2,985,995; US Pat. No. 4,069,565), the filaments are passed through a straight cross-section of the intermingling unit with a circular cross section and a straight channel, and one or more blowing nozzles open into this channel. whose clear cross-sections are constant over their axial length and whose blowing directions are directed perpendicular to the longitudinal central axis of the channel. The air jet flowing out of such a blowing nozzle can therefore at most reach the speed of sound and this only with a large air consumption which is considerably more expensive to manufacture the fixed point multifilament yarns.

Es ist erwünscht, dass dem Multifilamentgarn eine relativ hohe Fixpunktdichte (Fixpunktdichte = Anzahl der Fixpunkte/Meter Garnlänge) von mindestens 20 Fixpunkten/Meter erteilt wird. Die Fixpunktdichte wird bei den bekannten Einrichtungen bei mittleren bis hohen Filamentvorschubgeschwindigkeiten um so geringer, je höher die Vorschubgeschwindigkeit der Filamente ist. Um die Fixpunktdichte zu erhöhen, sah man bisher mehrere Blasdüsen pro Kanal vor, wodurch jedoch die Fixpunktdichte trotz des stark gestiegenen Druckluftverbrauches sich nur unwesentlich erhöhen liess.It is desirable that the multifilament yarn be given a relatively high fixed point density (fixed point density = number of fixed points / meter yarn length) of at least 20 fixed points / meter. The fixed point density is lower in the known devices at medium to high filament feed speeds, the higher the feed speed of the filaments. In order to increase the fixed point density, several blowing nozzles were previously provided per channel, whereby the fixed point density could only be increased insignificantly despite the greatly increased compressed air consumption.

Um den Wirkungsgrad des Herstellungsverfahrens zu verbessern, schlägt die eingangs genannte US-A-3 750 242 vor, dass die Blasdüse zunächst einen Düsen-Abschnitt mit konstantem Querschnitt und dann einen divergierenden Düsen- Abschnitt aufweisen soll, wobei der maximale Querschnitt an der Mündung der Blasdüse in dem Kanal liegen soll, wodurch Überschallgeschwindigkeiten an der Stelle auftreten, wo der sich divergierende Düsen-Abschnitt in den Kanal übergeht.In order to improve the efficiency of the manufacturing process, the aforementioned US-A-3 750 242 suggests that the blowing nozzle should first have a nozzle section with a constant cross section and then a divergent nozzle section, the maximum cross section at the mouth of the Blow nozzle is said to lie in the channel, whereby supersonic speeds occur at the point where the diverging nozzle section merges into the channel.

Trotz dieses Vorschlages benötigt die bekannte Einrichtung Speisedrücke im Bereich von 6,6 bis 12,4 bar, welche auf einen verhältnismässig hohen Gasverbrauch deuten.Despite this proposal, the known device requires feed pressures in the range from 6.6 to 12.4 bar, which indicate a relatively high gas consumption.

Es ist deshalb eine Aufgabe der vorliegenden Erfindung, eine Einrichtung der eingangs genannten Art zu schaffen, welche bei gewünschter Fixpunktdichte die Anwendung höherer Filamentvorschubgeschwindigkeiten ermöglicht und/oder bei gegebenen Filamentvorschubgeschwindigkeiten den Verbrauch an Druckgas reduzieren lässt.It is therefore an object of the present invention to provide a device of the type mentioned at the outset, which allows the use of higher filament feed speeds at the desired fixed point density and / or can reduce the consumption of compressed gas at given filament feed speeds.

Diese Aufgabe wird durch Weiterbildung der Einrichtung der eingangs genannten Art dadurch gelöst, dass die Blasdüse eine Laval-Düse ist, und dass der sich erweiternde Düsen-Abschnitt der Laval-Düse bis zur Umfangswandfläche des Kanales reicht und sich über das 0,2- bis 0,5-fache insbesondere über etwa das 0,35-fache des Umfanges dieses Kanales erstreckt.This object is achieved by further developing the device of the type mentioned at the outset in that the blowing nozzle is a Laval nozzle and in that the widening nozzle section of the Laval nozzle extends to the circumferential wall surface of the channel and extends over the 0.2 to 0.5 times in particular extends over about 0.35 times the circumference of this channel.

Diese Einrichtung lässt überraschenderweise bei hohen Filamentvorschubgeschwindigkeiten erheblich höhere Fixpunktdichten als die bekannten Einrichtungen dieser Art erreichen. Bevorzugt kann zu diesem Zweck der aus der Laval-Düse ausströmende Gasstrahl Überschallgeschwindigkeit haben. Es lassen sich hierdurch besonders hohe Fixpunktdichten bei hohen Vorschubgeschwindigkeiten der Filamente erreichen, und zwar bei wesentlich niedrigeren Speisedrücken als bei der Einrichtung gemäss US-A-3 750 242, so dass mit höheren Vorschubgeschwindigkeiten der Filamente als bisher gearbeitet werden kann. Auch lässt der durch die Laval-Düse ausgeblasene Gasstrahl sogar im Unterschall-Geschwindigkeitsbereich noch relativ hohe Fixpunktdichten erreichen, so dass es in vielen Fällen sogar ausreichend ist, die Laval-Düse im Unterschall-Geschwindigkeitsbereich zu betreiben. Selbst bei Betrieb der Laval-Düse im Überschall bereich kommt man mit relativ niedrigen Speisedrücken der Laval-Düse aus, so dass sich der Druckgasverbrauch der erfindungsgemässen Einrichtung gegenüber den bekannten Einrichtungen selbst beim Betrieb mit Überschall-Geschwindigkeiten verringern lässt. Im Unterschall-Geschwindigkeitsbereich der Laval-Düse sinkt deren Druckgasverbrauch noch weiter. Die Herstellungskosten des Fixpunkt-Multifilamentgarnes lassen sich also sowohl bei Überschall-Geschwindigkeiten als auch bei Unterschall-Geschwindigkeiten des Gasstrahles der Laval-Düse senken.This device surprisingly leaves at high filament feed speeds achieve significantly higher fixed point densities than the known devices of this type. For this purpose, the gas jet flowing out of the Laval nozzle can preferably have supersonic speeds. In this way, particularly high fixed point densities can be achieved at high feed speeds of the filaments, specifically at much lower feed pressures than in the device according to US Pat. No. 3,750,242, so that higher feed speeds of the filaments can be used than before. The gas jet blown out by the Laval nozzle can still achieve relatively high fixed point densities even in the subsonic speed range, so that in many cases it is even sufficient to operate the Laval nozzle in the subsonic speed range. Even when the Laval nozzle is operated in the supersonic range, relatively low feed pressures of the Laval nozzle are sufficient, so that the compressed gas consumption of the device according to the invention can be reduced compared to the known devices even when operating at supersonic speeds. In the subsonic speed range of the Laval nozzle, its compressed gas consumption drops even further. The manufacturing costs of the fixed point multifilament yarn can thus be reduced both at supersonic speeds and at subsonic speeds of the gas jet of the Laval nozzle.

Es ist zwar auch aus der DE-A-2 840 177 für sich bekannt, das Verwirbelungsaggregat mit einem umfangsseitig mit Ausnahme der Düsenaustrittsöffnungen dieser Austrittsöffnung vollständig geschlossenen Kanal zu versehen, es wird jedoch die Blasdüse in der herkömmlichen Art und Weise mit einem konstanten Querschnitt ausgeführt.It is also known per se from DE-A-2 840 177 to provide the swirling unit with a channel which is completely closed on the circumference with the exception of the nozzle outlet openings of this outlet opening, but the blowing nozzle is designed in the conventional manner with a constant cross section .

Obwohl es normalerweise voll ausreichend ist, dem Kanal eine einzige Laval-Düse zuzuordnen, ist es jedoch selbstverständlich auch möglich, ihm mehrere Laval-Düsen zuzuordnen, falls dies zur Erzielung noch etwas höherer Fixpunktdichten bzw. Filamentvorschubgeschwindigkeiten oder aus sonstigen Gründen erwünscht sein sollte und der erhöhte Druckgasverbrauch tragbar ist. Im allgemeinen ist es jedoch nicht erforderlich, dem Kanal mehrere Laval-Düsen zuzuordnen. Vielmehr ist es normalerweise voll ausreichend und besonders vorteilhaft, dem Kanal des Verwirbelungsaggregates nur eine einzige Laval-Düse zuzuordnen. Hierdurch wird auch der Druckgasverbrauch minimal. Bei dem Druckgas kann es sich vorzugsweise um Luft handeln, doch kommen auch andere Gase infrage, vorzugsweise Wasserdampf oder gegebenenfalls ein das Multifilamentgarn physikalisch und/oder chemisch beeinflussendes Gas. Gegebenenfalls kann auch ein Inertgas, z.B. Stickstoff, verwendet werden.Although it is normally quite sufficient to assign a single Laval nozzle to the channel, it is of course also possible to assign several Laval nozzles to it if this should be desired in order to achieve somewhat higher fixed point densities or filament feed speeds or for other reasons and that increased compressed gas consumption is portable. In general, however, it is not necessary to assign several Laval nozzles to the channel. Rather, it is normally fully sufficient and particularly advantageous to assign only a single Laval nozzle to the channel of the swirling unit. This also minimizes compressed gas consumption. The compressed gas can preferably be air, but other gases can also be used, preferably water vapor or possibly a gas that physically and / or chemically influences the multifilament yarn. If necessary, an inert gas, e.g. Nitrogen.

