EA034536B1 - Способ интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта - Google Patents

Способ интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта Download PDF

Info

Publication number
EA034536B1
EA034536B1 EA201700194A EA201700194A EA034536B1 EA 034536 B1 EA034536 B1 EA 034536B1 EA 201700194 A EA201700194 A EA 201700194A EA 201700194 A EA201700194 A EA 201700194A EA 034536 B1 EA034536 B1 EA 034536B1
Authority
EA
Eurasian Patent Office
Prior art keywords
tubing
well
radial
formation
trunk
Prior art date
Application number
EA201700194A
Other languages
English (en)
Other versions
EA201700194A2 (ru
EA201700194A3 (ru
Inventor
Павел Иванович ПОПОВ
Original Assignee
Павел Иванович ПОПОВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Павел Иванович ПОПОВ filed Critical Павел Иванович ПОПОВ
Publication of EA201700194A2 publication Critical patent/EA201700194A2/ru
Publication of EA201700194A3 publication Critical patent/EA201700194A3/ru
Publication of EA034536B1 publication Critical patent/EA034536B1/ru

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/065Deflecting the direction of boreholes using oriented fluid jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/14Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using liquids and gases, e.g. foams
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/002Cutting, e.g. milling, a pipe with a cutter rotating along the circumference of the pipe
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/06Cutting windows, e.g. directional window cutters for whipstock operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Treatment Of Sludge (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Способ включает установку в скважину НКТ, механического якоря, поворотного устройства, герметизирующего устройства, отклонителя, разъединителя, циркуляционного узла, пакера и воронки; установку гидромониторной насадки, навигационной системы, рабочей части ГНКТ, устройства перераспределения потока, обратного клапана, подающей части ГНКТ. Подачей жидкости в пространство между НКТ и ГНКТ и спуском ГНКТ обеспечивается гидромониторная проходка по пласту, создается управляемый канал, вместе со шламом жидкость возвращается в скважину и поднимается по пространству между НКТ и обсадной колонной. На поверхности жидкость очищают, обрабатывают и возвращают в скважину. После проходки рабочая часть ГНКТ извлекается из пласта, проводится промывка скважины до полной очистки, отклонитель переводится в другую плоскость, цикл работ повторяют. Фрезерование окон для всех боковых стволов проводится заранее при подготовке скважины к работам.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам для промывки буровых скважин с использованием жидкостей и газов, включающим изменение направления скважин, а именно к методам повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта.
Из уровня техники известен ряд способов бурения, например способ, осуществляемый с помощью устройства для бурения (патент RU 2118440 С1, 27.08.1998), включающий бурение основного ствола скважины и крепление его обсадной колонной с трубой с направляющим элементом, спуск бурильной колонны с двигателем, долотом и ориентированное бурение первого ответвления, при этом направляющий элемент отклоняет инструмент. В случае необходимости для облегчения ввода в одно из искривленных ответвлений в отклоняющее устройство может быть опущено устройство для повторного ввода, после этого аналогичным образом производят бурение второго ответвления.
Недостатками вышеуказанного способа являются сложность конструкции устройства, что ведет к повышению материальных затрат на строительство скважины, невозможность вовлечения основного ствола в эксплуатацию, так как направляющий элемент не извлекается из скважины, большой радиус искривления ствола, что приводит к необходимости бурения протяженного интервала до входа ответвления в продуктивный пласт, необходимость обсаживать ответвление обсадной колонной и цементировать его.
Наиболее близким аналогом заявленного изобретения является способ гидравлического бурения (CM. US 2012/0186875, 26.07.2012), включающий герметичную установку отклоняющего устройства с внутренней поверхностью рабочей колонны на дистальном конце рабочей колонны НКТ (насоснокомпрессорной трубы), при этом отклонитель выполнен с проходящим в нем внутренним каналом, а бурильный инструмент содержит бурильные НКТ с внутренним стволом, приближенным концом и дистальным концом и устройство сквозного потока, имеющее не менее одного канала, обеспечивающего сообщение жидкости между затрубным пространством, образованным внутренней поверхностью рабочей колонны НКТ, и внутренним стволом бурильных НКТ, когда бурильный инструмент вставляется в рабочую колонну НКТ, способ далее включает соединение бурильного инструмента с соединительной колонной, вхождение бурильного инструмента в рабочую колонну НКТ, вхождение по крайней мере части бурильных НКТ в отклонитель, подачу бурильной жидкости под давлением в затрубное пространство, образованное между рабочей колонной НКТ и соединительной колонной, при этом бурильная жидкость под давлением проходит через устройство сквозного потока в бурильную трубу и выходит на дистальном конце бурильных НКТ.
