EP0021035B1 - Verfahren zum Betrieb von Vormischbrennern und Brenner zur Durchführung des Verfahrens - Google Patents

Verfahren zum Betrieb von Vormischbrennern und Brenner zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0021035B1
EP0021035B1 EP80102799A EP80102799A EP0021035B1 EP 0021035 B1 EP0021035 B1 EP 0021035B1 EP 80102799 A EP80102799 A EP 80102799A EP 80102799 A EP80102799 A EP 80102799A EP 0021035 B1 EP0021035 B1 EP 0021035B1
Authority
EP
European Patent Office
Prior art keywords
burner
flame
combustion
air
guard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80102799A
Other languages
English (en)
French (fr)
Other versions
EP0021035A1 (de
Inventor
Detlef Dr.-Ing. Altemark
Hans Dipl.-Ing. Sommers
Manfred Weid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EON Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6074483&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0021035(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Publication of EP0021035A1 publication Critical patent/EP0021035A1/de
Application granted granted Critical
Publication of EP0021035B1 publication Critical patent/EP0021035B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/26Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid with provision for a retention flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/09062Tube-shaped baffles confining the flame

Definitions

  • the invention relates to a method for operating premix burners under normal or increased pressure with gaseous fuels, or with fuels which are liquid at normal temperature and completely vaporized before combustion, at low combustion temperatures with formation of low-emission gases, and a burner for carrying out the method.
  • the nitrogen oxides NO and NO z ' are formed as pollutants in the exhaust gas. These pollutants contaminate the air and can have a negative effect on the material in the furnace or in contact with the burner exhaust gases in some furnaces. Therefore, efforts are made to keep the NO x content in the exhaust gas as low as possible.
  • the causes of the NO x formation are known, and several measures for reducing the NO x content in the exhaust gas are also known, for example
  • the object of the invention is to provide a method for operating premix burners with which gaseous and / or vaporous fuels can be burned at normal or elevated pressure so that on the one hand complete combustion at low combustion temperatures with the formation of exhaust gases with extremely low NO x - Held takes place, but on the other hand a high burner output is achieved and reliable combustion burning over a large output range is achieved, as well as creating a burner specially designed and suitable for carrying out this method.
  • this object is achieved by the measures mentioned in claims 1 to 9.
  • a large amount of cooling gas is therefore used to reduce the NO x formation, in particular at high specific burner outputs, at which the NO x formation and tendency towards NO x emission usually increases with the exhaust gases .
  • the reduction in flame speed caused by the use of the cooling gas nevertheless permits stable combustion, because of the simultaneous application of the special flame design during the combustion of the mixture and because of the shielding of the flame until it is completely burned out.
  • the mixture in front of the burner plate is accelerated by the narrowing mixing chamber, which is also too short for homogeneous mixing, and if the air ratio were also increased and the air ratios previously allowed for conventional premixing burners were increased, the mixture speeds would become too large to allow the flame to be held when the flame speed decreases at the same time as the air ratio increases, in particular since the known burner does not have a correspondingly adapted flame design for the possibility of preventing the flame from tearing off the burner plate when the air ratio is increased and has no means of effectively shielding the flame.
  • the lack of effective flame shielding in the known burner also helps to make the combustion taking place incomplete, which leads to the combustion products in the furnace chamber following the burner plate reacting and producing uncontrolled temperature peaks which favor the formation of NO x .
  • NO x is formed on the one hand from the nitrogen bound in the fuel and on the other hand thermally from free nitrogen, which is present in particular in the air and possibly also in the fuel, for example in natural gas.
  • the thermal NO x formation is preferably carried out at high combustion temperatures, for example natural gas from approximately 1600 ° C.
  • a low combustion temperature and thus a low NO x content in the exhaust gas can be achieved according to the inventive method for fuels with a low proportion of bound nitrogen by homogeneously mixing the combustion air / fuel mixture before the combustion with a cooling gas.
  • This cooling gas can contain air, exhaust gas, Steam or a mixture of two or all of these components.
  • the mass flow ratio e is defined as the ratio of a first mass flow, which is composed of a fuel quantity, a combustion air quantity and a cooling gas quantity, to a second mass flow, which is composed of the same fuel quantity and the combustion air quantity required for the stoichiometric combustion.
  • the theoretical combustion temperature results from the heat calorific value and the enthalpies of the materials fed to the burner without heat exchange with the environment, with complete combustion of the fuel to C0 2 and H 2 0.
  • the enthalpies are determined by quantities, temperatures and specific heat capacities of the substances.