Da die erfindungsgemässe Einrichtung bei infragekommenden Fixpunktdichten die Anwendung höherer Filamentvorschubgeschwindigkeiten als bisher ermöglicht, kann sie auch bei Prozessen eingesetzt werden, bei denen die bekannten Einrichtungen wegen hoher Filamentvorschubgeschwindigkeiten nicht mit Erfolg angewendet werden konnten, z.B. beim sogenanntem «Schnellspinnen», bei welchem sogenannte POY-Garne hergestellt werden. Bei diesem Schnellspinnen werden die Filamente unmittelbar nach dem Schmelzspinnen sofort vororientiert, so dass die spätere Verstreckung entsprechend gering sein kann.Since the device according to the invention makes it possible to use higher filament feed speeds than previously possible, it can also be used in processes in which the known devices could not be used successfully because of high filament feed speeds, e.g. in the so-called «rapid spinning», in which so-called POY yarns are produced. With this rapid spinning, the filaments are immediately pre-oriented immediately after melt spinning, so that the later drawing can be correspondingly low.

Die durch die erfindungsgemässe Einrichtung im Multifilamentgarn erzeugten Fixpunkte haben sehr guten Zusammenhalt, so dass das Fixpunkt-Multifilamentgarn bei der weiteren Verarbeitung starken Beanspruchungen ausgesetzt werden kann.The fixed points produced by the device according to the invention in the multifilament yarn have very good cohesion, so that the fixed point multifilament yarn can be subjected to heavy loads during further processing.

Es ist möglich, die Filamente eines einzigen, in das Verwirbelungsaggregat einlaufenden Multifilamentbündels miteinander zu verwirbeln, doch ist es auch möglich, gleichzeitig mehrere, von getrennten Lieferstellen kommende Filamente oder Multifilamentbündel in den Kanal einlaufen zu lassen, die dann durch die Fixpunkte zu einem einzigen Fixpunkt-Multifilamentgarn miteinander verbunden werden. Dem hierbei erhaltenen Fixpunkt-Multifilamentgarn ist unter Umständen nicht anzusehen, dass es aus getrennt zulaufenden Filamenten oder aus mehreren oder aus einem einzigen Multifilamentbündel gebildet wurde. Wenn in das Verwirbelungsaggregat ein einziges Multifilamentbündel einläuft, bezeichnet man dies in Anlehnung an den brit. Fachausdruck auch in Deutschland als «Intermingling». Wenn durch die Filamente mehrere Multifilamentbündel zu einem einzigen Fixpunkt-Multifilamentgarn miteinander verbunden werden, bezeichnet man dies als «Comingling».It is possible to intermingle the filaments of a single multifilament bundle entering the interlacing unit, but it is also possible to simultaneously feed several filaments or multifilament bundles coming from separate delivery points into the channel, which then go through the fixed points to a single fixed point -Multifilament yarn to be connected. The fixed-point multifilament yarn obtained here may not be seen under certain circumstances that it was formed from separately running filaments or from several or from a single multifilament bundle. If a single multifilament bundle enters the intermingling unit, this is also referred to as “intermingling” in Germany based on the British term. If several filament bundles are connected to one another by the filaments to form a single fixed-point multifilament yarn, this is referred to as "coming".

Ein weiterer wichtiger Vorteil der erfindungsgemässen Einrichtung ist auch, dass die Filamente beim Durchlaufen des Verwirbelungsaggregates auch bei hohen Vorschubgeschwindigkeiten noch relativ stark gespannt sein können. Dies erweitert die Anwendungsmöglichkeiten der erfindungsgemässen Einrichtung zusätzlich.Another important advantage of the device according to the invention is that the filaments can still be relatively taut when passing through the intermingling unit, even at high feed speeds. This further extends the possible uses of the device according to the invention.

Als besonders vorteilhaft hat es sich erwiesen, wenn vorgesehen ist, dass sich der von der Laval-Düse erzeugte Gasstrahl an der Wandfläche des Kanales, auf die er gerichtet ist, in zwei gegensinnig rotierenden Hauptdrallströmungen oder Wirbelströmungen aufspaltet. Dies gelingt ohne weiteres, indem man die Laval-Düse so ausbildet, dass der Durchmesser des von ihr erzeugten Gasstrahles an der Eintrittsstelle in den Kanal deutlich kleiner als der Durchmesser des Kanales ist, so dass der Gasstrahl zunächst zwischen den Filamenten hindurchströmt und dann an der durch ihn beaufschlagten Wandfläche des Kanales in zwei gegensinnig rotierende Drallhauptströmungen aufgespalten wird.It has proven to be particularly advantageous if it is provided that the gas jet generated by the Laval nozzle on the wall surface of the channel to which it is directed splits into two main swirling currents or vortex currents rotating in opposite directions. This is easily achieved by designing the Laval nozzle so that the diameter of the gas jet it generates is significantly smaller than the diameter of the channel at the point of entry into the channel, so that the gas jet first flows between the filaments and then at the through the wall surface of the channel acted upon by it, it is split into two oppositely rotating main swirl flows.

Die Innenumfangsfläche des Kanales des Verwirbelungsaggregates kann vorzugsweise unrunde, zylindrische Gestalt haben, da sich kreisrunder Querschnitt als weniger gut erwies, obwohl auch kreisrunde Querschnitte in manchen Fällen noch brauchbare Resultate erbringen können. Die Wandfläche des Kanals, auf die der Gasstrahl nach Verlassen der Laval-Düse aufprallt, kann vorteilhafterweise im Querschnitt schwach konkav gewölbt sein, wobei der Krümmungsradius dieser konkaven Wölbung zumindest im näheren Bereich ihrer Mitte grösser als 3 mm ist. Als besonders günstig haben sich Gestaltungen der Innenumfangsfläche des Kanales erwiesen, die zu der erwähnten Aufspaltung des Gasstrahles in zwei gegensinnig zueinander rotierende Drallhauptströmungen führen können. Hierzu kann vorzugsweise vorgesehen sein, dass die der Laval-Düse gegenüberliegende Umfangshälfte des Kanales ungefährt rechteckförmigen Querschnitt aufweist oder dass diese Umfangshälfte eine mittige herzförmige Auswölbung aufweist, auf die die Längsmittelachse der Laval-Düse zu gerichtet ist. Die die Einströmöffnung für die Gasströmung aufweisende Umfangshälfte des Kanales kann vorzugsweise ungefähr halbkreisförmig oder rechteckförmigen Querschnitt haben.The inner circumferential surface of the channel of the intermingling unit can preferably have a non-round, cylindrical shape, since a circular cross-section has proven to be less good, although circular cross-sections can still produce useful results in some cases. The wall surface of the channel that the gas jet impinges upon exiting the Laval nozzle can advantageously be slightly concave in cross-section, the radius of curvature of this concave curvature being greater than 3 mm, at least in the nearer area of its center. Designs of the inner circumferential surface of the channel have proven to be particularly favorable, which can lead to the above-mentioned splitting of the gas jet into two main swirl currents rotating in opposite directions to one another. For this purpose it can preferably be provided that the circumferential half of the channel opposite the Laval nozzle has an approximately rectangular cross section or that this circumferential half has a central heart-shaped bulge towards which the longitudinal center axis of the Laval nozzle is directed. The circumferential half of the channel which has the inflow opening for the gas flow can preferably have an approximately semicircular or rectangular cross section.

Zur Erzielung hoher Fixpunktdichten des Fixpunkt-Multifilamentgarnes hat es sich als besonders günstig erwiesen, wenn das Verhältnis des Durchmessers des engsten Querschnittes der Laval-Düse zu demjenigen Durchmesser des Kanales des Verwirbelungsaggregates, welcher senkrecht zur Längsmittelachse der Laval-Düse gemessen wird, 1:5 bis 2:3 beträgt.To achieve high fixed point densities of the fixed point multifilament yarn, it has proven to be particularly advantageous if the ratio of the diameter of the narrowest cross section of the Laval nozzle to that diameter of the channel of the intermingling unit, which is measured perpendicular to the longitudinal center axis of the Laval nozzle, is 1: 5 is up to 2: 3.

Die Laval-Düse kann irgendeine geeignete Ausbildung aufweisen. Vorzugsweise kann ihr sich im Querschnitt erweiternder Düsenabschnitt, in welchem Überschallgeschwindigkeit entstehen kann, ungefähr kegelstumpfförmig ausgebildet sein. Der Öffnungswinkel dieses kegelstumpfförmigen, sich im Querschnitt stetig erweiternden Düsenabschnittes kann zweckmässig 1 bis 10°, vorzugsweise 3 bis 7° betragen.The Laval nozzle can be of any suitable design. Preferably, its nozzle section, which widens in cross section and in which supersonic speed can arise, can be approximately frustoconical. The opening angle of this truncated cone-shaped nozzle section, which continuously widens in cross section, can expediently be 1 to 10 °, preferably 3 to 7 °.

Bei einer besonders bevorzugten Ausführung ist der dem sich stetig erweiternden Düsenabschnitts der Laval-Düse vorgeschaltete Düsen- Abschnitt ein strömungstechnisch gut verrunderter, in stromabwärtiger Richtung im Durchmesser stetig dregressiv abnehmender Düsen-Abschnitt.In a particularly preferred embodiment, the nozzle section upstream of the constantly expanding nozzle section of the Laval nozzle is a fluidically well rounded nozzle section, which decreases in the downstream direction with a steadily three-degree diameter.

Es kommen gegebenenfalls auch andere Gestaltungen des sich erweiternden Düsenabschnittes der Laval-Düse infrage. Damit Überschallgeschwindigkeit in der Laval-Düse entsteht, muss das sie durchströmende Druckgas zunächst durch Querschnittsverringerung auf Schallgeschwindigkeit beschleunigt werden, bevor es Überschallgeschwindigkeit erhält.Other designs of the widening nozzle section of the Laval nozzle may also be considered. In order for supersonic speed to develop in the Laval nozzle, the compressed gas flowing through it must first be accelerated to the speed of sound by reducing the cross-section before it receives supersonic speed.

Die Laval-Düse kann vorzugsweise so angeordnet sein, dass ihre Austrittsmündung die Eintrittsöffnung in der Umfangswandung des Kanales für den aus ihr ausströmenden Gasstrahl bildet. Es ist jedoch auch denkbar, dass man die Laval-Düse in manchen Fällen so anordnet, dass sie in den Kanal durch ein Loch in dessen Umfangswand den Gasstrahl frei ausblasend einbläst. Oder es ist in manchen Fällen denkbar, die Laval-Düse über ein Verbindungsrohrstück an den Kanal anzuschliessen.The Laval nozzle can preferably be arranged such that its outlet mouth forms the inlet opening in the peripheral wall of the channel for the gas jet flowing out of it. However, it is also conceivable that in some cases the Laval nozzle is arranged in such a way that it blows the gas jet freely into the channel through a hole in its peripheral wall. Or in some cases it is conceivable to connect the Laval nozzle to the duct via a connecting pipe piece.

Bei allen der oben beschriebenen Ausführungen ist bevorzugt, dass der Gasstrahl in einen mittleren Längsbereich des Kanals eingeblasen wird.In all of the embodiments described above, it is preferred that the gas jet is blown into a central longitudinal region of the channel.

Die Längsmittelachse der Laval-Düse kann in einem Winkel von 60-90° zur Längsmittelachse des Kanals in diesen Kanal gerichtet sein, wobei die bezogen auf den Kanal axiale Geschwindigkeitskomponente des aus ihr ausströmenden Gasstrahles in Laufrichtung der Filamente gerichtet ist.The longitudinal center axis of the Laval nozzle can be directed into this duct at an angle of 60-90 ° to the longitudinal center axis of the duct, the axial velocity component of the gas jet flowing out of it being directed in the running direction of the filaments.

Es soll erwähnt werden, dass bei Anwendung der Erfindung in einer Einrichtung gemäss DE-A-2 840 177, welche sich dadurch auszeichnet, dass der Kanal mit einem absperrbaren dem Einfädeln des Multifilamentbündels dienenden Seitenschlitz versehen ist, wobei das Absperren des Seitenschlitzes durch einen pneumatischen Stellmotor bewirkbar ist, dass der Stellmotor an die Druckluftzufuhrleitung der Laval-Düse angeschlossen ist, derart, dass der Stellmotor bei Öffnen der Druckluftzufuhr zur Laval-Düse gleichzeitig durch die Druckluft zum Absperren des Seitenschlitzes und so zum Herbeiführen der Betriebsbereitschaft des Kanales betätigbar ist.It should be mentioned that when the invention is used in a device according to DE-A-2 840 177, which is characterized in that the channel is provided with a lockable side slot which serves to thread the multifilament bundle, the side slot being blocked by a pneumatic one Actuator can be effected that the servomotor is connected to the compressed air supply line of the Laval nozzle in such a way that when the compressed air supply to the Laval nozzle is opened, the servomotor can be actuated simultaneously by the compressed air to shut off the side slot and thus to bring the channel into operational readiness.

Erfindungsgemässe Einrichtungen können in Maschinen und Anlagen, die der Herstellung und/oder Verarbeitung von Multifilamentgarnen dienen, integriert oder auch an einer Maschine vorgesehen sein, die nur dem Herstellen von Fixpunkt-Multifilamentgarnen dient und die vorzugsweise eine Vielzahl solcher Einrichtungen haben kann.Devices according to the invention can be integrated into machines and systems which serve for the production and / or processing of multifilament yarns or can also be provided on a machine which only serves to produce fixed-point multifilament yarns and which can preferably have a large number of such devices.

Wenn dem Verwirbelungsaggregat nicht getrennt zulaufende Filamente vorgelegt werden, sondern ein oder mehrere Multifilamentbündel, so kann das einzelne Multifilamentbündel vorzugsweise ungedreht sein, d.h., dass seine Filamente noch keinen durch Drehen bewirkten gegenseitigen Zusammenhalt haben. Es ist jedoch auch möglich, dass ein in das Verwirbelungsaggregat einlaufendes Multifilamentbündel eine so geringe Drehung (Drall) hat, dass sie die Entstehung der Fixpunkte mit ausreichend hoher Fixpunktdichte nicht verhindert. Solche gedrehten oder ungedrehten Multifilamentbündel bezeichnet man auch als Multifilamentgarne.If the intermingling unit is not presented with separate filaments, but one or more multifilament bundles, the individual multifilament bundle can preferably be untwisted, i.e. that its filaments do not yet have any mutual cohesion caused by twisting. However, it is also possible that a multifilament bundle entering the intermingling unit has such a small twist that it does not prevent the formation of the fixed points with a sufficiently high fixed point density. Such twisted or untwisted multifilament bundles are also called multifilament yarns.

Der Querschnitt des Kanales des Verwirbelungsaggregates kann bevorzugt über dessen Länge ungefähr konstant sein. Doch ist es in manchen Fällen auch zweckmässig, den Querschnitt des Kanales über dessen Länge zu verändern, vorzugsweise ihn in Laufrichtung der Filamente stetig oder stufenweise zu erweitern. Auch Verengungen (Schikanen) des Kanales und/oder örtliche Erweiterungen können in manchen Fällen geringe Vorteile ergeben. Der Kanal kann vorzugsweise gerade oder in Sonderfällen auch schwache Krümmung aufweisen.The cross section of the channel of the swirling unit can preferably be approximately constant over its length. However, in some cases it is also expedient to change the cross section of the channel along its length, preferably to widen it continuously or stepwise in the running direction of the filaments. Narrowing (chicaning) of the canal and / or local widening can also result in minor advantages in some cases. The channel can preferably have a straight curvature or, in special cases, also a weak curvature.

In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:

  • Fig. 1 eine Schnellspinnanlage in schematischer Darstellung mit einem Verwirbelungsaggregat zum Erzeugen der Fixpunkte in einem Multifilamentgarn,
  • Fig. 2 einen Schnitt durch das Verwirbelungsaggregat der Anlage nach Fig. 1,
  • Fig. 3 einen Schnitt durch das Verwirbelungsaggregat nach Fig. 2, gesehen entlang der Schnittlinie 3-3,
  • Fig. 4 einen vergrösserten Ausschnitt aus Fig. 3,
  • Fig. 5A-F Varianten des Deckels des Aggregates nach den Fig. 1-4 und 6, bei denen die von der Laval-Düse abgewendete Umfangshälfte des Kanales unterschiedliche Profile hat,
  • Fig. 6 eine Untenansicht eines Verwirbelungsaggregates, welches ähnlich dem nach den Fig. 1-4 ist, wobei jedoch sein Kanal rechteckförmigen Querschnitt aufweist,
  • Fig. 7A einen Ausschnitt aus einem Fixpunkt-Multifilamentgarn, das stark elektrostatisch aufgeladen dargestellt ist, damit die Filamente in den Bereichen zwischen benachbarten Fixpunkten gespreizt sind, um die Fixpunkte deutlicher erkennen zu können,
  • Fig. 7B einen Ausschnitt aus einem Fixpunkt-Multifilamentgarn zwischen zwei benachbarten, nicht zu sehenden Fixpunkten, wobei dieses Garn nicht elektrostatisch aufgeladen ist,
  • Fig. 7C einen Fixpunkt eines Fixpunkt-Multifilamentgarnes, welcher nach einem Mikroskopbild eines tatsächlichen Fixpunktes gezeichnet wurde.
  • Fig. 8 eine ausschnittsweise, teilweise längsgeschnittene und gebrochene Darstellung eines Verwirbelungsaggregates gemäss einem weiteren Ausführungsbeispiel der Erfindung,
  • Fig. 9 eine ausschnittsweise, geschnittene Darstellung eines Verwirbelungsaggregates gemäss einem weiteren Ausführungsbeispiel der Erfindung,
Exemplary embodiments of the invention are shown in the drawing. Show it:
  • 1 is a schematic representation of a rapid spinning system with a swirling unit for generating the fixed points in a multifilament yarn,
  • 2 shows a section through the swirling unit of the system according to FIG. 1,
  • Fig. 3 shows a section through the swirl 2, seen along the section line 3-3,
  • 4 shows an enlarged detail from FIG. 3,
  • 5A-F variants of the cover of the unit according to FIGS. 1-4 and 6, in which the peripheral half of the channel facing away from the Laval nozzle has different profiles,
  • 6 is a bottom view of a swirling unit, which is similar to that of FIGS. 1-4, but with its channel having a rectangular cross section,
  • 7A shows a detail from a fixed-point multifilament yarn, which is shown with a high electrostatic charge, so that the filaments are spread in the areas between adjacent fixed points in order to be able to recognize the fixed points more clearly,
  • 7B shows a section of a fixed point multifilament yarn between two adjacent fixed points that cannot be seen, this yarn not being electrostatically charged,
  • 7C shows a fixed point of a fixed point multifilament yarn, which was drawn after a microscope image of an actual fixed point.
  • 8 is a fragmentary, partially longitudinally sectioned and broken illustration of a swirling unit according to a further exemplary embodiment of the invention,
  • 9 is a partial, sectional illustration of a swirling unit according to a further exemplary embodiment of the invention,

Die Schnellspinnanlage 10 nach Fig. 1 weist eine Schmelz-Spinndüse 11 auf, wobei aus jedem Düsenloch dieser Spinndüse 11 ein einzelnes Filament 12 gesponnen wird. Diese Filamente 12 durchlaufen unter Zusammenfassung zu einem Multifilamentbündel 13, das keine Drehung hat, eine Präparationsvorrichtung 18', in der auf sie eine Präparation (spin finish) aufgebracht wird, beispielsweise eine Präparation, die der elektrostatischen Aufladung entgegenwirkt und/oder ihre Gleitfähigkeit verbessert usw. Dieses Multifilamentbündel 13 läuft mit hoher Vorschubgeschwindigkeit zu einem Verwirbelungsaggregat 14 und durch dessen geraden Kanal 15 hindurch.The rapid spinning system 10 according to FIG. 1 has a melt spinning nozzle 11, a single filament 12 being spun from each nozzle hole of this spinning nozzle 11. These filaments 12, combined to form a multifilament bundle 13 which has no rotation, pass through a preparation device 18 ', in which a preparation (spin finish) is applied to them, for example a preparation which counteracts the electrostatic charge and / or improves its lubricity, etc This multifilament bundle 13 runs at a high feed rate to a swirling unit 14 and through its straight channel 15.