Недостатками наиболее близкого аналога является низкая эффективность способа, обусловленная низким охватом воздействием радиальными стволами продуктивной части пласта вследствие отсутствия навигации проводки стволов и управления их траекторией, отсутствием возможности бурить протяженные стволы из-за опасности неконтролируемого их выхода за пределы пласта и проникновения в водоносные интервалы или проведением их в не продуктивной части разреза скважины.
Задача изобретения заключается в устранении указанных недостатков посредством создания нового способа повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин.
Техническим результатом заявленного изобретения является повышение продуктивности скважин и коэффициента извлечения углеводородов за счет дополнительного приращения площади дренирования, охвата воздействием, снятия скин - фактора и увеличения проводимости матрицы пласта, обеспечение возможности адресного воздействия на пласт за счет направленного воздействия на залежь управляемыми боковыми каналами, возможность проведения интенсификации без воздействия на цементную крепь колонны значительным перепадом давления или химическим разрушением; возможность проведения интенсификации значительным перепадом давления или химическим разрушением; очистка ствола скважины при ее проводке, что позволяет эффективно использовать технологию как в карбонатных, так и в терригенных пластах.
Указанная задача изобретения решается созданием способа повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта, включающего установку в скважину высокопрочных НКТ (насоснокомпрессорных труб), отклонителя с проходящим в нем внутренним каналом, привязкой и возможной ориентацией его в пространстве в интервале нижнего уровня проводки боковых стволов, герметизацию устья скважины, установку внутрискважинного оборудования, состоящего из гидромониторной насадки, узла управления траекторией ствола, навигационной системы, рабочего койла, устройства перераспределения потока, обратного клапана, подающего койла, подачу жидкости в межколонное пространство НКТ/койл, перемещение гидромониторной насадки через герметизирующее устройство, через отклонитель в контакт с горной породой, производится проводка плановой протяженности радиального ствола с использованием навигационной системы для контроля текущего положения ствола в пласте, а также с использованием узла управления траекторией ствола для обеспечения проводки ствола по проектной траектории, после проходки по пласту рабочий койл с насадкой извлекается из пласта и проводится промывка скважины до полного выноса шлама, посредством срабатывания механического поворотного уст- 1 034536 ройства отклонитель переводится в другую плоскость, цикл работ повторяют для следующего бокового ствола, при котором фрезерование отдельного окна для каждого бокового ствола проводится непосредственно перед проведением основной операции по проходке бокового ствола через отклонитель, при проводке бокового ствола определяют и изменяют траекторию ствола посредством снабжения рабочего койла узлом управления траекторией ствола и навигационным оборудованием.
Для проводки радиальных стволов на последующих уровнях извлекают подающий и рабочий койл из скважины, срывают НКТ с механического якоря, извлекают подгоночный патрубок НКТ, заранее установленный и равный длине перехода на следующий уровень, делают посадку НКТ на механический якорь, спускают в скважину рабочий койл с навигационной системой, узлом управления траекторий ствола, гидромониторной насадкой, после чего работы по проводке радиальных стволов повторяют.
При прорезании окон в обсадной колонне для бокового ствола спускают дополнительное гидропескоструйное устройство на колтюбинге, производят абразивную резку прямоугольного отверстия с циркуляцией и затем оборудование поднимают.
За один спуск гидропескоструйного устройства на колтюбинге проводят резку всех необходимых прямоугольных отверстий для проходки радиальных стволов в обсадной колонне на одном уровне, используя фиксированный поворот отклонителя за счет срабатывания механического поворотного устройства с дискретным углом поворота.
Закачку жидкости осуществляют по малому затрубу НКТ/койл и/или по малому затрубу НКТ/койл и внутреннему пространству койла.
Краткое пояснение сущности изобретения представлено на графических материалах.
На фиг. 1 - схема 1 заявленного способа, на фиг. 2 - схема 2 заявленного способа.
На фиг. 1 и 2
- обратный клапан,
- устройство перераспределения потока,
- механический якорь,
- поворотное устройство,
- герметизирующее устройство,
- отклонитель,
- навигационная система,
- узел управления траекторией ствола,
- гидромониторная насадка,
- устройство для гидропескоструйной резки,
- обсадная колонна,
- высокопрочные НКТ,
- подающий койл,
- рабочий койл,
- отфрезерованный по окружности участок (окно) в обсадной колонне,
- проходное отверстие (окно), прорезанное в обсадной колонной гидропескоструйной резкой.
Далее приводится варианты, не являющиеся исчерпывающими.