  • the solid curves of a first family of curves show which combustion temperatures are reached as a function of the mass flow ratio e if the fuel natural gas is mixed homogeneously with air at the temperature T, indicated on the solid curves before combustion, if so in that
  • the mass flow ratio defined above, the first mass flow does not contain any recirculated exhaust gas as cooling gas and air quantities of different sizes are used as cooling gas.
  • the dashed curves of a second family of curves show in FIG. 1 the combustion temperatures that occur as a function of the mass flow ratio e, if the first mass flow of the mass flow ratio defined above contains an air quantity that is equal to the air quantity required for stoichiometric combustion in the second mass flow, and if the first mass flow contains recirculated exhaust gas as cooling gas. It applies to the dashed curves that the supplied combustion air has a temperature of 20 ° C and that the exhaust gas serving as cooling gas has the temperature T 2 indicated in each case on the dashed curves.
  • the dashed curves represent only an example for the determination of the theoretical combustion temperature or the mass flow ratio. For the sake of clarity, the corresponding curves have not been shown for cases in which differently tempered water vapor is used as cooling gas or that a differently tempered cooling gas with combustion air is mixed at a temperature other than 20 ° C. Such curves can be calculated using the specific data published in relevant manuals and the like.
  • the burner according to the invention is suitable for all fuels which are in gaseous or vapor form before combustion and which can be mixed homogeneously with the combustion air and the cooling gas.
  • the burner can be operated under normal pressure as well as under increased pressure.
  • the mixing tube 1 must be supplied with fuel 2, combustion air 3 and cooling gas 4.
  • the combustion air is fed to the mixing tube, for example, by a blower, not shown in FIG. 2.
  • air is used as the cooling gas, this air is supplied in the same way. If exhaust gas or water vapor serve as cooling gas, these can be conveyed together with the combustion air by a fan if their temperature or the temperature of the air-cooling mixture is permissible for the fan. Otherwise, the cooling gas as well as the fuel can reach the mixing tube directly, e.g. by injector action. To shorten the mixing tube, the fuel can also be fed upstream of the blower.
  • the burner head 5 is connected to the mixing tube 1, and its cross section 6 at the connection to the mixing tube 1 is, for example, twice the cross section of the mixing tube. This abrupt transition to a larger flow cross-section creates a tear-off edge for the flow.
  • the burner head 5 then expands ko nisch to, for example, 4.5 times the cross section of the mixing tube.
  • curved jacket shapes are also possible.
  • a burner plate 7 which has a large main flame bore 8 and a plurality of small bores 9 which are arranged in a plurality of concentric rings around the main flame bore 8 and serve to form the holding flames.
  • the small bores 9 can be replaced by corresponding slot-shaped openings.
  • the burner plate can consist of both metal and ceramic material.
  • the distances between the holding flame bores 9, which together have a slightly smaller free cross-section than the main flame bore 8, are selected so that they ensure a perfect ignition from the outermost holding flames to the main flame and a mutual stabilization of the holding flames.
  • the main flame bore 8 runs parallel to the burner axis, at least the holding flame bores 9, which are located in the outermost ring, are inclined at an angle of, for example, approximately 40 ° to the burner axis.
  • the outermost holding flame ring is stabilized in this way by backflows on the cylindrical wall of the burner mouth 10, which adjoins the burner plate 7.
  • the burner mouth 10 is only a short piece cylindrical and then tapers conically, for example to 2.9 times the cross section of the mixing tube.
  • the lateral surface of the burner mouth can be either conical, as shown in FIG. 2, or curved.
  • the burner plate 7 can also be made conical or curved instead of the flat shape shown.
  • the burner mouth 10 is connected to a flame protection cover 11.
  • a flame protection cover 11 In Figure 2 it is shown as a cylindrical tube, the inside diameter of which corresponds to the largest outside diameter of the free-burning flame.
  • Another advantageous embodiment, not shown, of the flame protection cover consists of a conically expanded and subsequently cylindrical tube, which is therefore adapted to the shape of the flame.
  • the flame protection cover is designed in such a way that it does not hinder or restrict the flame.
  • the flame protection cover 11 prevents the flame from being cooled further by contact with air and / or exhaust gas from the environment and would thereby be prevented from completely burning out.
  • a flame protection cover 11 It has proven to be advantageous to provide the inside of the burner mouth 10 and the flame protection cover 11 with a catalytically ineffective material or at low ambient temperatures with thermal insulation, e.g. Ceramics to line.
  • the task of a flame protection cover can also be fulfilled by a combustion chamber that does not dissipate useful heat and in which the flame can burn out completely.
  • the method according to the invention it is possible for the first time to burn homogeneous mixtures of the type mentioned with very high mass flow ratios in a manner that is reliable and low in pollutants.
