JP2006207886A - Heat storage type refrigerating device - Google Patents

Heat storage type refrigerating device Download PDF

Info

Publication number
JP2006207886A
JP2006207886A JP2005018227A JP2005018227A JP2006207886A JP 2006207886 A JP2006207886 A JP 2006207886A JP 2005018227 A JP2005018227 A JP 2005018227A JP 2005018227 A JP2005018227 A JP 2005018227A JP 2006207886 A JP2006207886 A JP 2006207886A
Authority
JP
Japan
Prior art keywords
heat storage
refrigerant
amount
heat
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005018227A
Other languages
Japanese (ja)
Other versions
JP4512947B2 (en
Inventor
Sadao Oyama
貞夫 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005018227A priority Critical patent/JP4512947B2/en
Publication of JP2006207886A publication Critical patent/JP2006207886A/en
Application granted granted Critical
Publication of JP4512947B2 publication Critical patent/JP4512947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To implement heat energy storing operation of high efficiency, equalized in the time zone when night discount electric power can be utilized, while making the amount of remaining heat energy storage zero in switching from a stored heat energy utilizing operation to a heat energy storing operation. <P>SOLUTION: This heat energy storage type refrigerating device comprises a refrigerating machine, a cold load, a heat energy storage unit and a control device 4, the control device 4 determines a stored heat energy utilizing operation time T by a stored heat energy utilizing time measuring means 42a, determines the difference ΔT between the determined stored heat energy utilizing operation time T and its target time T<SB>0</SB>by a stored heat energy utilizing operation target time setting means 42b, determines overs and shorts ΔQ of the stored heat energy on the basis of the determined difference ΔT by a shortage and overage heat quantity estimating means 43a, further determines an increment/decrement ΔG from the overs and shorts ΔQ, corrects the last refrigerant flow rate upper limit value Gmax by the decrement/increment ΔG to apply the same as a refrigerant flow rate upper limit value Gmax of the next heat storing operation to implement the optimum heat storing operation, and the heat storage operation is equalized in the time zone when the night discount power can be utilized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蓄熱式冷凍装置に係り、具体的には、冷凍又は冷蔵のショーケース等の冷熱負荷や、空気調和機の冷熱負荷に好適な蓄熱式冷凍装置に関する。     The present invention relates to a regenerative refrigerating apparatus, and more specifically to a regenerative refrigerating apparatus suitable for a refrigerating load such as a freezing or refrigerated showcase or a refrigerating load of an air conditioner.

この種の蓄熱式冷凍装置としては、夜間の割引電力を利用し、あるいは、冷熱負荷が少なくなる夜間における冷凍機の冷凍能力の余剰分を利用して冷熱を蓄熱しておき、冷熱負荷が増大する昼間において蓄熱冷熱を利用することにより、省エネルギやエネルギコストの低減を図る装置として知られている。また、このような蓄熱式冷凍装置において、昼間と夜間の冷熱負荷の変動に合せて蓄熱量を設定することにより、蓄熱容量及び冷凍機容量を最適化することが種々提案されている。   This type of regenerative refrigeration system uses discounted electricity at night or uses the excess of the freezing capacity of the chiller at night when the cooling load is reduced to store cold heat, increasing the cooling load It is known as an apparatus that saves energy and reduces energy costs by using heat storage cold energy during the daytime. Further, in such a heat storage type refrigeration apparatus, various proposals have been made to optimize the heat storage capacity and the refrigerator capacity by setting the heat storage amount in accordance with the fluctuation of the cold load at daytime and nighttime.

例えば、1日を周期として蓄熱運転または蓄熱利用運転を切り換え制御する合理的な方法として、過去数回分(数日分)の蓄熱運転時間に基づいて蓄熱残量を推測し、次回の蓄熱利用運転に必要な分の蓄熱残量があると推測される場合は、蓄熱運転を行なわないようにする蓄熱式冷凍装置が提案されている(特許文献1参照)。   For example, as a rational method of switching and controlling the heat storage operation or the heat storage use operation with a period of one day, the remaining heat storage amount is estimated based on the heat storage operation time for the past several times (a few days), and the next heat storage use operation In the case where it is estimated that there is a remaining heat storage amount necessary for the heat storage, a heat storage refrigeration apparatus is proposed in which the heat storage operation is not performed (see Patent Document 1).

また、過去の蓄熱消費量から必要蓄熱量を予測することにより、熱源装置1の必要蓄熱運転時間を算出し、蓄熱終了時刻から蓄熱運転開始時刻を逆算して熱源装置の蓄熱運転を制御する蓄熱式冷凍装置が提案されている(特許文献2参照)。   In addition, by calculating the required heat storage amount from the past heat storage consumption, the necessary heat storage operation time of the heat source device 1 is calculated, and the heat storage operation of the heat source device is controlled by calculating back the heat storage operation start time from the heat storage end time. A type refrigeration apparatus has been proposed (see Patent Document 2).

さらに、前日の実負荷をもって、当日の負荷を予測することで精度の高い制御が可能で蓄熱の有効利用とチラーの運転時間低減によるランニングコストの低減を可能にした蓄熱式冷凍装置も提案されている(特許文献3参照)。   In addition, a regenerative refrigeration system has also been proposed that enables high-precision control by predicting the load of the day with the actual load of the previous day, and enables effective use of heat storage and reduction of running costs by reducing the operating time of the chiller. (See Patent Document 3).

一方、外気温や消費電力が設定値を超えたときに蓄熱利用運転に切り換えるようにした蓄熱式空気調和機において、蓄熱利用運転時間をカウントし、その蓄熱利用運転時間が基準値より短いときは次回の蓄熱運転時間を短く設定し、長いときは次回の蓄熱運転時間を長く設定することにより、昼間の冷暖房運転時間に見合った適正な蓄熱量を確保して、無駄な電力の消費を防ぐことが提案されている(特許文献4参照)。   On the other hand, in a regenerative air conditioner that switches to heat storage use operation when the outside air temperature or power consumption exceeds the set value, the heat storage use operation time is counted, and when the heat storage use operation time is shorter than the reference value Set the next heat storage operation time short, and if it is long, set the next heat storage operation time long to ensure an appropriate amount of heat storage commensurate with the daytime air conditioning operation time and prevent wasteful power consumption. Has been proposed (see Patent Document 4).

特許第3225460号Japanese Patent No. 3225460 特開2000−130898公報JP 2000-130898 A 特開2000−337683公報JP 2000-337683 A 特開2001−336806号公報JP 2001-336806 A

特許文献1〜3に記載の蓄熱式冷凍装置では、蓄熱残量を推測することにより、冷熱負荷が小さい中間期等において、過剰な蓄熱を回避することができる。しかしながら、蓄熱残量の推測や次回の蓄熱利用運転に必要な蓄熱量の予測の精度を上げるために、種々の計測または検出機器、あるいは、複雑な制御のアルゴリズムが必要となるという欠点がある。     In the heat storage type refrigeration apparatus described in Patent Documents 1 to 3, excessive heat storage can be avoided in an intermediate period or the like where the cooling load is small by estimating the remaining heat storage amount. However, there is a drawback that various measuring or detecting devices or complicated control algorithms are required in order to increase the accuracy of the estimation of the remaining heat storage amount and the prediction of the heat storage amount necessary for the next heat storage use operation.

また、特許文献1〜3に記載の蓄熱式冷凍装置では、蓄熱残量や蓄熱利用運転に必要な蓄熱量の推測に誤差が生じると、蓄熱運転時に過剰に蓄熱してしまうことになり、例えば、蓄熱槽の伝熱管に付着している残留氷によって次回の蓄熱運転時に伝熱管がストレスを受け、これによって信頼性が低下するおそれがある。 そのため、簡単な装置等により最適な蓄熱量制御を実現することが要望されている。   Moreover, in the heat storage type refrigeration apparatus described in Patent Documents 1 to 3, if an error occurs in the estimation of the heat storage remaining amount or the heat storage amount necessary for the heat storage use operation, excessive heat is stored during the heat storage operation. The heat transfer tubes are stressed during the next heat storage operation due to residual ice adhering to the heat transfer tubes of the heat storage tank, which may reduce the reliability. Therefore, it is desired to realize optimal heat storage amount control with a simple device or the like.