На высокопрочных НКТ в подготовленную к РВП скважину с отфрезерованными окнами в обсадной колонне в местах проведения боковых стволов спускается отклонитель и устанавливается с привязкой и при необходимости с ориентацией в интервале нижнего уровня проводки радиальных стволов. В скважину (в НКТ 89 мм) спускается внутрискважинное оборудование на рабочем койле (гибкая насосно-компрессорная труба) 38 мм. Оно включает гидромониторную насадку, узел управления траекторией ствола, навигационную систему, рабочий койл 32 (38) мм расчетной длины, равный плановой протяженности радиальных стволов (до 500м и более), устройство перераспределения потока, обратный клапан, подающий койл. Далее проводится герметизация устья скважины, после этого в межколонное пространство подающий койл 38 мм/НКТ 89 мм подается жидкость вскрытия, допуском подающего койла гидромониторная насадка с рабочим койлом перемещается через герметизирующее устройство, выходит через отклонитель на контакт с горной породой/цементом. Производится проводка плановой протяженности радиального ствола с использованием навигационной системы для контроля текущего положения ствола в пласте, а также с использованием узла управления траекторией ствола для обеспечения проводки ствола по проектной траектории. При этом закачку жидкости осуществляют по малому затрубу НКТ/койл и/или по малому затрубу НКТ/койл и внутреннему пространству койла. Отключается насос, и с гарантированной точностью поворачивается отклонитель с помощью механического поворотного устройства. Операция по проходке следующего ствола повторяется. После проведения необходимого количества стволов на одном уровне переходят к полному подъему койла. Извлекают подгоночный патрубок, заранее навернутый в верхней части подвески НКТ расчетной длины для перехода на следующий уровень. Устанавливают отклонитель на НКТ в плановом интервале на механический якорь. Цикл работ повторяют. После проведения проектного количества радиальных стволов производят полный подъем койла, подвески НКТ 89 мм.
- 2 034536
Ниже приводится еще один из возможных примеров с вариацией по схеме 2 способа (см. пример и фиг. 2 ниже) осуществления изобретения, никоим образом не ограничивающий все возможные варианты его реализации. Для удобства пример приведен со ссылками на графические материалы.
[1] В заглушенную и подготовленную для проведения радиального вскрытия пласта (РВП) скважину на высокопрочных НКТ (12) спускают компоновку, состоящую из отклонителя (6), имеющего проходной канал с боковым выходом, герметизирующего устройства (5), поворотного устройства (4), механического якоря (3).
В компоновку также могут быть включены дополнительные элементы, не ограниченные данным перечнем: компенсатор линейных напряжений, разъединитель, обратные проходные клапана и другое.
Геофизическим методом отклонитель привязывается боковым каналом к интервалу отфрезерованной по окружности обсадной колонны (15).
Производят посадку компоновки НКТ на механический якорь (3) с учетом привязки таким образом, чтобы выход отклонителя (6) совпадал с открытой (отфрезерованной по окружности) частью обсадной колонны (15).
[2] Существует другой способ (см. фиг. 2) обеспечения сообщения бокового выхода отклонителя (6) с пластом посредством использования гидропескоструйной резки окна прямоугольного сечения (16) в обсадной колонне (11). Для выполнения данной задачи в не фрезерованную обсадную колонну спускается вышеописанная компоновка, производится ее посадка на механический якорь (3) с привязкой геофизическим методом.
[3] Далее в НКТ (12) на койле (13) спускается устройство для гидропескоструйной резки (10), которое входит в сочленение с отклонителем и концом с насадкой направляется в стенку обсадной колонны (11) . Закачкой жидкости в койл (13) создается циркуляция жидкости с выходом из скважины по межколонному пространству между обсадной колонной (11) и НКТ (12). В поток жидкости на поверхности добавляется абразивный материал (кварцевый песок, проппант и т.п.), который, проходя через насадку устройства (10), разрушает стенку обсадной колонны с созданием проходного отверстия (16). Создание прямоугольного сечения проходного отверстия (16) обеспечивается передвижением вниз насадки устройства для пескоструйной резки (10). После прорезания отверстия в обсадной колонне и подъема из скважины оборудования для пескоструйной резки приступают к операции по проводке радиальных каналов.
В частном случае за один спуск гидропескоструйного устройства на колтюбинге проводят резку всех необходимых прямоугольных отверстий для проходки радиальных стволов на одном уровне, используя фиксированный поворот отклонителя за счет срабатывания механического поворотного устройства с дискретным углом поворота.
[4] В скважину (фиг. 1) НКТ (12) на подающем койле (13) с устройством перераспределения потока (2) обратным клапаном (1) спускают компоновку для РВП, состоящую из гидромониторной насадки (9), узла управления траекторией ствола (8), навигационной системы (7), рабочего койла (14). В компоновку для РВП также могут быть включены дополнительные элементы, не ограниченные данным перечнем внутрискважинного оборудования.
[5] При спуске койла (14) и (13) в НКТ (12) производится подача промывочной жидкости в межколонное пространство койл (13)/НКТ (12) для выравнивания давления в скважине. При достижении глубины установки механического якоря (3) производится увеличение расхода закачки промывочной жидкости до проектного режима, достигается полная циркуляция с выходом раствора по межколонному пространству НКТ (12)/обсадная колонна (11). Производится проводка плановой протяженности радиального ствола с использованием навигационной системы (7) для контроля текущего положения ствола в пласте, а также с использованием узла управления траекторией ствола (8) для обеспечения проводки ствола по проектной траектории. Промывочная жидкость, выходящая из скважины, направляется через систему очистки обратно в скважину.
[6] Посредством спуска койла (13) достигается продвижение койла (14) вниз, обеспечивается выход гидромониторной насадки (9) из отклонителя (6) и обсадной колонны (11), далее производится гидромониторная проходка радиального ствола по продуктивному пласту проектной протяженности.
[7] Определение географических координат забоя радиального ствола в пласте и их привязка к литологическому разрезу осуществляется посредством навигационной системы (7), передающей информацию на поверхность по кабельному каналу связи. С целью проводки радиального ствола по проектной траектории, изменения его траектории при сближении с границей выбранного интервала пласта используется узел управления траекторией ствола (8), управляемый с поверхности по гидравлическому или кабельному каналу связи.
[8] После достижения проектной конечной точки (забоя) радиального ствола извлекают гидромониторную насадку (9) на койле (14) из пласта с размещением ее ниже герметизирующего устройства (5). Посредством промывки достигают полной очистки от шлама межколонного пространства НКТ (12) /обсадная колонна (11).
[9] После остановки циркуляции спускоподъемной операцией койла (14) с проходом через поворотное устройство (4) необходимое количество раз (каждое прохождение койла через поворотное уст-
- 3 034536 ройство обеспечивает разворот отклонителя на определенный дискретный угол) достигают разворота отклонителя на угол, запроектированный для проходки следующего ствола.
[10] В тех случаях, когда при подготовке скважины к радиальному вскрытию пласта было проведено кольцевое фрезерование обсадной колонны или за один спуск гидропескоструйного устройства на колтюбинге проведена резка всех необходимых прямоугольных отверстий для проходки радиальных стволов на одном уровне, приступают к операции [6], далее последовательно выполняя операции [7], [8], [9].
[11] В тех случаях, когда при подготовке скважины к радиальному вскрытию пласта не было проведено кольцевое фрезерование обсадной колонны, после подъема из скважины компоновки на койле (14) приступают к операции [3], далее последовательно выполняя операции [4]-[9].
[12] С целью перехода на последующий по разрезу уровень проходки радиальных стволов, после выполнения проходки всех запланированных радиальных стволов на одном уровне производят подъем из скважины компоновки на койле (13), (14). Производят срыв НКТ (12) с механического якоря (3) и извлекают из скважины подгоночный патрубок НКТ расчетной длины (установленный заранее), обеспечивающий подъем отклонителя на следующий верхний уровень.
[13] Производят посадку компоновки НКТ на механический якорь (3) таким образом, чтобы выход отклонителя (6) совпадал с открытой (отфрезерованной) частью обсадной колонны (15).
[14] В тех случаях, когда при подготовке скважины к радиальному вскрытию пласта не было проведено кольцевое фрезерование обсадной колонны, выход отклонителя (6) должен совпадать с проектным интервалом гидропескоструйной резки в обсадной колонне (16). Для резки этого отверстия проводятся работы [3].
[15] Для проводки радиальных стволов на каждом уровне разреза скважины последовательно выполняются работы [4]-[9].
[16] Для перехода на каждый последующий уровень с целью проводки следующих проектных радиальных стволов выполняются работы [12]-[14].
[17] Работы по проводке радиальных стволов на каждом уровне разреза скважины последовательно повторяются [4]-[9].
[18] После проводки запланированного количества радиальных стволов на всех уровнях разреза скважины и промывки скважины от шлама производится срыв НКТ (12) с механического якоря (3) и полный подъем НКТ (12).
[19] Далее по индивидуальному плану работ приступают к освоению скважины.
Таким образом, применение заявленного способа обеспечивает повышение продуктивности скважин и коэффициента извлечения углеводородов за счет дополнительного приращения площади дренирования, охвата воздействием, снятия скин - фактора и увеличения проводимости матрицы пласта;
возможность адресного воздействия на пласт за счет направленной проводки управляемых боковых стволов большой протяженности;
возможность проведения интенсификации без воздействия на цементную крепь колонны значительным перепадом давления и химическим разрушением;
возможность проведения интенсификации с воздействием на пласт значительным перепадом давления или химическим разрушением;
очистку ствола скважины при ее проводке, что позволяет эффективно использовать технологию как в карбонатных, так и в терригенных пластах.