  • a desired combustion temperature can be set in the manner described above. Because the mixing of the burner gases with foreign gases, such as air or exhaust gas, which are present in the vicinity of the burner, is largely avoided, the flame temperature remains so homogeneous that the thermal NO x formation largely corresponds to the NO x formation in the theoretical Combustion temperature corresponds.
  • the burner according to the invention is characterized, among other things, by a quiet, stable, low-pollutant combustion over a large output range.
  • the possible uses for the subject matter of the invention are extremely versatile. These include, for example, the generation of exhaust gas-air mixtures for heating and drying food, the heating of boilers and industrial ovens of all kinds and the generation of drive gas for gas turbines. In all of these cases, because of the unusually low NO x content in the exhaust gas, the subject of the invention can make a valuable contribution to air pollution control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betrieb von Vormischbrennern unter normalem oder erhöhtem Druck mit gasförmigen Brennstoffen, oder mit bei Normaltemperatur flüssigen und vor der Verbrennung vollständig verdampften Brennstoffen, bei niedrigen Verbrennungstemperaturen unter Bildung schadstoffarmer Abgase, sowie einen Brenner zur Durchführung des Verfahrens.
  • Bei der Verbrennung gasförmiger und flüssiger Brennstoffe entstehen als Schadstoffe im Abgas unter anderem die Stickstoffoxide NO und NOz' zusammengefasst als NOX bezeichnet. Diese Schadstoffe verunreinigen die Luft und können sich bei manchen Feuerungen negativ auf das im Ofen befindliche bzw. mit den Brennerabgasen in Berührung kommende Gut auswirken. Daher ist man bestrebt, den NOx-Gehalt im Abgas möglichst gering zu halten. Die Ursachen der NOx-Bildung sind bekannt, und es sind auch mehrere Massnahmen zur Verminderung des NOx-Gehalts im Abgas bekannt, wie z.B.
  • Absenkung der Verbrennungstemperatur durch direkte Flammenkühlung, z.B. Wassereinspritzung oder gekühlte Brennflächen,
    • zwei oder mehrstufige Verbrennung,
    • Abgasrezirkulation durch Vorbeiführen der Abgase an der Flamme mittels Rückführungskanälen oder speziellen Brennerkonstruktionen,
    • überstöchiometrische Verbrennung.
  • Trotzdem ist bisher kein Brenner für Industrie oder Gewerbe bekannt, der bei hoher Leistung (spezifische Leistung bezogen auf die Durchtrittsfläche oder das Durchtrittsvolumen des Brenners) einen extrem niedrigen NOx-Gehalt im Abgas aufweist. Dies gilt auch für einen bekannten Vormischbrenner (DE-B-1 526 031), bei dem das Gas und Luft durch getrennte, zur Leistungsverstellung des Brenners gemeinsam im Durchlassquerschnitt veränderbare Sektoren einer Lochplatte in eine Mischkammer geleitet werden und in dieser in einem bestimmten, über den gesamten Leistungsbereich des Brenners konstant bleibendem Mengenverhältnis gemischt werden, wonach das Gemisch durch eine Brennerplatte hindurchtritt, die eine gewöhnliche Perforation aus im wesentlichen gleich grossen und gleiche Gemischmengen hindurchlassenden Flammenbohrungen aufweist.
  • Aufgabe der Erfindung ist es, ein Verfahren zum Betrieb von Vormischbrennern anzugeben, mit dem gas- und/oder dampfförmige Brennstoffe bei normalem oder erhöhtem Druck so verbrannt werden können, dass einerseits eine vollständige Verbrennung bei niedrigen Verbrennungstemperaturen unter Bildung von Abgasen mit extrsm niedrigen NOx-Gehalten stattfindet, andererseitsaber auch eine hohe Brennerleistung erzielt wird und eine über einen grossen Leistungsbereich mit stabiler Flamme brennende betriebssichere Verbrennung erzielt wird, sowie einen für die Durchführung dieses Verfahrens besonders gestalteten und geeigneten Brenner zu schaffen.
  • Diese Aufgabe wird erfindungsgemäss durch die in den Ansprüchen 1 bis 9 genannten Massnahmen gelöst. Nach dem erfindungsgemässen Verfahren wird also zur Verringerung der NOx-Bildung mit einer grossen Menge an Kühlgas gearbeitet, und zwar insbesondere bei hohen spezifischen Leistungen des Brenners, bei denen gewöhnlich die NOx-Bildung und Tendenz zur NOx-Emission mit den Abgasen zunimmt. Die durch die Anwendung des Kühlgases eintretende Verminderung der Flammengeschwindigkeit lässt dennoch eine stabile Verbrennung zu, und zwar wegen der gleichzeitigen Anwendung der besonderen Flammengestaltung bei der Verbrennung des Gemisches und wegen der Abschirmung der Flamme bis zu ihrem vollständigen Ausbrand.
  • Ein entsprechender Betrieb wäre mit dem vorstehend erwähnten bekannten Vormischbrenner (DE-B-1 526 031) nicht möglich. Bei diesem Brenner würden, wenn die Luftmenge gegenüber der Gasmenge, d.h. die Luftzahl vergrössert würde, mit zunehmender Luftzahl die Druckverluste im Brenner überproportional ansteigen, so dass sich bei vorgegebenen Gebläsedrücken die Leistung des Brenners vermindern müsste. Ferner wird das Gemisch vor der Brennerplatte durch die sich verengende Mischkammer, die im übrigen auch für eine homogene Durchmischung zu kurz ist, beschleunigt, und wenn ausserdem noch die Luftzahl erhöht würde und über die bisher bei üblichen Vormischbrennern erlaubter Luftzahlen gesteigert würde, würden die Gemischgeschwindigkeiten zu gross werden, um bei der gleichzeitig mit einer Luftzahlerhöhung eintretenden Verminderung der Flammengeschwindigkeit ein Halten der Flamme zu ermöglichen, insbesondere da der bekannte Brenner für die Möglichkeit, bei erhöhter Luftzahl ein Abreissen der Flamme von der Brennerplatte verhindern zu können, keine entsprechend angepasste Flammengestaltung aufweist und keine Mittel zur wirksamen Abschirmung der Flamme besitzt. Das Fehlen einer wirksamen Flammenabschirmung bei dem bekannten Brenner trägt auch dazu bei, die stattfindende Verbrennung unvollkommen zu machen, was dazu führt, dass die Verbrennungsprodukte in dem der Brennerplatte nachfolgenden Ofenraum ausreagieren und unkontrollierte Temperaturspitzen erzeugen, die die NOx-Bildung begünstigen.