In diesem Verwirbelungsaggregat 14 wird das Multifilamentbündel 13 mit vorzugsweise Überschallgeschwindigkeit aufweisender Luftströmung beaufschlagt, wodurch die Filamente 12 unter Bildung von in mehr oder weniger unregelmässigen, kurzen Abständen entstehenden Fixpunkten 16 (Fig. 7A, Fig. 7C) miteinanderverwirbelt werden. Das hierdurch erzeugte Fixpunkt-Multifilamentgarn 13' läuft dann durch einen Fadenführer 18 geführt zu einer Kreuzspul-Aufwindevorrichtung 17, wo es zu einer Kreuzspule 19 aufgewunden wird. Es ist jedoch auch möglich, dieses Fixpunkt-Multifilamentgarn 13'vorseinem Aufwinden zur weiteren Behandlung noch mindestens eine Behandlungsstation durchlaufen zu lassen, beispielsweise es zu strecken und erst dann aufzuwinden.In this intermingling unit 14, the multifilament bundle 13 is subjected to an air flow which preferably has supersonic speed, as a result of which the filaments 12 are intermingled to form fixed points 16 (FIG. 7A, FIG. 7C) which occur at more or less irregular, short intervals. The fixed-point multifilament yarn 13 ′ produced in this way then runs through a thread guide 18 to a package winding device 17, where it is wound up to a package 19. However, it is also possible to allow this fixed-point multifilament yarn 13 'to pass through at least one treatment station for further treatment, for example to stretch it and only then to wind it up.

Fig. 7 A zeigt ein elektrostatisch stark aufgeladenes Fixpunkt-Filamentgarn 13', das nach einem mittels eines Verwirbelungsaggregates 14 nach den Fig. 2-4 hergestellten Original-Fixpunkt-Multifilamentgarn gezeichnet wurde. Infolge der starken elektrostatischen Aufladung sind die es bildenden Filamente 12 in den Zwischenbereichen 19' zwischen benachbarten Fixpunkten 16 gespreizt, so dass man deutlich sieht, dass in diesen Zwischenbereichen 19' die Filamente 12 nicht miteinander verbunden sind. Dagegen sind die Filamente an den Fixpunkten 16 miteinander verbunden und Fig. 7C zeigt ein nach einem Mikroskopbild gezeichnetes Beispiel eines solchen Fixpunktes 16. Die Filamente 12 bilden ersichtlich an einem solchen Fixpunkt 16 keine Schlingen (Schlaufen), auch keine abstehenden Schlingen, sondern kreuzen sich lediglich unter schlangenförmiger Verlegung innerhalb des Fixpunktes 16. Wie Fig. 7B zeigt, liegen die Filamente 12 dagegen in jedem Zwischenbereich 19' zwischen zwei benachbarten Fixpunkten bei einem nicht gedrehten Fixpunkt-Multifilamentgarn 13', wenn dies nicht elektrostatisch aufgeladen ist, ungefähr parallel aneinander an. Die Dicke des Fixpunkt-Multifilamentgarnes 13' unterscheidet sich in diesem Zwischenbereich 19' kaum von der Dicke der Fixpunkte 16, so dass die Fixpunkte 16 häufig kaum zu erkennen sind oder sogar nur bei mikroskopischer Betrachtung zu erkennen sind.FIG. 7 A shows an electrostatically charged fixed point filament yarn 13 'which was drawn after an original fixed point multifilament yarn produced by means of a swirling unit 14 according to FIGS. 2-4. As a result of the strong electrostatic charge, the filaments 12 forming it are spread in the intermediate areas 19 'between adjacent fixed points 16, so that it can clearly be seen that the filaments 12 are not connected to one another in these intermediate areas 19'. In contrast, the filaments are connected to one another at the fixed points 16 and FIG. 7C shows an example of such a fixed point 16 drawn according to a microscope image. The filaments 12 obviously do not form any loops (loops), nor any protruding loops at such a fixed point 16, but cross each other only with serpentine laying within the fixed point 16. As shown in FIG. 7B, the filaments 12, on the other hand, lie approximately parallel to one another in each intermediate region 19 'between two adjacent fixed points in the case of a non-twisted fixed-point multifilament yarn 13', if this is not electrostatically charged . The thickness of the fixed point multifilament yarn 13 'hardly differs in this intermediate region 19' from the thickness of the fixed points 16, so that the fixed points 16 are often difficult to see or can only be seen under microscopic observation.

Der Kanal 15 des äusserlich einen kompakten quaderförmigen Körper bildenden Verwirbelungsaggregates 14 nach den Fig. 1-4 ist zylindrisch mit dem aus Fig. 4 deutlich zu ersehenden unrunden Querschnitt. In diesem Kanal 15 mündet ungefähr in Höhe seiner Längsmitte eine Laval-Düse 20 ein. Das Aggregat 14 besteht aus zwei miteinander durch Schrauben verbundenen, starren, einstückigen Teilen, nämlich dem die Laval-Düse 20 enthaltenden Hauptteil 21 und dem Deckel 22.The channel 15 of the swirling aggregate 14 according to FIGS. 1-4, which externally forms a compact cuboid body, is cylindrical with the non-circular cross-section that can be clearly seen from FIG. 4. A Laval nozzle 20 opens into this channel 15 approximately at the level of its longitudinal center. The unit 14 consists of two rigid, one-piece parts connected to one another by screws, namely the main part 21 containing the Laval nozzle 20 and the cover 22.

Die Laval-Düse 20 ist über eine ein Druckreduzierventil 25 enthaltende Druckluftleitung 23 an eine Druckluftquelle 24 angeschlossen. Mittels des Druckreduzierventiles 25 kann der Speisedruck der Laval-Düse 20 unterschiedlich eingestellt werden.The Laval nozzle 20 is connected to a compressed air source 24 via a compressed air line 23 containing a pressure reducing valve 25. By means of the pressure reducing valve 25, the feed pressure of the Laval nozzle 20 can be set differently.

Die beiden im wesentlichen quaderförmigen Teile 21, 22 des Verwirbelungsaggregates 14 können aus starrem Metall bestehen und liegen an einer ebenen Stossfuge 26 unter Pressung dicht aneinander an. In jedem dieser Teile 21, 22 ist je eine Umfangshälfte des geraden Kanales 15 als gerade Rinne 29, 29' konstanten Querschnittes eingelassen. Die Rinne 29 des Hauptteiles 21 hat in diesem Ausführungsbeispiel halbkreisförmigen Querschnitt und die Rinne des Deckels 22 ungefähr M-förmigen Querschnitt. Der durch diese beiden Rinnen 29, 29' gebildete Kanal 15 hat eine Längsmittelsymmetrieebene 30, in die seine Längsmittelachse fällt und die durch den in den Kanal 15 hineinragenden konvexen Vorsprung 28 der im Querschnitt M-förmigen Umfangshälfte 29' des Kanales 15 mittig hindurchgeht und auch eine Längsmittelsymmetrieebene der Laval-Düse 20 ist.The two essentially cuboid parts 21, 22 of the swirling unit 14 can be made of rigid metal and lie tightly against one another on a flat butt joint 26 under pressure. In each of these parts 21, 22 a circumferential half of the straight channel 15 is embedded as a straight channel 29, 29 'of constant cross section. The trough 29 of the main part 21 has a semicircular cross section in this exemplary embodiment and the trough of the cover 22 has an approximately M-shaped cross section. The channel 15 formed by these two channels 29, 29 'has a longitudinal center plane of symmetry 30 into which its longitudinal center axis falls and which passes through the convex projection 28 of the circumferentially M-shaped circumferential half 29' of the channel 15 projecting into the channel 15 and also passes through it is a longitudinal center plane of symmetry of Laval nozzle 20.

Diese Laval-Düse 20 weist in diesem Ausführungsbeispiel einen kegelstumpfförmiqen (Öffnungswinkel c2=118°) Einlaufabschnitt 31 auf, an den die Druckluftleitung 23 (lichter Innendurchmesser d2=2,7 mm) eingangsseitig angeschlossen ist und an den ausgangsseitig ein sich in Strömungsrichtung der Druckluft schwach erweiternder, kegelstumpfförmiger, lichter Düsen- abschnitt 32 anschliesst, der bis zur Umfangswandung des Kanales 15 hier in diesen einmündend reicht. Der Einlaufabschnitt 31 ist in Fig. 4 nicht massstäblich gezeichnet. Der Grösstdurchmesser d3 des Einlaufabschnittes 31 betrug 8,4 mm. Der Düsenabschnitt 32 steht nicht über die Umfangswandung des Kanales 15 vor und seine Austrittsmündung erstreckt sich ungefähr über das 0,35-fache des Umfanges des Kanales 15. In dem Abschnitt 32 kann im Betrieb eine Überschallströmung in Form eines scharf gebündelten Strahles 38, dessen Durchmesser deutlich kleiner als der Durchmesser der Austrittsmündung des sich stetig erweiternden Düsenabschnittes 32 ist, erzeugt werden.In this exemplary embodiment, this Laval nozzle 20 has a frustoconical (opening angle c 2 = 118 °) inlet section 31, to which the compressed air line 23 (inside diameter d 2 = 2.7 mm) is connected on the inlet side and on the outlet side in the direction of flow adjoining the compressed air, slightly frustoconical, clear nozzle section 32, which extends here to the circumferential wall of the channel 15. The inlet section 31 is not drawn to scale in FIG. 4. The largest diameter d 3 of the inlet section 31 was 8.4 mm. The nozzle section 32 does not protrude beyond the circumferential wall of the channel 15 and its outlet opening extends approximately 0.35 times the circumference of the channel 15. In the section 32, a supersonic flow in the form of a sharply focused beam 38, the diameter of which can be operated is significantly smaller than the diameter of the outlet mouth of the continuously widening nozzle section 32.