Claims (5)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Способ интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта, включающий установку в скважину высокопрочных насоснокомпрессорных труб (НКТ), отклонителя с проходящим в нем внутренним каналом, привязкой и возможной ориентацией его в пространстве в интервале нижнего уровня проводки боковых стволов, герметизацию устья скважины, установку внутрискважинного оборудования, состоящего из гидромониторной насадки, узла управления траекторией ствола, навигационной системы, рабочей части гибкой насоснокомпрессорной трубы (ГНКТ), которая при проводке стволов входит в пласт, устройства перераспределения потока, обратного клапана, подающей части ГНКТ, которая при проводке стволов не входит в пласт, подачу жидкости в межколонное пространство между НКТ и ГНКТ, перемещение гидромониторной насадки через герметизирующее устройство, через отклонитель в контакт с горной породой производится проводка плановой протяженности радиального ствола с использованием навигационной системы для контроля текущего положения ствола в пласте, а также с использованием узла управления траекторией ствола для обеспечения проводки ствола по проектной траектории, после проходки по пласту рабочая часть ГНКТ с насадкой извлекаются из пласта и проводится промывка скважины до полного выноса шлама, посредством срабатывания механического поворотного устройства отклонитель переводится в другую плоскость, цикл работ повторяют для следующего бокового ствола, отличающийся тем,
    - 4 034536 что фрезерование отдельного окна для каждого бокового ствола проводится непосредственно перед проведением основной операции по проходке бокового ствола через отклонитель, при проводке бокового ствола определяют и изменяют траекторию ствола посредством снабжения рабочей части ГНКТ узлом управления траекторией ствола и навигационным оборудованием.
  2. 2. Способ по п.1, отличающийся тем, что для проводки радиальных стволов на последующих уровнях извлекают подающую и рабочую части ГНКТ из скважины, срывают НКТ с механического якоря, извлекают подгоночный патрубок НКТ, заранее установленный и равный длине перехода на следующий уровень, делают посадку НКТ на механический якорь, спускают в скважину рабочую часть ГНКТ с навигационной системой, узлом управления траекторий ствола, гидромониторной насадкой, после чего работы по проводке радиальных стволов повторяют.
  3. 3. Способ по п.1, отличающийся тем, что при прорезании окон в обсадной колонне для бокового ствола спускают дополнительное гидропескоструйное устройство на ГНКТ, производят абразивную резку прямоугольного отверстия с циркуляцией и затем оборудование поднимают.
  4. 4. Способ по п.1, отличающейся тем, что за один спуск гидропескоструйного устройства на ГНКТ проводят резку всех необходимых прямоугольных отверстий для проходки радиальных стволов в обсадной колонне на одном уровне, используя фиксированный поворот отклонителя за счет срабатывания механического поворотного устройства с дискретным углом поворота.
  5. 5. Способ по п.1, отличающийся тем, что закачку жидкости осуществляют по малому затрубу между НКТ и ГНКТ и/или по малому затрубу между НКТ и ГНКТ и внутреннему пространству ГНКТ.
EA201700194A 2016-05-16 2017-05-11 Способ интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта EA034536B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016118801A RU2642194C2 (ru) 2016-05-16 2016-05-16 Способ повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта

Publications (3)

Publication Number Publication Date
EA201700194A2 EA201700194A2 (ru) 2018-03-30
EA201700194A3 EA201700194A3 (ru) 2018-05-31
EA034536B1 true EA034536B1 (ru) 2020-02-18

Family

ID=60325977

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201700194A EA034536B1 (ru) 2016-05-16 2017-05-11 Способ интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта

Country Status (5)

Country Link
US (1) US20190162025A1 (ru)
CN (1) CN109312602A (ru)
EA (1) EA034536B1 (ru)
RU (1) RU2642194C2 (ru)
WO (1) WO2017200419A2 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236185B (zh) * 2018-08-06 2020-01-14 中国石油大学(北京) 一种径向水平井钻井装置及其钻井方法
CN109826612B (zh) * 2019-01-31 2021-04-30 中国石油大学(华东) 天然气水合物储层径向水平井钻采模拟装置及方法
RU2703064C1 (ru) * 2019-02-07 2019-10-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ повышения нефтеотдачи пластов и интенсификации добычи нефти и система для его осуществления
CN111197461A (zh) * 2020-01-19 2020-05-26 北京中海沃邦能源投资有限公司 水平井悬空侧钻方法及侧钻工具
CN112360369B (zh) * 2020-10-15 2022-12-02 浙江交工国际工程有限公司 一种高效液压气举正循环超大超深铣孔设备
CN112302586B (zh) * 2020-10-30 2022-10-04 中国石油天然气股份有限公司 一种末端悬挂节流器的速度管柱入井生产工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2278236C1 (ru) * 2004-11-11 2006-06-20 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин (ОАО НПП "ВНИИГИС") Устройство для проводки наклонно-направленных и горизонтальных скважин
RU2370626C1 (ru) * 2008-11-10 2009-10-20 Общество с ограниченной ответственностью "ИНКОС" Компоновка инструментов для прорезки бокового "окна" в обсадной колонне скважины
RU2401378C1 (ru) * 2009-08-06 2010-10-10 Николай Викторович Беляков Способ проводки стволов наклонных и горизонтальных скважин
US20120186875A1 (en) * 2008-05-13 2012-07-26 Petrojet Canada Inc. Hydraulic Drilling Method with Penetration Control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2095306A1 (en) * 1993-04-30 1994-10-31 Michael Robert Konopczynski Drilling kick-off device
US5413184A (en) * 1993-10-01 1995-05-09 Landers; Carl Method of and apparatus for horizontal well drilling
RU2190089C1 (ru) * 2001-04-09 2002-09-27 Андреев Владимир Кириллович Способ глубокой перфорации обсаженных скважин
DK1537291T3 (da) * 2002-07-25 2007-11-19 Schlumberger Technology Bv Borefremgangsmåde
US20060054354A1 (en) * 2003-02-11 2006-03-16 Jacques Orban Downhole tool
RU2256763C1 (ru) * 2004-04-30 2005-07-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ строительства многоствольной скважины
WO2006053248A2 (en) * 2004-11-12 2006-05-18 Alberta Energy Partners Method and apparatus for jet-fluid abrasive cutting
CA2784978A1 (en) * 2009-12-23 2011-06-30 Shell Internationale Research Maatschappij B.V. Method of drilling and jet drilling system
CN102155187A (zh) * 2011-03-22 2011-08-17 上海宏睿油气田径向井技术服务有限公司 一种水力喷射径向钻孔治理煤层底板岩溶水的方法
CN103857868B (zh) * 2011-12-20 2016-01-06 哈里伯顿能源服务公司 使用压差造成铣鞋移动以在带套管井筒中可控制地铣削窗口的方法
CN102926730B (zh) * 2012-11-13 2017-04-19 王建生 支撑管跟进气液喷射钻进径向井煤层气开采方法
CA2958718C (en) * 2014-06-17 2022-06-14 Daniel Robert MCCORMACK Hydraulic drilling systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2278236C1 (ru) * 2004-11-11 2006-06-20 Открытое акционерное общество Научно-производственное предприятие "Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин (ОАО НПП "ВНИИГИС") Устройство для проводки наклонно-направленных и горизонтальных скважин
US20120186875A1 (en) * 2008-05-13 2012-07-26 Petrojet Canada Inc. Hydraulic Drilling Method with Penetration Control
RU2370626C1 (ru) * 2008-11-10 2009-10-20 Общество с ограниченной ответственностью "ИНКОС" Компоновка инструментов для прорезки бокового "окна" в обсадной колонне скважины
RU2401378C1 (ru) * 2009-08-06 2010-10-10 Николай Викторович Беляков Способ проводки стволов наклонных и горизонтальных скважин

Also Published As

Publication number Publication date
EA201700194A2 (ru) 2018-03-30
EA201700194A3 (ru) 2018-05-31
WO2017200419A3 (ru) 2017-12-28
RU2642194C2 (ru) 2018-01-24
WO2017200419A2 (ru) 2017-11-23
CN109312602A (zh) 2019-02-05
US20190162025A1 (en) 2019-05-30
RU2016118801A (ru) 2017-11-17

Similar Documents

Publication Publication Date Title
RU2642194C2 (ru) Способ повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта
RU2632836C1 (ru) Способ повышения углеводородоотдачи пластов и интенсификации добычи нефтегазоконденсатных скважин посредством гидромониторного радиального вскрытия пласта на депрессии
CN106460491B (zh) 形成多分支井的方法
CN102084081B (zh) 具有钻进控制的液压钻井方法
MXPA02007728A (es) Metodo y aparato para la estimulacion de intervalos de formacion multiples.
CA2769935C (en) Method and system for cleaning fracture ports
RU2703028C1 (ru) Способ рытья шахты для линии бурового раствора при подводном бурении скважин
RU2703064C1 (ru) Способ повышения нефтеотдачи пластов и интенсификации добычи нефти и система для его осуществления
CN104832092A (zh) 一种水力喷射侧钻工艺
CN102312655A (zh) 径向水力喷射钻孔技术
US20210293104A1 (en) Annular Pressure Reduction System for Horizontal Directional Drilling
US11047196B2 (en) Production tubing conversion device and methods of use
RU2684557C1 (ru) Способ расширения зоны дренирования горизонтального ствола скважины кислотной обработкой дальних участков пласта с созданием боковых каналов
CN105625945A (zh) 用于低渗透储层的钻孔装置及其钻孔方法
RU2750805C1 (ru) Способ интенсификации работы скважины бурением боковых стволов
RU2820547C1 (ru) Способ формирования стыка многоствольных скважин
RU2815898C1 (ru) Способ строительства и эксплуатации скважины с извлечением части хвостовика
RU2746398C1 (ru) Способ создания обсаженного перфорационного канала в продуктивном пласте нефтяной или газовой обсаженной скважины
Carpenter Reservoir Stimulation Technique Combines Radial Drilling Technology With Acid Jetting
CN116411801A (zh) 高温井径向钻孔用井下工具、径向钻孔作业***及方法
RU2351753C1 (ru) Способ эксплуатации двухустьевой скважины
UA74818C2 (en) Method and apparatus for intensification of multiple intervals of formation

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM KG TJ TM RU