  • Nachstehend werden anhand der Figuren 1 und 2 das erfindungsgemässe Verfahren sowie der Aufbau und die Wirkungsweise des erfindungsgemässen Brenners erläutert.
  • NOx bildet sich einerseits aus dem im Brennstoff gebundenen Stickstoff sowie andererseits thermisch aus freiem Stickstoff, der insbesondere in der Luft und gegebenenfalls ausserdem im Brennstoff, z.B. in Erdgas, vorhanden ist. Die thermische NOx-Bildung erfolgt bevorzugt bei hohen Verbrennungstemperaturen, z.B. bei Erdgas ab ca. 1600°C. Eine niedrige Verbrennungstemperatur und damit einen geringen NOx-Gehalt im Abgas erreicht man nach dem erfindungsgemässen Verfahren bei Brennstoffen mit geringem Anteil an gebundenem Stickstoff durch homogenes Mischen des Verbrennungsluft-Brennstoffgemisches vor der Verbrennung mit einem Kühlgas. Dieses Kühlgas kann Luft, Abgas, Wasserdampf oder ein Gemisch zweier oder aller dieser Komponenten sein. Um z.B. theoretisch 1 ppm NOx im Abgas (parts per million bezogen auf luftfreies und trockenes Abgas) zu erreichen, ist bei einem Druck von 1 bar und bei der Verwendung von Luft von 20°C als Kühlgas eine Einstellung der theoretischen Verbrennungstemperatur von 1330°C erforderlich.
  • In Figur 1 ist am Beispiel der Verbrennung von Erdgas die Abhängigkeit der theoretischen Verbrennungstemperatur von dem Massenstromverhältnis e bei verschiedenen Lufttemperaturen Ti und Abgastemperaturen T2 dargestellt.
  • Das Massenstromverhältnis e ist definiert als Verhältnis eines ersten Massenstromes, der sich aus einer Brennstoffmenge, einer Verbrennungsluftmenge und einer Kühlgasmenge zusammensetzt, zu einem zweiten Massenstrom, der sich aus der gleichen Brennstoffmenge und der für die stöchiometrische Verbrennung erforderlichen Verbrennungsluftmenge zusammensetzt. Die theoretische Verbrennungstemperatur ergibt sich ohne Wärmeaustausch mit der Umgebung, bei vollständiger Verbrennung des Brennstoffes zu C02 und H20, aus dem Brennstoffheizwert und den Enthalpien der dem Brenner zugeführten Stoffe. Die Enthalpien werden bestimmt durch Mengen, Temperaturen und spezifische Wärmekapazitäten der Stoffe.
  • In Figur 1 zeigen die durchgezogenen Kurven einer ersten Kurvenschar, welche Verbrennungstemperaturen in Abhängigkeit vom Massenstromverhältnis e erreicht werden, wenn der Brennstoff Erdgas vor der Verbrennung allein mit Luft mit der jeweils an den durchgezogenen Kurven angegebenen Temperatur T, homogen gemischt wird, wenn also in dem oben definierten Massenstromverhältnis der erste Massenstrom kein rückgeführtes Abgas als Kühlgas enthält und allein unterschiedlich grosse Luftmengen als Kühlgas verwendet werden.
  • Die gestrichelten Kurven einer zweiten Kurvenschar zeigen in Figur 1 die in Abhängigkeit vom Massenstromverhältnis e eintretenden Verbrennungstemperaturen, wenn der erste Massenstrom des oben definierten Massenstromverhältnisses eine Luftmenge enthält, die gleich der für die stöchiometrische Verbrennung benötigten Luftmenge im zweiten Massenstrom ist, und wenn der erste Massenstrom rückgeführtes Abgas als Kühlgas enthält. Hierbei gilt für die gestrichelten Kurven, dass die zugeführte Verbrennungsluft eine Temperatur von 20°C hat und dass das als Kühlgas dienende Abgas die jeweils an den gestrichelten Kurven angegebene Temperatur T2 hat.
  • Die gestrichelten Kurven stellen lediglich ein Beispiel für die Bestimmung der theoretischen Verbrennungstemperatur bzw. des Massenstromverhältnisses dar. Der Übersichtlichkeit halber wurde darauf verzichtet, die entsprechenden Kurven für diejenigen Fälle darzustellen, dass unterschiedlich temperierter Wasserdampf als Kühlgas verwendet wird oder dass ein unterschiedlich temperiertes Kühlgas mit Verbrennungsluft von anderer Temperatur als 20°C vermischt wird. Solche Kurven können unter Verwendung der in einschlägigen Handbüchern und dergleichen veröffentlichten spezifischen Daten errechnet bzw. dargestellt werden.
  • Aus Figur 1 ist zu entnehmen, dass zum Erreichen einer theoretischen Verbrennungstemperatur von z.B. 1300°C bei Verwendung nur von Verbrennungsluft von 20°C zugleich als Kühlgas (unterste durchgezogene Kurve) das Massenstromverhältnis e = 1,74 beträgt, während bei Verwendung von Verbrennungsluft von 20°C vermischt mit Abgas von 100°C als Kühlgas (unterste gestrichelte Kurve) das Massenstromverhältnis e = 1,70 ist.
  • Bei Versuchen, die sowohl im Labor als auch im betriebsmässigen Einsatz durchgeführt wurden, wurden NOX -Werte von 1,5 ppm (luftfrei, trocken) bei Verwendung von Erdgas als Brennstoff und Luft als Verbrennungs- und Kühlgas erzielt, wobei eine theoretische Verbrennungstemperatur von 1300°C eingestellt wurde. Das zeigt, dass die weiteroben genannten theoretischen Werte in der Praxis weitgehend erreicht werden. Bei den bisher üblichen Brennern beträgt der NOx-Gehalt im Abgas durchschnittlich 50 - 500 ppm (luftfrei, trocken).
  • Bei niedrigen Verbrennungstemperaturen (bei Erdgas z.B. unter ca. 1600°C) wird die Verbrennungsgeschwindigkeit jedoch schon so gering, dass die Verbrennung instabil verlaufen kann und dass eine weitere Abkühlung der Flamme leicht zur Stabilisierung von Verbrennungszwischenprodukten wie CO und Formaldehyd führen kann. Diese Schwierigkeiten werden vermieden, wenn der Brenner erfindungsgemäss ausgebildet ist.
  • Der erfindungsgemässe Brenner ist geeignet für alle Brennstoffe, die vor der Verbrennung gas- oder dampfförmig vorliegen und die homogen mit der Verbrennungsluft und dem Kühlgas vermischt werden können. Der Brenner kann sowohl unter Normaldruck als auch unter erhöhtem Druck betrieben werden.