Der Querschnitt des Kanales 15 ist in Fig. 4 gemäss einem im Versuch untersuchten Verwirbelungsaggregat 14 massstäblich gezeichnet. Sein Durchmesser in der Ebene der Stossfuge 26 betrug 3 mm. Der Öffnungswinkel c, des sich erweiternden Düsenabschnittes 32 der Laval-Düse 20 betrug bei dieser im Versuch untersuchten Einrichtung nach Fig. 2-4 ca. 6°. Bei diesen im Versuch untersuchten Verwirbelungsaggregaten betrug die Länge L des sich erweiternden Düsenabschnittes 32 ca 9 mm. Der Durchmesser der kreisrunden Eintrittsöffnung des Düsenabschnittes 32 betrug ca 1,6 mm. Die Länge des Kanales 15 betrug bei einem ersten Versuchsmodell 35 mm und bei einem zweiten Versuchsmodell 25 mm bei unveränderter Laval-Düse 20.The cross section of the channel 15 is drawn to scale in FIG. 4 according to a swirling unit 14 examined in the experiment. Its diameter in the plane of the butt joint 26 was 3 mm. The opening angle c of the widening nozzle section 32 of the Laval nozzle 20 was approximately 6 ° in this device investigated in the experiment according to FIGS. 2-4. In these turbulence units examined in the test, the length L of the widening nozzle section 32 was approximately 9 mm. The diameter of the circular inlet opening of the nozzle section 32 was approximately 1.6 mm. The length of the channel 15 was 35 mm in a first test model and 25 mm in a second test model with the Laval nozzle 20 unchanged.

Bei Versuchen mit diesen beiden Verwirbelungsaggregaten wurden Fixpunkt-Multifilamentgarne hergestellt, die aus 5 bis 18 Filamenten bestanden, wobei jedes dieser Filamente 3 bis 4,4 dtex hatte. Es versteht sich, dass in diesem Verwirbelungsaggregat 14 auch Multifilamentgarne mit anderen Anzahlen von Filamenten und anderen Titern verwirbelt werden können. Die für die genannten Versuche verwendeten Filamente waren ungekräuselt, doch zeigten weitere Versuche, dass auch gekräuselte Filamente mittels erfindungsgemässer Verwirbelungsaggregate mit Fixpunkten versehen werden können. Wenn gekräuselte Filamente zu Fixpunkt-Multifilamentgarnen verarbeitet werden, kann es jedoch sein, dass der Kanal 15 und die Laval-Düse 20 in ihren Querschnitten etwas grösser als für nicht gekräuselte Filamente vorgesehen werden müssen.Tests with these two intermingling units produced fixed point multifilament yarns which consisted of 5 to 18 filaments, each of these filaments having 3 to 4.4 dtex. It goes without saying that in this intermingling unit 14, multifilament yarns with different numbers of filaments and other titers can also be interlaced. The filaments used for the tests mentioned were uncrimped, but further tests showed that crimped filaments can also be provided with fixed points by means of the intermingling units according to the invention. When crimped filaments are processed into fixed-point multifilament yarns, however, the cross sections of the channel 15 and the Laval nozzle 20 may have to be somewhat larger than for non-crimped filaments.

Nachfolgend werden einige Versuchsergebnisse mit den vorbeschriebenen beiden Verwirbelungsaggregaten nach den Fig. 2-4 beschrieben, wobei die zulaufenden Filamente ungekräuselt und nicht miteinander verdreht waren, also dem Verwirbelungsaggregat jeweils ungedrehte Filamentbündel zugeführt wurden, die durch das Verwirbelungsaggregat in Fixpunkt-Multifilamentgarne geändert wurden.In the following, some test results are described with the two intermingling units described above according to FIGS. 2-4, the incoming filaments being uncrimped and not twisted together, i.e. untwisted bundles of filaments were fed to the intermingling unit, which were changed into fixed-point multifilament yarns by the intermingling unit.

1. Versuchsmodell mit 35 mm langem Kanal 15.1. Trial model with 35 mm long duct 15.

Als Druckluftquelle 24 wurde ein Kompressor mit einem Druck von 10 bar verwendet. Zuerst wurde dieser Druck mittels des Druckreduzierventils 25 auf ca. 2 bis 2,5 bar reduziert, d.h. dass dies der Speisedruck der Laval-Düse 20 war. Die hierdurch erzeugte Überschall-Luftströmung verursachte jedoch Bruch des Multifilamentbündels 13 und -garnes 13'. Es wurde deshalb der Druck der in die Laval-Düse 20 einströmenden Druckluft mittels des Reduzierventiles 25 gesenkt und bei einem Druck von 1,1 bar strömte der Luftstrahl der Laval-Düse mit Unterschall-Geschwindigkeit aus und das Multifilamentbündel 13 und -garn 13' wurden durch diese Luftströmung nicht mehr geschädigt, sondern es entstanden gute Fixpunkt-Multifilamentgarne 13' mit relativ hohen Fixpunktdichten. Das Multifilamentgarn stand dabei im Kanal 15 unter einer Fadenzugkraft von 8 cN. Bei einer Vorschubgeschwindigkeit des Garnes 13' von 1000 m/min wurde eine mittlere Fixpunktdichte von 51/Meter erreicht. Bei Vergleichsversuchen mit einem vorbekannten, im Handel erhältlichen Verwirbelungsaggregat, welches keine Laval-Düse hatte, sondern eine kreisrunde Blasdüse konstanten Querschnittes über ihre Länge, konnten mit einem Speisedruck von 1,5 bar nur Fixpunktdichten von 20/Meter, bei Speisedruck von 3 bar nur Fixpunktdichten von 41 /Meter erreicht werden, und dies trotz des höheren Speisedruckes und des hierdurch bedingten höheren Druckluftverbrauches und weitere Steigerungen des Speisedruckes erbrachten keine wesentliche Erhöhung der Fixpunktdichte mehr. Die untersuchten Multifilamentgarne hatten bei diesen Versuchen jeweils einen Gesamttiter 22dtex und bestanden aus jeweils sieben Filamenten aus Polyamid 6.6.A compressor with a pressure of 10 bar was used as the compressed air source 24. First, this pressure was reduced to approx. 2 to 2.5 bar by means of the pressure reducing valve 25, i.e. that this was the Laval nozzle 20 feed pressure. However, the supersonic air flow generated in this way caused the multifilament bundle 13 and yarn 13 'to break. The pressure of the compressed air flowing into the Laval nozzle 20 was therefore reduced by means of the reducing valve 25 and at a pressure of 1.1 bar the air jet from the Laval nozzle flowed out at subsonic speed and the multifilament bundle 13 and yarn 13 'became no longer damaged by this air flow, but good fixed point multifilament yarns 13 'with relatively high fixed point densities were created. The multifilament yarn stood in channel 15 under a thread tension of 8 cN. With a feed speed of the yarn 13 'of 1000 m / min, an average fixed point density of 51 / meter was achieved. In comparison tests with a previously known, commercially available swirling unit, which did not have a Laval nozzle but a circular blowing nozzle of constant cross-section over its length, with a feed pressure of 1.5 bar only fixed point densities of 20 / meter, with a feed pressure of 3 bar only Fixed point densities of 41 / meter can be achieved, and this despite the higher feed pressure and the resulting higher compressed air consumption and further increases in the feed pressure did not result in a significant increase in the fixed point density. The multifilament yarns examined had a total titer of 22 dtex in each of these tests and each consisted of seven polyamide 6.6 filaments.

2. Versuchsmodell mit 25 mm langem Kanal 15.2. Experimental model with 25 mm long duct 15.

Obwohl sich dieses Versuchsmodell von dem vorangehend beschriebenen Versuchsmodell nur dadurch unterschied, dass die Länge des Kanales 15 auf 25 mm reduziert wurde, konnte nunmehr bei diesem Versuchsmodell die Laval-Düse 20 im Überschall-Geschwindigkeitsbereich ohne Beschädigung der Multifilamentgarne betrieben werden, indem die Laval-Düse mit höheren Speisedrücken gespeist wurde. Untersucht wurden Speisedrücke von 1,5 bis 4,5 bar, bei denen Überschall-Geschwindigkeiten auftraten. Bei Filamentvorschubgeschwindigkeiten von 1500 m/ min wurden die aus der am Ende der Beschreibung angefügten Tabelle ersichtlichen sehr guten Fixpunktdichten im Vergleich zu dem oben bereits erwähnten vorbekannten Verwirbelungsaggregat erreicht.Although this experimental model only differed from the experimental model described above in that the length of the channel 15 was reduced to 25 mm, it was now possible in this experimental model to operate the Laval nozzle 20 in the supersonic speed range without damaging the multifilament yarns by Nozzle was fed with higher feed pressures. Feed pressures from 1.5 to 4.5 bar were investigated at which supersonic speeds occurred. At filament feed speeds of 1500 m / min, the very good fixed point densities, which can be seen from the table at the end of the description, were achieved in comparison to the previously known intermingling unit already mentioned.

Die Fixpunktdichten wurden mittels eines von der Anmelderin entwickelten Gerätes gemessen, das in der Öffentlichkeit als «Reutlinger Interlace Counter» bekannt ist.The fixed point densities were measured using a device developed by the applicant, which is known to the public as the “Reutlinger Interlace Counter”.