このような要望を満たすために、特許文献4に記載された蓄熱式空調機が提案されている。この特許文献4に記載された蓄熱式空調機では、蓄熱利用運転時間を計時し、その蓄熱利用運転時間の長短に合せて、次回の蓄熱運転時間の長短を制御しているから、蓄熱残量等の推測が不用になり、簡単な構成の蓄熱量制御を実現できる。しかしながら、冷熱負荷が小さい中間期等においても、蓄熱運転時間は短くなるものの、冷熱負荷が大きい夏期等と同様の蓄熱運転を実施しているために、省エネルギやエネルギコストの低減に関してはまだ不十分な面がある。   In order to satisfy such a demand, a heat storage type air conditioner described in Patent Document 4 has been proposed. In the heat storage type air conditioner described in Patent Document 4, the heat storage use operation time is measured, and the length of the next heat storage operation time is controlled according to the length of the heat storage use operation time. Thus, the heat storage amount control with a simple configuration can be realized. However, although the heat storage operation time is shortened even in the intermediate period when the cooling load is small, etc., it is still unsatisfactory in terms of energy saving and energy cost reduction because the same heat storage operation is performed as in the summer period where the cooling load is large. There are enough aspects.

そこで、冷熱負荷が小さい中間期等において蓄熱量が少なくてよい場合は、夜間の割引電力を利用可能な時間で平準化した蓄熱運転を行い、効率のよい蓄熱量制御を実現することが要望されている。   Therefore, when the amount of heat storage is low, such as in the intermediate period when the cold load is small, it is desired to perform efficient heat storage control by performing a heat storage operation that is leveled at the time when discount electricity can be used at night. ing.

本発明は、蓄熱利用運転から蓄熱運転に切り換えるにあたり、蓄熱残量をゼロとするとともに、夜間の割引電力を利用可能な時間で平準化した効率のよい蓄熱運転を実施できる蓄熱式冷凍装置を提供することを課題とする。     The present invention provides a regenerative refrigerating apparatus capable of carrying out an efficient regenerative operation with zero remaining heat storage and leveling the discounted power at night when switching from regenerative operation to regenerative operation. The task is to do.

本発明に係る蓄熱式冷凍装置は、予め蓄熱利用運転の目標時間を設定しておき、実際の蓄熱利用運転時間と、前記目標時間との差を求め、該求めた差を低減するように次回の蓄熱運転における、蓄熱槽に流れる冷媒流量を調整することにより前記課題を達成するものであることを特徴とする。   The heat storage type refrigeration apparatus according to the present invention sets the target time of the heat storage use operation in advance, calculates the difference between the actual heat storage use operation time and the target time, and reduces the calculated difference next time. In the heat storage operation, the above-mentioned problem is achieved by adjusting the flow rate of the refrigerant flowing in the heat storage tank.

上記課題を解決するため、本発明は、ガス冷媒を圧縮する圧縮機及び前記圧縮機により圧縮されたガス冷媒を冷却して液冷媒にする凝縮器を備えた冷凍機と、前記冷凍機の冷媒管路に接続され冷熱を蓄熱する蓄熱槽と、前記冷凍機の冷媒管路に接続された冷熱負荷と、前記蓄熱槽に前記液冷媒を供給する蓄熱運転と前記蓄熱槽に蓄熱された冷熱を前記冷熱負荷に供給する蓄熱利用運転とを切り換え制御する制御手段とを備え、前記制御手段は、蓄熱利用運転を開始し前記蓄熱槽の冷熱媒体の温度に基づいて前記蓄熱利用運転を終了させた時点までの蓄熱利用運転時間を求め、前記求めた蓄熱利用運転時間と、蓄熱利用運転目標時間との差を求める計測手段と、前記求めた差から蓄熱量の過不足を推測し当該推測値から冷媒流増減量を算出し、前記冷媒流増減量で前回の蓄熱運転時の冷媒流量上限値を補正する蓄熱量制御手段とを備え、前記蓄熱量制御手段により次回の蓄熱運転を行う際の蓄熱槽に流れる冷媒流量を調整して蓄熱量を制御することができることを特徴とする。   In order to solve the above-described problems, the present invention provides a compressor that compresses a gas refrigerant, a refrigerator that includes a condenser that cools the gas refrigerant compressed by the compressor into a liquid refrigerant, and the refrigerant of the refrigerator A heat storage tank connected to the pipe for storing cold heat, a cooling load connected to the refrigerant pipe of the refrigerator, a heat storage operation for supplying the liquid refrigerant to the heat storage tank, and the cold stored in the heat storage tank. Control means for switching and controlling the heat storage use operation to be supplied to the cold load, and the control means starts the heat storage use operation and ends the heat storage use operation based on the temperature of the cooling medium in the heat storage tank. From the estimated value, the heat storage use operation time up to the time point is obtained, the measurement means for obtaining the difference between the obtained heat storage use operation time and the heat storage use operation target time, and the excess or deficiency of the heat storage amount is estimated from the obtained difference. Calculate the refrigerant flow increase / decrease amount, Storage amount control means for correcting the refrigerant flow rate upper limit value during the previous heat storage operation with the refrigerant flow increase / decrease amount, and adjusting the refrigerant flow rate flowing to the heat storage tank when the next heat storage operation is performed by the heat storage amount control means. Thus, the heat storage amount can be controlled.

この場合において、蓄熱利用運転を終了させる蓄熱槽の冷熱媒体の温度とは、蓄熱槽の蓄熱媒体温度又は蓄熱槽から冷熱負荷に供給される冷媒温度によることができ、例えば、残留氷が無くなる温度に設定した設定温度で蓄熱利用運転を終了させるようにしている。   In this case, the temperature of the cold storage medium in the heat storage tank that terminates the heat storage use operation can depend on the temperature of the heat storage medium in the heat storage tank or the refrigerant temperature supplied from the heat storage tank to the cold load, for example, the temperature at which residual ice disappears. The heat storage utilization operation is terminated at the set temperature set to.

したがって、本発明によれば、蓄熱残量がゼロになるまで蓄熱利用運転を継続するとともに、夜間の割引電力を利用可能な時間で平準化した蓄熱運転を実施することになり、残留氷に起因する蓄熱槽の伝熱管に及ぼすストレス発生を抑制して、蓄熱槽の信頼性を確保するとともに、夜間の割引電力を利用可能な時間で平準化した効率のよい蓄熱運転を実施することができる。   Therefore, according to the present invention, the heat storage use operation is continued until the remaining heat storage amount becomes zero, and the heat storage operation that is leveled at the time when the discount power can be used at night is performed. It is possible to suppress the generation of stress on the heat transfer tube of the heat storage tank to ensure the reliability of the heat storage tank, and to carry out an efficient heat storage operation that is leveled at the time when the discount power can be used at night.

また、蓄熱槽に流れる冷媒流量に上限値を冷媒流量上限値制御手段に設定しておき、その上限値を制御することにより冷媒流量を調整することができる。すなわち、計測手段42及び蓄熱量制御手段43で蓄熱利用運転時間と、蓄熱利用運転目標時間との差を低減する蓄熱量の過不足を求め、該求めた過不足を低減するように蓄熱運転時の蓄熱槽に流れる冷媒流量に上限値を補正して、次回の冷媒流量上限値を冷媒流量上限値制御手段41に設定するようにしたものである。   In addition, an upper limit value is set in the refrigerant flow rate upper limit control means for the flow rate of refrigerant flowing in the heat storage tank, and the refrigerant flow rate can be adjusted by controlling the upper limit value. That is, the measurement means 42 and the heat storage amount control means 43 determine the excess or deficiency of the heat storage amount that reduces the difference between the heat storage use operation time and the heat storage use operation target time, and during the heat storage operation so as to reduce the obtained excess or deficiency The upper limit value is corrected for the refrigerant flow rate flowing through the heat storage tank, and the next refrigerant flow rate upper limit value is set in the refrigerant flow rate upper limit control means 41.