  • Ein Ausführungsbeispiel des erfindungsgemässen Brenners ist in Figur 2 dargestellt. Nachstehend werden das erfindungsgemässe Verfahren sowie der Brenner beschrieben.
  • Dem Mischrohr 1 müssen Brennstoff 2, Verbrennungsluft 3 und Kühlgas 4 zugeführt werden. Die Verbrennungsluft wird dem Mischrohr beispielsweise durch ein in Figur 2 nicht näher dargestelltes Gebläse zugeführt.
  • Wenn Luft als Kühlgas verwendet wird, wird diese Luft auf gleiche Weise zugeführt. Wenn Abgas oder Wasserdampf als Kühlgas dienen, können diese gemeinsam mit der Verbrennungsluft durch ein Gebläse gefördert werden, wenn ihre Temperatur bzw. die Temperatur des Luft-Kühl-Gemisches für das Gebläse zulässig ist. Anderenfalls kann das Kühlgas ebenso wie der Brennstoff dem Mischrohr direkt, .z.B. durch Injektorwirkung, zugeführt werden. Zur Verkürzung des Mischrohres kann auch der Brennstoff vor dem Gebläse zugeführt werden.
  • An das Mischrohr 1 schliesst sich der Brennerkopf 5 an, dessen Querschnitt 6 am Anschluss an das Mischrohr 1 beispielsweise das 2fache des Mischrohrquerschnittes beträgt. Durch diesen sprunghaften Übergang auf einen grösseren Strömungsquerschnitt wird eine Abrisskante für die Strömung gebildet. Der Brennerkopf 5 erweitert sich danach konisch auf beispielsweise das 4,5fache des Mischrohrquerschnittes. Statt der dargestellten Kegelform des Brennerkopfmantels sind auch gekrümmte Mantelformen möglich. Am Ende des Brennerkopfes ist eine Brennerplatte 7 angeordnet, die eine grosse Hauptflammen-Bohrung 8 und mehrere kleine Bohrungen 9 aufweist, die in mehreren konzentrischen Ringen um die Hauptflammen-Bohrung 8 angeordnet sind und zur Bildung der Halteflammen dienen. Je nach Grösse des Brennerkopfes können mehrere Hauptflammen-Bohrungen in der Brennerplatte vorhanden sein. Ausserdem können die kleinen Bohrungen 9 durch entsprechende schlitzförmige Öffnungen ersetzt werden. Die Brennerplatte kann sowohl aus Metall als auch aus keramischem Material bestehen. Die Abstände der Halteflammen-Bohrungen 9, die zusammen einen etwas geringeren freien Querschnitt als die Hauptflammen-Bohrung 8 haben, werden so gewählt, dass sie eine einwandfreie Überzündung von den äussersten Halteflammen zur Hauptflamme und eine gegenseitige Stabilisierung der Halteflammen gewährleisten. Während die Hauptflammen-Bohrung 8 parallel zur Brennerachse verläuft, sind mindestens die Halteflammen-Bohrungen 9, die sich im äussersten Ring befinden, in einem Winkel von beispielsweise etwa 40° zur Brennerachse geneigt. Der äusserste Halteflammen-Ring wird auf diese Weise durch Rückströmungen an der zylindrischen Wand des Brennermundes 10, der sich an die Brennerplatte 7 anschliesst, stabilisiert.
  • Der Brennermund 10 ist nur ein kurzes Stück zylindrisch ausgeführt und verjüngt sich dann konisch, beispielsweise auf das 2,9fache des Mischrohrquerschnittes. Die Mantelfläche des Brennermundes kann analog dem Brennerkopf entweder kegelförmig, wie in Figur 2 dargestellt, oder gewölbt ausgeführt sein. Auch die Brennerplatte 7 kann statt der dargestellten ebenen Form kegelförmig oder gewölbt ausgeführt sein.
  • Um die entstehende Flamme vor einer Abkühlung von aussen zu schützen und um ein unerwünschtes Eindringen von Fremdgasen in den Flammen- bzw. Verbrennungsbereich zu verhindern, was die eingangs beschriebeen negativen Wirkungen zur Folge hätte, ist der Brennermund 10 mit einer Flammenschutzhülle 11 verbunden. In Figur 2 ist sie als zylindrisches Rohr dargestellt, dessen Innendurchmesser dem grössten Aussendurchmesser der freibrennenden Flamme entspricht. Eine andere, nicht dargestellte vorteilhafte Ausführungsform der Flammenschutzhülle besteht aus einem konisch erweiterten und anschliessend zylindrischen Rohr, welches also der Flammenform angepasst ist. Die Flammenschutzhülle wird derart ausgebildet, dass sie die Flamme nicht behindert bzw. einengt. Die Flammenschutzhülle 11 verhindert, dass die Flamme durch Berührung mit Luft und/oder Abgas aus der Umgebung weiter abgekühlt wird und dadurch am vollständigen Ausbrand gehindert würde. Es hat sich als vorteilhaft erwiesen, den Brennermund 10 und die Flammenschutzhülle 11 innen mit einem katalytisch unwirksamen Material oder bei niedrigen Umgebungstemperaturen mit einer Wärmeisolierung, z.B. Keramik, auszukleiden. Die Aufgabe einer Flammenschutzhülle kann auch eine Brennkammer erfüllen, die keine Nutzwärme abführt und in der die Flamme vollständig ausbrennen kann.
  • Mit dem erfindungsgemässen Verfahren ist es erstmals möglich, homogene Gemische der genannten Art mit sehr hohen Massenstromverhältnissen betriebssicher und schadstoffarm zu verbrennen. Durch Einstellung des Massenstromverhältnisses kann in der zuvor beschriebenen Weise eine gewünschte Verbrennungstemperatur eingestellt werden. Dadurch, dass die Vermischung der Brennergase mit Fremdgasen, z.B. Luft oder Abgas, die in der Umgebung des Brenners vorhanden sind, weitestgehend vermieden wird, bleibt die Flammentemperatur so homogen, dass die thermische NOX-Bildung weitgehend der NOx-Bildung bei der theoretischen Verbrennungstemperatur entspricht.
  • Der erfindungsgemässe Brenner zeichnet sich trotz einfachster Konstruktion unter anderem durch eine leise, stabile, schadstoffarme Verbrennung über einen grossen Leistungsbereich aus.
  • Die Anwendungsmöglichkeiten für den Erfindungsgegenstand sind ausserordentlich vielseitig. Dazu gehören beispielsweise die Erzeugung von Abgas-Luft-Gemischen zur Erwärmung und Trocknung von Lebensmitteln, die Beheizung von Kesseln und Industrieöfen der verschiedensten Art sowie die Erzeugung von Antriebsgas für Gasturbinen. In allen diesen Fällen kann wegen des ungewöhnlich geringen NOx-Gehalts im Abgas der Erfindungsgegenstand einen wertvollen Beitrag zur Luftreinhaltung leisten.

Claims (9)

1. Verfahren zum Betrieb von Vormischbrennern unter normalem oder erhöhtem Druck mit gasförmigen Brennstoffen, oder mit bei Normaltemperatur flüssigen und vor der Verbrennung vollständig verdampften Brennstoffen, und bei niedrigen Verbrennungstemperaturen unter Bildung schadstoffarmer Abgase, dadurch gekennzeichnet, dass dem Brenner ein homogenes Gemisch zugeführt wird, welches zusammengesetzt wird aus dem gas- bzw. dampfförmigen Brennstoff, einer zur vollständigen Verbrennung des Brennstoffes benötigten Verbrennungsluftmenge und einer zur Einstellung der Verbrennungstemperaturvon 1100 bis 1700°C, vorzugsweise 1200 bis 1300°C, dienenden Kühlgasmenge, dass die Verbrennung des homogenen Gemisches in an sich bekannterweise in mindestens einer zentralen, von mehreren Halteflammen-Ringen umgebenen Hauptflamme stattfindet, und dass die entstehende Flamme über ihre Länge bis zum vollständigen Ausbrand gegen den Zutritt von Umgebungsluft und/oder Abgas sowie gegen Abkühlung nach aussen oder Erwärmung von aussen geschützt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Kühlgas in dem dem Brenner zugeführten unverbrannten Gemisch Luft und/oder Abgas und/oder Wasserdampf verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Menge des Kühlgases 20 bis 600% der zur vollständigen Verbrennung des Brennstoffes benötigten Luftmenge beträgt.
4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, gekennzeichnet durch ein Mischrohr (1) mit Zuleitungen für den Brennstoff (2), für die Verbrennungsluft (3) und für das Kühlgas (4), einen an das Mischrohr (1) sich anschliessenden Brennerkopf (5), der an seinem an das Mischrohr angeschlossenen Eintrittsende einen Querschnitt vom 1,1- bis 3,8fachen, vorzugsweise von 1,8- bis 2,7fachen, des Mischrohrquerschnittes hat und sich zu seinem Austrittsende auf einen Querschnitt vom 2,0- bis 6,8fachen, vorzugsweise vom 3,2- bis 4,8fachen, des Mischrohrquerschnittes erweitert, eine am erweiterten Austrittsende des Brennerkopfes (5) angeordnete Brennerplatte (7), die in an sich bekannter Weise mindestens eine grosse, zur Brennerachse parallele Hauptflammen-Bohrung (8) und mehrere kleine, die Hauptflammen-Bohrung in mehreren konzentrischen Ringen umgebende Halteflammen-Öffnungen (9) enthält, wobei mindestens die Halteflammen-Öffnungen im äussersten Ring unter einem Winkel von 10 bis 70°, vorzugsweise 25 bis 45°, zur Brennerachse verlaufen, einen an die Brennerplatte (7) sich anschliessenden Brennermund (10), der mit einem dem erweiterten Austrittsende des Brennerkopfes entsprechenden Querschnitt zunächst zylindrisch ausgebildet ist und sich dann auf das 1,4- bis 4,9fache, vorzugsweise das 2,3- bis 3,5fache, des Mischrohrquerschnittes verengt, und durch eine an das verengte Ende des Brennermundes (10) sich anschliessende Flammenschutzhülle (11), die die Flamme über ihre Länge bis zur Stelle des vollständigen Flammenausbrandes umgibt und deren Innendurchmesser dem grössten Aussendurchmesser der freibrennenden Flamme entspricht.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Flammenschutzhülle (11) aus einem vom verengten Ende des Brennermundes (10) bis zum vollständig ausgebrannten Flammenende sich erstreckenden zylindrischen Rohr besteht.
6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Flammenschutzhülle (11) aus einem Rohr besteht, das am verengten Ende des Brennermundes (10) beginnend sich zunächst konisch erweitert und sich anschliessend zylindrisch bis zum vollständig ausgebrannten Flammenende erstreckt.
7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Brennermund (10) und die Flammenschutzhülle (11) von einer an den Brennerkopf (5) nebst Brennerplatte (7) angeschlossenen Brennkammer gebildet sind, die praktisch keine Nutzwärme abführt.
8. Vorrichtung nach einem der Anspprüche 4 bis 7, dadurch gekennzeichnet, dass der Brennermund (10) und die Flammenschutzhülle (11) innen mit einem katalytisch unwirksamen Material ausgekleidet sind.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Brennerplatte (7), der Brennermund (10) und die Flammenschutzhülle (11) aus einem wärmeisolierenden keramischen Material hergestellt sind bzw. damit ausgekleidet sind.
EP80102799A 1979-06-29 1980-05-21 Verfahren zum Betrieb von Vormischbrennern und Brenner zur Durchführung des Verfahrens Expired EP0021035B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792926278 DE2926278A1 (de) 1979-06-29 1979-06-29 Verfahren zum betrieb von vormischbrennern und brenner zur durchfuehrung des verfahrens
DE2926278 1979-06-29

Publications (2)

Publication Number Publication Date
EP0021035A1 EP0021035A1 (de) 1981-01-07
EP0021035B1 true EP0021035B1 (de) 1983-08-10

Family

ID=6074483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80102799A Expired EP0021035B1 (de) 1979-06-29 1980-05-21 Verfahren zum Betrieb von Vormischbrennern und Brenner zur Durchführung des Verfahrens

Country Status (7)

Country Link
US (3) US4439135A (de)
EP (1) EP0021035B1 (de)
JP (1) JPS5610615A (de)
BR (1) BR8003995A (de)
CA (1) CA1142421A (de)
DE (1) DE2926278A1 (de)
IN (1) IN153603B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926278A1 (de) * 1979-06-29 1981-01-15 Ruhrgas Ag Verfahren zum betrieb von vormischbrennern und brenner zur durchfuehrung des verfahrens
NL8200272A (nl) * 1982-01-26 1983-08-16 Veg Gasinstituut Nv Brander.
FR2595791B1 (fr) * 1986-03-14 1989-07-28 Centre Nat Rech Scient Bruleur a faible emission de gaz polluants
DE3630177A1 (de) * 1986-09-04 1988-03-10 Ruhrgas Ag Verfahren zum betreiben von vormischbrennern und vorrichtung zum durchfuehren dieses verfahrens
US4773702A (en) * 1987-06-18 1988-09-27 Combi Co., Ltd. Reversible seat pad for a baby carriage
AU1862688A (en) * 1987-07-17 1989-01-19 Manville Corporation Method and apparatus for attenuating glass fibers
EP0440423B1 (de) * 1990-01-30 1994-12-07 Cyclean, Inc Trommeltrockner für die Wiederaufbereitung von aufgebrochenem Altasphalt
US5805973A (en) * 1991-03-25 1998-09-08 General Electric Company Coated articles and method for the prevention of fuel thermal degradation deposits
US5891584A (en) * 1991-03-25 1999-04-06 General Electric Company Coated article for hot hydrocarbon fluid and method of preventing fuel thermal degradation deposits
US5247792A (en) * 1992-07-27 1993-09-28 General Electric Company Reducing thermal deposits in propulsion systems
US5971745A (en) * 1995-11-13 1999-10-26 Gas Research Institute Flame ionization control apparatus and method
AUPP895999A0 (en) * 1999-03-01 1999-03-25 Bowin Technology Pty Limited Gas fired burner apparatus
US6383461B1 (en) 1999-10-26 2002-05-07 John Zink Company, Llc Fuel dilution methods and apparatus for NOx reduction
US6299433B1 (en) 1999-11-05 2001-10-09 Gas Research Institute Burner control
US7096722B2 (en) * 2002-12-26 2006-08-29 Woodward Governor Company Method and apparatus for detecting combustion instability in continuous combustion systems
EP1445534A1 (de) * 2003-01-29 2004-08-11 Ruhrgas Aktiengesellschaft Anordnung zum Beheizen von Gebäuden, insbesondere von Gewächshäusern
US20040236313A1 (en) * 2003-05-21 2004-11-25 Klein Jeffrey A. Infiltration cannula
US7241135B2 (en) 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner
US8171716B2 (en) * 2007-08-28 2012-05-08 General Electric Company System and method for fuel and air mixing in a gas turbine
JP2009228961A (ja) * 2008-03-21 2009-10-08 Gastar Corp 風呂給湯装置
CN102944014A (zh) * 2012-10-22 2013-02-27 瑞焓能源科技有限公司 工业锅炉燃烧器及具有其的工业锅炉

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1512579A (en) * 1923-04-19 1924-10-21 Neville C Davison Gas burner
US2462704A (en) * 1945-02-07 1949-02-22 John S Zink Burner and burner nozzle
DE909760C (de) * 1950-11-24 1954-04-26 Philips Nv Verfahren und Brenner zur Inbetriebnahme fuer vergasten schwereren Brennstoff
US2767784A (en) * 1951-03-22 1956-10-23 Ind Systems Inc Fuel burner
US2753925A (en) * 1951-07-05 1956-07-10 Sinclair Refining Co Carbon monoxide burner
US3352347A (en) * 1963-10-30 1967-11-14 Ferro Corp Ceramic refractory flame retention nozzle
US3320999A (en) * 1965-03-15 1967-05-23 Owens Corning Fiberglass Corp Internal combustion burner
FR1449818A (fr) * 1965-07-05 1966-05-06 Soc Metallurgique Imphy Brûleur à gaz
US3485566A (en) * 1966-04-15 1969-12-23 Fritz Schoppe Burner for firing a combustion chamber
DE1977410U (de) * 1967-11-02 1968-01-25 Stroehlein & Co Laborbrenner fuer erdgas.
FR1603101A (en) * 1968-04-03 1971-03-22 Oxy-acetylene cutting head
US3574506A (en) * 1968-07-29 1971-04-13 Bernzomatic Corp Blow torch burner
NL7113989A (de) * 1970-10-16 1972-04-18
CA954789A (en) * 1970-11-20 1974-09-17 Trw Inc. Burner assembly for providing reduced emission of air pollutant
JPS48100226U (de) * 1972-02-26 1973-11-26
GB1453440A (en) * 1973-01-18 1976-10-20 Flaregas Eng Ltd Apparatus for use in the disposal of waste gas
JPS49111235A (de) * 1973-02-24 1974-10-23
GB1465785A (en) * 1973-03-12 1977-03-02 Tokyo Gas Co Ltd Burner and method of combustion-
FR2236394A5 (de) * 1973-07-06 1975-01-31 Gaz De France
US3880571A (en) * 1973-07-26 1975-04-29 Trw Inc Burner assembly for providing reduced emission of air pollutant
JPS5043326U (de) * 1973-08-15 1975-05-01
JPS5128842U (de) * 1974-08-27 1976-03-02
US4113417A (en) * 1974-11-06 1978-09-12 Stein Industrie Combustion of hot gases of low calorific power
DE2525303C3 (de) * 1975-06-06 1979-05-10 Penzenskij Kompressornyj Zavod, Penza (Sowjetunion) Gasbrenner
DE2527073A1 (de) * 1975-06-18 1977-01-13 Pensenskij Kompressornyj Sawod Gasbrenner
JPS5759823Y2 (de) * 1975-08-16 1982-12-21
JPS5228732A (en) * 1975-08-29 1977-03-03 Matsushita Electric Ind Co Ltd Fully primary air-type gas burner
US4152108A (en) * 1977-07-15 1979-05-01 John Zink Company Steam injection to zone of onset of combustion in fuel burner
JPS5455214A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Gas turbine combustor
DE2926278A1 (de) * 1979-06-29 1981-01-15 Ruhrgas Ag Verfahren zum betrieb von vormischbrennern und brenner zur durchfuehrung des verfahrens

Also Published As

Publication number Publication date
US4530656A (en) 1985-07-23
DE2926278A1 (de) 1981-01-15
IN153603B (de) 1984-07-28
DE2926278C2 (de) 1987-04-23
US4439135A (en) 1984-03-27
EP0021035A1 (de) 1981-01-07
JPS5610615A (en) 1981-02-03
JPH0150804B2 (de) 1989-10-31
US4582476A (en) 1986-04-15
BR8003995A (pt) 1981-01-21
CA1142421A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
EP0021035B1 (de) Verfahren zum Betrieb von Vormischbrennern und Brenner zur Durchführung des Verfahrens
EP0415008B1 (de) Verfahren zum Verbrennen in einem Gasbrenner
DE60108711T2 (de) Vormischbrenner mit niedrigem NOx-Ausstoss und Verfahren dafür
DE60025933T2 (de) Brennvorrichtung zur behandlung von abgas
DE69017318T2 (de) Verbrennungsverfahren mit verbesserter Temperaturverteilung.
DE68909309T2 (de) Verbrennungsverfahren mit niedrigem NOx-Gehalt und mit hohem Leistungsgrad.
DE69724843T2 (de) Verbrennungsvorrichtung
DE3854666T2 (de) Gasturbinenbrenner.
DE4033296C2 (de) Gasbrenner und Verfahren zum Betreiben eines solchen
DE3852651T2 (de) Vorrichtung und verfahren zur herstellung einer hochlichtgebenden flamme.
DE2461078A1 (de) Verfahren zur verminderung von schadstoffen bei verbrennungsvorgaengen und vorrichtung zur durchfuehrung desselben
EP2467642A2 (de) Strahlungsbrenner
DE19717721A1 (de) Brennereinrichtung und Verfahren zum Betreiben einer Brennereinrichtung für eine NOx- und CO-arme Verbrennung
DE3041177A1 (de) Brenner
DE2700671C2 (de) Blaubrennender Ölbrenner
DE3930037A1 (de) Wasserrohrkessel und verfahren zu dessen brennerbetrieb
EP0663562A2 (de) Verfahren zur Reduzierung von Schadgasemissionen bei der Verbrennung und Brenner dafür
DE9007627U1 (de) Brenner mit niedriger NOx-Emission
DE2323919C2 (de) Verfahren zum Verbrennen von kohlenstoffhaltigen Brennstoffen zur Erzeugung von Energie in Form von Wärme
DE4231866A1 (de) Brenner und verfahren zum verbrennen von gas mit niedrigem brennwert
EP0484777B1 (de) Verfahren zur Stabilisierung eines Verbrennungsvorganges
DE4242003A1 (de) Prozesswärmeerzeuger
DE3048044A1 (de) Flammrohr aus hitzebestaendigem werkstoff fuer brenner, insbesondere oelbrenner
DE10140422C1 (de) Thermische Nachverbrennungsvorrichtung
DE19542644B4 (de) Vormischverbrennung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB NL

17P Request for examination filed

Effective date: 19810522

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB NL

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19840510

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DELETED BERGES, PIETER JOZEF R. 106(3), 102(1) 24.

Effective date: 19840510

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19840510

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.17/84,PAGE 1879:CORR.:SIEMENS AG

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19880317

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960415

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960419

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960422

Year of fee payment: 17

Ref country code: NL

Payment date: 19960422

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970531

BERE Be: lapsed

Owner name: RUHRGAS A.G.

Effective date: 19970531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST