EA011522B1 - Наружный защитный слой для силового или коммуникационного кабеля - Google Patents

Наружный защитный слой для силового или коммуникационного кабеля Download PDF

Info

Publication number
EA011522B1
EA011522B1 EA200702515A EA200702515A EA011522B1 EA 011522 B1 EA011522 B1 EA 011522B1 EA 200702515 A EA200702515 A EA 200702515A EA 200702515 A EA200702515 A EA 200702515A EA 011522 B1 EA011522 B1 EA 011522B1
Authority
EA
Eurasian Patent Office
Prior art keywords
fraction
protective layer
layer according
molecular weight
main resin
Prior art date
Application number
EA200702515A
Other languages
English (en)
Other versions
EA200702515A1 (ru
Inventor
Ремко Ван Марион
Рогер Карлссон
Ханс Эклинд
Ирене Хелланд
Original Assignee
Бореалис Текнолоджи Ой
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бореалис Текнолоджи Ой filed Critical Бореалис Текнолоджи Ой
Publication of EA200702515A1 publication Critical patent/EA200702515A1/ru
Publication of EA011522B1 publication Critical patent/EA011522B1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Настоящее изобретение относится к силовому или коммуникационному кабелю, содержащему наружный защитный слой, изготовленный из полиэтиленовой композиции, содержащей основную смолу, которая содержит (А) первую фракцию гомо- или сополимера этилена, и (Б) вторую фракцию гомо- или сополимера этилена, где фракция (А) имеет молекулярную массу ниже, чем фракция (Б), и основная смола имеет распределение молекулярной массы M/Mвыше 14.

Description

Настоящее изобретение относится к силовому или коммуникационному кабелю, имеющему наружный защитный слой, изготовленный из полиэтиленовой композиции, которая содержит основную смолу, содержащую две фракции гомо- или сополимеров этилена. Кроме того, настоящее изобретение относится к применению такой композиции для изготовления наружного защитного слоя кабеля.
Кабели, такие как силовые или коммуникационные, обычно включают внутреннюю жилу, которая содержит проводящий элемент, такой как металлическая проволока или стекловолокно, и один или более чем один наружный слой для целей экранирования и защиты. Самый наружный из этих слоев, имеющий в основном защитную цель, обычно называют наружным защитным слоем или наружной оболочкой.
Известно изготовление самых наружных защитных слоев оболочки из полимерных композиций, содержащих в основном полиолефины, в частности полиэтилены. Разнообразные области применения для различных видов кабелей создают необходимость того, чтобы наружная оболочка удовлетворяла ряду требований, которые, по меньшей мере, частично противоречат друг другу. Среди важных свойств оболочки кабеля и материала, используемого для изготовления оболочки кабеля, являются хорошая обрабатываемость, включающая хорошие экструзионные свойства при широком окне температур обработки и хорошие механические свойства, такие как хорошее сопротивление растрескиванию под действием нагрузки окружающей среды (Е8СК.), высокая механическая прочность, хорошая отделка поверхности и низкая усадка готовой оболочки кабеля.
Соответственно, целью настоящего изобретения является разработка оболочки кабеля, изготовленной из полиэтиленовой композиции, одновременно обладающей вышеупомянутыми свойствами, с высокой гибкостью в сочетании со всеми вышеупомянутыми свойствами. В частности, композиция, используемая для оболочки, должна проявлять улучшенную обрабатываемость так, чтобы можно было достичь высокой производительности, с получением в то же время оболочки кабеля, обладающей хорошими поверхностными свойствами.
Настоящее изобретение основано на открытии, что такая оболочка может быть получена, если для ее изготовления используют полиэтиленовую композицию, которая обладает очень широким распределением молекулярной массы выше 14.
Таким образом, в настоящем изобретении предложен силовой или коммуникационный кабель, имеющий наружный защитный слой, изготовленный из полиэтиленовой композиции, содержащей основную смолу, которая содержит:
(А) первую фракцию гомо- или сополимера этилена и (Б) вторую фракцию гомо- или сополимера этилена, где фракция (А) имеет молекулярную массу ниже, чем фракция (Б), и основная смола имеет распределение молекулярной массы М„/Мп выше 14.
Самый наружный защитный слой кабеля по изобретению может быть обработан значительно легче по сравнению с материалами предшествующего уровня техники с сохранением в то же время механических свойств, в частности хорошего внешнего вида поверхности.
Используемый здесь термин молекулярная масса обозначает средневзвешенную молекулярную массу М„. Скорость течения расплава (СТР) полимера может служить в качестве меры средневзвешенной молекулярной массы.
Термин основная смола обозначает совокупность полимерных компонентов в полиэтиленовой композиции, используемой для наружного защитного слоя кабеля по изобретению, и обычно он составляет по меньшей мере 90% (мас./мас.) суммарной композиции.
Обычно полиэтиленовую композицию, содержащую по меньшей мере две фракции полиэтилена, которые получены в различных условиях полимеризации, приводящих в результате к различным (средневзвешенным) молекулярным массам фракций, называют мультимодальной. Приставка мульти относится к ряду различных полимерных фракций композиции, из которых она состоит. Таким образом, например, композицию, состоящую лишь из двух фракций, называют бимодальной.
Форма кривой распределения молекулярной массы, т.е. внешний вид графика массовой фракции полимера в зависимости от ее молекулярной массы, такого мультимодального полиэтилена демонстрирует два или более чем два максимума или, по меньшей мере, отчетливо расширена по сравнению с кривыми для индивидуальных фракций.
Например, если полимер получают последовательным многостадийным способом с использованием реакторов, соединенных последовательно, и с использованием различных условий в каждом реакторе либо когда полимер получают способом, включающим единственную стадию, на которой используют два или более чем два различных катализатора, каждая из фракций полимера, полученных, соответственно, в различных реакторах или при помощи различных катализаторов, имеет свое собственное распределение молекулярной массы и средневзвешенную молекулярную массу. Когда регистрируют кривую распределения молекулярной массы для такого полимера, индивидуальные кривые для этих фракций совмещают в кривую распределения молекулярной массы для суммарного полученного в результате полимерного продукта, обычно с получением кривой с двумя или более чем двумя отдельными максимумами.
- 1 011522
В предпочтительном воплощении основная смола имеет распределение молекулярной массы М„/Мп 23 или более, более предпочтительно 25 или более, еще более предпочтительно 30 или более.
Основная смола предпочтительно имеет СТР2 от 0,05 до 5 г/10 мин, более предпочтительно от 0,1 до 4 г/10 мин, еще более предпочтительно от 0,2 до 3,5 г/10 мин и наиболее предпочтительно от 0,5 до 1,5 г/10 мин.
Кроме того, основная смола предпочтительно имеет СТР24 от 50 до 150 г/10 мин, более предпочтительно от 70 до 130 г/10 мин. В предпочтительном воплощении основная смола имеет СТР21 по меньшей мере 90 г/10 мин.
Плотность основной смолы предпочтительно составляет от 0,915 до 0,960 г/см3, более предпочтительно от 0,918 до 0,950 г/см3, еще более предпочтительно от 0,918 до 0,935 г/см3 и наиболее предпочтительно от 0,918 до 0,928 г/см3.
Основная смола предпочтительно имеет отношение скорости растекания ОСР от 50 до 150, более предпочтительно от 80 до 130.
Фракция (А) основной смолы предпочтительно имеет СТР2 от 50 до 5000 г/10 мин, более предпочтительно от 100 до 1000 г/10 мин и наиболее предпочтительно от 200 до 700 г/10 мин.
Кроме того, фракция (А) предпочтительно имеет плотность от 0,930 до 0,975 г/см3, более предпочтительно от 0,935 до 0,955 г/см3.
Кроме того, фракция (А) предпочтительно представляет собой сополимер этилена, имеющий по меньшей мере один дополнительный альфа-олефин.
Предпочтительно альфа-олефиновый сомономер фракции (Б) имеет от 3 до 20 атомов углерода, более предпочтительно от 4 до 10 атомов углерода и наиболее предпочтительно выбран из 1-бутена, 1-гексена, 4-метил-1-пентена, 1-октена и 1-декадиена.
Кроме того, предпочтительно средневзвешенная молекулярная масса фракции (А) составляет от 5000 до 100000 г/моль, более предпочтительно от 7000 до 90000 г/моль и наиболее предпочтительно от 10000 до 80000 г/моль.
Фракция (Б) основной смолы предпочтительно имеет СТР2 от 0,01 до 1 г/10 мин, более предпочтительно от 0,05 до 0,3 г/10 мин.
Кроме того, фракция (Б) предпочтительно имеет плотность от 0,880 до 0,930 г/см3, более предпочтительно от 0,890 до 0,920 г/см3.
Кроме того, фракция (Б) предпочтительно представляет собой сополимер этилена по меньшей мере с одним дополнительным альфа-олефином.
Предпочтительно альфа-олефиновый сомономер фракции (Б) имеет от 3 до 12 атомов углерода, более предпочтительно от 4 до 8 атомов углерода и наиболее предпочтительно выбран из 1-бутена, 1-гексена, 4-метил-1-пентена и 1-октена.
В особенно предпочтительном воплощении основная смола дополнительно содержит (В) третью фракцию гомо- или сополимера этилена в количестве до 20% (мас./мас.) от общей массы основной смолы с СТР2 0,1 г/10 мин или ниже.
Предпочтительно количество фракции (В) составляет вплоть до 15% (мас./мас.), более предпочтительно вплоть до 10% (мас./мас.) от общей массы основной смолы. В предпочтительном воплощении фракция (В) представлена в основной смоле в количестве от 1 до 5% (мас./мас.).
Кроме того, предпочтительно фракция (В) представлена в основной смоле в количестве по меньшей мере 2% (мас./мас.), более предпочтительно по меньшей мере 3% (мас./мас.).
Предпочтительно фракция (В) имеет СТР24 менее чем 1 г/10 мин. Фракция (В) предпочтительно представляет собой гомополимер этилена. Фракцию (В) предпочтительно получают на предшествующей стадии от (А) и (Б), и фракция (В) имеет более высокую ММ, чем фракция (Б).
Массовое отношение фракций (А):(Б) в основной смоле предпочтительно составляет от 30:70 до 70:30, более предпочтительно от 40:60 до 60:40, еще более предпочтительно от 45:55 до 55:45.
Основная смола предпочтительно имеет плотность ниже 960 кг/м3. Средневзвешенная молекулярная масса основной смолы предпочтительно составляет от 100000 до 2000000 г/моль.
В предпочтительном воплощении основная смола состоит из фракций (А), (Б) и (В).
В дополнение к основной смоле в полиэтиленовой композиции могут присутствовать обычные добавки для применения с полиолефинами, такие как пигменты (например, углеродная сажа), стабилизаторы (антиоксидантные агенты), антациды и/или агенты, защищающие от ультрафиолетового излучения (УФ), антистатические агенты и агенты утилизации (такие как технологические добавки). Добавки могут быть добавлены в виде полиолефиновой высококонцентрированной смеси. Предпочтительно количество этих добавок составляет 10% (мас./мас.) или менее, дополнительно предпочтительно 8% (мас./мас.) или менее от общей массы композиции.
Полиэтиленовая композиция кабеля по изобретению предпочтительно имеет показатель уменьшения вязкости при сдвиге УВС(2,7/210) по меньшей мере 5, более предпочтительно по меньшей мере 10, еще более предпочтительно по меньшей мере 20 и наиболее предпочтительно по меньшей мере 40. Кроме того, полиэтиленовая композиция предпочтительно имеет показатель уменьшения вязкости при сдвиге УВС(2,7/210) 300 или меньше, более предпочтительно 290 или менее, еще более предпочтительно 220 или
- 2 011522 менее и наиболее предпочтительно 200 или менее.
УВС представляет собой отношение вязкости полиэтиленовой композиции при различных касательных напряжениях. В соответствии с настоящим изобретением касательные напряжения при 2,7 и 210 кПа используют для вычисления УВС(2,7/21о), которое может служить в качестве меры ширины распределения молекулярной массы.
Кроме того, полиэтиленовая композиция предпочтительно имеет вязкость η(2.7) при касательном напряжении 2,7 кПа от 10000 до 500000 Па, более предпочтительно от 50000 до 400000 Па и наиболее предпочтительно от 75000 до 350000 Па.
Основная смола полимерной композиции, используемая для изготовления самого наружного защитного слоя кабеля по изобретению, может быть получена при помощи любого способа, известного в данной области техники.
Однако предпочтительно, чтобы основная смола представляла собой так называемую смесь его составляющих ίη-δίΐιι. Под смесью ίη-δίΐιι подразумевают мультимодальный полимер, фракции которого получают одновременно в одной реакционной стадии (например, путем использования двух или более чем двух различных катализаторов) и/или получают многостадийным способом. Многостадийный способ определен как способ полимеризации, при котором полимер, содержащий две или более чем две фракции, получают путем приготовления каждой или по меньшей мере двух полимерных фракций на отдельных стадиях реакции, обычно при различных условиях реакции на каждой стадии, в присутствии продукта реакции с предшествующей стадии, включающего катализатор полимеризации. Можно проводить рециркуляцию полимера до любой стадии или реактора.
Там, где приведены свойства фракций (А) и/или (Б) композиции по настоящему изобретению, эти значения, как правило, действительны для случаев, в которых они могут быть непосредственно измерены на соответствующей фракции, например, когда фракцию получают отдельно или получают на первой стадии многостадийного способа.
Тем не менее, основная смола может быть также, и предпочтительно, получена многостадийным способом, где, например, фракции (А) и (Б) получают на последовательных стадиях. В таком случае свойства фракций, полученных на второй и третьей стадии (или дополнительных стадиях) многостадийного способа, могут быть либо выведены исходя из полимеров, которые получают отдельно на одной стадии путем применения условий полимеризации (например, идентичной температуры, парциальных давлений реагентов/растворителей, суспензионной среды, времени реакции), идентичных стадии многостадийного способа, на которой получают эту фракцию, и путем использования катализатора, на котором не присутствует никакой ранее полученный полимер. Альтернативно свойства фракций, полученных на более высокой стадии многостадийного способа, могут быть также вычислены, например, в соответствии с В. Надйтбт, СопГегепсе οη Ро1утег РтосекДпд (ТНе Ро1утег РгосекДпд 8ос1с1у). Ех!епбе6 АЬйгасй апб Еша1 Ргодгатте, ОоШепЬигд, Аидий 19-21, 1997, 4:13.
Таким образом, хотя свойства фракций продуктов, полученных на более высоких стадиях такого многостадийного способа, не могут быть измерены непосредственно на продуктах этого многостадийного способа, свойства этих фракций могут быть определены путем применения любого или обоих из вышеописанных способов. Специалист в данной области техники способен выбрать подходящий способ.
Основную смолу кабеля по изобретению предпочтительно получают таким образом, чтобы по меньшей мере одна из фракций (А) и (Б), предпочтительно (Б), была получена в газофазной реакции.
Кроме того, предпочтительно, чтобы одна из фракций (А) и (Б) полиэтиленовой композиции, предпочтительно фракция (А), была получена в суспензионной реакции, предпочтительно в петлевом реакторе, и одна из фракций (А) и (Б), предпочтительно фракция (Б), была получена в газофазной реакции.
Кроме того, предпочтительно, чтобы фракции (А) и (Б) полиэтиленовой композиции были получены на различных стадиях многостадийного способа.
Предпочтительно многостадийный способ включает по меньшей мере одну газофазную стадию, на которой предпочтительно получают фракцию (Б).
Кроме того, предпочтительно получать фракцию (Б) на последующей стадии в присутствии фракции (А), которая была получена на предшествующей стадии.
Ранее известно получение мультимодальных, в частности бимодальных, олефиновых полимеров, таких как мультимодальный полиэтилен, многостадийным способом, включающим два или более чем два реактора, соединенных в серии. В качестве примера этого предшествующего уровня техники можно сделать ссылку на ЕР 517868, включенную здесь путем ссылки в полном объеме, включая все ее предпочтительные воплощения, описанные там, в качестве предпочтительного многостадийного способа для получения полиэтиленовой композиции кабеля по изобретению.
Предпочтительно основные стадии полимеризации многостадийного способа являются такими, как описано в ЕР 517868, т.е. получение фракций (А) и (Б) осуществляют в виде сочетания суспензионной полимеризации для фракции (А)/газофазной полимеризации для фракции (Б). Суспензионную полимеризацию предпочтительно проводят в так называемом петлевом реакторе. Дополнительно предпочтительно, чтобы стадия суспензионной полимеризации предшествовала газофазной стадии.
- 3 011522
В предпочтительном воплощении фракцию (В) также получают многостадийным способом, в котором получают фракции (А) и (Б). Предпочтительно фракцию (В) получают на так называемой стадии форполимеризации, предшествующей получению дополнительных фракций основной смолы. Как упомянуто, форполимер предпочтительно представляет собой гомополимер этилена (полиэтилен высокой плотности (ΗΌΡΕ)).
На стадии форполимеризации предпочтительно весь катализатор загружают в петлевой реактор и форполимеризацию проводят в виде суспензионной полимеризации. Такая форполимеризация приводит к получению менее мелких частиц в последующих реакторах и к более гомогенному продукту, полученному в конце.
При получении основной смолы предпочтительно используют катализатор Циглера-Натта (ЦН) или металлоценовые катализаторы, более предпочтительно катализаторы Циглера-Натта.
Катализатор может находиться на носителе, например на обычных носителях, включающих диоксид кремния, носители, содержащие А1, и носители на основе дихлорида магния. Предпочтительно катализатор представляет собой катализатор ЦН, более предпочтительно катализатор представляет собой катализатор ЦН на носителе, представляющем собой не диоксид кремния, и наиболее предпочтительно катализатор ЦН на основе МдС12.
Катализатор Циглера-Натта, кроме того, предпочтительно содержит соединение металла 4 группы (нумерация групп в соответствии с новой системой ГОРАС), предпочтительно титана, дихлорида магния и алюминия.
Катализатор может иметься в продаже либо может быть получен в соответствии или по аналогии с литературой. Для получения предпочтительного катализатора, пригодного в изобретении, ссылаются на XVО 2004055068 и XVО 2004055069 ВогеаШ, ЕР 0688794 и ЕР 0810235. Содержание этих документов в полном объеме включено здесь путем ссылки, в частности, в отношении общих и всех предпочтительных воплощений описанных там катализаторов, а также способов получения катализаторов.
Предпочтительно условия полимеризации в предпочтительном многостадийном способе выбраны таким образом, что благодаря высокому содержанию агента переноса цепи (газообразного водорода), относительно низкомолекулярный полимер получают на стадии, предшествующей стадии, на которой получают высокомолекулярный полимер. Тем не менее, порядок этих стадий может быть обратным.
В предпочтительном воплощении полимеризации фракции (А) в петлевом реакторе с последующим получением фракции (Б) в газофазном реакторе температура полимеризации в петлевом реакторе предпочтительно составляет 85-115°С, более предпочтительно 90-105°С и наиболее предпочтительно 92-100°С, а температура в газофазном реакторе предпочтительно составляет 70-105°С, более предпочтительно 75-100°С и наиболее предпочтительно 82-97°С.
При необходимости в реакторы добавляют агент переноса цепи, предпочтительно водород, и предпочтительно в реактор добавляют 200-800 моль Н2/кмоль этилена, когда в этом реакторе получают фракцию с низкой молекулярной массой (НММ), а в газофазный реактор добавляют 0-50 моль Н2/кмоль этилена, когда в этом реакторе получают фракцию с высокой молекулярной массой (ВММ).
Если используют стадию форполимеризации, на которой получают фракцию (В), предпочтительно, чтобы в реактор на этой стадии вовсе не вводили водород. Авторам изобретения необходимо обнаружить возможность небольшого добавления водорода.
Композицию для наружного защитного слоя кабеля по изобретению предпочтительно готовят способом, включающим стадию компаундирования, где композицию основной смолы, т.е. смесь, которую типично получают в виде порошка основной смолы из реактора, экструдируют в экструдере, а затем гранулируют до полимерных гранул способом, известным в данной области техники.
Возможно в композицию на стадии компаундирования могут быть добавлены добавки или другие полимерные компоненты в описанном выше количестве. Предпочтительно композицию по изобретению, полученную из реактора, компаундируют в экструдере вместе с добавками способом, известным в данной области техники.
Экструдер может представлять собой, например, любой общепринято используемый экструдер. В качестве примера экструдера для стадии компаундирования по настоящему изобретению могут выступать экструдеры, поставляемые 1араи 81ее1 теогкк, КоЬе 81ее1 или Багге1-Рош1ш, например 18Χν 460Р.
Кабели по изобретению дополнительно к самому наружному защитному слою включают по меньшей мере один или более чем один силовой или информационный проводящий элемент. Может быть получен кабель, содержащий наружный защитный слой.
Как указано выше, композицию оболочки кабеля можно использовать для получения наружных защитных слоев для кабелей, включая как силовые кабели, так и коммуникационные кабели. Среди силовых кабелей можно упомянуть кабели высокого напряжения, кабели среднего напряжения и кабели низкого напряжения. Среди коммуникационных кабелей можно упомянуть парные кабели, коаксиальные кабели и оптические кабели.
- 4 011522
Примеры.
Методы измерения.
а) Молекулярная масса/распределение молекулярной массы.
Средневзвешенную молекулярную массу М„ и распределение молекулярной массы (РММ = М„/Мп, где Мп представляет собой среднечисловую молекулярную массу, а М„ представляет собой средневзвешенную молекулярную массу) измеряют способом, основанным на Ι8Θ 16014-4:2003. Использовали аппарат \Уа1сг5 150СУ р1и8 с колонкой 3х НТ&Е 81угадс1 производства \Уа1сг5 (дивинилбензол) и трихлорбензол (ТХБ) в качестве растворителя при 140°С. Набор колонок калибровали с использованием универсального калибратора со стандартами ПС, имеющими узкие интервалы РММ (константа Марка Ховинга К: 9,54х 10-5 и а: 0,725 для полисторола (ПС), а также К: 3,92х 10-4 и а: 0,725 для ПЭ). Отношение М„ и Мп представляет собой меру широты распределения, поскольку на каждое значение влияет противоположная сторона популяции.
б) Плотность.
Плотность измеряют в соответствии с Ι8Ο 1872, приложение А.
в) Скорость течения расплава/Отношение скорости растекания.
Скорость течения расплава (СТР) определяют в соответствии с Ι8Ο 1133 и указывают в г/10 мин. СТР представляет собой скорость течения и, следовательно, обрабатываемости полимера. Чем выше скорость течения расплава, тем ниже вязкость полимера. СТР определяют при 190°С и он может быть определен при различных нагрузках, таких как 2,16 кг (СТР2), 5 кг (СТР5) или 21,6 кг (СТР21).
Количественное значение ОСР (отношение скорости растекания) представляет собой показатель распределения молекулярной массы и обозначает отношение скоростей течения расплава при различных нагрузках. Таким образом, ОСР21/5 обозначает величину СТР2!/СТР5.
г) Реологические параметры.
Реологические параметры, такие как показатель уменьшения вязкости при сдвиге (УВС) и вязкость, определяют путем использования реометра, предпочтительно реометра КЬеотейгск РЫыса МСК 300. Определение и условия измерения подробно описаны на с. 8, строка 29 - с. 11, строка 25 в \УО 00/22040.
д) Сопротивление растрескиванию при нагрузке под действием окружающей среды (Е8СК).
Е8СК. оценивали в соответствии с СТЫ8О 6259, с надрезами, которые создавали в соответствии с А8ТМ Е 1473, с использованием СТЬ с различными постоянными нагрузками 2, 3 и 4 МПа. В качестве среды использовали 10% раствор 1дера1.
е) Образцы кабелей для оценки экструдировали в соответствии с приведенным ниже.
Проводник 3,0 мм твердый ΑΙ проводник
Толщина стенки 1,0 мм
Температура головки экструдера +210°С
Расстояние между головкой экструдера и водяной баней 35 см
Температура водяной бани +23°С
Производительность линии 75 м/мин
Тип головки экструдера Полутрубчатая
Ниппель 3,65 мм
Головка экструдера 5,9 мм
Конструкция шнека ΕΙϊδβ
ж) Усадка.
Процент усадки измеряют через 24 ч при постоянной температуре (23°С), а также через 24 ч при температуре 100°С. Измерения проводят на образцах кабеля размером примерно 40 см. Для удобства образцы помечают таким образом, что измерение после кондиционирования можно провести в один и тот же момент времени на образце кабеля. Чтобы обнаружить, подвергается ли кабель во время измерения усадке, сначала следует сделать отметки примерно 40 см. Затем эту длину режут и измеряют повторно. Для каждого кабеля берут по два образца, подлежащих анализу. Образцы помещают в комнату при постоянной температуре на 24 ч, после чего их измеряют и рассчитывают значение усадки в процентах. Затем все образцы помещают на слой талька при 100°С на 24 ч. Образцы измеряют и суммарную усадку (в процентах) рассчитывают на основе исходной длины.
- 5 011522
з) Абсорбция наполнителя.
Абсорбцию наполнителя измеряли в соответствии с ВТМ22511 на пластинах, которые гасили в холодной воде.
и) Механические свойства.
Относительное удлинение при разрыве и прочность на разрыв измеряли в соответствии с 22542/1БО 527-2/1А5В5 либо на пластинах, либо на кабелях, имеющих оболочку толщиной 1 мм, нанесенную на алюминиевый проводник диаметром 3 мм.
к) Деформация при высоких температурах.
Этот показатель испытывали в соответствии с ΕΝ 60811-3-1:1995. Его испытывали на кабелях, имеющих жилу 3 мм и оболочку 1 мм, экструдированную непосредственно на проводник. Это свойство прямо пропорционально плотности. В данном испытании авторы изобретения использовали холодную водяную баню во время экструзии, таким образом, воспроизводя худший случай. Когда расплавленный пластик соприкасается с холодной водой, плотность ниже, чем в случае, если кристаллизация происходит при медленном охлаждении, см. результаты в таблице. Регистрируют зубчатость при 115°С через 4 ч и представляют в виде количества процентов дефекта, проникающего в толщу образца.
Испытуемые композиции.
Примеры 1-5.
Получили две сравнительные полиэтиленовые композиции (сравнительный пример 9 и сравнительный пример 10) и три сравнительные полиэтиленовые композиции (сравнительные примеры 1-3). Все композиции являются бимодальными. Дополнительная информация о каждой композиции приведена ниже.
Таблица 1
Свойства сравнительных примеров 9, 10 и сравнительных примеров 1, 2
Сравнительный пример 9 Сравнительный пример 10 Сравнительный пример 1 Сравнительный пример 2
Плотность (кг/см’) 921,8 924,4 923 923
СТРДг/10 мин) 0,87 0,81 0,4 0,2
СТРгДг/Ю мин) 87 96 40 22
ОСР21Д 100 118 100 110
Петлевой реактор
Температура (°С) 85 85
Давление(Па (Бар)} 60*10’(60) 60*10’(60)
Отношение Н2/С2 (моль/кмоль) 282 275 330 350
Отношение С4/С2 147 142 670 630 |
!(моль/кмоль)
СТР2(г/1О мин) 520 520 300 300
Плотность (кг/см’) 952 951 951 945
Соотношение разделенных компонентов смеси 50 54 43 42
Газофазный реактор
Температура (°С) 80 80
Давление (Па (Бар)) 20*105 .(20) 20*10® (20)
Отношение Н2/С2 (моль/кмоль) 8 8 10 3
Отношение С4/С2 (моль/кмоль) 747 695 650 600
СТР2(г/10 мин) 0,85 0,7-1
Плотность (кг/смД 892 393 901 907
Соотношение разделенных компонентов смеси 50 46 57 58
В качестве добавок использовали 2400 млн-1 1гдапох В225 и 1500 млн-1 стеарата кальция. Катализатор, используемый в сравнительных примерах 9, 10 и сравнительных примерах 1, 2, представляет собой катализатор типа Циглера-Натта, который соответствует используемому в ЕР 6887794, пример 3.
- 6 011522
Таблица 2
Молекулярная масса и распределение молекулярной массы для примеров 1, 2
Сравнительный пример 9 Сравнительный пример 10
ММ 149000 139000
Мп 9040 8070
Μζ 845000 796000
РММ 16,5 17,3
В сравнительных примерах 9, 10 скорость течения расплава СТР21,6 кг/19о°с значительно выше, чем в сравнительных примерах. Кроме того, как показывают значения ОСР21/2 и РММ, примеры по изобретению обладают широким распределением молекулярной массы.