ここで、蓄熱利用運転時間が目標時間より長ければ、次回の蓄熱運転における、蓄熱槽に流れる冷媒流量を前回の冷媒流量よりも少なくし、短ければ次回の蓄熱運転における、蓄熱槽に流れる冷媒流量を前回の冷媒流量よりも多くすることにより、外気温や季節変動に応じた最適な蓄熱量の制御を簡素なシステムで行わせることができる。   Here, if the heat storage use operation time is longer than the target time, the refrigerant flow rate flowing in the heat storage tank in the next heat storage operation is made smaller than the previous refrigerant flow rate, and if it is shorter, the refrigerant flow rate flowing in the heat storage tank in the next heat storage operation. By making the flow rate larger than the previous refrigerant flow rate, it is possible to control the optimum heat storage amount according to the outside air temperature and seasonal fluctuations with a simple system.

また、上記の発明において、前記制御手段は、前回の蓄熱運転時の蓄熱槽に流れる冷媒流量に上限値を設定する冷媒流量上限値制御手段と、前記蓄熱利用運転を開始し前記蓄熱槽の冷熱媒体の温度に基づいて前記蓄熱利用運転を終了させた時点までの蓄熱利用運転時間を求め、前記求めた蓄熱利用運転時間と、蓄熱利用運転目標時間との差を求める計測手段と、前記求めた差から蓄熱量の過不足を推測し当該推測値から冷媒流増減量を算出し、前記冷媒流増減量で前回の蓄熱運転時の冷媒流量上限値を補正する蓄熱量制御手段とを備え、次回の蓄熱運転時の蓄熱槽に流れる冷媒流量に上限値を制御できるようにすることができる。   In the above invention, the control means includes refrigerant flow rate upper limit control means for setting an upper limit value for the refrigerant flow rate flowing in the heat storage tank during the previous heat storage operation, and starts the heat storage use operation and cools the heat storage tank. Measurement means for obtaining a heat storage use operation time up to a point of time when the heat storage use operation is terminated based on the temperature of the medium, obtaining a difference between the obtained heat storage use operation time and the heat storage use operation target time, and the obtained A heat storage amount control means that estimates the excess or deficiency of the heat storage amount from the difference, calculates the refrigerant flow increase / decrease amount from the estimated value, and corrects the refrigerant flow rate upper limit during the previous heat storage operation with the refrigerant flow increase / decrease amount, It is possible to control the upper limit value of the flow rate of the refrigerant flowing in the heat storage tank during the heat storage operation.

さらに、前記制御手段は、外気温の変化に応じて前記次回の蓄熱運転の蓄熱量を補正することができる。   Furthermore, the control means can correct the heat storage amount of the next heat storage operation according to a change in the outside air temperature.

また、上記課題を解決するため、本発明は、ガス冷媒を圧縮する圧縮機及び前記圧縮機により圧縮されたガス冷媒を冷却して液冷媒にする凝縮器からなる冷凍機と、前記冷凍機の冷媒管路に接続され冷熱を蓄熱する蓄熱槽と、前記冷凍機の冷媒管路に接続され被冷却物を冷却する冷熱負荷と、前記蓄熱槽に前記液冷媒を供給する蓄熱運転と前記蓄熱槽に蓄熱された冷熱を前記冷熱負荷に供給する蓄熱利用運転とに切り換え制御する制御手段とを備え、前記制御手段は、前記蓄熱利用運転を開始し、前記蓄熱槽の冷熱媒体の温度に基づいて前記蓄熱利用運転を終了させた時点の蓄熱利用運転終了の前後における前記圧縮機の運転容量を積分することにより前記蓄熱槽の蓄熱量の過不足を推測し、当該推測値から冷媒流増減量を算出し、前記冷媒流増減量で前回の蓄熱運転時の冷媒流量上限値を補正し、次回の蓄熱運転を行う際の蓄熱槽に流れる冷媒流量を調整して蓄熱量を制御することを特徴とする。   In order to solve the above problems, the present invention provides a refrigerator comprising a compressor that compresses a gas refrigerant, a condenser that cools the gas refrigerant compressed by the compressor to form a liquid refrigerant, and the refrigerator. A heat storage tank connected to the refrigerant pipe for storing cold heat, a cooling load connected to the refrigerant pipe of the refrigerator for cooling the object to be cooled, a heat storage operation for supplying the liquid refrigerant to the heat storage tank, and the heat storage tank Control means for switching and controlling the cold energy stored in the heat storage use operation to supply the cold load, the control means starts the heat storage use operation, based on the temperature of the cooling medium in the heat storage tank By integrating the operating capacity of the compressor before and after the end of the heat storage utilization operation at the time when the heat storage utilization operation is terminated, the excess or deficiency of the heat storage amount of the heat storage tank is estimated, and the refrigerant flow increase / decrease amount is calculated from the estimated value. Calculate the refrigerant Correcting the coolant flow rate upper limit value for the previous thermal storage operation in decrease amount, and controls the heat storage amount by adjusting the flow rate of refrigerant flowing through the heat storage tank when performing the next thermal storage operation.

本発明によれば、蓄熱利用運転から蓄熱運転に切り換えるにあたり、蓄熱残量をゼロとするとともに、夜間の割引電力を利用可能な時間で平準化した効率のよい蓄熱運転を実施できる。   According to the present invention, when switching from the heat storage use operation to the heat storage operation, it is possible to perform the efficient heat storage operation in which the remaining amount of heat storage is zero and the nighttime discounted power is leveled.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本発明の一実施形態の蓄熱式冷凍装置の構成を示すサイクル系統図である。図1において、蓄熱式冷凍装置は、大別すると、冷凍機1と、冷熱負荷2a、2bと、蓄熱ユニット3と、これらの運転を制御する制御装置4とから構成されている。冷凍機1は、ガス冷媒を圧縮する圧縮機11と、この圧縮機11により圧縮されたガス冷媒を冷却して液冷媒にする凝縮器12とを備えている。ここで、冷凍機1において、圧縮機11の吸込み側は冷媒配管5に接続されている。圧縮機11の吐出側は凝縮器12の一端に接続されている。凝縮器12の他端は冷媒配管6に接続されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cycle system diagram showing a configuration of a regenerative refrigerating apparatus according to an embodiment of the present invention. In FIG. 1, the heat storage type refrigeration apparatus is roughly composed of a refrigerator 1, cooling loads 2 a and 2 b, a heat storage unit 3, and a control device 4 that controls these operations. The refrigerator 1 includes a compressor 11 that compresses a gas refrigerant, and a condenser 12 that cools the gas refrigerant compressed by the compressor 11 to form a liquid refrigerant. Here, in the refrigerator 1, the suction side of the compressor 11 is connected to the refrigerant pipe 5. The discharge side of the compressor 11 is connected to one end of the condenser 12. The other end of the condenser 12 is connected to the refrigerant pipe 6.

