DK170420B1 - Process for mercury recovery from mercury-containing wash water - Google Patents

Process for mercury recovery from mercury-containing wash water Download PDF

Info

Publication number
DK170420B1
DK170420B1 DK349988A DK349988A DK170420B1 DK 170420 B1 DK170420 B1 DK 170420B1 DK 349988 A DK349988 A DK 349988A DK 349988 A DK349988 A DK 349988A DK 170420 B1 DK170420 B1 DK 170420B1
Authority
DK
Denmark
Prior art keywords
mercury
wash water
carrier gas
reducing agent
harmful substances
Prior art date
Application number
DK349988A
Other languages
Danish (da)
Other versions
DK349988A (en
DK349988D0 (en
Inventor
Michael Metzger
Hartmut Braun
Original Assignee
Kernforschungsz Karlsruhe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungsz Karlsruhe filed Critical Kernforschungsz Karlsruhe
Publication of DK349988D0 publication Critical patent/DK349988D0/en
Publication of DK349988A publication Critical patent/DK349988A/en
Application granted granted Critical
Publication of DK170420B1 publication Critical patent/DK170420B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Description

DK 170420 B1DK 170420 B1

Opfindelsen angår en fremgangsmåde til kviksølvgenvinding fra kviksølvholdigt vaskevand fra forbrændingsanlæg, som har mindst én røggasvådvasker til tilbageholdelse af skadelige stoffer, ved hvilken fremgangsmåde 5 a) strømmen af vaskevand, som indeholder kviksølv, kemis ke forbindelser deraf og andre skadelige stoffer, kontinuerligt bringes i kontakt med et reduktionsmiddel, b) det kemisk bundne kviksølv i vaskevandet indeholdende 10 de skadelige stoffer ved hjælp af dette reduktionsmid del ved en temperatur på 25-55°C overføres i den metalliske tilstand, c) det derved dannede metalliske kviksølv fjernes ved kontinuerlig tilledning af bærergas fra det opvarmede 15 vaskevand, og d) den kviksølvholdige bærergas gennemstrømmer en afkølet separator, hvori kviksølvet udkondenseres og således fjernes fra bærergassen.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to a process for the recovery of mercury from mercury-containing wash water from combustion plants having at least one flue gas-detergent for detention of harmful substances, in which process 5 a) is continuously contacted with the flow of washing water containing mercury, chemical compounds thereof and other harmful substances. with the reducing agent, b) the chemically bonded mercury in the wash water containing the harmful substances by means of this reducing agent at a temperature of 25-55 ° C is transferred in the metallic state, c) the metallic mercury thus formed is removed by continuously adding and d) the mercury-containing carrier gas flows through a cooled separator in which the mercury is condensed and thus removed from the carrier gas.

En sådan fremgangsmåde er kendt fra EP offentlig-20 gørelsesskrift nr. 0.097.478.Such a method is known from EP Publication No. 0.097,478.

Ved forbrændingen af kviksølvholdigt affald i et affaldsforbrændingsanlæg af middelstørrelse frigives der årligt op til 500 kg kviksølv i spildgassen. Ved en våd røggasvask kan dette tungmetal kvantitativt overføres fra spild-25 gassen til det sure røggasvaskevand.The incineration of mercury-containing waste in a medium-sized waste incineration plant releases up to 500 kg of mercury into the waste gas annually. In a wet flue gas wash, this heavy metal can be quantitatively transferred from the waste gas to the acidic flue gas wash water.

Med henblik på denne kviksølvtransport opstår der i tiltagende grad både ud fra økologiske og økonomiske synspunkter et behov for en genvinding af det værdifulde kviksølv fra vaskevandet. Derved skal man stræbe efter en genvinding 30 direkte på stedet for dannelsen, dvs. i selve forbrændingsanlægget. Såvidt muligt skal røggasvasken og genvindingsprocessen tillige være umiddelbart forbundet med hinanden. Grænseværdien, fastsat af lovgiverne, for kviksølv på 0,05 mg/liter i spildevand skal kunne overholdes.For the purpose of this mercury transport, a growing need arises from both ecological and economic points of view for the recovery of valuable mercury from the wash water. Thereby, one should strive for a recovery 30 directly at the site of formation, ie. in the incinerator itself. As far as possible, the flue gas sink and the recycling process must also be directly linked to each other. The limit value of 0.05 mg / liter in wastewater in wastewater must be observed by the legislators.

35 De til teknikkens stade svarende fremgangsmåder til fjernelse af kviksølv fra røggasvaskevand gennemføres ikke 2 DK 170420 B1 med henblik på en direkte genvinding af kviksølv, men for at overholde den ved lov fastsatte grænseværdi.35 The methods corresponding to the state of the art for removing mercury from flue gas washing water are not carried out for the direct recovery of mercury, but to comply with the statutory limit value.

Til rensning af røggasvaskevand udfældes kviksølv på gængs måde ved tilsætning af egnede udfældningsmidler fra 5 den vandige fase.For the purification of flue gas wash water, mercury is precipitated in the usual manner by the addition of suitable precipitating agents from the aqueous phase.

å.y.

Som særligt effektivt og billigt udfældningsmiddel kendes trimercaptotriazin (TMT).Trimercaptotriazine (TMT) is known as a particularly effective and inexpensive precipitant.

Anvendelsen sker på den måde, at TMT efter neutralisering af det sure vaskevand tilsættes, og kviksølv fældes ud 10 som metalorganisk inklusionsforbindelse. Isoleringen af fældningsproduktet sker diskontinuerligt. På grund af de høje tungmetalkoncentrationer opbevares fældningsproduktet sammen med neutraliseringsslammet på en losseplads for særligt affald.The use is made in that, after neutralization of the acidic wash water, TMT is added and mercury precipitates as metal-organic inclusion compound. The precipitation product is isolated in a continuous manner. Due to the high heavy metal concentrations, the precipitating product is stored together with the neutralization sludge at a special waste dump.

15 En genvinding af kviksølvet er kun mulig under an vendelse af store fremgangsmådetekniske resurser og gennemføres således heller ikke.15 Recovery of the mercury is only possible using large process technical resources and thus not carried out.

Foruden den beskrevne udfældningsfremgangsmåde har man allerede i årevis til rensning af kviksølvholdigt vand 20 anvendt specielle ionbyttere. Til fjernelse af kviksølv, som foreligger i chloridholdige sure opløsninger som kompleks chlormercurat-ion, har frem for alt de stærkt basiske anion-byttere opnået en særlig betydning. Ved anvendelse af ionbyttere kan man ikke blot rense kviksølv til under afgi-25 velsesgrænseværdien, men det er på grund af ionbytternes selektivitet i princippet ligeledes muligt at genvinde kviksølvet.In addition to the described precipitation process, special ion exchangers have been used for years to purify mercury-containing water 20. In particular, for the removal of mercury present in chloride-containing acidic solutions as complex chloromercurate ion, the highly basic anion exchangers have gained special importance. By using ion exchangers, not only can mercury be purified below the emission limit value, but it is also possible in principle to recover the mercury due to the selectivity of the ion exchangers.

Af økonomiske årsager har ionbytterfremgangsmåden hidtil ikke vundet indpas ved rensning af kviksølvholdigt 30 røggasvaskevand. Driftsomkostningerne er væsentligt højere end ved udfældningsfremgangsmåden. Oparbejdningen af den kviksølvholdige ionbytter og dermed også genvindingen af kviksølv er ikke mulig i selve forbrændingsanlægget'og for- t årsager et yderligere fremgangsmådeteknisk resurseforbrug 35 og udgør dermed en yderligere omkostningsfaktor.For economic reasons, the ion exchange process has so far not been adopted by purification of mercury-containing flue gas wash water. Operating costs are substantially higher than in the precipitation process. The reprocessing of the mercury-containing ion exchanger and thus also the recovery of mercury is not possible in the combustion plant itself and also causes an additional process-technical resource consumption 35 and thus constitutes an additional cost factor.

Til udnyttelse af de i affaldet indeholdte råstof- 3 DK 170420 B1 reserver, men ligeledes for at undgå unødvendige miljøbelastninger, er det på længere sigt uomgængeligt at genanvende det værdifulde kviksølv.To utilize the waste contained in the waste, but also to avoid unnecessary environmental pressures, it is in the long term inevitable to recycle the valuable mercury.

Formålet med opfindelsen er således at tilvejebringe 5 en fremgangsmåde af den i det foregående angivne art, hvormed det i røggasvaskevand i forbrændingsanlæg indeholdte kviksølv på simpel måde kan genvindes kvantitativt, hvilken fremgangsmåde skal kunne integreres optimalt i forbrændings- og røggasrensningsfremgangsmåden og desuden være så økonomisk, 10 at anlæggets driftomkostninger ikke forøges væsentligt.The object of the invention is thus to provide a process of the above-mentioned kind by which the mercury contained in flue gas washing water in combustion plants can be simply recovered quantitatively, which method must be able to be optimally integrated in the combustion and flue gas purification process and furthermore be economical. 10 that the plant's operating costs are not significantly increased.

Dette formål opnås ifølge opfindelsen ved, at den for kviksølv befriede bærergas kontinuerligt atter føres til vaskevandet indeholdende det metalliske kviksølv svarende til trin c).This object is achieved according to the invention in that the carrier gas liberated from mercury is continuously fed again to the wash water containing the metallic mercury corresponding to step c).

15 De i røggasvaskevandet foreliggende Hg-I- og Hg-II- -ioner overføres ved hjælp af egnede reduktionsmidler til elementartilstanden.The Hg-I and Hg-II ions present in the flue gas wash water are transferred to the elementary state by suitable reducing agents.

Eksempelvis kan man som reduktionsmiddel anvende tin-II-chlorid i saltsur opløsning.For example, as the reducing agent, tin-II chloride can be used in hydrochloric acid solution.

20 Omsætningsgraden bestemmes af det støkiometriske forhold mellem tin-II-chlorid og kviksølv. Ved tilsætning af 1,6 g SnCl2 pr. g i røggasvaskevand foreliggende kviksølv er en fortynding til under afgivelsesgrænseværdien på 0,05 mg Hg/liter i kontinuerlig drift mulig (jfr. eksempel 1).The conversion rate is determined by the stoichiometric ratio of tin-II chloride to mercury. By adding 1.6 g of SnCl g in flue gas wash water, a dilution to below the emission limit value of 0.05 mg Hg / liter in continuous operation is possible (cf. example 1).

25 Det bemærkes i denne sammenhæng, at der i opløsningen kan foreligge såvel monovalent som divalent kviksølv. I tilfælde af divalent kviksølv forbruges den dobbelte mængde reduktionsmiddel, og den foranstående angivelse af 1,6 g SnCl2 pr. g kviksølv referer til forholdene ved i praksis forekom-30 mende, fra forbrændingsanlæg hidrørende vaskevand, hvori der normalt forekommer såvel Hg(I)- som Hg(II)-forbindelser. Omsætningen af SnCl2 og kviksølvsalte forløber med høj reaktionshastighed. Selv under ugunstige betingelser er det tilstrækkeligt med en kontakttid på 40 sekunder (jfr. eksem-35 pel 3). Det dannede elementarkviksølv er flygtigt og uopløseligt i ikke-oxiderende syrer. Det kan derfor uddrives ved 4 DK 170420 B1 hjælp af tilledning af en bærergas. Ved en temperaturforhøjelse under kviksølvreduktionen begunstiges ikke kun dannelsen af elementarkviksølv, men ligeledes uddrivelsen af kviksølvet fra opløsningen ved hjælp af bærergassen.25 It is noted in this context that the solution may contain both monovalent and divalent mercury. In the case of divalent mercury, the double amount of reducing agent is consumed and the foregoing statement of 1.6 g of SnCl g of mercury refers to the conditions of, in practice, the washing water originating from combustion plants which normally contain both Hg (I) and Hg (II) compounds. The reaction of SnCl2 and mercury salts proceeds at a high reaction rate. Even under adverse conditions, a contact time of 40 seconds is sufficient (cf. Example 3). The elemental mercury formed is volatile and insoluble in non-oxidizing acids. Therefore, it can be expelled by the supply of a carrier gas by 4 DK 170420 B1. At a temperature increase during the reduction of mercury, not only the formation of element mercury is favored, but also the expulsion of the mercury from the solution by the carrier gas.

5 En emission af kviksølvdampe i forbindelse med røg- gasvaskevandsbehandlingen hindres ved, at bærergassen kontinuerligt recirkuleres i et lukket kredsløb. Dette betyder, at bærergassen ledes ind i vaskevandet, der indeholder de skadelige bestanddele, her optager det metalliske kviksølv, 10 igen afgiver det optagne kviksølv i en afkølet absorptionsbeholder og derpå på ny ledes ind i det skadelige stoffer . indeholdende vaskevand. Fordelen ved fremgangsmåden ifølge opfindelsen består således i, at selv når der i absorptionsbeholderen kun fraskilles en brøkdel af kviksølvet, afgives 15 der intet kviksølv til omgivelserne, eftersom bærergassen ikke føres til omgivelserne, men recirkuleres.5 Emission of mercury vapors in connection with the flue gas wash water treatment is prevented by the continuous gas being recirculated in a closed circuit. This means that the carrier gas is fed into the wash water containing the harmful components, here the metallic mercury takes up, 10 again discharges the absorbed mercury into a cooled absorption vessel and then is again fed into the harmful substance. containing wash water. The advantage of the process according to the invention consists in that even when in the absorption vessel only a fraction of the mercury is separated, no mercury is released to the surroundings, since the carrier gas is not fed to the surroundings but recycled.

En yderligere fordel består i, at når bestanddele af bærergassen, f.eks. oxygenet fra luften, reagerer med reduktionsmidlet, optræder der ved fremgangsmådens videre forløb 20 intet højere forbrug af reduktionsmiddel, eftersom de reagerende bestanddele af bærergassen herved fjernes.A further advantage is that when constituents of the carrier gas, e.g. the oxygen from the air, reacting with the reducing agent, there is no higher consumption of reducing agent in the course of the process, since the reacting components of the carrier gas are thereby removed.

Disse fordele opnås ikke ved den fra EP offentliggørelsesskrift nr. 0.097.478 kendte fremgangsmåde, fordi bærergassen her afgives til omgivelserne. Herved udkondense-25 res der først kviksølv, og bærergassen renses yderligere med en organisk harpiks. Kviksølvet fremkommer her to steder, dels i køleren som flydende metal, og dels bundet til harpiksen. Der er således risiko for, at der med bærergassen afgives restmængder af kviksølv til omgivelserne.These advantages are not achieved by the method known from EP Publication No. 0.097,478, because the carrier gas is delivered here to the surroundings. Hereby mercury is first condensed and the carrier gas is further purified with an organic resin. The mercury appears here in two places, partly in the cooler as liquid metal and partly bound to the resin. There is thus a risk that residual amounts of mercury are released into the environment with the carrier gas.

30 Fremgangsmåden ifølge opfindelsen kan integreres optimalt i røggasrensningen i et forbrændingsanlæg.The process according to the invention can be optimally integrated in the flue gas cleaning in an incinerator.

På tegningen viser fig. .1 et røggasrenseanlæg med tilknyttet genvin-dingsanlæg for kviksølv i vaskevandet til udøvelse af frem-35 gangsmåden ifølge opfindelsen, og fig. 2 et forsøgsanlæg til udøvelse af fremgangsmåden.In the drawing, FIG. .1 a flue gas purifier with associated mercury recovery plant in the wash water for carrying out the method of the invention; and 2 is an experimental system for carrying out the method.

5 DK 170420 B15 DK 170420 B1

Reduktionsmidlet 4 doseres til det ved røggasvaskeren 1 dannede sure vaskevand 2, hvis kviksølvindhold løbende kan måles ved hjælp af en kviksølvmonitor 3a, i et til kviksølvreduktion tilstrækkeligt stort støkiometrisk forhold 5 fra forrådsbeholderen. Ved anvendelse af tin-II-chlorid som reduktionsmiddel er dette forhold 2,0. Opløsningsmiddelblandingen ledes derpå ind i en uddriverenhed 5 til frigivelse af kviksølv. I forbindelse med denne enhed kan det eksempelvis dreje sig om en udefra opvarmet glascylinder, til hvilken 10 der ved hjælp af en indbygget fritte 6 kan ledes finfordelt bærergas (boblekolonne). Standhøjden af reaktionsopløsningen i boblekolonnen vælges således, at den gennemsnitlige opholdstid af reaktanterne i den med gassen gennemskyIlede zone mindst er 40 sekunder. Standhøjden kan reguleres ved 15 hjælp af afløbsstrømmen 7 af det kviksølvfrie vaskevand.The reducing agent 4 is dosed to the acid wash water 2 formed by the flue gas washer 1, whose mercury content can be continuously measured by means of a mercury monitor 3a, in a stoichiometric ratio 5 sufficiently large for the mercury reduction. Using tin-II chloride as reducing agent, this ratio is 2.0. The solvent mixture is then fed into a mercury release unit 5. In connection with this unit, for example, it may be an externally heated glass cylinder to which 10 can be fed by means of a built-in fryer 6 distributed gas (bubble column). The pitch of the reaction solution in the bubble column is chosen such that the average residence time of the reactants in the gas-permeable zone is at least 40 seconds. The stand height can be adjusted by means of the drain stream 7 of the mercury-free wash water.

Den fra spildevandet frigivne kviksølvdamp ledes ved hjælp af bærergassen 8 ind i en kondensator 9. For at holde kondensatdannelse og dermed også kølekapaciteten ubetydelig er der ved gasudgangen af uddriverenheden indbygget en dråbe-20 udskiller 10. Bærergassens rumfang vælges således, at kviksølvet i den ligger under mætningsgrænsen. Ved indgangen til kondensatoren skal gastemperaturen kun ligge 10-20“C over kviksølvdugpunktet. Gasudgangstemperaturen skal være så lav som mulig for at holde Hg-restindholdet i bærergassen 25 så lavt som muligt. Kondensatoren kan eksempelvis bestå af rørkondensatorer. I en opsamlingsbeholder 11 udskilles foruden rent kviksølv ligeledes kondenseret vanddamp. Mens kviksølvet på grund af den højere massefylde samler sig på bunden af beholderen og derfra kan udtages, kommer det oven-30 stående kondenserede vand og bærergassen ind i en efterkoblet gas-væske-separator 12. Ved et eventuelt for højt Hg-rest-indhold ledes kondensatet 13 tilbage til det ubehandlede vaskevand.The mercury vapor released from the wastewater is fed into a capacitor 9 by means of the carrier gas 8. In order to keep the condensate formation and thus also the cooling capacity insignificant, a droplet 20 is incorporated at the gas outlet of the expulsion unit 10. The volume of the carrier gas is chosen so that the mercury lies in it. below the saturation limit. At the input of the capacitor, the gas temperature should only be 10-20 ° C above the mercury dew point. The gas outlet temperature must be as low as possible to keep the Hg residue content in the carrier gas 25 as low as possible. For example, the capacitor may consist of tube capacitors. In a collection vessel 11, in addition to pure mercury, condensed water vapor is also excreted. While, due to the higher density, the mercury collects on the bottom of the container and can be withdrawn from it, the above condensed water and the carrier gas enter a post-coupled gas-liquid separator 12. At a possible too high Hg residue content condensate 13 is returned to the untreated wash water.

Bærergasstrømmen køres i kredsløb i et lukket system.The carrier gas stream is circulated in a closed system.

35 Derved undgås for det første emissionen af kviksølvdamp fra anlægget. For det andet har denne fremgangsmåde den fordel, DK 170420 B1 e at det ikke er nødvendigt med noget yderligere reduktionsmiddelforbrug som følge af det ved anvendelsen af frisk luft tilstedeværende oxygen.35 Firstly, the emission of mercury vapor from the plant is avoided. Secondly, this process has the advantage that no additional reducing agent consumption is necessary due to the oxygen present in the use of fresh air.

Afløbsstrømmen 7 af det kviksølvfri vaskevand gen-5 nemstrømmer en kviksølvmonitor 3b og neutraliseres i en samlebeholder 14.The effluent stream 7 of the mercury-free washing water 5 flows through a mercury monitor 3b and is neutralized in a collector 14.

Køleanlægget for kondensatoren 9 kan kobles sammen med uddrivningsenheden 5 således, at den i kondensatorens kuldemaskine optrædende spildvarme kan anvendes til opvarm-10 ning af reaktionsopløsningen.The cooling system of the capacitor 9 can be coupled to the expulsion unit 5 so that the waste heat contained in the condenser's cooling machine can be used to heat the reaction solution.

Opfindelsen belyses nærmere ved hjælp af de følgende eksempler. Alle eksempler gennemføres med den i fig. 2 angivne forsøgsopstilling.The invention is further illustrated by the following examples. All examples are carried out with the one shown in FIG. 2 experimental set-up.

Forsøgsapparaturet består af et forlag til kviksølv-15 opløsningen 2, en kondensator 9, en opsamlingsbeholder 11, en gas-væske-separator 12, en vaskeflaske 15, en tørrings-, indretning 16 og en gennemløbsmåler 17. Som reduktionsmiddel anvendes en opløsning af SnCl2*2H20 i fortyndet saltsyre.The test apparatus consists of a publisher of the mercury-15 solution 2, a capacitor 9, a collection vessel 11, a gas-liquid separator 12, a washing bottle 15, a drying device 16 and a flow meter 17. A reducing solution of SnCl2 is used as reducing agent. * 2H 2 O in dilute hydrochloric acid.

Den saltsure kviksølvopløsning 2 samt uddrivningskarret 5 20 opvarmes til den ønskede forsøgstemperatur. Med en kuldetermostat indstilles den til kondensering af kviksølvdampen nødvendige temperatur på 5°C i køleanordningen 9. Doseringen af kviksølvopløsningen og reduktionsmidlet 4 samt fjernelsen af reaktionsopløsningen 7 sker ved kontinuerlig drift.The hydrochloric acid mercury solution 2 and the evaporator 5 are heated to the desired test temperature. With a cooling thermostat, the temperature necessary to condense the mercury vapor is set at 5 ° C in the refrigerator 9. The dosing of the mercury solution and the reducing agent 4 as well as the removal of the reaction solution 7 takes place in continuous operation.

2525

Eksempel 1Example 1

Til en kviksølvholdig opløsning (cHg = 5 mg/liter) doseres reduktionsmidlet i forskellige støkiometriske forhold. Reaktionstemperaturen er 55°C, og reaktanternes op-30 holdstid er 60 sekunder. Til kviksølvuddrivning ledes der en bærergasstrøm med et gennemstrømningsvolumen på 140 li-ter/time gennem reaktionsbeholderen.For a mercury-containing solution (cHg = 5 mg / liter), the reducing agent is dosed in various stoichiometric ratios. The reaction temperature is 55 ° C and the reaction time of the reactants is 60 seconds. For mercury expulsion, a carrier gas stream having a throughput volume of 140 liters / hour is passed through the reaction vessel.

7 DK 170420 B17 DK 170420 B1

TABET, ITHE LOSS, I

cSnCl2/cHg oHg-udløb 1.2 0,9 Ittg/1 1.3 0,5 mg/1 5 1,4 0,3 mg/1 1,6 <0,1 mg/1cSnCl2 / cHg oHg outlet 1.2 0.9 Ittg / 1 1.3 0.5 mg / l 1.4 1.4 mg / l 1.6 <0.1 mg / l

Eksempel 2Example 2

Kviksølvuddrivningen foretages fra en kviksølvholdig 10 opløsning (Cjjg = 5 mg/liter) i nærværelse af forskellige SnCl2-indhold ved forskellige reaktionstemperaturer. Reaktanternes opholdstid er 60 sekunder, og bærergassens gennemstrømningsvolumen er 170 liter/time.The mercury expulsion is made from a mercury-containing solution (Cjjg = 5 mg / liter) in the presence of different SnCl2 contents at different reaction temperatures. The reactance residence time is 60 seconds and the carrier gas throughput is 170 liters / hour.

15 TABEL IITABLE II

Temperatur cHg (mg/1) °C a b c d e * 25 <0,1 0,2 0,4 0,8 1,8 45 <0,1 0,1 0,4 0,9 1,3 20 55 <0,1 <0,1 0,3 0,5 0,9 CSnCl2//cHg: ^ — k = 1,6? c = 1,4; d = 1,3; e — 1,2.Temperature cHg (mg / l) ° C abcde * 25 <0.1 0.2 0.4 0.8 1.8 45 <0.1 0.1 0.4 0.9 1.3 20 55 <0, 1 <0.1 0.3 0.5 0.9 CSnCl2 // cHg: ^ - k = 1.6? c = 1.4; d = 1.3; e - 1.2.

Eksempel 3 25 Kviksølvuddrivningen foretages fra en kviksølvholdig opløsning (ctøg = 5 mg/liter) med et støkiometrisk forhold på 1,6 og en reaktionstemperatur på 55°C ved forskellige opholdstider for reaktanterne. Bærergasstrømmen er 140 liter/-time.Example 3 The mercury discharge is made from a mercury-containing solution (ctg = 5 mg / liter) with a stoichiometric ratio of 1.6 and a reaction temperature of 55 ° C at different residence times for the reactants. The carrier gas flow is 140 liters / hour.

3030

TABEL IIITABLE III

Opholdstid/s Cjjg-Udløb 0 5,0 mg/1 10 0,3 mg/1 35 40 <0,1 mg/1 8 DK 170420 B1Residual time / s Cjjg Expiration 0 5.0 mg / l 10 0.3 mg / l 35 40 <0.1 mg / l 8 DK 170420 B1

Eksempel 4Example 4

Kviksølvuddrivningen foretages fra røggasvaskevand i et forbrændingsanlæg (cHg = 5 mg/liter) efter tilsætning af SnCl2. Reaktionstemperaturen er 55*C, reaktanternes opholds-5 tid er 60 sekunder, og bærergassens gennemstrømningsvolumen er 140 liter/time.The mercury expulsion is made from flue gas wash water in an incinerator (cHg = 5 mg / liter) after the addition of SnCl2. The reaction temperature is 55 ° C, the residence time of the reactants is 60 seconds, and the flow rate of the carrier gas is 140 liters / hour.

TABEL IVTABLE IV

°Snci2/0 Hg cHg-Udl®b 10 1,6 0,7 mg/1 1.7 0,2 mg/1 1.8 <0,1 mg/1° Snci2 / 0 Hg cHg-Udl®b 10 1.6 0.7 mg / l 1.7 0.2 mg / l 1.8 <0.1 mg / l

Claims (3)

9 DK 170420 B1 PATENTKRAV.9 DK 170420 B1 PATENT REQUIREMENT. 1. Fremgangsmåde til kviksølvgenvinding fra kviksølvholdigt vaskevand fra forbrændingsanlæg, som har mindst én røggasvådvasker til tilbageholdelse af skadelige stoffer, 5 ved hvilken fremgangsmåde a) strømmen af vaskevand, som indeholder kviksølv, kemis ke forbindelser deraf og andre skadelige stoffer, kontinuerligt bringes i kontakt med et reduktionsmiddel, 10 b) det kemisk bundne kviksølv i vaskevandet indeholdende de skadelige stoffer ved hjælp af dette reduktionsmiddel ved en temperatur på 25-55°C overføres i den metalliske tilstand, c) det derved dannede metalliske kviksølv fjernes ved 15 kontinuerlig tilledning af bærergas fra det opvarmede vaskevand, og d) den kviksølvholdige bærergas gennemstrømmer en afkølet separator, hvori kviksølvet udkondenseres og således fjernes fra bærergassen, kendetegnet ved, 20 at e) den for kviksølv befriede bærergas kontinuerligt atter føres til vaskevandet indeholdende det metalliske kviksølv svarende til trin c).A method of mercury recovery from mercury-containing wash water from incinerators having at least one flue gas detergent for detention of harmful substances, wherein process a) continuously contacting the flow of wash water containing mercury, chemical compounds thereof and other harmful substances a reducing agent, 10 b) the chemically bonded mercury in the wash water containing the harmful substances by means of this reducing agent at a temperature of 25-55 ° C is transferred in the metallic state, c) the resulting metallic mercury is removed by continuous supply of carrier gas. and (d) the mercury-containing carrier gas flows through a cooled separator in which the mercury is condensed and thus removed from the carrier gas, characterized in that e) the mercury-liberated carrier gas is continuously fed to the wash water containing the metallic mercury step. c). 2. Fremgangsmåde ifølge krav 1, kendete g-25 net ved, at der som reduktionsmiddel anvendes i fortyndet saltsyre opløst tin-II-chlorid, som sættes til vaskevandet i overstøkiometrisk mængde, fortrinsvis 1,5-2 g SnCl2 pr. g i vaskevandet indeholdt kviksølv.2. A process according to claim 1, characterized in that the tin-chloride dissolved in dilute hydrochloric acid dissolved in dilute hydrochloric acid, which is added to the washing water in an over-stoichiometric amount, preferably 1.5-2 g SnCl g in the wash water contained mercury. 3. Fremgangsmåde ifølge krav 1, k'endeteg-30 net ved, at spildvarmen fra køleanlægget til kviksølvudskilleren anvendes til opvarmning af reaktionsopløsningen.3. A method according to claim 1, characterized in that the waste heat from the refrigeration plant to the mercury separator is used to heat the reaction solution.
DK349988A 1987-06-26 1988-06-24 Process for mercury recovery from mercury-containing wash water DK170420B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873721141 DE3721141A1 (en) 1987-06-26 1987-06-26 Process for mercury recovery from mercury-containing scrubbing waters of incineration plants
DE3721141 1987-06-26

Publications (3)

Publication Number Publication Date
DK349988D0 DK349988D0 (en) 1988-06-24
DK349988A DK349988A (en) 1988-12-27
DK170420B1 true DK170420B1 (en) 1995-08-28

Family

ID=6330351

Family Applications (1)

Application Number Title Priority Date Filing Date
DK349988A DK170420B1 (en) 1987-06-26 1988-06-24 Process for mercury recovery from mercury-containing wash water

Country Status (2)

Country Link
DE (1) DE3721141A1 (en)
DK (1) DK170420B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016468A1 (en) * 1990-05-22 1991-11-28 Passavant Werke METHOD AND SYSTEM FOR THE THERMAL DISPOSAL OF CLEANING SLAVES
JPH04210293A (en) * 1990-12-12 1992-07-31 Kubota Corp Mercury recovery method for waste water and mercury recovery device
DE4431993C1 (en) * 1994-09-08 1995-10-26 Degussa Removal and recovery of mercury from aq. solns.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463635A (en) * 1967-11-01 1969-08-26 Atomic Energy Commission Recovery of mercury from nuclear fuel reprocessing wastes
SE396772B (en) * 1975-09-16 1977-10-03 Boliden Ab PROCEDURE FOR EXTRACTION AND EXTRACTION OF MERCURES FROM GASES

Also Published As

Publication number Publication date
DE3721141A1 (en) 1989-01-05
DE3721141C2 (en) 1990-02-08
DK349988A (en) 1988-12-27
DK349988D0 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
CA2070853C (en) Method and apparatus for minimizing environmental release of toxic compounds in the incineration of wastes
US6638398B1 (en) Methods for the evaporation of an aqueous solution containing ammonia
PL168020B1 (en) Method of processing aqueous solutions containing hydrogen sulfide, hydrogen cyanide and ammonia
EP1308198A1 (en) Mercury removal method and system
CS274470B2 (en) Method of acids winning or recovery from their metals containing solutions
US3635664A (en) REGENERATION OF HYDROCHLORIC ACID PICKLING WASTE BY H{11 SO{11 {0 ADDITION, DISTILLATION AND FeSO{11 {0 Precipitation
CN109879507A (en) A kind of technique and device of coking high-salt wastewater resource utilization
US4389383A (en) Regenerable process for the selective removal of sulfur dioxide from effluent gases
JP3861603B2 (en) Wastewater treatment method
US5324499A (en) Fluoride removal from sulphuric acid
CN110280095A (en) A kind of method for removing hydrargyrum of flue gas during smelting
EP0857509A1 (en) Process for scrubbing ammonia and hydrogen sulfide from a fluid acid stream
DK170420B1 (en) Process for mercury recovery from mercury-containing wash water
JPS6215246B2 (en)
US4138296A (en) Method for removing nitrogen trichloride from chlorine gas
KR0136645B1 (en) Method and apparatus for treating waste gas
JP2965617B2 (en) Purification method of waste gas with high chloride content
JP2000061261A (en) Method for recovering hydrogen chloride in high temperature gas
US4419334A (en) Process for cooling and separating chlorides and fluorides from gas mixtures
EP0040892A1 (en) A regenerable process for the selective removal of sulfur dioxide from effluent gases
EP0662859B1 (en) Method and apparatus for cleaning a gas
US4230673A (en) Apparatus for removing nitrogen trichloride from chlorine gas
CN112675669B (en) Device and method for removing sulfur oxides in high-humidity flue gas
CN214972862U (en) Device for removing sulfur oxides in high-humidity flue gas
JP3284260B2 (en) Treatment method for fluorine-containing wastewater

Legal Events

Date Code Title Description
B1 Patent granted (law 1993)
PBP Patent lapsed