Das Verwirbelungsaggregat nach den Fig. 2-4 wurde im Versuch mehrfach abgewandelt, indem der Deckel 22 gegen Deckel 22 anderer Profile ausgetauscht wurde, die in den Fig. 5A-5F dargestellt sind.2-4 was changed several times in the experiment by cover 22 has been replaced with cover 22 of other profiles shown in Figures 5A-5F.

In Fig. 5A ist ein Deckel 22 dargestellt, der überhaupt keine Rinne enthält, so dass er angesetzt an das eine im Querschnitt halbkreisförmige Rinne 29 aufweisende Hauptteil 21 des Aggregates nach Fig. 2-4 einen Kanal 15 ergibt, der einen halbkreisförmigen Querschnitt mit ebenem Boden aufweist.In Fig. 5A a cover 22 is shown, which contains no channel at all, so that when it is attached to the main part 21 of the unit according to FIGS. 2-4, which has a semi-circular cross-section 29, it results in a channel 15 which has a semi-circular cross-section with a flat surface Floor.

Die Deckel 22 nach den Fig. 5B, 5C und 5F haben Rinnen 29' rechteckförmigen Querschnittes unterschiedlicher Tiefe, so dass sich der Querschnitt jedes mit einem solchen Deckel 22 und dem Hauptteil 21 nach Fig. 2-4 hergestellten Kanales aus zwei Querschnittshälften zusammensetzt, von denen die eine halbkreisförmig und die andere rechteckförmig ist. Die Deckel 22 nach den Fig. 5D und 5E weisen Rinnen 29' auf, deren Böden je einen konvexen, scheitelförmigen Vorsprung aufweisen, wobei der Querschnitt der Rinne 29' nach Fig. 5E ähnlich der nach Fig. 4 mit dem Unterschied ist, dass die Seitenwände der Rinne 29' zueinander parallele ebene Abschnitte aufweisen. Bei der Rinne 29' nach Fig. 5D ist das «M»-förmige Querschnittsprofil eckig:

  • Das Multifilamentgarn kann unter Umständen erheblichen Verschleiss der Umfangswandung des Kanales 15 verursachen, insbesondere des der Laval- Düse 20 gegenüberliegenden Wandbereiches. Um den Verschleiss zu verringern, ist bei dem Deckel 22 nach Fig. 5F in die Rinne 29' eine Bodenplatte 34 aus verschleissfestem Hartstoff, Hartmetall oder Oxyd-Keramik eingesetzt. Es ist auch möglich, den Deckel 22 im ganzen aus verschleissfestem Hartstoff, Hartmetall oder Oxyd-Keramik herzustellen. Auch das Hauptteil 21 der Verwirbelungsaggregates 14 kann mindestens teilweise aus solchen hochverschleissfesten Werkstoffen bestehen.
The covers 22 according to FIGS. 5B, 5C and 5F have channels 29 'of rectangular cross-section of different depths, so that the cross-section of each channel made with such a cover 22 and the main part 21 according to FIGS. 2-4 is composed of two cross-section halves, from which one is semicircular and the other rectangular. The covers 22 according to FIGS. 5D and 5E have grooves 29 ', the bottoms of which each have a convex, apex-shaped projection, the cross section of the groove 29' according to FIG. 5E being similar to that according to FIG. 4 with the difference that the Side walls of the channel 29 'have plane sections parallel to one another. 5D, the “M” -shaped cross-sectional profile is angular:
  • Under certain circumstances, the multifilament yarn can cause considerable wear to the peripheral wall of the channel 15, in particular to the wall area opposite the Laval nozzle 20. In order to reduce wear, a base plate 34 made of wear-resistant hard material, hard metal or oxide ceramic is inserted into the groove 29 'in the cover 22 according to FIG. 5F. It is also possible to produce the cover 22 as a whole from wear-resistant hard material, hard metal or oxide ceramic. The main part 21 of the swirling unit 14 can also consist at least partially of such highly wear-resistant materials.

Bei dem Verwirbelungsaggregat 14 nach Fig. 6 hat die die eine Umfangshälfte des Kanales 15 bildende Rinne 29 des die Laval-Düse 20 enthaltenden Hauptteiles 21 rechteckförmigen Querschnitt. Es ist möglich, auch dieses Hauptteil 21 der Fig. 6 mit anderen Deckeln zu kombinieren, beispielsweise mit den Deckeln 22 nach den Fig. 2 und 5A-5F.6, the channel 29, which forms a circumferential half of the channel 15, of the main part 21 containing the Laval nozzle 20 has a rectangular cross section. It is also possible to combine this main part 21 of FIG. 6 with other lids, for example with the lids 22 according to FIGS. 2 and 5A-5F.

Die Laval-Düse 20 nach den Fig. 2-4 kann auch durch eine Laval-Düse anderer geeigneter Gestaltungen ersetzt werden, vorzugsweise durch eine Laval-Düse, deren zu dem sich erweiternden Düsenabschnitt 32 führender Anfangsabschnitt sich in stromabwärtiger Richtung stetig degressiv bis zum Düsenabschnitt 32 verjüngt, wie es bei den bekannten Laval-Düsen üblich ist.2-4 can also be replaced by a Laval nozzle of other suitable designs, preferably by a Laval nozzle whose starting section leading to the widening nozzle section 32 is progressively degressive in the downstream direction up to the nozzle section 32 tapered, as is usual with the known Laval nozzles.

Wie ferner in Fig. 4 durch Strömungspfeile dargestellt ist, kann sich der aus der Laval-Düse 20 ausströmende, scharf gebündelte Überschall-Luftstrahl 38 an der der Laval-Düse 20 gegenüberliegenden Umfangswandhälfte des Kanales 15 in zwei gegensinnig rotierende, ungefähr gleichstarke Drallhauptströmungen aufspalten.As further shown in FIG. 4 by flow arrows, the sharply bundled supersonic air jet 38 flowing out of the Laval nozzle 20 can split into two oppositely rotating, roughly equal swirl main flows on the circumferential wall half of the channel 15 opposite the Laval nozzle 20.

In den Ausführungsbeispielen nach den Fig. 1-4 und Fig. 6 ist die Längsmittelachse der Laval-Düse 20 ungefähr senkrecht zur von ihr geschnittenenen, geraden Längsmittelachse des Kanales 15 gerichtet und die Längsmittelsymmetrieebene der Laval-Düse 20 ist auch eine Längsmittelsymmetrieebene des Kanales 15. Es ist jedoch auch denkbar, dass man diese beiden Längsmittelachsen seitlich zueinander etwas versetzen kann.In the exemplary embodiments according to FIGS. 1-4 and 6, the longitudinal central axis of the Laval nozzle 20 is approximately perpendicular to the straight longitudinal central axis of the channel 15 cut by it, and the longitudinal central symmetry plane of the Laval nozzle 20 is also a longitudinal central symmetry plane of the channel 15 However, it is also conceivable that one can offset these two longitudinal central axes somewhat to one side.

In den Ausführungsbeispielen nach den Fig. 2-4 und 6 ist die Längsmittelsymmetrieebene 30 der Laval-Düse 20 ungefähr senkrecht zur Längsmittelachse des Kanales 15 gerichtet, so dass der in Fig. 2 eingezeichnete Winkel a ungefähr 90° beträgt. Es ist jedoch auch oft zweckmässig und vorteilhaft, diesen Winkel a kleiner als 90° zu treffen. Vorzugsweise kann er 60-90° betragen. Es ist auch denkbar, dass man den Winkel a in Sonderfällen stumpfwinklig vorsehen kann, vorzugsweise dann, wenn in den Kanal mehrere Laval-Düsen münden, wobei bei einer dieser Laval-Düsen dieser Winkel a grösser als 90° und bei der oder den anderen Düsen dieser Winkel a ungefähr 90° oder kleiner als 90° vorgesehen werden kann.2-4 and 6, the longitudinal center symmetry plane 30 of the Laval nozzle 20 is directed approximately perpendicular to the longitudinal center axis of the channel 15, so that the angle a shown in FIG. 2 is approximately 90 °. However, it is also often expedient and advantageous to make this angle a less than 90 °. It can preferably be 60-90 °. It is also conceivable that the angle a can be provided at an obtuse angle in special cases, preferably if several Laval nozzles open into the channel, with this angle a being greater than 90 ° in one of these Laval nozzles and in the other nozzle or nozzles this angle a can be provided approximately 90 ° or less than 90 °.

Auch ist es zweckmässig, dem Kanal 15 relativ geringe Durchmesser von vorzugsweise einigen Millimetern zu geben. Dieser Kanal 15 hindert die Filamente an zu starkem seitlichen Ausweichen und dient auch dem Lenken der Gasströmung, wobei er bevorzugt so ausgebildet sein kann, dass er sie am Einblasort in zwei zueinander gegensinnig rotierende Drallhauptströmungen aufspaltet. Jede dieser beiden Drallhauptströmungen kann dann je nach Einblasbedingungen und dergleichen vom Entstehungsort zu gleichen oder ungleichen Anteilen in beiden axialen Richtungen des Kanales oder gegebenenfalls auch nur in einer axialen Richtung abströmen.It is also expedient to give the channel 15 a relatively small diameter, preferably a few millimeters. This channel 15 prevents the filaments from excessive lateral deflection and also serves to direct the gas flow, it preferably being able to be designed in such a way that it splits it into two main swirling flows rotating in opposite directions at the point of injection. Depending on the blow-in conditions and the like, each of these two main swirl flows can then flow from the point of origin to the same or different proportions in both axial directions of the channel or, if appropriate, only in one axial direction.

Bei dem Ausführungsbeispiel nach Fig. 8 ist in den nur teilweise und gebrochen dargestellten und teilweise geschnitten dargestellten quaderförmigen Hauptkörper 40 eines Verwirbelungsaggregates die ausschnittsweise dargestellte Laval-Düse 20 ähnlich wie im Ausführungsbeispiel nach Fig. 4 mit eingearbeitet, deren Austrittsmündung 41 ungefähr in der Längsmitte des Kanals 15 in diesen vom Multifilamentbündel unter Verwirbelung zum Multifilamentgarn durchlaufenen Kanal 15 mündet. Dieser Hauptkörper 40 ist von einer senkrecht zur Bildebene verlaufenden kreiszylindrischen Durchgangsbohrung 42 durchdrungen und in ihr ist ein zylindrischer Drehkörper 43 in Form eines geraden Stiftes drehbar mit sehr geringem Gleitlagerspiel drehbar gelagert. In diesen Drehkörper 43 ist eine durchgehende Längsnut 44 eingearbeitet, in welche formschlüssig ein im Querschnitt rechteckförmiger Hartmetallstab 45 zur Bildung der ebenen Längsrückwand 46 des Kanales 15 eingesetzt ist, so dass der in diesem Drehkörper 43 befindliche Umfangsabschnitt des Kanales 15 aus dessen ebener Rückwand 46 und den beiden ebenen, zueinander parallelen, zur Rückwand 46 senkrecht gerichteten Seitenwänden 47 besteht und der restliche Umfang des Kanales durch den betreffenden Umfangsabschnitt der Durchgangsbohrung 42 gebildet ist, in welchem sich auch die Austrittsmündung 41 der Laval-Düse befindet. Ferner ist in dem starren Hauptkörper 40 bezogen auf die Längsachse der Laval- Düse um 90° winkelversetzt ein durchgehender Seitenschlitz 49 angeordnet, der dem Einfädeln des Multifilamentbündels von aussen in den Kanal 15 dient, zu welchem Zweck der Drehkörper 43 aus der voll ausgezogen dargestellten Stellung um ca 90° in Uhrzeigerrichtung verschwenkbar ist, in welcher Winkelstellung des Drehkörpers 43 dann der im Drehkörper 43 befindliche Kanalbereich dem Seitenschlitz 49 offen gegenübersteht, so dass das Multifilamentbündel seitlich in den Kanal 15 eingefädelt werden kann. Durch Zurückschwenken des Drehkörpers 43 um 90° tritt dann die Betriebsstellung des Kanales 15 ein. Diese Zurückstellung des Drehkörpers 43 in seine Betriebsstellung kann in diesem bevorzugten Ausführungsbeispiel mittels eines einen Kolben 50 mit Kolbenstange 51 aufweisenden Zylinders 52 herbeigeführt werden, wobei die Kolbenstange 51 an einem an einer Stirnseite des Drehkörpers 43 fest angeordneten Hebel 53 mittels eines in ein Langloch 54 des Hebels 53 eingreifenden Mitnehmers 55 angelenkt ist. Der Arbeitsraum 56 des in diesem Ausführungsbeispiel einfach wirkenden Zylinders 52 ist über eine Druckluftzweigleitung 23' an die Druckluftzuleitung 23 zur Laval-Düse 20 stromabwärts eines nicht dargestellten Absperrventiles angeschlossen.In the embodiment according to FIG. 8, the cut-out Laval nozzle 20, similar to the embodiment according to FIG. 4, is incorporated into the cuboid-shaped main body 40 of a swirling unit, which is shown only partially and broken and partially cut away Channel 15 opens into this channel 15 through which the multifilament bundle with swirling passes to the multifilament yarn. This main body 40 is penetrated by a circular cylindrical through bore 42 running perpendicular to the image plane and in it a cylindrical rotating body 43 in the form of a straight pin is rotatably supported with very little plain bearing play. In this rotating body 43, a continuous longitudinal groove 44 is incorporated, into which a hard metal rod 45 with a rectangular cross section is inserted to form the flat longitudinal rear wall 46 of the channel 15, so that the peripheral section of the channel 15 located in this rotating body 43 consists of its flat rear wall 46 and the two flat, mutually parallel, perpendicular to the rear wall 46 side walls 47 and the remaining circumference of the channel is formed by the relevant peripheral portion of the through hole 42, in which the outlet mouth 41 of the Laval nozzle. Furthermore, a continuous side slot 49 is arranged in the rigid main body 40 with respect to the longitudinal axis of the Laval nozzle at an angle of 90 °, which is used for threading the multifilament bundle from the outside into the channel 15, for which purpose the rotating body 43 from the fully drawn position 90 ° can be pivoted in the clockwise direction, in which angular position of the rotating body 43 the channel area located in the rotating body 43 is openly opposite the side slot 49, so that the multifilament bundle can be threaded laterally into the channel 15. By pivoting the rotating body 43 through 90 °, the operating position of the channel 15 then occurs. This return of the rotating body 43 into its operating position can be brought about in this preferred exemplary embodiment by means of a cylinder 52 having a piston 50 with a piston rod 51, the piston rod 51 being connected to a lever 53 which is fixedly arranged on an end face of the rotating body 43 by means of a into a slot 54 of the Lever 53 engaging driver 55 is articulated. The working space 56 of the cylinder 52, which in this exemplary embodiment is single-acting, is connected via a compressed air branch line 23 ′ to the compressed air supply line 23 to the Laval nozzle 20 downstream of a shut-off valve, not shown.

Die Arbeitsweise ist wie folgt. Um ein Multifilamentbündel in den Kanal 15 einzufädeln, dreht man den Drehkörper 43 mittels des Hebels 53 von Hand in die dem Einfädeln des Multifilamentbündels dienende Winkelstellung. Wenn dann zeitlich nach dem Einfädeln die Druckluftzufuhr zur Laval-Düse 20 geöffnet wird, dann wird hierdurch auch in den Arbeitsraum 56 des Zylinders 52 Druckluft eingeleitet, die den Kolben 50 in die dargestellte Stellung bewegt, so dass hierdurch der Drehkörper 43 durch Öffnen der Druckluftzufuhr zur Laval-Düse 20 aus der Einfädelstellung selbsttätig in seine Betriebsstellung gedreht wird. Im Betrieb spaltet sich wie schon beschrieben der aus der Laval-Düse ausströmende Luftstrahl im Kanal 15 in zwei gegenseitig rotierende Drallströmungen auf.The way of working is as follows. In order to thread a multifilament bundle into the channel 15, the rotating body 43 is rotated manually by means of the lever 53 into the angular position used to thread the multifilament bundle. If the compressed air supply to the Laval nozzle 20 is then opened in time after threading, then compressed air is also introduced into the working space 56 of the cylinder 52, which moves the piston 50 into the position shown, so that the rotating body 43 thereby opens the compressed air supply the Laval nozzle 20 is automatically rotated from the threading position into its operating position. In operation, as already described, the air jet flowing out of the Laval nozzle in channel 15 splits into two mutually rotating swirl flows.

Das in Fig. 9 ausschnittsweise und geschnittene dargestellte Verwirbelungsaggregat ist ähnlich dem in Fig. 8, wobei jedoch die Mittel zum Drehen des Drehkörpers 43 nicht dargestellt sind. Diese können gleich oder ähnlich wie bei der Einrichtung nach Fig. 8 sein. Im Unterschied zu der Einrichtung nach Fig. 8 ist die Längsrückwand 46' des Kanales 15 nicht eben, sondern schwach konkav gewölbt. Der Krümmungsradius der Querschnittskontur dieser Rückwand 46' des Kanales 15 ist grösser als 3 mm, vorzugsweise erheblich grösser als 3 mm.The swirling unit shown in detail and in section in FIG. 9 is similar to that in FIG. 8, but the means for rotating the rotating body 43 are not shown. These can be the same or similar to the device according to FIG. 8. In contrast to the device according to FIG. 8, the longitudinal rear wall 46 'of the channel 15 is not flat, but rather slightly concave. The radius of curvature of the cross-sectional contour of this rear wall 46 'of the channel 15 is greater than 3 mm, preferably considerably greater than 3 mm.

Figure imgb0001
Figure imgb0001

Claims (11)

1. Apparatus for manufacturing interlaced mul- tifilamentyarns (13') with an interlacing unit (14) which has a passage (15) through which the filaments (12) to be interlaced with one another pass and are thereby interlaced with one another, for which purpose at least one jet nozzle (20) is associated with this passage (15), wherein the jet nozzle (20) has a divergent nozzle section (32) which opens into the passage (15), is feedable from a source of pressurized gas (24) and, at an appropriate feed pressure, blows a jet of gas, in particular a jet of air (38), at supersonic speed into the passage (15), and wherein the jet direction is directed either obliquely or at right angles to the longitudinal direction of the passage (15), characterised in that the jet nozzle is a Laval nozzle (20); and in that the divergent nozzle portion (32) of the Laval nozzle (20) extends up to the peripheral wall surface of the passage (15) and extends over 0,2 to 0,5 times the periphery of this passage (15).
2. An apparatus in accordance with claim 1, characterised in that the jet direction of the Laval nozzle is directed approximately towards the central longitudinal axis of the passage (15); and in that the smallest internal diameter of the Laval nozzle is so small that the jet of gas flowing out of the Laval nozzle (20) into the passage (15) is split by the peripheral wall of the passage into two main spiral flows which rotate in mutually opposite directions in the passage.
3. Apparatus in accordance with claim 1 or claim 2, characterised in that the wall surface (46') of the passage (15) on which the gas jet impinges after leaving the Laval nozzle (20) is weakly concavely arched in cross section, with the radius of curvature of this concave arch being greater than 3 mm, at least in the area closed to its center.
4. Apparatus in accordance with claim 1 or claim 2, characterised in that the wall surface of the passage (15) onto which the gas jet impinges after leaving the Laval nozzle (20) has a central heart shaped projection (28) onto which the central longitudinal axis of the Laval nozzle (20) is directed.
5. Apparatus in accordance with one of the preceding claims, characterised in that the ratio of the diameter of the narrowest cross-section of the Laval nozzle (20) to that diameter of the passage (15) of the interlacing unit which is measured at right angles to the central longitudinal axis of the Laval nozzle amounts to 1:5 to 2:3.
6. Apparatus in accordance with one of the preceding claims, characterised in that the nozzle portion (32) of the Laval nozzle which diverges in cross section and which adjoins the narrowest cross sectional station of the Laval nozzle (20) is approximately of truncated cone shape.
7. Apparatus in accordance with claim 6, characterised in that the divergence angle of the nozzle portion (32) of the Laval nozzle (20) which diverges in substantially truncated cone-like manner amounts to approximately 1-10°, preferably 3-7°.
8. Apparatus in accordance with one of the preceding claims, characterised in that the nozzle portion which precedes the continuously diverging nozzle portion (32) of the Laval nozzle is a flow-wise well rounded nozzle portion, the diameter of which continuously degressively reduces in the downstream direction.
9. Apparatus in accordance with one of the preceding claims, characterised in that the gas jet is blown into a central longitudinal region of the passage (15).
10. Apparatus in accordance with one of the preceding claims, characterised in that the central longitudinal axis of the Laval nozzle (20) is directed at an angle of 60 to 90° to the central longitudinal axis of the passage (15) into this passage, with the axial speed component, related to the passage, of the gas jet flowing out of the nozzle being directed in the direction of movement of the filaments.
11. Apparatus in accordance with one of the claims 1 to 10, characterised in that a peripheral portion of the passage (15) is arranged in a rotatable body (43) which is rotatably arranged in a through-bore (42) of a main body (40) which includes the outlet opening of the Laval nozzle (20), with the through-bore forming the remainder of the periphery of the passage (15); in that the main body (42) is provided with a lateral slot (49) which leads into this through-bore and which serves for threading of the multifilament bundle (13) in such a way that the region of the passage (15) located in the rotatable body (43) can be brought by rotation of this rotatable body (43) into communication with the lateral slot (49) for threading of the multifilament bundle (13), whereas this lateral slot (49) is closed off by the rotatable body (43) in the operating position of the passage (15); and in that the blocking off of the lateral slot (49) can be brought about by a pneumatic positioning motor (52), which positioning motor (52) is connected to the pressurized air supply line (23) of the Laval nozzle (20) in such a way that the positioning motor (52), on opening of the pressure supply to the Laval nozzle (20), is simultaneously actuatable by the pressurized air to block off the lateral slot (49) and in this way to bring about the readiness of the passage (15) for operation.
EP81106320A 1980-08-18 1981-08-13 Apparatus for making interlaced multifilament yarns Expired EP0046278B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT4215/80 1980-08-18
AT421580 1980-08-18

Publications (2)

Publication Number Publication Date
EP0046278A1 EP0046278A1 (en) 1982-02-24
EP0046278B1 true EP0046278B1 (en) 1984-09-12

Family

ID=3561142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81106320A Expired EP0046278B1 (en) 1980-08-18 1981-08-13 Apparatus for making interlaced multifilament yarns

Country Status (5)

Country Link
US (1) US4535516A (en)
EP (1) EP0046278B1 (en)
JP (1) JPS57501190A (en)
DE (1) DE3166034D1 (en)
WO (1) WO1982000668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605675A1 (en) * 1996-02-15 1997-08-21 Heberlein & Co Ag Texturing nozzle and method for aerodynamic texturing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894894A (en) * 1986-08-12 1990-01-23 Basf Corporation Continuous high speed method for making a commingled carpet yarn
US5040276A (en) * 1986-08-12 1991-08-20 Basf Corporation Continuous high speed method for making a commingled carpet yarn
US4993130A (en) * 1988-09-08 1991-02-19 Basf Corporation Continuous high speed method for making a commingled carpet yarn
US5434003A (en) * 1992-04-16 1995-07-18 Alliedsignal Inc. Entangled polyamide yarn
EP0664875B2 (en) 1992-10-13 2000-03-22 AlliedSignal Inc. Entangled high strength yarn and fabric
EP0957189A2 (en) * 1995-08-23 1999-11-17 Maschinenfabrik Rieter Ag Method and apparatus for stufferbox crimping synthetic filaments
TW538153B (en) 1998-03-03 2003-06-21 Heberlein Fibertechnology Inc Process for air-jet texturing of frill yarn and yarn-finishing device and the application thereof
DE69811853T2 (en) * 1998-03-30 2003-11-13 Toray Industries Device for treating a yarn with a liquid and intermingled multifilament yarn
JP3684899B2 (en) * 1999-01-20 2005-08-17 株式会社愛機製作所 Compressed fluid treatment nozzle
DE19947894C1 (en) * 1999-10-06 2001-03-29 Akzo Nobel Nv Appts to eddy and interlace texturized multifilament yarns has a structured yarn channel in sections in relation to the blower channel to give a stable bond unaffected during weaving/knitting
TW503272B (en) * 1999-10-06 2002-09-21 Heberlein Fibertechnology Inc Apparatus for intermingling multifilament yarns
CN102304798A (en) * 2011-08-29 2012-01-04 江苏昊星化纤纺织有限公司 Mobile preinterlacing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167847A (en) * 1961-11-28 1965-02-02 American Enka Corp Treatment of multi-filament yarn
US3237269A (en) * 1963-09-26 1966-03-01 Du Pont Yarn bulking jet
US3262179A (en) * 1964-12-01 1966-07-26 Du Pont Apparatus for interlacing multifilament yarn
GB1155062A (en) * 1965-09-29 1969-06-18 Courtaulds Ltd Apparatus for the production of fancy yarn
US3389444A (en) * 1965-11-15 1968-06-25 Eastman Kodak Co Apparatus for entangling multifilament yarns
US3449903A (en) * 1968-01-05 1969-06-17 Eastman Kodak Co Randomly entangled textile product
US3605397A (en) * 1968-02-15 1971-09-20 Ppg Industries Inc Expanded fiber glass strand
US3750242A (en) * 1971-06-30 1973-08-07 Celanese Corp Yarn compacting apparatus
US3824656A (en) * 1971-12-30 1974-07-23 Neumuenster Masch App Apparatus for crimping of filamentary materials
US3958310A (en) * 1973-03-05 1976-05-25 Rhone-Poulenc-Textile Method for interlacing filaments of multifilament yarns
IT1093498B (en) * 1977-03-30 1985-07-19 Toray Industries METHOD AND APPARATUS TO INTRODUCE A WIRE WITH MANY FILAMENTS
DE2840177A1 (en) * 1978-09-15 1980-03-27 Karlsruhe Augsburg Iweka Turbulence jet for intermingling continuous filament yarns - within a cylindrical chamber closed by a rotatable slotted tube
US4251904A (en) * 1978-11-08 1981-02-24 Toray Industries, Inc. Yarn treating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605675A1 (en) * 1996-02-15 1997-08-21 Heberlein & Co Ag Texturing nozzle and method for aerodynamic texturing
DE19605675C5 (en) * 1996-02-15 2010-06-17 Oerlikon Heberlein Temco Wattwil Ag Process for aerodynamic texturing and texturing nozzle

Also Published As

Publication number Publication date
DE3166034D1 (en) 1984-10-18
EP0046278A1 (en) 1982-02-24
JPS57501190A (en) 1982-07-08
US4535516A (en) 1985-08-20
WO1982000668A1 (en) 1982-03-04

Similar Documents

Publication Publication Date Title
EP0046278B1 (en) Apparatus for making interlaced multifilament yarns
DE2758823C2 (en) Apparatus for spinning a fiber yarn
DE1061953B (en) Voluminous loop yarn as well as process and device for its production
EP2671986B1 (en) Texturing device and method for texturing endless threads
EP1223236A2 (en) Device for making a core yarn
EP0625600B1 (en) Apparatus for the treatment of at least one running multifilament yarn
EP1347084B1 (en) Air-jet spinning device with channelling element
DE3411482C2 (en)
EP0326552B1 (en) Yarn-twisting device
DE2633264A1 (en) TEXTURING DEVICE
EP1116806B1 (en) Texturing nozzle
DE3519887A1 (en) SPIDER DEVICE FOR PRODUCING A FIBER BUNCH YARN
DE3711759A1 (en) Yarn-swirling device
DE19947894C1 (en) Appts to eddy and interlace texturized multifilament yarns has a structured yarn channel in sections in relation to the blower channel to give a stable bond unaffected during weaving/knitting
EP3144419B1 (en) Channel plate adapter and open ended spinning machine with a channel plate adapter
DE102008011617A1 (en) Pneumatic stack fiber spinning device for spinning of long stack fibers, particularly air spinning fiber yarn, has asymmetrical fiber supply channel, fiber guiding device, centrifugal chamber and yarn forming element with yarn channel
DE3527415C2 (en)
DE19700817C2 (en) Process and intermingling nozzle for the production of spin-textured filament yarns
DE2461447B2 (en) Impact crimping and fixing device for texturing thermoplastic yarn
DE19745182C2 (en) Method and device for interlacing multifilament yarns
DE3727263C2 (en) Yarn interlacing device
EP0606434B1 (en) Device for spinning a sliver
DE102012003410A1 (en) Yarn handling device for swirling of multi-filament yarns, has nozzle body with yarn channels and blowing hole, where the yarn channel is formed from wider yarn channel area and narrower yarn channel area
DE2036253C3 (en) Device for treating an endless fiber strand
DE19652498A1 (en) Heavy gauge synthetic filament spinning apparatus for even cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MASCHINENFABRIK RIETER A.G.

17P Request for examination filed

Effective date: 19820701

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19840912

REF Corresponds to:

Ref document number: 3166034

Country of ref document: DE

Date of ref document: 19841018

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: INSTITUT FUER TEXTILTECHNIK REUTLINGEN/DENKENDORF

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEUTSCHE INSTITUTE FUER TEXTIL- UND FASERFORSCHUNG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930714

Year of fee payment: 13

Ref country code: CH

Payment date: 19930714

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930805

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST