DK173726B1 - Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor - Google Patents

Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor Download PDF

Info

Publication number
DK173726B1
DK173726B1 DK199700172A DK17297A DK173726B1 DK 173726 B1 DK173726 B1 DK 173726B1 DK 199700172 A DK199700172 A DK 199700172A DK 17297 A DK17297 A DK 17297A DK 173726 B1 DK173726 B1 DK 173726B1
Authority
DK
Denmark
Prior art keywords
cooling
compressor
compartment
temperature
freezer
Prior art date
Application number
DK199700172A
Other languages
Danish (da)
Other versions
DK17297A (en
Inventor
Iver Holm Iversen
Original Assignee
Gram As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gram As filed Critical Gram As
Priority to DK199700172A priority Critical patent/DK173726B1/en
Priority to EP98102408A priority patent/EP0859208A3/en
Priority to NO980617A priority patent/NO307942B1/en
Publication of DK17297A publication Critical patent/DK17297A/en
Application granted granted Critical
Publication of DK173726B1 publication Critical patent/DK173726B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

DK 173726 B1DK 173726 B1

Den foreliggende opfindelse angår et kombikøleskab, der omfatter et kølerum, et fryserum, et kølesystem med en regulerbar kompressor og en kølekreds med en køleflade i hvert af rummene samt temperaturmålingsorganer til brug ved styring af kompressoren. Opfindelsen angår endvidere fremgangsmåden til styring af en kompressor i et 5 kombikøleskab, der omfatter et kølerum, et fryserum, et kølesystem med en regulerbar kompressor og en kølekreds med en køleflade i hvert af rummene. Opfindelsen angår ligeledes styrekredsen til en kompressor i et kombikøleskab, der omfatter et kølerum, et fryserum, et kølesystem med en regulerbar kompressor og en kølekreds med en køleflade i hvert af rummene.The present invention relates to a combination refrigerator comprising a cooling compartment, a freezer compartment, a cooling system with an adjustable compressor and a cooling circuit with a cooling surface in each of the compartments as well as temperature measuring means for use in controlling the compressor. The invention further relates to the method of controlling a compressor in a combination refrigerator comprising a cooling room, a freezer room, a cooling system with an adjustable compressor and a cooling circuit with a cooling surface in each of the rooms. The invention also relates to the control circuit for a compressor in a combination refrigerator comprising a cooling room, a freezer room, a cooling system with an adjustable compressor and a cooling circuit with a cooling surface in each of the rooms.

1010

Det er ønskeligt at kunne styre temperaturen i kølerummet og fryserummet i et kombikøleskab, således at man kan opnå en ønsket temperatur uafhængigt af temperaturen i det andet rum. I kombiskabene er det således ønskeligt at opretholde en temperatur i køleafdelingen på ca. 5°C og en temperatur på -18°C i fryserummet.It is desirable to be able to control the temperature in the cold room and the freezer compartment of a combination refrigerator so that a desired temperature can be obtained independently of the temperature in the other room. In the combination cabinets it is thus desirable to maintain a temperature in the refrigeration compartment of approx. 5 ° C and a temperature of -18 ° C in the freezer compartment.

1515

Det er kendt at forsyne et kombiskab med to separate kølesystemer, der hver omfatter en kompressor og en kølekreds samt en styreanordning, som typisk er en termostat. En termostat i hvert af rummene vil sørge for en ind- og udkobling afkølesystemet ud fra forudbestemte parametre, således at der opretholdes en ønsket temperatur inden for et 20 interval i det aktuelle opbevaringsrum.It is known to provide a combination cabinet with two separate cooling systems, each comprising a compressor and a cooling circuit, as well as a control device, which is typically a thermostat. A thermostat in each of the compartments will provide for switching on and off the cooling system based on predetermined parameters so that a desired temperature is maintained within a range of 20 in the current storage room.

Disse kendte kombikøleskabe er ufordelagtige ved anvendelsen af to kølesystemer, som både er pladskrævende og omkostningstunge. Disse kølesystemer vil have en meget ringe energi-økonomi på grund af anvendelsen af to separate kølekredse omfat-25 tende kompressor, kondensator og fordamper.These known combination refrigerators are disadvantageous in the use of two refrigeration systems which are both space consuming and costly. These cooling systems will have a very poor energy economy due to the use of two separate cooling circuits including compressor, capacitor and evaporator.

Der kendes andre kombikøleskabe, hvor styringen til kølesystemet sker ved at forsyne kølesystemet med en magnetventil. Magnetventilen gør det muligt for kølemediet alene at strømme til det opbevaringsrum, kølerummet eller fryserummet, hvor kølingen 30 er nødvendigt i det givne tidsrum. Denne konstruktion er ufordelagtig, idet den er sårbar overfor svigt i ventilsystemet. Endvidere er det vanskeligt at opnå en god og sikker funktion eller en god energi-økonomi for systemet.Other combi refrigerators are known in which the control of the cooling system is effected by supplying the cooling system with a solenoid valve. The solenoid valve allows the refrigerant to flow solely to the storage room, cold room or freezer room where cooling 30 is necessary for the given time period. This construction is disadvantageous in that it is vulnerable to failure of the valve system. Furthermore, it is difficult to achieve a good and safe function or a good energy economy for the system.

DK 173726 B1 2 I de senere år er der fremkommet nye kompressortyper, hvor køleydelsen kan reguleres. Dette sker typisk ved at variere kompressorens omdrejningstal. Det bliver herved muligt at udjævne svingninger i temperaturintervallet, som optræder mellem ind- og udkobling af kompressoren. I stedet foretages der en kombineret styring, således at 5 kompressorens ydelse ændres afhængigt af kølebehovet og på en sådan måde, at kompressoren kun stoppes, hvis det ikke er muligt at reducere dens køleydelse længere ned. Et eksempel på en kompressor af denne type er for eksempel beskrevet i PCT/KR93/00034. Det kombikøleskab og den styrekreds, som er beskrevet i denne publikation, muliggør ikke en præcis og energiøkonomisk individuel regulering af 10 køleeffekten i kølerummet og fryserummet.DK 173726 B1 2 In recent years, new types of compressor have emerged where the cooling performance can be regulated. This is typically done by varying the speed of the compressor. In this way, it becomes possible to smooth out fluctuations in the temperature range that occurs between switching on and off the compressor. Instead, a combined control is made so that the compressor's performance changes depending on the cooling demand and in such a way that the compressor is stopped only if it is not possible to reduce its cooling performance further down. An example of a compressor of this type is described, for example, in PCT / KR93 / 00034. The combination refrigerator and control circuit described in this publication do not allow for precise and energy-efficient individual regulation of the cooling effect in the cold room and the freezer compartment.

Det er formålet med den foreliggende opfindelse at anvise et system af den indledningsvis nævnte type, det vil sige et køleskab, en fremgangsmåde og en styrekreds, som muliggør en sikker og energiøkonomisk styring af temperaturen i et fryserum og 15 et kølerum, således at det bliver muligt at opretholde temperatumiveauet i disse rum på ønskelige niveauer.It is the object of the present invention to provide a system of the type mentioned initially, that is, a refrigerator, a method and a control circuit which permits a safe and energy-efficient control of the temperature in a freezer room and a cold room so that it becomes possible to maintain the temperature level in these rooms at desirable levels.

Dette opnås ifølge den foreliggende opfindelse med et kombikøleskab, som er særpræget ved, at temperaturmålingsorganeme omfatter en temperaturmåler i kølerummet 20 og en temperaturmåler i fryserummet, og at disse temperaturmålere indgår i en styrekreds, der er indrettet for at stoppe og starte kompressoren henholdsvis regulere dens omdrejningstal. Fremgangsmåden ifølge opfindelsen er særpræget ved, at kompressoren stoppes og igangsættes som følge af et signal fra en temperaturmåler i det ene rum, fortrinsvis kølerummet, og at kompressorens omdrejningstal bestemmes som følge af 25 et signal fra en temperaturmåler i det andet rum, fortrinsvis fryserummet. Den styrekreds, som anvendes, er særpræget ved, at den omfatter en temperaturmåler til placering i det ene rum, fortrinsvis kølerummet, og som er indrettet til at starte og stoppe kompressorens motor samt en temperaturmåler til placering i det andet rum, fortrinsvis fryserummet, og som er indrettet til at regulere motorens omdrejninger.This is achieved according to the present invention with a combination refrigerator, which is characterized in that the temperature measuring means comprise a temperature meter in the cold room 20 and a temperature meter in the freezer room, and that these temperature meters are included in a control circuit arranged to stop and start the compressor respectively. speed. The method according to the invention is characterized in that the compressor is stopped and started as a result of a signal from a temperature meter in one room, preferably the cooling room, and that the speed of the compressor is determined as a result of a signal from a temperature meter in the other room, preferably the freezer room. The control circuit used is characterized in that it comprises a temperature gauge for placement in one compartment, preferably the cooling compartment, which is adapted to start and stop the compressor's engine, and a temperature gauge for placement in the other compartment, preferably the freezer compartment, and which is arranged to regulate engine rpm.

3030

Idet temperaturmåleren, fortrinsvis en termostat, i køleafdelingen tænder og slukker kompressoren efter behov, samtidig med at en anden temperaturmåler, fortrinsvis en DK 173726 B1 3 termostat i ftyseren regulerer køleydelsen på kompressoren via reguleringen af omdrejningstallet, bliver det muligt at styre temperaturbalancen i kombikøleskabets to opbevaringsrum ved at regulere køleflademes temperaturbalance. Ved at regulere kø-leflademes temperaturbalance bliver det muligt at opretholde temperaturen i køle-5 rummet og fryserummet ved det ønskede niveau, uanset omgivelsernes temperatur.As the temperature meter, preferably a thermostat, in the refrigeration compartment turns on and off the compressor as needed, while another temperature meter, preferably a thermostat in the freezer regulates the cooling performance of the compressor via the control of the rpm, it becomes possible to control the temperature balance in the two refrigerators. storage space by regulating the temperature balance of the cooling surfaces. By regulating the temperature balance of the cooling surfaces, it becomes possible to maintain the temperature in the cold room and the freezer room at the desired level, regardless of the ambient temperature.

Der er således to reguleringsmekanismer, som tilsammen giver kompressorstyringen de signaler, som er påkrævet, for at kompressoren kan indstilles til et passende omløbstal og dermed en passende ydelse afhængig af den aktuelle belastningssituation.Thus, there are two control mechanisms which together provide the compressor control with the signals required for the compressor to be set to an appropriate bypass number and thus an appropriate output depending on the current load situation.

1010

Idet køleflademe til kølerummet og til fryserummet er forbundet med hinanden, vil begge køleflader være aktive samtidigt. På baggrund heraf kan en forskel i køleydelsen i kølerummet og i fiyserummet kun opnås, såfremt der ændres på temperaturdifferencen mellem en køleflade og varer i køle- og/eller fryserummet.Since the cooling surfaces for the cold storage room and the freezer compartment are connected to each other, both cooling surfaces will be active simultaneously. In view of this, a difference in the cooling performance in the cold room and in the freezer compartment can only be achieved if the temperature difference between a cooling surface and goods in the cold and / or freezer compartment is changed.

1515

Det antages, at der eksisterer en situation, hvor kompressorens omløbstal lige netop giver en køleydelse, som modsvares af den ydelse, der tilføres på grund af tempera-turdifferencen mellem kølefladen og varer i kølerummet som er 5°C. Det antages endvidere, at kølefladens temperatur er netop -18°C. I denne situation vil temperatur-20 differencen i kølerummet blive: 5°C-(-18°C) = 23 °C og temperaturdifferencen i fryserummet bliver: -18°C/(-18°C) = 0°C.It is assumed that there exists a situation where the compressor's turnover rate just gives a cooling output which is offset by the output supplied due to the temperature difference between the cooling surface and the products in the cooling room which is 5 ° C. Furthermore, it is assumed that the temperature of the cooling surface is precisely -18 ° C. In this situation, the temperature difference in the cold room will be: 5 ° C - (- 18 ° C) = 23 ° C and the temperature difference in the freezer room will be: -18 ° C / (- 18 ° C) = 0 ° C.

Idet effektoverførslen kan bestemmes ud fra ligningen: effekt = areal af køleflade x overfladekoefficient x temperaturdifferencen, så betyder denne situation, at der ikke 25 opnås effekt til køling i fiyserummet. Hvis omløbstallet på kompressoren øges lidt, vil dette give en koldere køleflade, og der vil også optræde en køling i fryserummet. Det er den relative forskel mellem varer og køleflade i de to rum, som giver den efterstræbte balance, således at der kan opnås de ønskede temperaturer på f.eks. +5°C og -18°C i kølerummet henholdsvis fiyserummet.Since the power transfer can be determined from the equation: power = area of cooling surface x surface coefficient x temperature difference, this situation means that no power is obtained for cooling in the freezer room. Increasing the circulation number of the compressor will result in a colder cooling surface, and cooling will also occur in the freezer compartment. It is the relative difference between the goods and the cooling surface of the two compartments which provides the desired balance so that the desired temperatures of e.g. + 5 ° C and -18 ° C in the cold room and the freezer room respectively.

30 I situationen, hvor kompressorens omløbstal lige netop gav køleydelsen, som modsvares af den tilførte ydelse, medførte temperaturdifferencen på 23°C en stor effekt i køle- DK 173726 B1 4 rummet, medens temperaturdifferencen i fryserummet på 0°C ikke medførte nogen effekt. I den ændrede situation med øget omløbstal kan kølefladens temperatur sænkes til f.eks. -20°C. Der vil nu eksistere en temperaturdifference på 25°C i kølerummet, hvilket medfører en lidt større effekt end den tidligere situation. I fryserummet vil der 5 nu eksistere en temperaturdifference på 2°C, hvilket betyder, at der også tilføres en effekt i fryserummet.30 In the situation where the compressor turnover rate just gave the cooling performance, which is matched by the output supplied, the temperature difference of 23 ° C caused a large effect in the refrigeration room, while the temperature difference in the freezer room of 0 ° C did not produce any effect. In the changed situation with increased circulation, the temperature of the cooling surface can be lowered to e.g. -20. A temperature difference of 25 ° C will now exist in the cold room, resulting in a slightly larger effect than the previous situation. In the freezer room, a temperature difference of 2 ° C will now exist, which means that an effect is also applied in the freezer compartment.

I den ny situation med et øget omløbstal vil kompressoren køre i lidt kortere perioder (bestemt af forholdet 23°C/25°C) for stadig at opretholde 5°C i kølerummet, hvor der 10 ikke er sket nogen ændring i varemes kølebehov. Imidlertid vil der nu også opnås den effekt, at der optræder en samtidig afkøling i fryserummet, eftersom der jo er opnået en temperaturdifference mellem kølefladen og varerne i fryserummet. Situationen med de kortere perioder, hvor kompressoren kører, skal betragtes ud fra en almindelig driftssituation, hvor kompressoren vil være dimensioneret til at køre en vis del af ti-15 den, f.eks. 50%.In the new situation with an increased circulation rate, the compressor will run for slightly shorter periods (determined by the ratio 23 ° C / 25 ° C) to still maintain 5 ° C in the cold room, where there has been no change in the cooling requirements of the goods. However, the effect will now also be achieved of a simultaneous cooling in the freezer compartment, since a temperature difference between the cooling surface and the goods in the freezer compartment has been obtained. The situation with the shorter periods of operation of the compressor must be considered from a normal operating situation where the compressor will be designed to run a certain part of the time, e.g. 50%.

Det nettoresultat, som optræder i den ny situation vil være et koldere fryserum og et kølerum med en uændret temperatur. Med andre ord vil et højere omløbstal for kompressoren forrykke en ligevægt, således at der i fryserummet tilføres relativt mere ef-20 fekt til afkøling end den effekt, som tilføres til afkøling i kølerummet. Omvendt vil et lavere omløbstal forrykke ligevægten, således at der i fryserummet tilføres relativt mindre effekt til afkøling end den effekt, som tilføres til afkøling i kølerummet.The net result that appears in the new situation will be a colder freezer room and a cold room with an unchanged temperature. In other words, a higher circulation rate for the compressor adversely balances, so that in the freezer compartment, relatively more power is applied to cooling than the power supplied to cooling in the cold compartment. Conversely, a lower orbital number will degrade the equilibrium, so that in the freezer compartment, relatively less power is applied to cooling than the power supplied to cooling in the cold room.

Dette reguleringsprincip betyder, at forholdene i det ene rum, fortrinsvis i kølerummet, 25 bestemmer, hvornår kompressoren skal køre for at opretholde temperaturen i dette rum, medens forholdene i det andet rum, fortrinsvis fryserummet er bestemmende for størrelsen af den ydelse, som kompressoren skal levere for også i det andet rum at opretholde de ønskede temperaturforhold.This control principle means that the conditions in one room, preferably in the cold room, determine when the compressor should run to maintain the temperature in that room, while the conditions in the other room, preferably the freezer room, determine the amount of performance that the compressor should supply in order to maintain the desired temperature conditions in the other room as well.

30 I princippet er det muligt frit at vælge om kølerummet eller fryserummet skal styre on/off-situationen eller omløbstallet for kompressoren. Imidlertid vil det af hensyn til DK 173726 B1 5 de større tidskonstanter, som optræder i et fryserum, være naturligt at lade temperaturforholdet i kølerummet bestemme on/off-tilstanden for kompressoren.30 In principle, it is possible to freely choose whether the cold room or the freezer compartment controls the on / off situation or the number of circulation of the compressor. However, for the sake of DK 173726 B1, the larger time constants occurring in a freezer room would naturally allow the temperature ratio in the cold room to determine the on / off state of the compressor.

For at underbygge forståelsen for fordelen vil der i det efterfølgende gives et eksempel 5 til at illustrere effekten af en styring ifølge opfindelsen.In order to substantiate the understanding of the advantage, an example will be given below to illustrate the effect of a control according to the invention.

I et tænkt eksempel antages det, at systemet er dimensioneret således, at de ønskede temperaturer opretholdes ved en omgivelsestemperatur på 25eC, og køleflademes temperatur er -22°C i den periode, kølesystemet er aktivt. En køretidsprocent er defi-10 neret som forholdet mellem den periode, hvor kølesystemets kompressor er aktiv og hele perioden. Denne køretidsprocent antages at andrage 33% i dette eksempel. Idet der anvendes et køle-fryseskab, hvor der i kølerummet ønskes en temperatur på 5°C og i fryserummet en temperatur på -18°C, vil der fas de temperaturdifferencer, som angivet i nedenstående skema 1. Den relative kølevirkning i kølerummet og fryse-15 rummet fremkommer ved at multiplicere med køretidsprocenten og vil give de værdi er, som er anført i nedenstående skema 1.In a conceived example, it is assumed that the system is dimensioned such that the desired temperatures are maintained at an ambient temperature of 25 ° C and the temperature of the cooling surfaces is -22 ° C during the period the cooling system is active. A driving time percentage is defined as the ratio of the period in which the cooling system compressor is active to the entire period. This driving time percentage is assumed to be 33% in this example. Using a refrigerator freezer where a temperature of 5 ° C and a temperature of -18 ° C is desired in the freezer compartment, the temperature differences as indicated in Scheme 1 below will be phased out. -15 the space is obtained by multiplying by the driving time percentage and will give the values given in table 1 below.

Skema 1 T emperaturdifference køretidsprocent 20 Kølerum 5-(-22)°C = 27°C 27x33% = 8,9Schedule 1 Temperature difference driving time percentage 20 Cooling rooms 5 - (- 22) ° C = 27 ° C 27x33% = 8.9

Fryserum (-18)- (-22)°C = 4°C 4 x 33% = 1,32Freezing room (-18) - (-22) ° C = 4 ° C 4 x 33% = 1.32

Forhold kølerum/fryserum 8,9/1,32 =6,75Cooling / freezing ratio 8.9 / 1.32 = 6.75

Den relative kølevirkning, som optræder i de to rum skal være i balance med rumme-25 nes kølebehov. I det tænkte eksempel antages dette at være tilfældet.The relative cooling effect that occurs in the two rooms must be in balance with the cooling needs of the rooms. In the example thought, this is assumed to be the case.

Hvis der nu optræder en ændring i kølebehovet, hvilket for eksempel kan ske, hvis omgivelsernes temperatur ændres, vil balancen ikke længere være opretholdt, og temperaturerne i kølerummet og fryserummet vil afvige fra de ønskede temperaturer. 1 de 30 kendte systemer vil man normalt regulere efter temperaturen i kølerummet, hvorefter i fryserummet vil indstille sig herefter, når der kun anvendes en kølekreds med kølefla- DK 173726 B1 6 der i hvert af rummene. Den balance, som optræder til omgivelserne, vil være således som angivet i nedenstående skema 2.If there is now a change in the cooling demand, which can happen, for example, if the ambient temperature changes, the balance will no longer be maintained and the temperatures in the cold room and the freezer room will deviate from the desired temperatures. In the 30 known systems, one will normally adjust according to the temperature in the cold room, and then in the freezer room will adjust accordingly, when only one cooling circuit with a cooling surface is used in each of the rooms. The balance that occurs to the surroundings will be as indicated in Schedule 2 below.

Skema 2 5 T (omgivelser 25°C) T (omgivelser 15°C) Kølerum 25-5°C = 20°C 15-5°C = 10°Table 2 5 T (ambient 25 ° C) T (ambient 15 ° C) Cooling room 25-5 ° C = 20 ° C 15-5 ° C = 10 °

Fryserum 25-(-18)°C = 43°C 15-(-18)°C = 33°CFreezing room 25 - (- 18) ° C = 43 ° C 15 - (- 18) ° C = 33 ° C

Forhold kølerum/fryserum 43/20 = 2,15 33/10 = 3,33 10 Det voksende forhold mellem temperaturdifferenceme for fryserummet og kølerummet betyder, at fryserummet vil få for lidt køling til at opretholde den ønskede temperatur på -18°C. I et særligt ekstremt tilfælde, hvor omgivelsestemperaturen vil falde til 5°C, vil der ikke være behov for køling i kølerummet, hvorimod der stadig vil optræde et stort kølebehov i fryserummet. Der vil således være et kølebehov i fryserummet, 15 som er udtrykt ved temperaturdifferencen: 5-(-18)eC = 23°C. Hvis man alene styrer efter temperaturen i kølerum, vil man således opleve, at kompressoren standses, og de varer, som opbevares i fryserummet, vil ødelægges.Cold room / freezer ratio 43/20 = 2.15 33/10 = 3.33 10 The growing relationship between the temperature differences of the freezer compartment and the freezer compartment means that the freezer compartment will have too little cooling to maintain the desired temperature of -18 ° C. In a particularly extreme case where the ambient temperature will drop to 5 ° C, no cooling will be needed in the cold room, while there will still be a large cooling requirement in the freezer. Thus, there will be a cooling requirement in the freezer compartment, 15 expressed by the temperature difference: 5 - (- 18) eC = 23 ° C. If you only control the temperature in the cold room, you will find that the compressor is stopped and the goods stored in the freezer room will be destroyed.

Der har tidligere været foreslået en såkaldt “sommerhussikring” i form af en ener-20 giskaber, fortrinsvis en elektrisk pære, som placeres i kølerummet. Herved skabes der en kunstig påvirkning af temperaturføleren i kølerummet, således at kompressoren altid holdes i gang. Imidlertid er en sådan kendt løsning ufordelagtig ud fra et energi-økonomisk synspunkt.There has previously been proposed a so-called "summerhouse fuse" in the form of an energy generator, preferably an electric bulb, which is placed in the cold room. This creates an artificial influence on the temperature sensor in the cold room, so that the compressor is always kept operating. However, such a known solution is disadvantageous from an energy-economic point of view.

25 I et kombikøleskab ifølge opfindelsen vil det med fremgangsmåden og styrekredsen være muligt at styre den relative kølevirkning i de to rum. Således vil det være muligt, at det tidligere forhold mellem fryserum og kølerum på 6,75 kan påvirkes, hvis køle-fladernes temperatur ændres. Det er muligt at ændre køleflademes temperatur ved at øge eller mindske omdrejningstallet på kompressorens motor og dermed øge eller 30 mindske kompressorens ydeevne.In a combination refrigerator according to the invention, it will be possible with the method and the control circuit to control the relative cooling effect in the two compartments. Thus, it will be possible that the previous ratio of freezer room to cold room of 6.75 can be affected if the temperature of the cooling surfaces is changed. It is possible to change the temperature of the cooling surfaces by increasing or decreasing the speed of the compressor motor and thus increasing or decreasing the compressor performance.

DK 173726 B1 7 I fortsættelse af eksemplet tænkes kølefladernes temperatur mindsket til -26eC. Dette betyder, at køleydelsen øges, og der vil herefter optræde temperaturdifferencer og kø* retidsprocenter, som er angivet i nedenstående skema 3.DK 173726 B1 7 In continuation of the example, the temperature of the cooling surfaces is thought to be reduced to -26 ° C. This means that the cooling performance is increased, and then temperature differences and cooling time percentages will be shown in Schedule 3 below.

5 Skema 3 T emperaturdifference køretidsprocent Kølerum 5-(-26)°C = 31°C 31 x 33% = 10,235 Schedule 3 Temperature difference driving time percentage Cooling room 5 - (- 26) ° C = 31 ° C 31 x 33% = 10.23

Fryserum (-18)-(-26)°C = 8°C 8x33% =2,64Freezing room (-18) - (- 26) ° C = 8 ° C 8x33% = 2.64

Forhold kølerum/fryserum 10,23/2,64 = 3,88 10Cooling / freezing ratio 10.23 / 2.64 = 3.88 10

Som det fremgår, har det således været muligt at forrykke den relative balance mellem køle- og fryserummenes kølevirkning. I det viste eksempel er den relative balance ændret med et forhold på: 6,75/3,88 = 1,74. Dette kan også udtrykkes som den effekt som opnås i en procentvis stigning af kølevirkningen i fryserummet i forhold til køle-15 rummet. I det tænkte eksempel er kølevirkningen i fryserummet således forøget med 74% i forhold til kølevirkningen i kølerummet.As can be seen, it has thus been possible to enrich the relative balance between the cooling effect of the refrigeration and freezer compartments. In the example shown, the relative balance has changed with a ratio of: 6.75 / 3.88 = 1.74. This can also be expressed as the effect obtained in a percentage increase in the cooling effect in the freezer compartment relative to the refrigeration compartment. Thus, in the imagined example, the cooling effect in the freezer compartment is increased by 74% compared to the cooling effect in the cold room.

Det foretrækkes, at forholdet mellem de relative kølevirkninger i de to rum reguleres for at ligge mellem 2 og 8 og fortrinsvis mellem 3 og 5.It is preferred that the ratio of the relative cooling effects in the two compartments be adjusted to be between 2 and 8 and preferably between 3 and 5.

20 På tilsvarende måde som vist i ovenstående eksempler er det muligt at forrykke temperaturbalancen i modsat retning, hvis dette er ønskeligt. Det vil således være muligt at styre temperaturen i de to opbevaringsrum uafhængigt af hinanden og samtidig undgå de ulemper, som var forbundet med de kendte udførelsesformer. Med systemet 25 ifølge den foreliggende opfindelse bliver det således muligt at få en energiøkonomisk køling.Similarly, as shown in the above examples, it is possible to reverse the temperature balance in the opposite direction if desired. Thus, it will be possible to control the temperature of the two storage rooms independently of each other and at the same time avoid the disadvantages associated with the known embodiments. Thus, with the system 25 of the present invention, it becomes possible to obtain an energy-efficient cooling.

Der vil ikke blive givet specielle beregningseksempler på de temperaturinterval for omgivelsestemperatur og køleflade, som kan anvendes i forbindelse med systemet 30 ifølge den foreliggende opfindelse. Imidlertid vil systemet kunne arbejde tilfredsstillende ved omgivelsestemperatur på minusgrader og ved meget høje omgivelsestemperaturer. Det vil således være muligt for systemet at arbejde med omgivelsestemperatu- DK 173726 B1 8 rer inden for et interval fra -18°C til en vilkårlig høj temperatur, som kan klares med en given kapacitet af den valgte kompressor. Temperaturen på kølekredsens køleflader kan vælges vilkårligt lave afhængigt af kompressorens kapacitet. Der vil således kunne anvendes et hvilket som helst temperaturinterval fra -18°C eller lavere.No special calculation examples will be given of the ambient temperature and cooling temperature ranges that can be used in conjunction with the system 30 of the present invention. However, the system will be able to work satisfactorily at ambient temperatures of minus degrees and at very high ambient temperatures. Thus, it will be possible for the system to operate at ambient temperatures within a range of -18 ° C to any high temperature which can be handled with a given capacity of the selected compressor. The temperature of the cooling surfaces of the cooling circuit can be selected arbitrarily low depending on the capacity of the compressor. Thus, any temperature range from -18 ° C or lower can be used.

55

Der vil ikke gives en beskrivelse af selve den elektroniske styring, som benyttes, da en sådan styreelektronik vil kunne udformes af en fagmand på området i lyset af den ovenfor givne beskrivelse af opfindelsen.No description will be given of the electronic control itself used, since such control electronics could be designed by one of ordinary skill in the art in light of the above description of the invention.

10 Den kompressor, som anvendes i kombikøleskabet kan være en hvilken som helst type, hvor køleydelsen kan varieres. Imidlertid foretrækkes det, ud fra et energiøkonomisk synspunkt, at anvende en omdrejningstalsreguleret kompressor af typen med permanent magnetmotor. Kombikøleskabet vil almindeligvis være anrettet med kølerummet placeret ovenover fryserummet og med en kompressor anbragt i en udsparing 15 i skabets bagside imellem de to rum. Alternativt kan kompressoren være placeret i bunden af kombikøleskabet under de to rum. Det vil ligeledes være muligt at indrette kølerummet nedenunder fryserummet.The compressor used in the combination refrigerator can be any type where the cooling performance can be varied. However, from an energy-economical point of view, it is preferable to use a variable speed motor with a permanent magnet motor type compressor. The combi refrigerator will generally be provided with the cooling compartment located above the freezer compartment and with a compressor located in a recess 15 in the back of the cabinet between the two compartments. Alternatively, the compressor may be located at the bottom of the combination refrigerator under the two compartments. It will also be possible to arrange the cold room under the freezer compartment.

Opfindelsen vil herefter blive forklaret nærmere under henvisning til den medfølgende 20 tegning, hvor fig. 1 viser et kombikøleskab ifølge opfindelsen, delvis i snit og med åbne låger, fig. 2 viser et billede af det i fig. 1 viste køleskab, set bagfra, flg. 3 viser et rørdiagram, som illustrerer kølekredsen i det i fig. 1 og 2 viste 25 kombikøleskab, og fig. 4 viser et skematisk diagram, der viser opbygningen af styrekredsen.The invention will then be explained in more detail with reference to the accompanying drawing, in which fig. 1 shows a combination refrigerator according to the invention, partly in section and with open doors; FIG. 2 is a view of the embodiment of FIG. 1 is a rear view of the refrigerator shown in FIG. 3 shows a pipe diagram illustrating the refrigeration circuit of FIG. 1 and 2, 25 combi refrigerators, and FIG. 4 shows a schematic diagram showing the structure of the control circuit.

I fig. 1 ses et kombikøleskab 1, der omfatter et fryserum 2 og et kølerum 3. Selve køleskabet er vist delvis i snit, således som set fra siden. En dør 4 er beregnet til afluk-30 ning af fryserummet 2, og en dør 5 er beregnet til aflukning af kølerummet 3. Køleskabet omfatter en regulerbar kompressor 6, som er anbragt i en udsparing 7 ved køleskabets bagside 8 i en position mellem fryserummet 2 og kølerummet 3. Kombikøle- DK 173726 B1 9 skabet omfatter en kølekreds, der er illustreret i fig. 3. Kølekredsen er forbundet med den regulerbare kompressor 6 via ledningsforbindelser 9 og omfatter en kondensator 10, en køleflade 11 for kølerummet 3 i form af en fordamperplade og en køleplade 12 for fryserummet 2 i form af en fordamperkappe. I kølekredsen indgår endvidere et 5 tørrefilter 13.In FIG. 1, a combination refrigerator 1 comprising a freezer compartment 2 and a refrigerator compartment 3 is shown. The refrigerator itself is partly shown in section, as seen from the side. A door 4 is intended for closing the freezer compartment 2 and a door 5 is for closing the freezing compartment 3. The refrigerator comprises an adjustable compressor 6 which is arranged in a recess 7 at the rear of the refrigerator 8 in a position between the freezer compartment 2. and the refrigerator compartment 3. The combination refrigerator comprises a cooling circuit illustrated in FIG. 3. The cooling circuit is connected to the adjustable compressor 6 via wiring 9 and comprises a capacitor 10, a cooling surface 11 for the cooling room 3 in the form of an evaporator plate and a cooling plate 12 for the freezer compartment 2 in the form of an evaporator cap. The cooling circuit also includes a 5 drying filter 13.

Kompressoren 6 er forbundet med en elektronisk motorstyring 14, som via ledningsforbindelser er forbundet med temperaturmålingsorganer i kølerummet 3 og i fryserummet 2. Temperaturmåleme er ikke vist, men vil være velkendte for en fagmand på 10 området. Temperaturmåleren i kølerummet 3 vil være indrettet for at stoppe og starte kompressoren 6’s motor, og temperaturmåleren i fryserummet 2 vil være indrettet for at regulere omdrejningstallet på kompressoren 6’s motor. Kompressorens motor er en permanent magnetmotor.The compressor 6 is connected to an electronic motor control 14, which is connected via wiring to temperature measuring means in the cold room 3 and in the freezer compartment 2. The temperature meters are not shown, but will be well known to one skilled in the art. The temperature gauge in the cold room 3 will be arranged to stop and start the compressor 6's motor, and the temperature gauge in the freezer compartment 2 will be arranged to control the speed of the compressor 6's motor. The compressor motor is a permanent magnetic motor.

15 Det viste køleskab virker ved, at kompressoren 6 stoppes og igangsættes som følge af signalet fra temperaturmåleren i kølerummet 3, medens omdrejningstallet for kompressoren 6’s motor bestemmes som følge af signal fra temperaturmåleren i fryserummet 2.The refrigerator shown works by compressor 6 being stopped and switched on as a result of the signal from the temperature meter in the cooling room 3, while the speed of the compressor 6's motor is determined by signal from the temperature meter in the freezer compartment 2.

20 Ved at ændre omdrejningstallet bliver det muligt at ændre temperaturen på kølefladerne 11,12 og herved bliver det muligt at bringe den relative kølevirkning i hver af rummene 2,3 i balance med de aktuelle kølebehov. I fryserummet 2 ønskes ideelt en temperatur på -18°C, og i kølerummet 3 ønskes ideelt en temperatur på 5°C.By changing the rpm it becomes possible to change the temperature of the cooling surfaces 11,12 and thereby it is possible to balance the relative cooling effect in each of the compartments 2,3 with the actual cooling requirements. In the freezer compartment 2 a temperature of -18 ° C is ideally desired and in the cold storage room 3 a temperature of 5 ° C is ideally desired.

25 I fig. 4 ses et skematisk diagram, som viser opbygningen af styrekredsen for kompressoren 6. Kompressoren 6 er via en aksel 15 forbundet med motoren 16. Motoren 16 er forbundet med motorstyringen 14. Motorstyringen 14 er forbundet med en temperatur-regulator 17. Kompressoren og temperaturregulatoren er forbundet med selve kombi-køleskabet 1. Kombikøleskabet 1 far en ydre påvirkning 18 bestående af omgivelser- 30 nes temperatur, nye varer, som placeres i eller udtages fra køleskabet og/eller fryserummet, samt åbning af dørene 4,5 til kølerum henholdsvis fryserum. Kølesystemet giver en påvirkning 19 til kompressoren i form af sugetryk, sugetemperatur samt kon- DK 173726 B1 10 densatortryk. Kompressoren giver en påvirkning 20 til kølesystemet i form af en massestrøm afkølemiddel samt temperatur af kølemiddel. Akslen 15 giver anledning til et omdrejningstal 21. Dette omdrejningstal giver en påvirkning 22,23 såvel til kompressoren 6 som motoren 16. Fra motoren 16 gives en påvirkning 24 på motorstyringen 5 gennem en måling af spænding og strømforbrug. Fra motorstyringen gives en påvirk- ’ ning 25 til motoren 16 i form af en spænding, der bestemmer motorens omdrejningstal og/eller motorens on-off-tilstand. Motorstyringen får en påvirkning 26 fra temperatur-regulatoren 17 i form af et ønsket omdrejningstal. Det ønskede omdrejningstal 26 fremkommer i temperaturregulatoren ud fra et input 27 om ønsket temperatur i køleaf-10 deling og et input 28 om ønsket temperatur i en fryseafdeling. Endvidere får temperaturregulatoren et signal 29 som den målte temperatur i fryserummet og et signal 30, som indikation for den målte temperatur i kølerummet.In FIG. 4 is a schematic diagram showing the structure of the control circuit for the compressor 6. The compressor 6 is connected to the motor via a shaft 15. The motor 16 is connected to the motor control 14. The motor control 14 is connected to a temperature controller 17. The compressor and the temperature controller are connected to the combi refrigerator itself 1. The combi refrigerator 1 receives an external influence 18 consisting of ambient temperature, new goods placed in or removed from the refrigerator and / or freezer compartment, and the opening of the doors 4,5 to cold storage and freezer compartment respectively. The cooling system gives an influence 19 to the compressor in the form of suction pressure, suction temperature and condenser pressure. The compressor impacts 20 to the cooling system in the form of a mass flow of refrigerant as well as temperature of refrigerant. The shaft 15 gives rise to a speed 21. This speed gives an influence 22,23 to both the compressor 6 and the motor 16. From the motor 16, an influence 24 is applied to the motor control 5 through a measurement of voltage and current consumption. From the motor control, an influence 25 is given to the motor 16 in the form of a voltage which determines the speed of the motor and / or the on-off state of the motor. The motor control receives an influence 26 from the temperature controller 17 in the form of a desired speed. The desired rpm 26 appears in the temperature controller from an input 27 of the desired temperature in the refrigerator compartment and an input 28 of the desired temperature in a freezer compartment. Furthermore, the temperature controller receives a signal 29 as the measured temperature in the freezer compartment and a signal 30 as an indication of the measured temperature in the cold room.

Styrekredsen 14 vil således etablere en styring af kompressoren og dermed en styring 15 af temperaturen på kølepladerne 11,12 for at skabe en balance mellem temperaturen heraf og det aktuelle kølebehov i kølerum 3 og fryserum 2.The control circuit 14 will thus establish a control of the compressor and thus a control 15 of the temperature of the cooling plates 11,12 in order to strike a balance between the temperature thereof and the actual cooling demand in cold room 3 and freezer room 2.

Claims (8)

11 DK 173726 B111 DK 173726 B1 1. Kombikøleskab (1), der omfatter et kølerum (3), et fryserum (2), et kølesystem med en regulerbar kompressor (6) og en kølekreds med en køleflade (11, 12) i hvert af 5 rummene samt temperaturmålingsorganer til brug ved styring af kompressoren, kendetegnet ved, at temperaturmålingsorganeme omfatter en temperaturmåler i kølerummet (3) og en temperaturmåler i fryserummet (2), og at disse temperaturmålere indgår i en styrekreds (4), der er indrettet for at stoppe og starte kompressoren (6) henholdsvis regulere dens omdrejningstal. 10A combination refrigerator (1) comprising a cooling compartment (3), a freezer compartment (2), a cooling system with an adjustable compressor (6) and a cooling circuit with a cooling surface (11, 12) in each of the 5 compartments and temperature measuring means for use. control of the compressor, characterized in that the temperature measuring means comprise a temperature meter in the cold room (3) and a temperature meter in the freezer compartment (2), and that these temperature meters are included in a control circuit (4) arranged to stop and start the compressor (6 ) respectively regulate its rpm. 10 2. Kombikøleskab ifølge krav 1,kendetegnet ved, at temperaturmåleren i kølerummet er en termostat, der er indskudt i serie med kompressorens motor (16) for at stoppe og starte denne, og at temperaturmåleren i fryserummet er en termostat, der er forbundet med en styringselektronik (14), der styrer motoromdrejningeme. 15Combi refrigerator according to claim 1, characterized in that the temperature meter in the cold room is a thermostat inserted in series with the motor of the compressor (16) to stop and start it, and that the temperature meter in the freezer room is a thermostat connected to a control electronics (14) controlling the engine rpm. 15 3. Kombikøleskab ifølge krav 2, kendetegnet ved, at kompressoren omfatter en permanent magnetmotor.Combi refrigerator according to claim 2, characterized in that the compressor comprises a permanent magnetic motor. 4. Kombikøleskab ifølge et hvilket som helst af de foregående krav, kendeteg-20 net ved, at det er indrettet med kølerummet (3) ovenover fryserammet (2), og at kompressoren (6) er anbragt i en udsparing (7) i skabets bagside imellem de to rum.Combi refrigerator according to any one of the preceding claims, characterized in that it is arranged with the cooling compartment (3) above the freezer frame (2) and that the compressor (6) is arranged in a recess (7) in the cabinet. backside between the two rooms. 5. Fremgangsmåde til styring af en kompressor i et kombikøleskab, der omfatter et kølerum (3), et fryserum (2), et kølesystem med en regulerbar kompressor (6) og en kø- 25 lekreds med en køleflade i hvert af rummene, kendetegnet ved, at kompressoren (6) stoppes og igangsættes som følge af et signal (27) fra en temperaturmåler i det ene rum, fortrinsvis kølerummet (3), og at kompressorens omdrejningstal bestemmes som følge af et signal (28) fra en temperaturmåler i det andet rum, fortrinsvis fryserummet (2)· 30 DK 173726 B1 12A method of controlling a compressor in a combination refrigerator comprising a cooling compartment (3), a freezer compartment (2), a cooling system with an adjustable compressor (6) and a cooling circuit with a cooling surface in each of the compartments, characterized in that the compressor (6) is stopped and switched on as a result of a signal (27) from a temperature meter in one compartment, preferably the cooling compartment (3), and that the speed of the compressor is determined by a signal (28) from a temperature meter in the compartment. second compartment, preferably freezer compartment (2) · 30 DK 173726 B1 12 6. Fremgangsmåde ifølge krav 5, kendetegnet ved, at den relative kølevirkning i hvert af rummene bringes i balance med de aktuelle kølebehov i de to rum ved at ændre køleflademes temperatur gennem ændring af kompressorens ydelse.Process according to claim 5, characterized in that the relative cooling effect in each of the rooms is balanced with the current cooling requirements in the two rooms by changing the temperature of the cooling surfaces by changing the compressor's performance. 7. Fremgangsmåde ifølge krav 5 eller 6, kendetegnet ved, at forholdet mellem de relative kølevirkninger i de to rum reguleres for at ligge mellem 2 og 8, fortrinsvis mellem 3 og 5.Process according to claim 5 or 6, characterized in that the ratio of the relative cooling effects in the two compartments is adjusted to be between 2 and 8, preferably between 3 and 5. 8. Styrekreds til en kompressor i et kombikøleskab (1), der omfatter et kølerum (3), et 10 fryserum (2), et kølesystem med en regulerbar kompressor (6) og en kølekreds med en køleflade i hvert af rummene, kendetegnet ved, at den omfatter en temperaturmåler til placering i det ene rum, fortrinsvis kølerummet (3), og som er indrettet til at starte og stoppe kompressorens motor (16) samt en temperaturmåler til placering i det andet rum, fortrinsvis fryserummet (2), og som er indrettet til at regulere motorens 15 omdrejninger.8. A control circuit for a compressor in a combination refrigerator (1) comprising a cooling compartment (3), a freezing compartment (2), a cooling system with an adjustable compressor (6) and a cooling circuit with a cooling surface in each of the compartments, characterized by comprising a temperature gauge for placement in one compartment, preferably the cooling compartment (3), adapted to start and stop the compressor motor (16) and a temperature gauge for placement in the other compartment, preferably the freezer compartment (2), and which is arranged to control the engine's 15 turns.
DK199700172A 1997-02-18 1997-02-18 Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor DK173726B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK199700172A DK173726B1 (en) 1997-02-18 1997-02-18 Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor
EP98102408A EP0859208A3 (en) 1997-02-18 1998-02-12 Fridge and freezer unit, method for controlling a compressor in a fridge and freezer unit and control circuit for such a compressor
NO980617A NO307942B1 (en) 1997-02-18 1998-02-13 Cooling and freezing unit, method and control circuit for controlling a compressor in a cooling and freezing unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK17297 1997-02-18
DK199700172A DK173726B1 (en) 1997-02-18 1997-02-18 Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor

Publications (2)

Publication Number Publication Date
DK17297A DK17297A (en) 1998-08-19
DK173726B1 true DK173726B1 (en) 2001-07-30

Family

ID=8090593

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199700172A DK173726B1 (en) 1997-02-18 1997-02-18 Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor

Country Status (3)

Country Link
EP (1) EP0859208A3 (en)
DK (1) DK173726B1 (en)
NO (1) NO307942B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962728A1 (en) 1999-12-23 2001-06-28 Grundfos As Cooler
ITPN20000074A1 (en) * 2000-12-04 2002-06-04 Zanussi Elettromecc REFRIGERATOR APPLIANCE WITH A MULTIPLE OF COMPARTMENTS
TR200400122T1 (en) 2001-09-21 2005-08-22 Ar�El�K Anon�M ��Rket� Coolant control system
ES2328456T3 (en) 2002-09-13 2009-11-13 Whirlpool Corporation METHOD FOR CONTROLLING A MULTIPLE REFRIGERATION COMPARTMENT REFRIGERATOR, AND REFRIGERATOR THAT USES SUCH METHOD.
DE202006019471U1 (en) 2006-04-13 2007-08-23 Liebherr-Hausgeräte Ochsenhausen GmbH Fridge and / or freezer
CN102345958B (en) * 2010-07-28 2015-01-07 株式会社东芝 Refrigerator
DE102015210109A1 (en) 2015-06-02 2016-12-08 BSH Hausgeräte GmbH Refrigerating appliance with a refrigerant compressor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1172485A (en) * 1967-08-31 1969-12-03 Matsushita Electronics Corp Temperature Control System for Electric Refrigerator
DE2539914C2 (en) * 1975-09-09 1985-04-04 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Refrigerated cabinets, especially two-temperature refrigerators
JPS6273068A (en) * 1985-09-25 1987-04-03 株式会社日立製作所 Method of controlling refrigerator
US6348752B1 (en) * 1992-04-06 2002-02-19 General Electric Company Integral motor and control
KR960002564B1 (en) * 1992-04-30 1996-02-22 삼성전자주식회사 Compressor drive system
DE4226966A1 (en) * 1992-08-14 1994-02-17 Bosch Siemens Hausgeraete Refrigerator and / or freezer equipped for single-phase AC connection
US5255530A (en) * 1992-11-09 1993-10-26 Whirlpool Corporation System of two zone refrigerator temperature control
US5460009A (en) * 1994-01-11 1995-10-24 York International Corporation Refrigeration system and method
US5711159A (en) * 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system

Also Published As

Publication number Publication date
NO980617D0 (en) 1998-02-13
EP0859208A2 (en) 1998-08-19
NO980617L (en) 1998-08-19
NO307942B1 (en) 2000-06-19
DK17297A (en) 1998-08-19
EP0859208A3 (en) 2000-11-08

Similar Documents

Publication Publication Date Title
US7237395B2 (en) Methods and apparatus for controlling refrigerators
US9140479B2 (en) Synchronous temperature rate control and apparatus for refrigeration with reduced energy consumption
EP0859206B1 (en) Refrigeration system and method of control
US20120047932A1 (en) Cooling storage cabinet and method of operating thereof
US9810472B2 (en) Synchronous temperature rate control for refrigeration with reduced energy consumption
US4840037A (en) Refrigerator with cold accumulation system
US7730732B2 (en) Refrigerating storage cabinet
US9140477B2 (en) Synchronous compartment temperature control and apparatus for refrigeration with reduced energy consumption
JP2002071234A (en) Refrigerator having a plurality of vaporizers
EP2333445A1 (en) Air-conditioning and refrigerating system
US9328956B2 (en) Refrigerator control system and method
DK173726B1 (en) Combi refrigerator, method of controlling a compressor in a combination refrigerator and control circuit for such a chrome compressor
JP3748098B2 (en) Refrigerator for refrigerated showcase
AU2014303819A1 (en) Refrigerator
RU2578055C2 (en) Single-circuit refrigerating apparatus
JPH0814628A (en) Air conditioner
US20190390882A1 (en) Refrigeration Appliance And Method For The Operation Thereof
EP2992276A1 (en) A method for controlling a vapour compression system connected to a smart grid
EP2012068A1 (en) Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
EP2012069A1 (en) Method for regulating the delivery temperature of a service fluid in output from a refrigerating machine
KR100577420B1 (en) Refrigerator and Control Method Thereof
Marcinichen et al. Comparative analysis between a capillary tube and an electronic expansion valve in a household refrigerator
JP5262244B2 (en) refrigerator
JP2006207886A (en) Heat storage type refrigerating device
JPS6383556A (en) Refrigeration cycle

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed

Country of ref document: DK