冷熱負荷2aは、冷却器用膨張弁21aと、蒸発器22aと、冷却器用電磁弁23aとを備えている。この冷熱負荷2aにおいて、冷却器用電磁弁23aの一端は冷媒配管6に接続されている。冷却器用電磁弁23aの他端は冷却器用膨張弁21aの一端に接続されている。冷却器用膨張弁21aの他端は蒸発器22aの一端に接続されている。蒸発器22aの他端は冷媒配管5に接続されている。   The cold load 2a includes a cooler expansion valve 21a, an evaporator 22a, and a cooler electromagnetic valve 23a. In this cooling load 2 a, one end of the cooler solenoid valve 23 a is connected to the refrigerant pipe 6. The other end of the cooler solenoid valve 23a is connected to one end of the cooler expansion valve 21a. The other end of the cooler expansion valve 21a is connected to one end of the evaporator 22a. The other end of the evaporator 22 a is connected to the refrigerant pipe 5.

前記冷熱負荷2bは、冷却器用膨張弁21bと、蒸発器22bと、冷却器用電磁弁23bを備えている。この冷熱負荷2bにおいて、冷却器用電磁弁23bの他端は冷却器用膨張弁21bの一端に接続されている。冷却器用膨張弁21bの他端は蒸発器22bの一端に接続されている。蒸発器22bの他端は冷媒配管5に接続されている。   The cooling load 2b includes a cooler expansion valve 21b, an evaporator 22b, and a cooler electromagnetic valve 23b. In this cooling load 2b, the other end of the cooler solenoid valve 23b is connected to one end of the cooler expansion valve 21b. The other end of the cooler expansion valve 21b is connected to one end of the evaporator 22b. The other end of the evaporator 22 b is connected to the refrigerant pipe 5.

蓄熱ユニット3は、蓄熱用膨張弁31と、電磁弁32a〜32dと、蓄熱槽33と、蓄熱媒体34と、蓄熱用熱交換器35とを備えている。蓄熱ユニット3の蓄熱用熱交換器35の一端は並列接続された蓄熱用膨張弁31と電磁弁32bを介して凝縮器12側の冷媒配管6に接続され、蓄熱用熱交換器35の他端は電磁弁32cを介して圧縮機11側の冷媒配管5に、また電磁弁32dを介して冷熱負荷2a、2bの冷媒配管6に接続されている。電磁弁32aは、電磁弁32dの上流側であって、かつ蓄熱用膨張弁31と電磁弁32bの下流側の冷媒配管6に接続されている。また、蓄熱用熱交換器35の冷媒出口に冷媒温度を検出する温度検出器36が設けられている。   The heat storage unit 3 includes a heat storage expansion valve 31, electromagnetic valves 32 a to 32 d, a heat storage tank 33, a heat storage medium 34, and a heat storage heat exchanger 35. One end of the heat storage heat exchanger 35 of the heat storage unit 3 is connected to the refrigerant pipe 6 on the condenser 12 side through the heat storage expansion valve 31 and the electromagnetic valve 32b connected in parallel, and the other end of the heat storage heat exchanger 35 is connected. Is connected to the refrigerant pipe 5 on the compressor 11 side via an electromagnetic valve 32c, and to the refrigerant pipe 6 of the cooling load 2a, 2b via an electromagnetic valve 32d. The solenoid valve 32a is connected to the refrigerant piping 6 upstream of the solenoid valve 32d and downstream of the heat storage expansion valve 31 and the solenoid valve 32b. A temperature detector 36 for detecting the refrigerant temperature is provided at the refrigerant outlet of the heat storage heat exchanger 35.

制御装置4は、蓄熱用膨張弁31と電磁弁32a〜32dを制御することにより、蓄熱ユニット3に液冷媒を供給する蓄熱運転と、蓄熱ユニット3に蓄熱された冷熱を冷熱負荷2a、2bに供給する蓄熱利用運転とを切り換え制御する装置である。この制御装置4は、例えばPIC(Peripheral Interface Controller)と、その周辺回路とから構成されてものであって、運転指令や本発明の制御方法を実現するプログラムを当該PICに格納し、運転の必要に応じてPICが運転指令を作成しあるいは所定のプログラムを実行して所定の機器を制御できるようになっている。   The control device 4 controls the heat storage expansion valve 31 and the electromagnetic valves 32a to 32d to store the heat storage operation for supplying the liquid refrigerant to the heat storage unit 3, and the cold energy stored in the heat storage unit 3 to the cold loads 2a and 2b. This is a device for switching and controlling the heat storage utilization operation to be supplied. This control device 4 is composed of, for example, a PIC (Peripheral Interface Controller) and its peripheral circuits, and stores an operation command and a program for realizing the control method of the present invention in the PIC, and requires operation. In response to this, the PIC can create a driving command or execute a predetermined program to control a predetermined device.

また、この制御装置4は、冷凍機1と、冷熱負荷2a、2bと、蓄熱ユニット3を総合的に制御してもよい。   The control device 4 may comprehensively control the refrigerator 1, the cooling loads 2 a and 2 b, and the heat storage unit 3.

図2は、本実施形態における制御装置の詳細構成を示すブロック図である。図2において、制御装置4は、大別すると、冷媒流量上限値制御手段41と、計測手段42と、蓄熱量制御手段43とからなる。これら手段は、本実施形態に係る蓄熱式冷凍装置を運転するために必要なプログラムがPICで実行されることにより実現される。   FIG. 2 is a block diagram illustrating a detailed configuration of the control device according to the present embodiment. In FIG. 2, the control device 4 roughly includes a refrigerant flow rate upper limit control means 41, a measurement means 42, and a heat storage amount control means 43. These means are implement | achieved when the program required in order to drive the thermal storage type freezing apparatus which concerns on this embodiment is performed by PIC.

冷媒流量上限値制御手段41は、蓄熱利用運転を挟まずに継続して運転した前回の蓄熱運転時における蓄熱槽に流れる冷媒流量上限値Gmaxが設定されるようになっている。   The refrigerant flow rate upper limit control means 41 is configured to set the refrigerant flow rate upper limit value Gmax that flows in the heat storage tank during the previous heat storage operation that has been operated continuously without interposing the heat storage use operation.

計測手段42は、蓄熱利用運転開始から温度検出器36により検出された蓄熱残量ゼロの信号により蓄熱利用運転を終了した時点までの今回の蓄熱利用運転時間Tを計時する蓄熱利用時間計測手段42aと、蓄熱運転を挟まずに継続して運転する蓄熱利用運転時間の目標時間Tを設定する蓄熱利用運転目標時間設定手段42bと、今回の蓄熱利用運転時間Tと目標時間Tとの差(ズレ)であるΔT(=T−T)を計算する計算手段42cとから構成されている。 The measuring means 42 measures the current heat storage use operation time T from the start of the heat storage use operation to the time when the heat storage use operation is terminated by a signal indicating the remaining amount of heat stored detected by the temperature detector 36. When the difference between the heat storage utilization operation target time setting means 42b for setting the target time T 0 of the thermal storage usage operating time to operate continuously with no intervening thermal storage operation, and this heat storage utilization operation time T and the target time T 0 And calculating means 42c for calculating ΔT (= T−T 0 ) which is (deviation).

蓄熱量制御手段43は、前回の蓄熱運転時における蓄熱槽に流れる冷媒流量上限値Gmaxと、前記差ΔTとに基づいて蓄熱量の相対的な過不足熱量ΔQを推定する過不足熱量推定手段43aと、前記推定した蓄熱量の過不足ΔQをゼロとするための、所定の蓄熱運転時間における冷媒流量上限値の増減量ΔGを算出する冷媒流量算出手段43bと、算出された増減量ΔGを前回の冷媒流量上限値Gmaxに加算して次回の冷媒流量上限値(Gmax+ΔG)を決定する次回冷媒流量決定手段43cとから構成されている。ここで、蓄熱利用運転の目標時間Tは、例えば、冷凍機1の冷凍能力、冷熱負荷の日変動、契約電力などの条件に基づいて設定する。 The heat storage amount control means 43 is an excess / deficiency heat amount estimation means 43a for estimating the relative excess / deficiency heat amount ΔQ of the heat storage amount based on the refrigerant flow rate upper limit Gmax flowing in the heat storage tank during the previous heat storage operation and the difference ΔT. And a refrigerant flow rate calculation means 43b for calculating an increase / decrease amount ΔG of the refrigerant flow rate upper limit value during a predetermined heat storage operation time to make the estimated heat storage excess / deficiency ΔQ zero, and the calculated increase / decrease amount ΔG The next refrigerant flow rate determining means 43c for adding the refrigerant flow rate upper limit value Gmax to determine the next refrigerant flow rate upper limit value (Gmax + ΔG). Here, the heat storage utilization target time T 0 of the operation, for example, the refrigerating capacity of the refrigerator 1, diurnal cooling load is set based on conditions such as contract demand.

このように構成される本実施形態に係る蓄熱式冷凍装置の動作について次に説明する。まず、本実施形態に係る蓄熱式冷凍装置における一般的な運転動作を説明する。
〔蓄熱と熱負荷との双方へ熱供給する同時運転の場合〕
蓄熱槽33への蓄熱と冷熱負荷2a、2bへの冷熱供給とを同時に行う同時運転時の場合、前記制御装置4は電磁弁32a、32cを開き、電磁弁32b、32dを閉じる。これにより、図中に実線の太線で示すように、圧縮機11により圧縮されたガス冷媒は凝縮器12で熱交換されて液化し、液化した液冷媒は冷熱負荷2a、2bと蓄熱ユニット3とにそれぞれ供給される。つまり、冷熱負荷2の冷凍サイクルと、蓄熱ユニット3の冷凍サイクルの2つの冷凍サイクルが構成される。
Next, the operation of the regenerative refrigerating apparatus according to this embodiment configured as described above will be described. First, the general operation | movement operation | movement in the thermal storage type freezing apparatus which concerns on this embodiment is demonstrated.
[In case of simultaneous operation to supply heat to both heat storage and heat load]
In the case of simultaneous operation in which heat storage to the heat storage tank 33 and cold supply to the cold loads 2a and 2b are performed simultaneously, the control device 4 opens the electromagnetic valves 32a and 32c and closes the electromagnetic valves 32b and 32d. As a result, as shown by a solid thick line in the figure, the gas refrigerant compressed by the compressor 11 is liquefied by heat exchange in the condenser 12, and the liquefied liquid refrigerant is cooled by the cold loads 2 a and 2 b and the heat storage unit 3. Are supplied respectively. That is, two refrigeration cycles of the refrigeration cycle of the cold load 2 and the refrigeration cycle of the heat storage unit 3 are configured.

ここで、一方の冷凍サイクルは、冷凍機1から供給される液冷媒が蓄熱用膨張弁31により減圧され、蓄熱用熱交換器35により蓄熱槽33内の蓄熱媒体34を冷却し、この冷却によってガス化したガス冷媒は、電磁弁32cを通って圧縮機11に戻る蓄熱運転の冷凍サイクルである。他方の冷凍サイクルは、電磁弁32aを通った後に冷却器用電磁弁23a、23bを通って冷却器用膨張弁21a、21bにより減圧され、蒸発器22a、22bにより冷熱負荷を冷却して圧縮機11に戻る冷凍サイクルであり、これらの2つの冷凍サイクルが同時に構成される。   Here, in one refrigeration cycle, the liquid refrigerant supplied from the refrigerator 1 is depressurized by the heat storage expansion valve 31, and the heat storage medium 34 in the heat storage tank 33 is cooled by the heat storage heat exchanger 35. The gasified gas refrigerant is a refrigeration cycle in a heat storage operation that returns to the compressor 11 through the electromagnetic valve 32c. The other refrigeration cycle passes through the solenoid valve 32a, then passes through the cooler solenoid valves 23a and 23b, is decompressed by the cooler expansion valves 21a and 21b, cools the cooling load by the evaporators 22a and 22b, and is supplied to the compressor 11. A refrigeration cycle that returns, and these two refrigeration cycles are configured simultaneously.

この2つの冷凍サイクルが構成されるのは、蓄熱運転時の基本的動作であるが、冷熱負荷2a、2bが冷蔵又は冷凍ショーケース、あるいはユニットクーラなどを、それぞれ複数台組み合わして構成され、それぞれの庫内温度が異なるとき、もしくはそれらの負荷が群を構成し、その群単位で庫内温度が異なるときは、個別もしくは群ごとに冷却器用電磁弁23a、23bを開閉して冷媒供給を行うことになる。   The two refrigeration cycles are configured as a basic operation during the heat storage operation, and the refrigeration loads 2a and 2b are configured by combining a plurality of refrigerated or refrigerated showcases or unit coolers, When the internal temperature is different or when the load constitutes a group and the internal temperature is different for each group, the refrigerant solenoid valves 23a and 23b are opened and closed individually or in groups to supply the refrigerant. Will do.

なお、この蓄熱動作は、一般に、安い夜間の割引電力を利用して、また冷熱負荷が少なくなる夜間において冷凍機1の余剰冷凍能力を利用して蓄熱運転が行われるものである。
〔その他の運転の場合〕
また、冷熱負荷2a、2bへの冷媒供給の必要がなくなれば、蓄熱運転のみの運転をすることもできる。さらに、蓄熱媒体34への蓄熱が完了すれば、蓄熱運転を停止して、冷熱負荷2a、2bのみの運転とすることもできる。
In this heat storage operation, generally, heat storage operation is performed by using cheap discount electricity at night and using surplus refrigeration capacity of the refrigerator 1 at night when the cooling load is reduced.
[In the case of other driving]
Moreover, if there is no need to supply the refrigerant to the cooling loads 2a and 2b, it is possible to perform only the heat storage operation. Furthermore, if the heat storage to the heat storage medium 34 is completed, the heat storage operation can be stopped and the operation of only the cooling loads 2a and 2b can be performed.

次に、本実施形態に係る蓄熱式冷凍装置の蓄熱運転制御動作について説明をする。   Next, the heat storage operation control operation of the heat storage refrigeration apparatus according to the present embodiment will be described.

〔蓄熱運転〕
蓄熱運転では、電力会社との取り決め等で決められた蓄熱運転時間に若干の余裕時間をみて設定した実蓄熱運転時間の全てを使って蓄熱するものとする。この際に、蓄熱利用運転を挟まずに継続して運転した前回の蓄熱運転時における実蓄熱運転時間において時蓄熱槽に流れた冷媒流量上限値Gmaxが、冷媒流量上限値制御手段41に設定される。
[Heat storage operation]
In the heat storage operation, heat storage is performed using all of the actual heat storage operation time set with some allowance for the heat storage operation time determined by the agreement with the electric power company. At this time, the refrigerant flow rate upper limit value Gmax that has flowed into the hour heat storage tank during the actual heat storage operation time during the previous heat storage operation that has been operated continuously without interposing the heat storage use operation is set in the refrigerant flow rate upper limit control means 41. The

次に、蓄熱利用時間計測手段42aは、蓄熱利用運転開始から、温度検出器36により検出された蓄熱残量ゼロの信号により蓄熱利用運転を終了した時点までの今回の蓄熱利用運転時間Tを計測する。また、蓄熱利用運転目標時間設定手段42bには、蓄熱運転を挟まずに継続して運転する蓄熱利用運転時間の目標時間Tが設定されている。 Next, the heat storage use time measuring means 42a measures the current heat storage use operation time T from the start of the heat storage use operation to the time when the heat storage use operation is terminated by a signal indicating the remaining amount of heat stored detected by the temperature detector 36. To do. Further, the heat storage utilization target operation time setting unit 42b, the target time T 0 of the thermal storage usage operating time to operate continuously with no intervening thermal storage operation is set.

この蓄熱利用時間計測手段42aで計測した今回の蓄熱利用運転時間Tと、蓄熱利用運転目標時間設定手段42bに設定されている目標時間Tとの差(ズレ)であるΔT(=T−T)を計算手段42cにより計算する。計算手段42cで計測された差ΔTは、過不足熱量推定手段43aに与えられる。
過不足熱量推定手段43aでは、前回の蓄熱運転時における蓄熱槽に流れる冷媒流量上限値Gmaxと、差ΔTとに基づいて蓄熱量の相対的な過不足熱量ΔQを計算する。
ΔT (= T−T) which is a difference (displacement) between the current heat storage use operation time T measured by the heat storage use time measuring means 42a and the target time T 0 set in the heat storage use operation target time setting means 42b. 0 ) is calculated by the calculating means 42c. The difference ΔT measured by the calculation means 42c is given to the excess / deficiency heat quantity estimation means 43a.
The excess / deficiency heat amount estimation means 43a calculates the relative excess / deficiency heat amount ΔQ of the heat storage amount based on the refrigerant flow rate upper limit Gmax flowing in the heat storage tank during the previous heat storage operation and the difference ΔT.

冷媒流量算出手段43bは、計算した蓄熱量の過不足ΔQをゼロとするために、所定の蓄熱運転時間(実蓄熱運転時間)における冷媒流量上限値の増減量ΔGを算出する。この算出された冷媒流量上限値の増減量ΔGは、次回冷媒流量決定手段43cに与えられる。   The refrigerant flow rate calculation means 43b calculates an increase / decrease amount ΔG of the refrigerant flow rate upper limit value during a predetermined heat storage operation time (actual heat storage operation time) in order to set the calculated heat storage amount excess / deficiency ΔQ to zero. The calculated increase / decrease amount ΔG of the refrigerant flow rate upper limit value is given to the next refrigerant flow rate determining means 43c.

この与えられた増減量ΔGは、次回冷媒流量決定手段43cにおいて、前回の冷媒流量上限値Gmaxに加算されることにより前回の冷媒流量上限値Gmaxが補正され、次回の冷媒流量上限値(Gmax+ΔG)を決定される。   This given increase / decrease amount ΔG is added to the previous refrigerant flow rate upper limit value Gmax in the next refrigerant flow rate determining means 43c, thereby correcting the previous refrigerant flow rate upper limit value Gmax, and the next refrigerant flow rate upper limit value (Gmax + ΔG). To be determined.

そして、制御装置4では、次回の蓄熱運転をするときに、実蓄熱運転時間の間、次回の冷媒流量上限値(Gmax+ΔG)を基に、蓄熱用膨張弁31の開度を制御することより、実際に冷媒回路に流れる冷媒流量を、冷媒流量上限値(Gmax+ΔG)になるようにしている。また、このとき、必要な冷媒流量を蓄熱ユニットに供給できるよう圧縮機11の運転回転数を制御してもよい。   And in the control apparatus 4, when performing the next heat storage operation, during the actual heat storage operation time, based on the next refrigerant flow rate upper limit (Gmax + ΔG), the opening degree of the heat storage expansion valve 31 is controlled. The refrigerant flow rate actually flowing in the refrigerant circuit is set to the refrigerant flow rate upper limit value (Gmax + ΔG). Moreover, you may control the rotation speed of the compressor 11 at this time so that a required refrigerant | coolant flow volume can be supplied to a thermal storage unit.

具体的には、実際の蓄熱利用運転時間Tが目標時間Tよりも短いと計測手段42で求められたときは、前回の蓄熱運転による蓄熱量が少なかったことを意味するから、そのΔTに対応する不足熱量ΔQを過不足熱量推定手段43aで求め、その不足熱量ΔQを補うための冷媒流量上限値の増量ΔGを冷媒流量算出手段43bで算出して、前回の冷媒流量上限値Gmaxに次回冷媒流量決定手段43cで加算することにより、次回の蓄熱利用運転時間Tを目標時間Tに近付けることができるようにしたものである。 Specifically, when the measurement means 42 determines that the actual heat storage use operation time T is shorter than the target time T 0 , it means that the amount of heat storage by the previous heat storage operation is small, so that ΔT The corresponding insufficient heat quantity ΔQ is obtained by the excess / deficient heat quantity estimation means 43a, the refrigerant flow upper limit value ΔG for compensating the insufficient heat quantity ΔQ is calculated by the refrigerant flow quantity calculation means 43b, and the previous refrigerant flow quantity upper limit value Gmax is set to the next time. by adding in the refrigerant flow rate decision device 43c, it is obtained to be able to bring the next thermal storage available operating time T to target time T 0.

一方、実際の蓄熱利用運転時間Tが目標時間Tよりも長いと計測手段42で求められたときは、前回の蓄熱運転による蓄熱量が多かったことを意味するから、そのΔTに対応する過熱量ΔQを過不足熱量推定手段43aで求め、その過熱量ΔQを減らすための冷媒流量上限値の減量ΔGを冷媒流量算出手段43bで算出して、前回の冷媒流量上限値Gmaxに次回冷媒流量決定手段43cで加算することにより、次回の蓄熱利用運転時間Tを減らして目標時間Tに近付けるようにしたものである。 On the other hand, when the measurement means 42 determines that the actual heat storage use operation time T is longer than the target time T 0 , it means that the amount of heat stored by the previous heat storage operation is large. The amount ΔQ is obtained by the excess / deficient heat quantity estimation means 43a, the refrigerant flow amount upper limit value ΔG for reducing the amount of superheat ΔQ is calculated by the refrigerant flow quantity calculation means 43b, and the next refrigerant flow rate is determined as the previous refrigerant flow rate upper limit value Gmax. by adding in unit 43c, it is obtained as close to the target time T 0 by reducing the next thermal storage available operating time T.

本実施形態によれば、予め定められた開始時間に蓄熱利用運転を開始し、温度検出器36によって検出される蓄熱残量がゼロに時点まで蓄熱利用運転を行なうことになる。したがって、蓄熱残量をゼロにして、次回の蓄熱運転に備えることができるから、残留氷などによる蓄熱用熱交換器35の伝熱管に及ぼすストレスをなくすことができる。また、冷熱負荷が小さい中間期等においては、冷媒流量上限値を減少させることになり、夜間の割引電力を利用可能な時間で平準化した効率のよい蓄熱運転を実施することができる。   According to the present embodiment, the heat storage use operation is started at a predetermined start time, and the heat storage use operation is performed until the remaining heat storage amount detected by the temperature detector 36 reaches zero. Therefore, since the remaining heat storage amount can be set to zero to prepare for the next heat storage operation, it is possible to eliminate stress exerted on the heat transfer tube of the heat storage heat exchanger 35 due to residual ice or the like. Further, in an intermediate period where the cooling load is small, the upper limit value of the refrigerant flow rate is decreased, and an efficient heat storage operation can be performed in which the discount electric power at night is leveled and available.

一方、蓄熱運転により蓄熱槽33内の蓄熱媒体34に蓄熱された冷熱源を利用した蓄熱利用運転をする場合、制御装置4は、電磁弁32a、32cを閉じ、電磁弁32b、32dを開く。これにより、凝縮器12で熱交換されて液化した液冷媒は電磁弁32bを通って蓄熱用熱交換器35に流れ、蓄熱槽33内の蓄熱媒体34と熱交換されて過冷却状態となった後、電磁弁32dを通って冷熱負荷2a、2bに供給されることになる。   On the other hand, when performing the heat storage use operation using the cold heat source stored in the heat storage medium 34 in the heat storage tank 33 by the heat storage operation, the control device 4 closes the electromagnetic valves 32a and 32c and opens the electromagnetic valves 32b and 32d. Thereby, the liquid refrigerant liquefied by heat exchange in the condenser 12 flows to the heat storage heat exchanger 35 through the electromagnetic valve 32b, and is heat-exchanged with the heat storage medium 34 in the heat storage tank 33 to be in a supercooled state. Thereafter, the heat is supplied to the cooling loads 2a and 2b through the electromagnetic valve 32d.

蓄熱利用運転の終了は、温度検出器36により検出される。つまり、蓄熱媒体34に蓄熱された冷熱源が減少すれば、蓄熱用熱交換器35から排出される冷媒の温度が上昇するから、その温度を検出することにより蓄熱残量ゼロを検出できる。このようにして、蓄熱残量ゼロを検知した場合、制御装置4は蓄熱利用運転を停止して冷熱負荷2a、2bのみの運転に切り換える。   The end of the heat storage utilization operation is detected by the temperature detector 36. That is, if the number of cold heat sources stored in the heat storage medium 34 decreases, the temperature of the refrigerant discharged from the heat storage heat exchanger 35 increases. Therefore, the remaining amount of heat storage can be detected by detecting the temperature. In this manner, when the remaining amount of heat storage is detected, the control device 4 stops the heat storage use operation and switches to the operation of only the cooling load 2a, 2b.

なお、本実施形態において、前回の蓄熱運転による蓄熱量における過不足熱量ΔQは、蓄熱運転時間tにおける圧縮機運転容量の積分値を計時して、実際の蓄熱利用運転時間Tにおける圧縮機運転容量の積分値と目標時間Tにおける圧縮機運転容量の積分値との差(ズレ)から求めてもよい。また、過不足熱量ΔQは外気温度条件により補正を行ってもよい。 In the present embodiment, the excess / deficiency heat amount ΔQ in the heat storage amount by the previous heat storage operation measures the integral value of the compressor operation capacity in the heat storage operation time t, and the compressor operation capacity in the actual heat storage use operation time T. of may be calculated from the difference between the integral value of the compressor operating capacity (displacement) in the integral value and the target time T 0. Further, the excess / deficiency heat ΔQ may be corrected according to the outside air temperature condition.

したがって、本実施形態によれば、残蓄熱量を毎回ゼロにできるから、氷蓄熱槽の場合は、残留氷に起因する蓄熱用熱交換器の伝熱管へのストレス発生を抑制し、装置の信頼性を向上させることができる。また、冷熱負荷が小さい中間期等においては、冷媒流量上限値を減少させて、夜間の割引電力を利用可能な時間で平準化した効率のよい蓄熱運転を実施することができるから、最適な蓄熱制御を実現できる。   Therefore, according to the present embodiment, the amount of stored heat can be reduced to zero each time. Therefore, in the case of an ice heat storage tank, the occurrence of stress on the heat transfer tubes of the heat storage heat exchanger due to residual ice is suppressed, and the reliability of the apparatus is reduced. Can be improved. Also, in the intermediate period when the cooling load is low, the upper limit value of the refrigerant flow rate can be reduced, and efficient heat storage operation can be carried out by leveling the discounted electricity at night so that it can be used optimally. Control can be realized.

また、本実施形態によれば、蓄熱量の過不足ΔQを推定するためのアルコリズムが四則演算程度でよく、かつ、測定やセンサーも簡単なものでよく、その他の計算を簡単な演算で済み、高価なアルゴリズムや計測システムを必要としないという利点がある。   In addition, according to the present embodiment, the algorithm for estimating the excess or deficiency ΔQ of the heat storage amount may be about four arithmetic operations, the measurement and the sensor may be simple, and other calculations may be performed simply. This has the advantage of not requiring expensive algorithms and measurement systems.

本発明を実施するための最良の形態に係る蓄熱式冷凍装置の構成を示すサイクル系統図である。It is a cycle system diagram which shows the structure of the thermal storage type freezing apparatus which concerns on the best form for implementing this invention. 本発明を実施するための最良の形態に係る蓄熱式冷凍装置における制御装置の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the control apparatus in the thermal storage type freezing apparatus which concerns on the best form for implementing this invention.

符号の説明Explanation of symbols

1 冷凍機
2a、2b 冷熱負荷
3 蓄熱ユニット
4 制御装置
5,6 冷媒配管
11 圧縮機
12 凝縮器
21a、21b 冷却器用膨張弁
22a、22b 蒸発器
23a、23b 冷却器用電磁弁
31 蓄熱用膨張弁
32a、32b、32c、32d 電磁弁、
33 蓄熱槽
34 蓄熱媒体
35 蓄熱用熱交換器
36 温度検出器
41 冷媒流量上限値制御手段
42 計測手段
42a 蓄熱利用時間計測手段
42b 蓄熱利用運転目標時間設定手段
42c 計算手段
43 蓄熱量制御手段
43a 過不足熱量推定手段
43b 冷媒流量算出手段
43c 次回冷媒流量決定手段
DESCRIPTION OF SYMBOLS 1 Refrigerator 2a, 2b Cooling load 3 Thermal storage unit 4 Control apparatus 5,6 Refrigerant piping 11 Compressor 12 Condenser 21a, 21b Cooling expansion valve 22a, 22b Evaporator 23a, 23b Cooling solenoid valve 31 Thermal storage expansion valve 32a 32b, 32c, 32d solenoid valve,
33 heat storage tank 34 heat storage medium 35 heat storage heat exchanger 36 temperature detector 41 refrigerant flow rate upper limit control means 42 measurement means 42a heat storage use time measurement means 42b heat storage use operation target time setting means 42c calculation means 43 heat storage amount control means 43a excess Insufficient heat quantity estimation means 43b Refrigerant flow rate calculation means 43c Next refrigerant flow rate determination means

Claims (4)

ガス冷媒を圧縮する圧縮機及び前記圧縮機により圧縮されたガス冷媒を冷却して液冷媒にする凝縮器を備えた冷凍機と、前記冷凍機の冷媒管路に接続され冷熱を蓄熱する蓄熱槽と、前記冷凍機の冷媒管路に接続された冷熱負荷と、前記蓄熱槽に前記液冷媒を供給する蓄熱運転と前記蓄熱槽に蓄熱された冷熱を前記冷熱負荷に供給する蓄熱利用運転とを切り換え制御する制御手段とを備え、
前記制御手段は、蓄熱利用運転を開始し前記蓄熱槽の冷熱媒体の温度に基づいて前記蓄熱利用運転を終了させた時点までの蓄熱利用運転時間を求め、前記求めた蓄熱利用運転時間と、蓄熱利用運転目標時間との差を求める計測手段と、前記求めた差から蓄熱量の過不足を推測し当該推測値から冷媒流増減量を算出し、前記冷媒流増減量で前回の蓄熱運転時の冷媒流量上限値を補正する蓄熱量制御手段とを備え、前記蓄熱量制御手段により次回の蓄熱運転を行う際の蓄熱槽に流れる冷媒流量を調整して蓄熱量を制御することができることを特徴とする蓄熱式冷凍装置。
A refrigerator including a compressor that compresses a gas refrigerant, a condenser that cools the gas refrigerant compressed by the compressor to form a liquid refrigerant, and a heat storage tank that is connected to the refrigerant pipe of the refrigerator and stores cold heat A cooling load connected to the refrigerant pipe of the refrigerator, a heat storage operation for supplying the liquid refrigerant to the heat storage tank, and a heat storage use operation for supplying the cold heat stored in the heat storage tank to the cooling load. Control means for switching control,
The control means obtains the heat storage use operation time up to the time when the heat storage use operation is started and the heat storage use operation is terminated based on the temperature of the cooling medium of the heat storage tank, and the obtained heat storage use operation time and the heat storage use The measuring means for obtaining the difference from the target operating time for use, the excess or deficiency of the heat storage amount is estimated from the obtained difference, the refrigerant flow increase / decrease amount is calculated from the estimated value, and the refrigerant flow increase / decrease amount is used for the previous heat storage operation. A heat storage amount control means for correcting an upper limit value of the refrigerant flow rate, and the heat storage amount can be controlled by adjusting the flow rate of the refrigerant flowing in the heat storage tank when the next heat storage operation is performed by the heat storage amount control means. Regenerative refrigeration equipment.
前記制御手段は、前回の蓄熱運転時の蓄熱槽に流れる冷媒流量に上限値を設定する冷媒流量上限値制御手段と、前記蓄熱利用運転を開始し前記蓄熱槽の冷熱媒体の温度に基づいて前記蓄熱利用運転を終了させた時点までの蓄熱利用運転時間を求め、前記求めた蓄熱利用運転時間と、蓄熱利用運転目標時間との差を求める計測手段と、前記求めた差から蓄熱量の過不足を推測し当該推測値から冷媒流増減量を算出し、前記冷媒流増減量で前回の蓄熱運転時の冷媒流量上限値を補正する蓄熱量制御手段とを備え、次回の蓄熱運転時の蓄熱槽に流れる冷媒流量に上限値を制御できるようにしたことを特徴とする請求項1に記載の蓄熱式冷凍装置。 The control means includes a refrigerant flow rate upper limit control means for setting an upper limit value for the refrigerant flow rate flowing in the heat storage tank at the time of the previous heat storage operation, and the heat storage use operation is started and based on the temperature of the cooling medium in the heat storage tank. The heat storage use operation time until the time when the heat storage use operation is terminated is obtained, the measuring means for obtaining the difference between the obtained heat storage use operation time and the heat storage use operation target time, and the excess or shortage of the heat storage amount from the obtained difference And a heat storage amount control means for calculating the refrigerant flow increase / decrease amount from the estimated value and correcting the refrigerant flow rate upper limit value at the previous heat storage operation by the refrigerant flow increase / decrease amount, and a heat storage tank at the next heat storage operation The regenerative refrigeration apparatus according to claim 1, wherein an upper limit value can be controlled for a flow rate of the refrigerant flowing through the refrigerant. 前記制御手段は、外気温の変化に応じて前記次回の蓄熱運転の蓄熱量を補正することを特徴とする請求項1に記載の蓄熱式冷凍装置。 2. The regenerative refrigerating apparatus according to claim 1, wherein the control unit corrects a heat storage amount of the next heat storage operation in accordance with a change in outside air temperature. ガス冷媒を圧縮する圧縮機及び前記圧縮機により圧縮されたガス冷媒を冷却して液冷媒にする凝縮器からなる冷凍機と、前記冷凍機の冷媒管路に接続され冷熱を蓄熱する蓄熱槽と、前記冷凍機の冷媒管路に接続され被冷却物を冷却する冷熱負荷と、前記蓄熱槽に前記液冷媒を供給する蓄熱運転と前記蓄熱槽に蓄熱された冷熱を前記冷熱負荷に供給する蓄熱利用運転とに切り換え制御する制御手段とを備え、
前記制御手段は、前記蓄熱利用運転を開始し、前記蓄熱槽の冷熱媒体の温度に基づいて前記蓄熱利用運転を終了させた時点の蓄熱利用運転終了の前後における前記圧縮機の運転容量を積分することにより前記蓄熱槽の蓄熱量の過不足を推測し、当該推測値から冷媒流増減量を算出し、前記冷媒流増減量で前回の蓄熱運転時の冷媒流量上限値を補正し、次回の蓄熱運転を行う際の蓄熱槽に流れる冷媒流量を調整して蓄熱量を制御することを特徴とする蓄熱式冷凍装置。
A refrigerator comprising a compressor for compressing a gas refrigerant and a condenser for cooling the gas refrigerant compressed by the compressor to form a liquid refrigerant; and a heat storage tank for storing cold heat connected to a refrigerant pipe of the refrigerator. A cooling load connected to the refrigerant pipe of the refrigerator for cooling the object to be cooled, a heat storage operation for supplying the liquid refrigerant to the heat storage tank, and a heat storage for supplying the cold heat stored in the heat storage tank to the cooling load Control means for switching control to use operation,
The control means starts the heat storage use operation and integrates the operation capacity of the compressor before and after the end of the heat storage use operation when the heat storage use operation is ended based on the temperature of the cooling medium in the heat storage tank. The amount of heat storage in the heat storage tank is estimated to be excessive or insufficient, the refrigerant flow increase / decrease amount is calculated from the estimated value, the refrigerant flow upper / lower amount is corrected with the refrigerant flow increase / decrease amount, and the next heat storage amount is calculated. A regenerative refrigerating apparatus characterized by controlling a heat storage amount by adjusting a flow rate of refrigerant flowing in a heat storage tank during operation.
JP2005018227A 2005-01-26 2005-01-26 Thermal storage refrigeration system Expired - Fee Related JP4512947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018227A JP4512947B2 (en) 2005-01-26 2005-01-26 Thermal storage refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018227A JP4512947B2 (en) 2005-01-26 2005-01-26 Thermal storage refrigeration system

Publications (2)

Publication Number Publication Date
JP2006207886A true JP2006207886A (en) 2006-08-10
JP4512947B2 JP4512947B2 (en) 2010-07-28

Family

ID=36964953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018227A Expired - Fee Related JP4512947B2 (en) 2005-01-26 2005-01-26 Thermal storage refrigeration system

Country Status (1)

Country Link
JP (1) JP4512947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094941A (en) * 2009-11-02 2011-05-12 Nakano Refrigerators Co Ltd Refrigerating device and method for operating the same
KR101384217B1 (en) * 2012-08-08 2014-04-21 주식회사 코엑스 System for operating complex refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028520A (en) * 2001-07-19 2003-01-29 Hitachi Ltd Regenerative refrigerating plant
JP2004347280A (en) * 2003-05-26 2004-12-09 Hitachi Ltd Heat accumulation type refrigerating device, and heat accumulation quantity control method of heat accumulation type refrigerating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028520A (en) * 2001-07-19 2003-01-29 Hitachi Ltd Regenerative refrigerating plant
JP2004347280A (en) * 2003-05-26 2004-12-09 Hitachi Ltd Heat accumulation type refrigerating device, and heat accumulation quantity control method of heat accumulation type refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094941A (en) * 2009-11-02 2011-05-12 Nakano Refrigerators Co Ltd Refrigerating device and method for operating the same
KR101384217B1 (en) * 2012-08-08 2014-04-21 주식회사 코엑스 System for operating complex refrigerator

Also Published As

Publication number Publication date
JP4512947B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
CN102770718B (en) Air conditioning system and method of controlling air conditioning system
JP4435533B2 (en) Heat source system and control device
JP5642207B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP5855129B2 (en) Outdoor unit and air conditioner
EP2211123B1 (en) Air conditioner
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
AU2007208694B2 (en) Air conditioner
US20090095000A1 (en) Air conditioner
CN102792108A (en) Refrigeration air conditioning device
JP2005241172A (en) Refrigerant filling method for refrigeration cycle and its device
CN103597290A (en) Temperature adjusting system, air conditioning system, and control method
JP2012032055A (en) Performance evaluation device of turbo refrigerator
JP2013228130A (en) Freezer
JP2012127573A (en) Heat source system
CN105526762A (en) Temperature and coupling running controlling method of double-compressor and double-refrigerating circuit refrigerator
JP5489046B2 (en) Heat source equipment control system
CN114096424A (en) Method for operating a refrigerant circuit of a refrigeration system of a vehicle
JP4562650B2 (en) Air conditioner
JP3748098B2 (en) Refrigerator for refrigerated showcase
JP4512947B2 (en) Thermal storage refrigeration system
US10145607B2 (en) Method for operating a refrigeration system for a cargo container
WO2014177957A1 (en) A method for controlling a vapour compression system connected to a smart grid
JP4513545B2 (en) Refrigeration unit control system and cooling supply system
JP5806555B2 (en) Heat source machine control device and heat source machine control method
TWI736463B (en) Composite refrigeration system and controling method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

R150 Certificate of patent or registration of utility model

Ref document number: 4512947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees