DK176384B1 - Process for producing a monocrystal by zone melting - Google Patents

Process for producing a monocrystal by zone melting Download PDF

Info

Publication number
DK176384B1
DK176384B1 DK200101478A DKPA200101478A DK176384B1 DK 176384 B1 DK176384 B1 DK 176384B1 DK 200101478 A DK200101478 A DK 200101478A DK PA200101478 A DKPA200101478 A DK PA200101478A DK 176384 B1 DK176384 B1 DK 176384B1
Authority
DK
Denmark
Prior art keywords
melt
monocrystal
magnetic field
flow
rotation
Prior art date
Application number
DK200101478A
Other languages
Danish (da)
Inventor
Janis Virbulis
Wilfried Von Ammon
Andris Muiznieks
Georg Raming
Original Assignee
Siltronic Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic Ag filed Critical Siltronic Ag
Publication of DK200101478A publication Critical patent/DK200101478A/en
Application granted granted Critical
Publication of DK176384B1 publication Critical patent/DK176384B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/26Stirring of the molten zone
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • C30B13/30Stabilisation or shape controlling of the molten zone, e.g. by concentrators, by electromagnetic fields; Controlling the section of the crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

DK 176384 B1DK 176384 B1

Opfindelsen omhandler en fremgangsmåde til fremstilling af en monokrystal ved zonesmeltning, ved hvilken en med en induktionsspole frembragt smelte udsættes for mindst ét roterende magnetfelt og bringes til størkning, og den ved smeltens størkning fremkomne monokrystal bliver drejet.The invention relates to a method for producing a monocrystal by zone melting, in which a melt generated by an induction coil is exposed to at least one rotating magnetic field and solidified and the monocrystal obtained by the melt solidification is rotated.

55

Anvendelsen af et roterende magnetfelt ved zonesmeltning er eksempelvis beskrevet i DD-263 310 A1. Ganske vist sigter den i dette skrift foreslåede fremgangsmåde på standardiseringen af diffusionsgrænselagstykkelsen, mens den foreliggende opfindelse løser opgaven at opnå en så vidt muligt homogen fordeling af doteringsstoffer i 10 smelten og at opnå en monokrystal.The use of a rotating magnetic field in zone melting is described, for example, in DD-263 310 A1. Admittedly, the process proposed in this paper aims at standardizing the diffusion boundary layer thickness, while the present invention solves the task of obtaining as far as possible a homogeneous distribution of dopants in the melt and obtaining a monocrystal.

Hidtil er det blevet forsøgt at opnå homogeniseringen af doteringsstoffordelingen ved variation af krystaldrejningen, gennem forskydning af induktionsspolen relativt til krystalaksen og gennem ændring af induktionsspolens form. En ulempe ved denne 15 foranstaltning er, at den ofte fører til forhøjelse af forskydningshastigheden og til forringelse af processtabiliteten.Heretofore, it has been attempted to achieve the homogenization of the dopant distribution by variation of the crystal rotation, by displacement of the induction coil relative to the crystal axis and by changing the shape of the induction coil. A disadvantage of this measure is that it often leads to an increase in shear rate and a deterioration in process stability.

Opfindelsen omhandler en fremgangsmåde til fremstilling af en monokrystal ved zonesmeltning, ved hvilken en med en induktionsspole frembragt smelte udsættes for 20 mindst ét roterende magnetfelt og bringes til størkning, og den ved smeltens størkning fremkomne monokrystal bliver drejet, kendetegnet ved, at monokrystallen og magnetfeltet bliver drejet i modsat omdrejningsretning.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing a monocrystal by zone melting in which a melt generated by an induction coil is subjected to at least one rotating magnetic field and solidified and the monocrystal resulting from the melt solidified is rotated, characterized in that the monocrystal and magnetic field are turned in the opposite direction of rotation.

Beskrivelsen af opfindelsen omfatter også figurer. Fig. 1 viser en anordning, der er 25 egnet til gennemførelsen af fremgangsmåden. Fig. 2 til 5 gengiver de i simulationsberegningerne beregnede strømningsforhold i smelten, hvor der i hvert enkelt tilfælde kun er vist den ene af to symmetriske halvdele af et snit gennem smelten. Fig. 6 til 8 tydeliggør virkningen af de af opfindelsen omfattede fremgangsmåder på den radiale modstandsfordeling og dermed også på fordelingen af doteringsstoffer.The description of the invention also includes figures. FIG. 1 shows a device suitable for carrying out the method. FIG. Figures 2 to 5 represent the flow conditions calculated in the simulation calculations in the melt, where in each case only one of two symmetrical halves of a section through the melt is shown. FIG. 6 to 8 illustrate the effect of the methods of the invention on the radial resistance distribution and thus also on the distribution of dopants.

3030

Den i fig. 1 illustrerede anordning omfatter en monokrystal 4, der over en smelte 3 er forbundet med en polykrystallinsk forrådsstang 1. Smelten bliver frembragt af en induktionsspole 2. Ved sænkning af monokrystallen størkner en del af smelten, hvorved volumenet af monokrystallen tiltager. Samtidig bevirker induktionsspolen, at 35 materialet fra forrådsstangen bliver smeltet og på denne måde forøges smeltens volumen. Omfattet af opfindelsen ses mindst en flerpolet magnet 5, eksempelvis en 2 DK 176384 B1 vekselstrømselektromotor med flerpolet stator, der frembringer et magnetfelt der roterer modsat monokrystallens omdrejningsretning. I figuren er magnetfeltets feltlinier 6 fremstillet som pile.The FIG. 1, a device illustrated comprises a monocrystal 4 connected above a melt 3 to a polycrystalline supply bar 1. The melt is produced by an induction coil 2. Upon lowering of the monocrystal, a portion of the melt solidifies, thereby increasing the volume of the monocrystal. At the same time, the induction coil causes the material from the stockpile to be melted and in this way the volume of the melt is increased. Included in the invention is at least one multi-pole magnet 5, for example a multi-pole alternating current electric motor, for example, producing a magnetic field that rotates opposite the direction of rotation of the monocrystal. In the figure, the magnetic field field lines 6 are made as arrows.

5 Doteringsstoffordelingen i monokrystallen bliver påvirket af strømningsforholdene i smelten og af grænselagsdiffusion. Strømningen i smelten, der bliver frembragt af de termiske, Marangoni- og elektromagnetiske kræfter, har specielt for monokrystaller med store diametre en typisk tohvirvelstruktur, der er illustreret i fig. 2. I den centrale hvirvel 10, der har kontakt med en polykrystallinsk forrådsstang, er doterings-10 stofkoncentrationen mindre end i en ydre hvirvel 20. Så længe disse koncentrationsforskelle i begge hvirvler eksisterer, forbliver en formindskelse af forskellen af diffusionsgrænselagstykkelsen, hvad angår en radial doteringsstofhomogenisering, virkningsløs.5 The dopant distribution in the monocrystal is affected by the flow conditions in the melt and the boundary layer diffusion. The flow in the melt generated by the thermal, Marangoni and electromagnetic forces, especially for large diameter monocrystals, has a typical two-vortex structure illustrated in FIG. 2. In the central vortex 10 which contacts a polycrystalline supply rod, the dopant 10 concentration is less than in an outer vortex 20. As long as these concentration differences in both vertebrae exist, a decrease in the difference of the diffusion boundary layer thickness remains with respect to a radial. dopant homogenization, ineffective.

15 Opfinderen fandt ud af, at det med de af kravene omfattede fremgangsmåder lykkedes at forandre den typiske tohvirvelstruktur af smelten med en i centrum af smelten nedadrettet strømning, og at den radiale homogenitet af doteringsstoffordelingen derigennem tydeligt lod sig forbedre.The inventor found that, with the methods encompassed by the claims, it succeeded in altering the typical two-vortex structure of the melt with a downward flow at the center of the melt, and that the radial homogeneity of the dopant distribution thereby clearly improved.

20 Tohvirvelstrukturen blev ændret ved hjælp af en tvungen konvektion. Bedst egnet er en volumenkraft, der virker i det samlede smeltevolumen. Yderligere tilstræbes det, at strømningen i centrum af smelten er rettet opad (mod forrådsstangen), fordi smelten ellers bliver bragt direkte fra forrådsstangen og nedad (til monokrystallen). Som omfattet af opfindelsen lykkedes dette ved anvendelse af mindst ét roterende 25 magnetfelt, der til forskel for fremgangsmåden, der er beskrevet i DD-263 310 A1, skal rotere modsat omdrejningsretningen af monokrystallen. Såfremt monokrystallen underkastes en vekslende rotation (periodisk skift af omdrejningsretningen), hvilket også ifølge det af opfindelsen omfattede er muligt, er den over tid gennemsnitlige krystalrotation bestemmende for definitionen af omdrejningsretningen for krystallen.The two-vortex structure was altered by a forced convection. Most suitable is a volume power that works in the total melt volume. Further, it is sought that the flow in the center of the melt is directed upwards (towards the stockpile) because otherwise the melt is brought directly from the stockpile downwards (to the monocrystalline). As encompassed by the invention, this succeeded by using at least one rotating magnetic field, which, unlike the method described in DD-263 310 A1, must rotate opposite the direction of rotation of the monocrystal. If the monocrystal is subjected to alternating rotation (periodic rotation of the direction of rotation), which is also possible according to the scope of the invention, the average crystal rotation over time determines the definition of the direction of rotation of the crystal.

30 Uden den modsatrettede drejning af magnet og monokrystal løber strømningsretningen nedad i centrum af smelten. Den doteringsstoffattige smelte bliver ført direkte til centrum af monokrystallen og dermed forringes homogeniteten af den radiale inkorporering af doteringsstoffer tydeligt. Yderligere bliver den i forvejen bestående forskydningsfare, på grund af ikke-smeltede partikler, der kommer direkte 35 fra forrådsstangen til monokrystallen, yderligere forhøjet.30 Without the opposite rotation of magnet and monocrystal, the direction of flow runs downward in the center of the melt. The dopant-low melt is fed directly to the center of the monocrystal and thus the homogeneity of the radial incorporation of dopants is clearly impaired. Further, the pre-existing shear hazard, due to non-molten particles coming directly from the stockpile to the monocrystalline, is further increased.

3 DK 176384 B13 DK 176384 B1

Det modsat omdrejningsretningen for monokrystallen roterende magnetfelt bevirker en volumenkraft i azimutal retning i smelten. Ifølge en særlig foretrukken udførelsesform af fremgangsmåderne bliver denne volumenkraft benyttet til at frembringe en enkelt hvirvel ved tvungen konvektion i smelten med en strømning, der forløber opad i 5 centrum af smelten. Denne mod forrådsstangen rettede strømning i centrum af smelten bevirker, at de fra forrådsstangen kommende ikke-smeltede partikler og doteringsstoffattige smelteområder ikke transporteres direkte til monokrystallen, men først bliver godt blandet i smelten. Partiklerne får derigennem tilstrækkelig tid til at smelte fuldstændig. For at opnå den foretrukne ændring fra tohvirvelstruktur til 10 enhvirvelstruktur, må feltstyrken af magnetfeltet tilpasses de forhåndenværende procesvilkår. Den optimale feltstyrke er afhængig af andre procesparametre såsom magnetfeltets frekvens, diameteren og omdrejningshastigheden af monokrystallen, trækkehastigheden og formen af den anvendte induktionsspole. Den kan derfor fastsættes gennem testforsøg. Opfinderens forsøg har vist, at fremgangsmåderne 15 fortrinsvis kan benyttes til frembringelse af monokrystaller af silicium, der har en diameter på mindst 3" (76,2 mm), hvor monokrystallen fortrinsvis bliver frembragt med feltstyrker fra 0,1 til 20 mT, særligt foretrukket fra 1 til 5 mT. Frekvensen af det roterende magnetfelt ligger fortrinsvis ved 10 til 1000 Hz, særligt foretrukket ved 50 til 500 Hz.The opposite direction of rotation of the monocrystal rotating magnetic field causes a volume force in the azimuthal direction of the melt. According to a particularly preferred embodiment of the methods, this volume force is used to produce a single vortex by forced convection in the melt with a flow extending upwardly in the center of the melt. This flow directed toward the storage bar in the center of the melt causes the non-melted particles and dopant-low melting areas emanating from the storage bar to be transported directly to the monocrystal but first mixed well in the melt. The particles thereby have sufficient time to completely melt. In order to achieve the preferred change from two-vortex structure to 10-unit vortex structure, the field strength of the magnetic field must be adapted to the existing process conditions. The optimum field strength is dependent on other process parameters such as the frequency of the magnetic field, the diameter and speed of the monocrystal, the pulling speed and the shape of the induction coil used. It can therefore be determined through test trials. The inventor's experiments have shown that the methods 15 can preferably be used to produce silicon monocrystals having a diameter of at least 3 "(76.2 mm), the monocrystal being preferably produced with field strengths of 0.1 to 20 mT, particularly preferred. The frequency of the rotating magnetic field is preferably at 10 to 1000 Hz, particularly preferably at 50 to 500 Hz.

2020

Ved en samtidig anvendelse af to roterende magnetfelter med forskellige frekvenser og over tid variable amplituder kan man yderligere forbedre blandingen af smelten og den radiale homogenisering af doteringsstoffer, og nærmere bestemt være uafhængig af forekomsten af en enhvirvelstruktur eller en tohvirvelstruktur i smelten. Felter med 25 forskellige frekvenser har forskellige Indtrængningsdybder i smelten og virker som følge deraf på forskellige områder af smelten.By the simultaneous use of two rotating magnetic fields with different frequencies and over time variable amplitudes, the mixing of the melt and the radial homogenization of dopants can be further improved, and more specifically be independent of the presence of a single eddy structure or a two eddy structure in the melt. Fields with 25 different frequencies have different penetration depths in the melt and, as a result, act on different areas of the melt.

Når der kun eksisterer en hvirvel i smelten, der er blevet frembragt ved anvendelse af et roterende magnetfelt ifølge den for opfindelsen foretrukne udførelsesform, kan 30 yderligere indvirkning på strømningsforholdene i hvirvelstrukturen opnås ved tilpasning af feltstyrken og/eller frekvensen af det ene af de to magnetfelter og doteringsstoffordelingen kan indstilles endnu mere præcist.When there is only one vortex in the melt produced by using a rotating magnetic field according to the preferred embodiment of the invention, further influence on the flow conditions in the vortex structure can be obtained by adjusting the field strength and / or the frequency of one of the two magnetic fields. and the dopant distribution can be adjusted even more precisely.

Når der forekommer en tohvirvelstruktur I smelten, kan de to roterende felter med 35 forskellige frekvenser og/eller forskellige amplituder anvendes på smelten, således at den indre del af smelten roterer i modsat retning i forhold til den ydre del af smelten.When a two-vortex structure is present in the melt, the two rotating fields of 35 different frequencies and / or different amplitudes can be applied to the melt, so that the inner portion of the melt rotates in the opposite direction to the outer portion of the melt.

4 DK 176384 B14 DK 176384 B1

Ved tidsafhængig variation af amplituderne og/eller frekvenserne lod omvendingspunktet for hastighedsfelterne sig forandre over tid, og dermed styredes blandingen af smelten radialt. Derigennem blev forskelle i doteringsstofkoncentrationerne mellem de to hvirvler udlignet.With time-dependent variation of the amplitudes and / or frequencies, the inversion point of the velocity fields changed over time, and thus the mixing of the melt was radially controlled. Thereby differences in dopant concentrations between the two vertebrae were equalized.

55

EksempelExample

For at demonstrere indflydelsen af de roterende magnetfelter på strømningen og doteringsstoffordelingen i smelten blev simulationsberegninger gennemført. Først blev 10 smeltezonens form beregnet. Derefter blev strømningen i smelten og doteringsstoffordelingen ved størkningsfronten beregnet afhængigt af tid. Ved simulationen blev Finite-Elemente-metoden anvendt. Beregningerne blev foretaget på grundlag af flg. forudsætninger: en krystaldiameter på 4" (101,6 mm), en krystalrotation på 5 omdr./min. og en frekvens af det roterende magnetfelt på 50 Hz. Omdrejnings-15 retningen af magnetfeltet var modsatrettet i forhold til krystalomdrejningsretningen. Resultater af beregningerne er vist i fig. 2 til 8. I fig. 2 til 5 er vist strømfunktionen af strømningen i en meridional (r, z) flade. Strømfunktionens linier er parallelle med strømningsretningen, og mellem to linier flyder den tilsvarende massestrøm gennem.To demonstrate the influence of the rotating magnetic fields on the flow and dopant distribution in the melt, simulation calculations were performed. First, the shape of the melt zone was calculated. Then, the flow in the melt and dopant distribution at the solidification front was calculated depending on time. In the simulation, the Finite-Elemente method was used. The calculations were made on the basis of the following assumptions: a crystal diameter of 4 "(101.6 mm), a crystal rotation of 5 rpm and a frequency of the rotating magnetic field of 50 Hz. The direction of rotation of the magnetic field was opposite The results of the calculations are shown in Figures 2 to 8. Figures 2 to 5 show the flow function of the flow in a meridional (r, z) plane The lines of the flow function are parallel to the flow direction and flow between two lines. the corresponding mass flow through.

Pilene angiver strømningens retning. I fig. 2 er strømningen uden roterende magnetfelt 20 vist. Man ser en tohvirvelstruktur med en central hvirvel 10 og en ydre hvirvel 20. I fig.The arrows indicate the direction of the flow. In FIG. 2, the flow without rotating magnetic field 20 is shown. One shows a two-vortex structure with a central vortex 10 and an outer vortex 20. In FIG.

3 udgør induktionen af magnetfeltet 1 mT, og indvirkningen på strømningen er ubetydelig. I fig. 4 udgør induktionen 2 mT og den ydre, imod centrum af smelten rettede hvirvel, er blevet større. I fig. 5 udgør induktionen 3,5 mT og en enhvirvel-struktur er opstået.3, the induction of the magnetic field is 1 mT and the effect on the flow is negligible. In FIG. 4, the induction is 2 mT and the outer vortex directed towards the center of the melt has become larger. In FIG. 5, the induction amounts to 3.5 mT and a single vortex structure is formed.

2525

Fig. 6 til 8 viser dimensionsløse (normaliserede) modstandsfordelinger på størkningsfronten på forskellige tidspunkter. Modstanden er omvendt proportional med doteringsstofkoncentrationen. I fig. 6 udgør induktionen af magnetfeltet 0 mT, i fig. 7 er værdien af induktionen 1 mT og i fig. 8 er den 3 mT. Fig. 6 til 8 viser at, den radiale 30 modstandsfordeling bliver mere homogen med forøget feltstyrke af det roterende magnetfelt.FIG. 6 to 8 show dimensionless (normalized) resistance distributions on the solidification front at different times. The resistance is inversely proportional to the dopant concentration. In FIG. 6, the induction of the magnetic field is 0 mT, in fig. 7, the value of the induction is 1 mT and in FIG. 8 is the 3 mT. FIG. 6 to 8 show that the radial 30 resistance distribution becomes more homogeneous with increased field strength of the rotating magnetic field.

Claims (7)

1. Fremgangsmåde til fremstilling af en monokrystal ved zonesmeltning, hvorved den med en induktionsspole frembragte smelte udsættes for mindst ét roterende 5 magnetfelt og bringes til størkning, og den ved størkning af smelten opståede monokrystal bliver drejet, kendetegnet ved, at monokrystallen og magnetfeltet bliver drejet med modsatrettede omdrejningsretninger, 10 og at frekvensen af magnetfeltet ligger i området fra 10 til 1000 Hz.A method of producing a monocrystal by zone melting, whereby the melt generated by an induction coil is exposed to at least one rotating magnetic field and solidified and the monocrystal arising from solidification is rotated, characterized in that the monocrystal and magnetic field are rotated. with opposite directions of rotation, 10 and that the frequency of the magnetic field is in the range of 10 to 1000 Hz. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at monokrystallen bliver frembragt med en diameter på mindst 3" (76,2 mm).Process according to claim 1, characterized in that the monocrystalline is produced with a diameter of at least 3 "(76.2 mm). 3. Fremgangsmåde ifølge krav 1 eller krav 2, kendetegnet ved, at feltstyrken af magnetfeltet ligger i området fra 0,1 til 20 mT,Method according to claim 1 or claim 2, characterized in that the field strength of the magnetic field is in the range of 0.1 to 20 mT, 4. Fremgangsmåde ifølge et af kravene 1 til 3, kendetegnet ved, at smelten udsættes for yderligere et roterende magnetfelt. 20Method according to one of claims 1 to 3, characterized in that the melt is subjected to a further rotating magnetic field. 20 5. Fremgangsmåde ifølge krav 4, kendetegnet ved, at magnetfelterne påføres smelten således, at et indre område af smelten roterer modsatrettet i forhold til et ydre område af smelten, hvorved der opstår en blandingszone mellem det ydre område og det indre område. 25Method according to claim 4, characterized in that the magnetic fields are applied to the melt such that an inner region of the melt rotates opposite to an outer region of the melt, thereby creating a mixing zone between the outer region and the inner region. 25 5 DK 176384 B15 DK 176384 B1 6. Fremgangsmåde ifølge krav 5, kendetegnet ved, at blandingszonen ved variation af amplituderne og/eller frekvenserne af magnetfelterne forskydes radialt.Method according to claim 5, characterized in that the mixing zone is radially displaced by variation of the amplitudes and / or frequencies of the magnetic fields. 7. Fremgangsmåde ifølge krav 5, kendetegnet ved, at blandingszonens radiale 30 position varieres over tid.Method according to claim 5, characterized in that the radial position of the mixing zone is varied over time.
DK200101478A 2000-10-19 2001-10-08 Process for producing a monocrystal by zone melting DK176384B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10051885 2000-10-19
DE2000151885 DE10051885B4 (en) 2000-10-19 2000-10-19 Method of pulling a single crystal by zone pulling

Publications (2)

Publication Number Publication Date
DK200101478A DK200101478A (en) 2002-04-20
DK176384B1 true DK176384B1 (en) 2007-10-22

Family

ID=7660356

Family Applications (1)

Application Number Title Priority Date Filing Date
DK200101478A DK176384B1 (en) 2000-10-19 2001-10-08 Process for producing a monocrystal by zone melting

Country Status (3)

Country Link
JP (1) JP3699671B2 (en)
DE (1) DE10051885B4 (en)
DK (1) DK176384B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216609B4 (en) * 2002-04-15 2005-04-07 Siltronic Ag Process for producing the semiconductor wafer
DE10328859B4 (en) * 2003-06-20 2007-09-27 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Method and apparatus for pulling single crystals by zone pulling
DE102005063346B4 (en) 2005-04-06 2010-10-28 Pv Silicon Forschungs Und Produktions Gmbh Process for producing a monocrystalline Si wafer with approximately round polygonal cross section
CN102586859A (en) * 2012-03-10 2012-07-18 天津市环欧半导体材料技术有限公司 Method for improving radial resistivity uniformity of float-zone silicon monocrystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401021A (en) * 1961-08-01 1968-09-10 Westinghouse Electric Corp Apparatus of zone refining and controlling solute segregation in solidifying melts by electromagnetic means
US4659423A (en) * 1986-04-28 1987-04-21 International Business Machines Corporation Semiconductor crystal growth via variable melt rotation
DD263310A1 (en) * 1987-08-17 1988-12-28 Akad Wissenschaften Ddr METHOD FOR SEMICONDUCTOR CRYSTAL CELLS OF ELECTRICALLY CONDUCTIVE MELTS

Also Published As

Publication number Publication date
DE10051885A1 (en) 2002-05-02
JP3699671B2 (en) 2005-09-28
DE10051885B4 (en) 2007-07-12
DK200101478A (en) 2002-04-20
JP2002160993A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
US20060254498A1 (en) Silicon single crystal, and process for producing it
EA017453B1 (en) Method and apparatus for producing a single crystal
Cröll et al. Floating-zone growth of silicon in magnetic fields. II. Strong static axial fields
JP2546736B2 (en) Silicon single crystal pulling method
US8337615B2 (en) Method for producing a monocrystalline Si wafer having an approximately polygonal cross-section and corresponding monocrystalline Si wafer
DK176384B1 (en) Process for producing a monocrystal by zone melting
Li et al. Effect of a high magnetic field on the Al–Al3Ni fiber eutectic during directional solidification
JP2004292309A (en) Method and apparatus for manufacturing silicon single crystal, silicon single crystal, and semiconductor wafer cut out therefrom
JPH03505442A (en) Growth of semiconductor crystal materials
JPH08337494A (en) Apparatus and method for rotating crucible of crystal pulling machine
US6113688A (en) Process for producing single crystals
DK176922B1 (en) Process for producing a doped semiconductor disk by zone drawing of a single crystal
EP0504929B1 (en) Method of growing silicon monocrystalline rod
Von Ammon et al. Application of magnetic fields in industrial growth of silicon single crystals
JP6528003B2 (en) Single crystal ingot growth apparatus and growth method thereof
JPH0761893A (en) Single crystal growing method
KR20110087035A (en) Single crystal grower, manufacturing method for single crystal, and single crystal ingot and wafer manufacturied by the same
Martin et al. Application of a Heat Pipe to Czochralski Growth: Part I: Growth and Segregation Behavior of Ga‐Doped Ge
Mosel et al. Growth of high quality silicon mono ingots by the application of a magnetic cusp field in Cz puller
JP3991813B2 (en) Silicon single crystal growth method
Sim et al. Effect of the ingot cooling on the grown-in defects in silicon Czochralski growth
Glacki VGF growth of 4” GaAs single crystals with traveling magnetic fields
Lan et al. A simple method for improving the stability of float zones under normal gravity
Quang et al. Influence of mechanical vibrations on microscopic growth rates in GaSb pulled crystals
Sakaguchi et al. Tip oscillation of dendritic patterns in a phase field model. II

Legal Events

Date Code Title Description
PBP Patent lapsed

Effective date: 20131031