Сравнительный пример 3 представляет собой линейный полиэтилен низкой плотности (ΕΕΌΡΕ), включающий 15% (мас./мас.) полиэтилена низкой плотности для улучшения обрабатываемости. Свойства смеси приведены в табл. 3.
Таблица 3
Свойства сравнительного примера 3
Сравнительный пример 3
Плотность (г/см3) 0,920
СТР2 (г/10 мин) 0.8
СТР21(г/10 мин) 79
ОСРгю 65
В последующем описании представлены и обсуждаются релевантные свойства обработки и механические свойства этих композиций.
Обрабатываемость.
Как уже обсуждалось выше, обрабатываемость материала оболочки включает несколько параметров, например качество поверхности, выход, давление расплава и мощность двигателя экструдера. Важно, чтобы диапазон параметров обработки был широким, поскольку существует множество различных применений для материала оболочки.
Для оценки обрабатываемости композиции экструдировали на кабельной линии. Оболочку толщиной 1 мм наносили на алюминиевый проводник диаметром 3 мм. Чтобы подвергнуть материал нагрузке с точки зрения свойства усадки, температура была неоптимальной. Проводник не подогревали, температура плавления составляла 210°С и температура охлаждающей бани составила 23°С. Производительность линии составляла 75 м/мин.
- 7 011522
Качество поверхности.
Качество поверхности оценивали визуально и вручную при осмотре.
Предшествующий опыт свидетельствует о том, что чем меньше СТР, тем лучше качество поверхности. Тем не менее, все изготовленные кабели имели очень гладкую поверхность, что достаточно неожиданно с учетом высоких значений СТР21, выбранных для сравнительных примеров 9, 10.
Выход и давление расплава.
В табл. 4 приведены данные испытания экструзионной линии изготовления кабеля.
Таблица 4
Испытание экструзии линии изготовления кабеля
Сравнительный пример 9 Сравнительный пример 10 Сравнитель ный пример 2 Сравнитель ный пример 1 Сравнительный пример 3
Фильтрационное давление (Па (Бар)) 243*10° (243) 235*10° (235) 332*10° (332) 300*10° (300) 255*10° (255)
Об/мин 61 61 65 59 58
Мощность экструдера (амп) 55 55 67 65 62
Результаты в табл. 4 ясно указывают на то, что композиции могут быть экструдированы при более низком давлении и мощности экструдера.
Влияние СТР21,6 кг/190°С на давление в экструдере также показано на чертеже фигуры. Благодаря более низкому СТР21 для сравнительных примеров 1, 2 необходимо гораздо более высокое давление в экструдере для обеспечения такого же выхода. Путем смешивания БЭРЕ и ББЭРЕ (т.е. сравнительный пример 3) можно обеспечить давление в экструдере, сравнимое с давлением для сравнительных примеров 9, 10. Тем не менее, как показано ниже, добавление БЭРЕ отрицательно влияет на механические свойства, деформацию при высоких температурах и поведение при усадке.
Сопротивление растрескиванию под действием окружающей среды (ЕЕ8СК.).
Сопротивление растрескиванию под действием окружающей среды оценивали с использованием СТБ при различной постоянной нагрузке. В качестве среды использовали 10% раствор 1дера1. Результаты представлены в табл. 5.
Таблица 5
Результаты Е8СК.
Сравнительный пример 9 Сравнительный пример 10 Сравнительный пример 1 Сравнительный пример 2 Сравнительный пример 3
СП 2 МПа (ч)
спз МПа >3500 >3500 >3500 >3500 55,25
(ч)
СП 4 МПа (ч) >3500 >3500 >3500 >3500 30,35
ЕЗСК ЬеН тест (ррм) >2000 >2000 >2000 >2000
Механические свойства.
Удлинение при разрыве и прочность на разрыв обобщены в табл. 6. Результаты показывают, что примеры по изобретению обладают хорошими механическими свойствами. Иначе говоря, обрабатываемость улучшалась при сохранении механических свойств на высоком уровне.
Таблица 6
Данные по механическим свойствам
Сравнительный пример 9 Сравнительный примерю Сравнительный пример 2 Сравнительный пример 1 Сравнительный пример 3
Удлинение при разрыве (%} 711 703 661 804 829
Прочность на разрыв (МПа) 26,1 25,8 30,5 31,8 22,0
- 8 011522
Усадка
Значения усадки перечислены в табл. 7.
Таблица 7
Поведение при усадке
Сравнительный пример 9 Сравнительный пример 10 Сравнительный пример 2 Сравнительный пример 1 Сравнительный пример 3
Усадка 24 ч 23°С (%) 0,04 0,04 0,05 0,00 0,24
Усадка 24 ч 100’С (%) 0,08 0,13 0,19 0,18 0,92
Данные в табл. 7 указывают на то, что композиции по настоящему изобретению демонстрируют низкую усадку. В частности, очевидно, что улучшение обрабатываемости для сравнительного примера 3 (например, низкое экструзионное давление) отрицательно влияет на поведение при усадке.
Совместимость с наполнителями.
Основное применение оболочек из ЬО и ЬЬП заключается в телекоммуникационных кабелях. Во многих телекоммуникационных кабелях, таких как медные или оптоволоконные, для защиты от проникновения воды используют наполнители. Основанный на вазелиновом масле 1п5о)е11 3332 обычно используют в медных кабелях. Этот наполнитель обычно представляет собой наполнитель, который обеспечивает наибольшую абсорбцию.
Проводят два испытания: увеличение массы и влияние на механические свойства.
Гантели толщиной 2 мм из прессованных пластин помещали в 1п5о)е11 3332 на 7 суток. Образцы помещали на алюминиевые прутья, чтобы дать возможность свободного доступа к вазелину со всех сторон. Старение осуществляли при 60°С. Результаты см. в табл. 9.
Таблица 9
Влияние вазелина
Сравнительный пример 9 Сравнительный пример 10 Сравнительный пример 2 Сравнительный пример 1 Сравнительный пример 3
Увеличение массы (%) 14,5 12,2 10,5 9,0 7.9
Прочность на разрыв (МПа) 20,7 21.4 25,4 25,7 16,4
Изменение прочности на разрыв (%) -8,0 5 -23,3 -20,5 -11,4
Удлинение при разрыве (%) 717 778 639 736 756
Изменение относительного удлинения(%) -19,2 -14,8 -22,0 -13,9 -10,7
Примеры 6-13.
В этих примерах получали три полиэтиленовые композиции по настоящему изобретению (примеры 3-5) и пять эталонных материалов (сравнительные примеры 4-8).
Примеры по изобретению получали последовательным многостадийным способом, включающим стадию форполимеризации с последующей полимеризацией в петлевом реакторе, а затем в газофазном реакторе. Таким образом, конечная композиция включала три полимерные фракции.
В качестве катализатора для примеров 3-5 использовали имеющийся в продаже катализатор Ьупх 200™, производимый и поставляемый ЕпдеШагб СогрогаНоп.
Точно как в примерах по изобретению, сравнительные примеры 4-5 получены последовательным многостадийным способом. Тем не менее, в противоположность примерам 3-5 не включали стадию форполимеризации. Таким образом, сравнительные примеры 4-5 являются бимодальными.
Сравнительный пример 4 основан на сравнительном примере 1. Тем не менее, добавляли полиэтилен низкой плотности.
Сравнительный пример 5 соответствует сравнительному примеру 1.
- 9 011522
Оба сравнительные примера 6, 7 основаны на линейном полиэтилене низкой плотности, к которому для улучшения обрабатываемости добавлен полиэтилен низкой плотности.
Сравнительный пример 8 изготовлен двухстадийным способом, где первую стадию осуществляли в петлевом реакторе с последующей стадией газофазной полимеризации.
Дополнительная информация об этих композициях приведена в табл. 10.
Таблица 10
Условия способа и свойства примеров 3-5
Образец I I Пример 3 I Пример 4 I Пример 5
Реактор для полимеризации
температура •с 60 60 60
давление Па (бар) 61*10= (61) 60*10° (60) 61*10= (61)
загрузка катализатора г/ч 1.4 1.4 2,3
загрузка сокатализатора г/ч 5.0 5.0 5.0
загрузка антистатика млн'1 7 7 7
загрузка Сз кг/ч 1,9 1.7 2.0
загрузка Н2 г/ч 0,6
загрузка С4 г/ч
загрузка Се г/ч
загрузка Сз кгЛг 36,8 35,7 38,7
Соотношение разделенных компонентов смеси % масс/масс 2.7 2,5 3,0
стабильность процесса хорошая хорошая хорошая
СТР2 г/( 10 мин)
плотность ю7м=
зольность млн'1
Петлевой реактор
температура ’С 80 80 80
давление Па (бар) 56*10ъ(56) 56*10° (56) 56405 (56)
- 10 011522
загрузка катализатора г/ч 1,4 1,4 2,3
загрузка сокатализатора г/ч
загрузка Сг кг/ч 32,9 33,0 31,7
загрузка Н2 г/ч
загрузка С4 г/ч
загрузка С3 кг/ч 80,2 93,7 88,7
концентрация С2 моль% 3,9 4,5 4.3
отношение Н22 моль/кмоль 399 360 390
отношение С*/С5 моль/кмоль 469 388 421
отношение Св/С2 моль/кмоль
отношение загрузки С42 г/кг
концентрация этана моль% 0,23 0,17 0,19
скорость продукции кг/ч 32 31 30
производительность кг/г 23 22 13
Соотношение разделенных компонентов смеси % масс/масс 50,9 51,6 51,5
стабильность процесса хорошая удовлетво рительная хорошая
СТР2 г/(10 мин) 350 300 350
плотность кг/м’ 944 947 946
плотность партии кг/м’ 367 374 390
зольность млн'1 100 150
113200 % масс/масс 7,2 13,4 10,5
Чан % масс/масс 10,8 14,0 11,2
мелкие частицы (< 106 мкм) % масс/масс 18,0 27,4 21,7
Λ ηό игр ММ Λ пл Л 4 а и, ю А А<4 ν,Λ 1
сомономер 1-бутен 1-бутен 1-бутен
Газофазный реактор
температура °с 80 80 80
давление Па (бар) 20*10° (20) 20*10’ (20) 20*10’ (20)
загрузка С2 кгАч 35 38 34
загрузка Нг г/ч 10,2 11,0 10,1
загрузкаС4 кг/ч 9,6 12,2 10,8
загрузка Св κτΛι
концентрация Сг моль% 11 12 11
парциальное давление С2 Па (бар) 2,2*10’ (2,2) 2,4*10* (2.4) 2,2*10’
отношение Н/Зг моль/кмоль 34 29 31
отношение С4/С2 моль/кмоль 403 455 450
отношение Св/Сг моль/кмоль
отношение загрузки Сч/Св г/кг 270 324 321
концентрация этана моль% 0,03 0,03 0,03
Производительность кг/ч 30,5 29,3 28,8
Производительность (общая) кг/1· 45 42 25
Соотношение разделенных компонентов смеси % масс/масс 49,1 48,4 48,5
стабильность процесса удоалетво ригельная хорошая хорошая
СТР2 г/(10 мин) 0,8 0,9 1,0
СТРг, г/(10 мин) 87 94 106
ОСРгю - 104 106 106
ПЛОТНОСТЬ кг/м·1 926 927 925
- 11 011522
рассчитанная плотность (ВМ фракция) кг/м4 907 906 903
плотность партии кг/м4 404 395 397
113200 % масс/масс 3,5 5,5
чан % масс/масс 2,3 3,4
мелкие частицы (<106 мкм) % масс/масс 5,8 8,9
АРЗ Мм 0,3 0,3
сомономер 1-бутен 1-бутен 1-бутен
Экструдер
загрузка кг/ч 221 221 221
скорость шнека об/мин 400 400 400
позиция клапана регулятора градусы 12 12 12
ЗЕ1 кВт/ч 260 271 260
температура плавления •с 215,4 220,4 216,6
количество осадка Кг 358 400 550
СТР2 г/( 10 мин) 0,8 0.9 1,0
СТР5 г/( 10 мин) 3,40 3,90 4,50
СТР21 г/(10 мин) 90.0 102,0 111,0
ОСР21/2 - 114 115 111
РММ 31,6 32,0 32,3
плотность кг/м4 926,3 928,3 926,8
зольный остаток млн' 210 230 280
Ггдапох В225 млн'1 2640 2650 2690
1гдапох В561 млн1
1гдапох 1076 млн'1
168/ХК млн1
углеродная сажа % масс/масс
Са$( млн'1 1580 1580 1590
ΟβΖπδί млн1
Ζηεΐ млн'
ΥΙ/3 мм -8,0 -8,3
Се(.2- п/ка.м
Се1.4- п/кв.м
Се1.7- п/кв.м
дисперсия (Л/5 -
дисперсия СВ -
Свойства сравнительных материалов
Таблица 11
I Сравнительный пример 4 Сравнительный пример 5 Сравнительный пример 6 Сравнительный пример 7 Сравнительный пример 8
плотность (кг/см3) 925 923 931 920 921,5
СТР2 (г/10 мин) 0.4 0.4 0,7 0,8 0,7
СТР21 (г/10 мин) 40 79 79 46
ОСР21Д 100 65 65 68
Петлевой реактор
Температура 85
Давление 57
отношение Н2/С2 330 202
- 12 011522
отношение С4/С2 670 609
СТРг (г/10 мин) 300 290
плотность (кг/см3) 951 950
Соотношение разделенных компонентов смеси 43 43,5
Газофазный реактор
Температура 80
Давление 20
отношение Н2/С2 10 4,4
отношение С4/С2 650 619
СТР2 (г/10 мин) 0,7
плотность (кг/см3) 901 897
Соотношение разделенных компонентов смеси 57 56,5
Сравнительный пример 4 является таким же, как сравнительный пример 5, но с содержанием 15% БОРЕ.
В табл. 12 обобщена молекулярная масса и распределение молекулярной массы для примеров 3-5 и сравнительных примеров 5 и 8. Из табл. 12 очевидно, что присутствие третьей фракции в композициях по изобретению значительно расширяет распределение молекулярной массы по сравнению с эталонными материалами.
Таблица 12
Молекулярная масса и распределение молекулярной массы
Пример 3 Пример4 Пример 5 Сравнительный пример 8 Сравнительный пример 5
ММ 136000 143000 136000 143000 185000
Мп 4330 4480 4220 10100 15000
Μζ 808000 940000 901000 612000
РММ 31,6 32 32,3 14,2 12,3
В табл. 13 приведен показатель уменьшения вязкости при сдвиге УВС^що) для примеров 3-5 и сравнительного примера 8.
Таблица 13 Показатель уменьшения вязкости при сдвиге
Продукт УВС(г.ц21О1
Примерз 65
Пример 4 60
Пример 5 58
Сравнительный пример 4 41
Сравнительный пример 5 35
Сравнительный пример 6 50
Сравнительный пример 8 25
Как показано в табл. 13, композиции по изобретению обладают более высоким показателем уменьшения вязкости при сдвиге, значительно превышающим значение для эталонного материала. Как уже обсуждено выше, высокие значения УВС указывают на широкое распределение молекулярной массы.
Композиции подвергали испытаниям на обрабатываемость и механические свойства. Результаты представлены и обсуждаются ниже.
Качество поверхности.
Качество поверхности оценивали путем визуальной оценки и вручную при осмотре. Наблюдали два различных явления, во-первых, само качество отделки поверхности, а также форму изоляции. При более высокой производительности линии в некоторых материалах образовалась волнообразная форма. Первое является следствием прочности расплава, а второе в большей степени является следствием давления в экструдере и может быть, возможно, скорректировано за счет повышенной температуры расплава. Тем не менее, это указывает на более узкий диапазон параметров способа. Предшествующий опыт заключается в том, что чем ниже СТР, тем лучше качество отделки поверхности. Хотя композиции по изобретению обладают гораздо более высоким СТР, они обеспечивают превосходные результаты при данных производительностях линии.
- 13 011522
Оценка поверхностных свойств
Таблица 14
Производитель*! ость линии Пример 3 Пример4 Пример 5 А2047 Сравнительный ____пример 8 Сравнительный пример 6 Сравнительный пример 5 Сравнительный пример 4
Гладкость поверхности 0-4 (4 самая лучшая) 15 35 70 140 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4
Давление расплава.
Как подобно сравнительным примерам 9, 10, примеры 3-5 по изобретению обладают низким давлением расплава при конкретной производительности линии. Для сравнительных примеров 6, 7 (т.е. смесей ЬЬПРЕ и ЬОРЕ) также может быть получено низкое давление расплава. Тем не менее, как показано ниже, в этих материалах низкое давление расплава отрицательно влияет на прочность на разрыв, деформацию при высоких температурах и поведение при усадке.
В сравнительных примерах 4, 5 и 8 давление расплава значительно выше.
Механические свойства.
Механические свойства обобщены в табл. 15 и 16.
Таблица 15
Механические свойства, измеренные на пластинах
Пластины Пример 3 Пример 4 Пример 5 | Пример для сравнения 8 Пример для сравнения 4 Пример для сравнения 5 Пример для сравнения 6
Удлинение при эазрыве (%) 904 907 937 837 808 824.9 810
Прочность на разрыв (МПа) 26,3 28,7 28,5 33,1 31,7 32,5 19,5
Данные в табл. 15 показывают, что примеры по изобретению обладают хорошими механическими свойствами. В частности, при сравнении примеров 3-5 со сравнительным примером 6 очевидно, что только примеры по изобретению обладают улучшенным балансом между обрабатываемостью (например, низким давлением расплава) и механическими свойствами.
- 14 011522
Таблица 16 Механические свойства, измеренные на кабелях
Кабели Пример 3 Пример 4 Пример 5 Пример для сравнения 8 Пример для сравнения 4 Пример для сравнения 5 Пример для сравнения 6
Удлинение при эазрыве (%) 597 631 620 576 500 551 527
Прочность на разрыв (МПа) 17,1 17,6 17,3 18,8 17,9 17 17,6
Усадка.
Усадку в течение 24 ч измеряли при 23°С и 100°С. Результаты обобщены в табл. 17. Примеры по изобретению демонстрируют хорошие свойства усадки.
Таблица 17
Поведение при усадке
Пример 3 Пример 4 Пример 5 Сравнительный пример 4 Сравнительный пример 5 Сравнительный пример 6 Сравнительный пример 8
Усадка 24 ч 23С (%) 0,15 0,0 0,0 0,0 0,00 0,0 0,0
Усадка 24 ч 100’С 1%) 0,34 0,08 0,15 0,45 0,07 0,4 0,01
Совместимость с наполнителями.
Провели два испытания на совместимость: увеличение массы и влияние на механические свойства. Гантели толщиной 2 мм из прессованных пластин помещали в 1п5о)с11 3332 на 7 суток. Образцы помещали на алюминиевые прутья для того, чтобы дать возможность для свободного доступа к вазелину со всех сторон. Старение осуществляли при 70°С. Результаты представлены в табл. 18.
Таблица 18
Результаты тестов совместимости
Абсорбция геля Пример 3 Пример 4 Пример 5 Пример для сравнения 8 Пример для сравнения 4 Пример для сравнения 5 Пример для
Изменение удлинения при разрыве (%) -5,6 -2,9 -3,7 -12,2 -9 -8,8 -0,8
Разрушающее напряжение (%) -11,4 -10,3 -17,5 -19,0 -15,6 -13,6 -9.1
Увеличение абсорбционной массы (%) 5,61 5,48 5,84 8,24 7,14 7,26 6,79
Материалы, полученные в последовательном многостадийном способе (т.е. примеры 3-5 и сравнительные примеры 4, 5 и 8), обладали более выразительным изменением механических свойств по сравнению со смесью ΕΕΌΡΕ/ΕΌΡΕ. В отношении увеличения абсорбционной массы примеры по изобретению имели наименьшие значения. Таким образом, рассматривая оба эффекта (т.е. изменение механических свойств, а также изменение массы), материалы по изобретению обеспечивают наилучший компромисс.
Значения деформации при высоких температурах приведены в табл. 19.
- 15 011522
Таблица 19
Деформация при высоких температурах
Пример 3 Пример 4 Пример 5 Пример для сравнения 8 Пример для сравнения 4 Пример для сравнения 5 !------------------------------------------------------------------------------------------------------------------------------ Пример для сравнения 6
Деформация при высоких температурах 4 ч при 5*(%) 14,9 13,1 10,6 10.9 15,4 14,6 65
Температура кристаллизации.
В табл. 20 приведены температуры кристаллизации для примеров 3-5 и сравнительного примера 5. Таблица 20
Температура кристаллизации
Пример 1 Пример 2 Пример 3 Сравнительный пример 5
Температура кристаллизации (“С) 112,7 112,9 113,3 111,6
Увеличение температуры кристаллизации является благоприятным для обработки, например для применений при изготовлении пленок, поскольку высокомолекулярная фракция действует в качестве агента зародышеобразования, увеличивающего кристаллизацию. Это является благоприятным для охлаждающих свойств после обработки изделия.

Claims (21)

1. Наружный защитный слой для силового и коммуникационного кабеля, изготовленный из полиэтиленовой композиции, содержащей основную смолу, которая содержит:
(A) первую фракцию гомо- или сополимера этилена, (Б) вторую фракцию гомо- или сополимера этилена и (B) третью фракцию гомо- или сополимера этилена в количестве вплоть до 20% (мас./мас). от общей массы основной смолы, причем фракция (А) имеет молекулярную массу ниже, чем фракция (Б), и основная смола имеет распределение молекулярной массы М„/Мп выше 14, и фракция (В) имеет скорость течения расплава СТР2 0,1 г/10 мин или ниже, где М„ и Мп, соответственно, средневзвешенная и среднечисловая молекулярные массы.
2. Защитный слой по п.1, где основная смола имеет распределение молекулярной массы М„/Мп 23 или более.
3. Защитный слой по п.1 или 2, где основная смола имеет СТР21 по меньшей мере 90 г/10 мин.
4. Защитный слой по любому из пп.1-3, где основная смола имеет СТР2 от 0,05 до 5 г/10 мин.
5. Защитный слой по любому из пп.1-4, где основная смола имеет СТР2 от 0,5 до 1,2 г/10 мин.
6. Защитный слой по любому из пп.1-5, где основная смола имеет плотность от 0,915 до 0,960 г/см3.
7. Защитный слой по любому из пп.1-6, где основная смола имеет плотность от 0,918 до 0,928 г/см3.
8. Защитный слой по любому из пп.1-7, где основная смола имеет отношение показателя текучести расплава ЕКК от 50 до 150.
9. Защитный слой по любому из пп.1-8, где основная смола имеет отношение скорости растекания ОСР от 80 до 130.
10. Защитный слой по любому из пп.1-9, где фракция (А) имеет СТР2 от 50 до 5000 г/10 мин.
11. Защитный слой по любому из пп.1-10, где фракция (А) имеет плотность от 0,930 до 0,975 г/см3.
12. Защитный слой по любому из пп.1-11, где фракция (А) представляет собой сополимер этилена, имеющий по меньшей мере один дополнительный альфа-олефин.
13. Защитный слой по любому из пп.1-12, где фракция (Б) имеет СТР2 от 0,01 до 1 г/10 мин.
14. Защитный слой по любому из пп.1-13, где фракция (Б) имеет плотность от 0,880 до 0,930 г/см3.
15. Защитный слой по любому из пп.1-14, где фракция (Б) представляет собой сополимер этилена по меньшей мере с одним дополнительным альфа-олефином.
16. Защитный слой по любому из пп.1-15, где фракция (В) представлена в основном полимере в количестве от 1 до 5% (мас./мас).
17. Защитный слой по любому из пп.1-16, где фракция (В) имеет СТР21 менее 1 г/10 мин.
18. Защитный слой по любому из пп.1-17, где массовое отношение фракций (А):(Б) в основной смоле составляет от 40:60 до 60:40.
- 16 011522
19. Защитный слой по любому из пп.1-18, где композиция имеет показатель уменьшения вязкости при сдвиге УВС(2,7/210) от 5 до 300.
20. Защитный слой по любому из пп.1-19, где основной полимер представляет собой смесь ш-зйи.
21. Применение полиэтиленовой композиции, содержащей основную смолу, который содержит:
(A) первую фракцию гомо- или сополимера этилена, (Б) вторую фракцию гомо- или сополимера этилена, (B) третью фракцию гомо- или сополимера этилена в количестве вплоть до 20% (мас./мас.) от общей массы основной смолы, где фракция (А) имеет молекулярную массу ниже, чем фракция (Б), и основная смола имеет распределение молекулярной массы М„/Мп выше 14, для изготовления наружного защитного слоя силового или коммуникационного кабеля.
EA200702515A 2005-06-30 2006-06-28 Наружный защитный слой для силового или коммуникационного кабеля EA011522B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05014217A EP1739691B1 (en) 2005-06-30 2005-06-30 Outer sheath layer for power or communication cable
PCT/EP2006/006267 WO2007003323A1 (en) 2005-06-30 2006-06-28 Outer sheath layer for power or communication cable

Publications (2)

Publication Number Publication Date
EA200702515A1 EA200702515A1 (ru) 2008-06-30
EA011522B1 true EA011522B1 (ru) 2009-04-28

Family

ID=34937734

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200702515A EA011522B1 (ru) 2005-06-30 2006-06-28 Наружный защитный слой для силового или коммуникационного кабеля

Country Status (16)

Country Link
US (1) US7579551B2 (ru)
EP (1) EP1739691B1 (ru)
JP (1) JP5201476B2 (ru)
KR (1) KR100935044B1 (ru)
CN (1) CN101238529B (ru)
AT (1) ATE416465T1 (ru)
AU (1) AU2006265360B2 (ru)
BR (1) BRPI0613723A2 (ru)
CA (1) CA2610080C (ru)
DE (1) DE602005011421D1 (ru)
EA (1) EA011522B1 (ru)
EG (1) EG25511A (ru)
ES (1) ES2318384T3 (ru)
PL (1) PL1739691T3 (ru)
WO (1) WO2007003323A1 (ru)
ZA (1) ZA200710392B (ru)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005013653D1 (de) * 2005-06-30 2009-05-14 Borealis Tech Oy Polyethylenzusammensetzung mit verbesserter Verarbeitbarkeit
EP1961777A1 (en) * 2007-02-26 2008-08-27 Borealis Technology Oy Polyolefin homo- or copolymer with decreased shrinkage sensivity and improved crystallization behavior
US7754834B2 (en) 2007-04-12 2010-07-13 Univation Technologies, Llc Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density
US8865834B2 (en) 2008-02-18 2014-10-21 Basell Polyolefine Gmbh Adhesive polymer composition
US9187627B2 (en) * 2008-10-23 2015-11-17 Equistar Chemicals, Lp Polyethylene having faster crystallization rate and improved environmental stress cracking resistance
EP2182525A1 (en) 2008-10-31 2010-05-05 Borealis AG Cable and polymer composition comprising a multimodal ethylene copolymer
EP2182526A1 (en) * 2008-10-31 2010-05-05 Borealis AG Cable and polymer composition comprising an multimodal ethylene copolymer
EP2199650A1 (en) * 2008-12-19 2010-06-23 Borealis AG Layer for pipes made of multimodal polyethylene composition
KR20120093277A (ko) * 2009-11-10 2012-08-22 토탈 페트로케미칼스 리서치 펠루이 사출 연신 취입 성형 적용물용 바이모달 폴리에틸렌
US8490619B2 (en) 2009-11-20 2013-07-23 International Business Machines Corporation Solar energy alignment and collection system
US9127859B2 (en) 2010-01-13 2015-09-08 International Business Machines Corporation Multi-point cooling system for a solar concentrator
US10811164B2 (en) * 2010-03-17 2020-10-20 Borealis Ag Polymer composition for W and C application with advantageous electrical properties
US10208196B2 (en) 2010-03-17 2019-02-19 Borealis Ag Polymer composition for W and C application with advantageous electrical properties
ES2748832T5 (es) 2011-02-25 2023-06-08 Regeneron Pharma Ratones ADAM6
CA2839583C (en) * 2011-06-23 2018-08-21 Dow Global Technologies Llc Low density polyethylene with low dissipation factor and process for producing same
EP3865581A1 (en) 2011-08-05 2021-08-18 Regeneron Pharmaceuticals, Inc. Humanized universal light chain mice
US9321945B2 (en) 2011-09-30 2016-04-26 Equistar Chemicals, Lp Systems, methods and compositions for production of tie-layer adhesives
KR102081657B1 (ko) 2011-12-20 2020-02-26 리제너론 파마슈티칼스 인코포레이티드 인간화 경쇄 마우스
SG11201407789RA (en) 2012-06-12 2014-12-30 Regeneron Pharma Humanized non-human animals with restricted immunoglobulin heavy chain loci
EP2799485B9 (en) * 2013-04-30 2019-12-04 Scg Chemicals Co. Ltd. Polymer composition and a cable spacer comprising the polymer composition
EP3063222B1 (en) * 2013-10-30 2022-06-08 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Polyethylene composition suitable for injection moulding applications
EP3056524B1 (en) * 2014-10-13 2021-09-22 LG Chem, Ltd. Ethylene/1-butene copolymer having excellent processibility and environmental stress cracking resistance
ES2652271T3 (es) * 2014-12-22 2018-02-01 Borealis Ag Procedimiento para producir mezclas de polietileno multimodal que incluyen componentes de peso molecular ultra elevado
GB2533770B (en) * 2014-12-22 2021-02-10 Norner Verdandi As Polyethylene for pipes
ES2646937T5 (es) 2014-12-30 2021-05-07 Abu Dhabi Polymers Company Ltd Borouge L L C Polietileno multimodal
EP3262660B1 (en) 2015-02-25 2023-09-27 Union Carbide Corporation Polyolefin compounds for cable coatings
CN109721807A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 一种易加工的高密度聚乙烯管材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718974A (en) * 1996-06-24 1998-02-17 Union Carbide Chemicals & Plastics Technology Corporation Cable jacket
US6329054B1 (en) * 1995-07-10 2001-12-11 Borealis Polymers Oy Cable and method for using a cable-sheathing composition including an ethylene polymer mixture
WO2004101674A1 (en) * 2003-05-12 2004-11-25 Dow Global Technologies Inc Polymer composition and process to manufacture high molecular weight-high density polyethylene and film therefrom
US20050054799A1 (en) * 2002-09-04 2005-03-10 Chi-I Kuo Bimodal polyolefin production process and films therefrom

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI86867C (fi) 1990-12-28 1992-10-26 Neste Oy Flerstegsprocess foer framstaellning av polyeten
US5767034A (en) 1996-05-31 1998-06-16 Intevep, S.A. Olefin polymerization catalyst with additive comprising aluminum-silicon composition, calixarene derivatives or cyclodextrin derivatives
SE9802087D0 (sv) * 1998-06-12 1998-06-12 Borealis Polymers Oy An insulating composition for communication cables
SE9803501D0 (sv) 1998-10-14 1998-10-14 Borealis Polymers Oy Polymer composition for pipes
SE9804407D0 (sv) * 1998-12-18 1998-12-18 Borealis Polymers Oy A multimodal polymer composition
US6277919B1 (en) * 1999-05-13 2001-08-21 Dyneon Llc Polymer processing additive containing a multimodal fluoropolymer and melt processable thermoplastic polymer composition employing the same
WO2004025670A1 (en) * 2002-09-10 2004-03-25 Union Carbide Chemicals & Plastics Technology Corporation Polypropylene cable jacket compositions with enhanced melt strength and physical properties
EP1572760B1 (en) 2002-12-18 2016-12-07 Borealis Technology Oy Method for the preparation of olefin polymerisation catalyst support and an olefin polymerisation catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329054B1 (en) * 1995-07-10 2001-12-11 Borealis Polymers Oy Cable and method for using a cable-sheathing composition including an ethylene polymer mixture
US5718974A (en) * 1996-06-24 1998-02-17 Union Carbide Chemicals & Plastics Technology Corporation Cable jacket
US20050054799A1 (en) * 2002-09-04 2005-03-10 Chi-I Kuo Bimodal polyolefin production process and films therefrom
WO2004101674A1 (en) * 2003-05-12 2004-11-25 Dow Global Technologies Inc Polymer composition and process to manufacture high molecular weight-high density polyethylene and film therefrom

Also Published As

Publication number Publication date
CN101238529B (zh) 2011-07-13
ATE416465T1 (de) 2008-12-15
CA2610080A1 (en) 2007-01-11
US20080196922A1 (en) 2008-08-21
CA2610080C (en) 2010-12-07
KR20080015832A (ko) 2008-02-20
ES2318384T3 (es) 2009-05-01
ZA200710392B (en) 2008-10-29
US7579551B2 (en) 2009-08-25
WO2007003323A1 (en) 2007-01-11
DE602005011421D1 (de) 2009-01-15
CN101238529A (zh) 2008-08-06
JP2008544469A (ja) 2008-12-04
AU2006265360B2 (en) 2010-06-03
BRPI0613723A2 (pt) 2011-02-08
EG25511A (en) 2012-01-30
JP5201476B2 (ja) 2013-06-05
EP1739691A1 (en) 2007-01-03
PL1739691T3 (pl) 2009-06-30
KR100935044B1 (ko) 2009-12-31
EA200702515A1 (ru) 2008-06-30
EP1739691B1 (en) 2008-12-03
AU2006265360A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
EA011522B1 (ru) Наружный защитный слой для силового или коммуникационного кабеля
EP1739110B9 (en) Polyethylene composition of improved processability
JP6506761B2 (ja) 光ファイバケーブル構成要素
AU2015373394B2 (en) Multimodal polyethylene
KR101357170B1 (ko) 개선된 기계적 특성을 갖는 난연성 폴리머 조성물
US20100122833A1 (en) Multiphase Polymeric Composition Useful for Preparing Cable Insulation
KR20090007339A (ko) 개선된 응력 백화 저항성을 지닌 케이블용 층
KR20170124550A (ko) 케이블 코팅물을 위한 폴리올레핀 화합물
KR100674747B1 (ko) 난연 열수축 튜브 제조용 조성물 및 난연 열수축 튜브
TWI402860B (zh) 具有強化之流變性與操作性的電纜絕緣組成物
BRPI0613723B1 (pt) Energy or communication cable and use of a polyethylene composition
NZ731056B (en) Multimodal polyethylene

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG MD TJ TM