DK154380B - ANTENNA FOR EARTH RADIO STATIONS - Google Patents

ANTENNA FOR EARTH RADIO STATIONS Download PDF

Info

Publication number
DK154380B
DK154380B DK551980A DK551980A DK154380B DK 154380 B DK154380 B DK 154380B DK 551980 A DK551980 A DK 551980A DK 551980 A DK551980 A DK 551980A DK 154380 B DK154380 B DK 154380B
Authority
DK
Denmark
Prior art keywords
antenna
earth
satellite
axis
north
Prior art date
Application number
DK551980A
Other languages
Danish (da)
Other versions
DK154380C (en
DK551980A (en
Inventor
Peter Dondl
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of DK551980A publication Critical patent/DK551980A/en
Publication of DK154380B publication Critical patent/DK154380B/en
Application granted granted Critical
Publication of DK154380C publication Critical patent/DK154380C/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Relay Systems (AREA)

Description

iin

DK 154380 BDK 154380 B

Opfindelsen angår en antenne til jordradiostationer, som er lejret svingeligt om to vinkelret på hinanden stående akser, hvoraf den ene tjener til øst-vest-regulering og forløber parallelt med jordaksen, til indstilling ef-5 ter en geostationær jordsatellits varierende position, hvilken satellit med henblik på polarisationen af den fra satellitten udstrålede bølge er gireaksestabiliseret i forhold til dens positions geografiske længde.BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to an antenna for earth radio stations pivotally mounted about two perpendicular axes, one of which serves for east-west regulation and extending parallel to the earth's axis, for tuning according to a geostationary earth satellite's varying position, for the polarization of the wave radiated from the satellite, the gear axis is stabilized relative to the geographical length of its position.

Der kendes jordstationsantenner, som til efterregu-10 lering på en geostationær satellits position kan svinges om to vinkelret på hinanden stående akser. Sædvanligvis er sådanne antenner kardanlejret med henblik på at muliggøre en svingning om en azimut- og en elevationsakse.There are known earth station antennas which can be pivoted to the position of a geostationary satellite about two axes perpendicular to one another. Usually, such antennas are cardanically embedded in order to enable an oscillation about an azimuth and an elevation axis.

Desuden er fødehullederen udført drejelig med henblik på 15 efterregulering på den med satellittens bevægelse varierende polarisation af den udstrålede bølge. Der kræves følgelig både for indstillingen af antennens orientering på satellittens position og for indstillingen af polarisationen to separate indstillingsinformationer, hvis ud-20 vinding nødvendiggør et betydeligt radioteknisk opbud.In addition, the feed hole conductor is rotatable for the purpose of post-regulation on the polarization of the radiated wave, which varies with the satellite's movement. Accordingly, both the tuning of the antenna orientation to the satellite position and the tuning of the polarization require two separate tuning information, the extraction of which necessitates a significant radio technical call.

Ved geostationære satellitter er satellittens tilsyneladende bevægelse i forhold til jorden begrænset til nogle få vinkelgrader. Der kendes derfor antennelejringer, som kun tillader en begrænset svingningsvinkel i 25 deklinations- og elevationsaksen, og som derfor har en forholdsvis enkel opbygning. Hvis man også her vil kunne efterindstille på polarisationen, skal fødehullederen også ved disse forenklede konstruktioner være udformet drejelig.In geostationary satellites, the apparent movement of the satellite relative to the earth is limited to a few angular degrees. Therefore, antenna bearings are known which allow only a limited oscillation angle in the declination and elevation axis, and therefore have a relatively simple structure. If one can also adjust the polarization here, the feed hole conductor must also be rotatable in these simplified constructions.

30 Således kendes der f.eks. et retningsstativ til antenner til jordradiostationer, hvor antennerne er lejret i tre punkter. Et punkt befinder sig i stativets top og indeholder et dobbeltled, som tillader svingning af antennen om en timeakse og om en deklinationsakse.Thus, e.g. a directional rack for antennas for ground radio stations, wherein the antennas are mounted in three points. A point is at the top of the stand and contains a double joint which allows the antenna to be oscillated about an hourly axis and about a declination axis.

35 De to akser ligger vinkelret på hinanden i et på antenneaksen vinkelret plan.The two axes are perpendicular to one another in a plane perpendicular to the antenna axis.

Hvis en sådan antenne står på satellittens længdegrad, kan en yderligere polarisationsefterregulering 6 V»rNr-+- fa 1 rla ( fucV nffan f 1 i rrrfMrci 1 coceVri ff n ir O A KA ft *3 fi ^ 2If such an antenna is at the longitude of the satellite, a further polarization after-regulation can be 6 V »rNr - + - fa 1 rla (fucV nffan f 1 i rrrfMrci 1 coceVri ff n ir O A KA ft * 3 fi ^ 2

DK 1S4380BDK 1S4380B

Fra USA-patentskrift nr. 4 126 865 kendes en anden jordstationsantenne, som kan indreguleres på én geosta-tionær satellit, og som har to vinkelret på hinanden stående svingningsakser, hvoraf den ene tjener til øst-vest-5 regulering og forløber parallelt med jordaksen. Også i denne kendte antenne skal der imidlertid træffes særlige forholdsregler til polarisationsefterregulering.US Patent No. 4,126,865 discloses another ground station antenna which can be regulated on one geostationary satellite and which has two perpendicular axis of oscillation, one of which serves for east-west regulation and runs parallel to the earth axis. . However, even in this known antenna, special precautions for polarization post-regulation must be taken.

Opfindelsen har til. opgave at udforme en jordradiostation med den nævnte eller med en lignende forenklet 10 opbygning således, at der uafhængigt af opstillingsstedet og dermed af afstanden mellem jordradiostationens geografiske længde og satellittens geografiske længde kan gives afkald på en polarisationsefterregulering.The invention has. the task of designing an earth radio station of the aforementioned or of a similar simplified structure so that, independently of the installation location and thus of the distance between the geographical length of the earth radio station and the geographical length of the satellite, a polarization after-regulation can be waived.

Opfindelsen forudsætter en geostationær jordsatel-15 lit, som med hensyn til polarisationen af den. fra satellitten udstrålede bølge er giraksestabiliseret i forhold til dens positions geografiske længde.The invention requires a geostationary earth satellite, as with respect to its polarization. the wave radiated from the satellite is gyro-stabilized relative to the geographical length of its position.

Den forannævnte opgave løses med en antenne af den indledningsvis omhandlede art ifølge opfindelsen ved, at 20 antennens anden svingningsakse tjener til nord-syd-regulering og står vinkelret på det længdekredsplan, hvori satellitpositionen befinder sig. Som følge af sin specielle indretning bliver elevationsaksen ved opfindelsen betegnet som nord-syd-reguleringsakse.The aforementioned task is solved with an antenna of the kind initially referred to in the invention in that the second axis of rotation of the antenna serves for north-south regulation and is perpendicular to the longitudinal plane in which the satellite position is located. Due to its special arrangement, the elevation axis of the invention is referred to as the north-south control axis.

25 Medens antennens hovedstråleretning ved de hidtil kendte antenner til jordradiostationer danner en ret vinkel med elevationsaksen, afviger denne vinkel ved antennelejringen ifølge opfindelsen alt efter afstanden mellem jordradiostationens længdegrad og satellit-30 tens længdegrad fra den rette vinkel. Derved udsættes antennen ved nord-syd-reguleringsbevægelsen ikke blot for en elevationsændring, men også for en ringe rotation. Denne rotation er desto større, jo mere vinklen mellem nord-syd-reguleringsaksen og antennens hoved-35 stråleretning afviger fra 90°. Som følge af den forannævnte ringe rotation i stråleaksen ved nord-syd-reguleringsbevægelsen bliver den af den uundgåelige bevægelse af satellitten frembragte drejning af polarisa- 3While the main beam direction of the antenna at the known antennas for earth radio stations forms a right angle with the elevation axis, this angle at the antenna storage according to the invention differs according to the distance between the longitude of the earth radio station and the longitude of the satellite from the right angle. In this way, the antenna of the north-south control movement is not only subjected to an elevation change, but also to a slight rotation. This rotation is the greater the angle between the north-south control axis and the antenna's principal beam direction deviates from 90 °. Due to the aforementioned slight rotation in the beam axis of the north-south control movement, the rotation of the polarization caused by the inevitable movement of the satellite

DK 154380 BDK 154380 B

tionsplanet nøjagtigt kompenseret. En yderligere og kompliceret polarisationsefterregulering kan således bortfalde. .tions plane exactly compensated. Thus, a further and complicated polarization post-regulation may lapse. .

Den ved opfindelsen givne tekniske lære bygger på følgende geometriske overvejelser, som-skal anstilles under henvisning til fig, 1.The technical teachings of the invention are based on the following geometric considerations, which should be employed with reference to Fig. 1.

Opfindelsen er i det følgende forklaret nærmere med henvisning til tre figurer, idet fig. 1.1, 1.2 og 1.3 viser tre forskellige geometriske billeder af jordkloden med den samme geostationære jordsatellit, fig. 2.1, 2.2 og 2.3 tre forskellige billeder af de to rumligt vinkelret på hinanden stående regulerings- _ akser, og fig. 3 skematisk et udførelseseksempel på en jordstationsantenne ifølge opfindelsen, set fra siden.The invention is explained in more detail below with reference to three figures, fig. 1.1, 1.2 and 1.3 show three different geometric images of the earth with the same geostationary earth satellite, fig. 2.1, 2.2 and 2.3 are three different views of the two spatially perpendicular control axes, and FIG. 3 is a schematic side view of an embodiment of an earth station antenna according to the invention.

Fig. 1.1 viser et billede af jordkloden med længde-og breddegrader i et 30°-raster med jordradiostationspositionen E på ca. 50° nordlig bredde og ca. 45° øst for satellitpositionen, hvorhos satellitten \FIG. 1.1 shows an image of the earth with longitude and latitude in a 30 ° grid with the earth radio position E of approx. 50 ° north latitude and approx. 45 ° east of the satellite position where the satellite \

NN

\\

DK 154380 BDK 154380 B

44

Sat står nøjagtigt ud for jordaksens midte. Med de fire pilespidser i fom af et ottetal antydes skematisk satellitbevægelsen indenfor et jordomløb. Øst-vest-re-guleringsaksen ligger som ved kendte antenneindstil-5 lingskonstruktioner parallelt med jordaksen, medens nord-syd-reguleringsaksen ifølge opfindelsen står vinkelret på satellitpositionens længdekreds.Sat stands exactly at the center of the earth's axis. With the four arrowheads in fom of an eight, the satellite movement within a orbit is schematically indicated. The east-west regulating axis lies, as with known antenna alignment structures, parallel to the earth axis, while the north-south control axis of the invention is perpendicular to the longitudinal circle of the satellite position.

Fig. 1.2 viser den samme opstilling set fra oven mod nordpolen. Jordradiostationsantennens hovedstråle-10 retning H danner med nord-syd-reguleringsaksen N/S en vinkel a, der som regel afviger fra 90°. Satellitten Sat er indtegnet i målestokmæssig afstand. Pilene W - O antyder den i fig. 1.1 viste bevægelse. De ! symmetrisk på satellitten Sat anbragte flader skal 15 skematisk fremstille solgeneratorerne.FIG. 1.2 shows the same arrangement seen from above towards the north pole. The main beam direction H of the earth radio antenna 10 forms with the north-south control axis N / S an angle α, which usually deviates from 90 °. The satellite Sat is plotted at scale. Arrows W - O indicate that in FIG. 1.1. They! symmetrically on the satellite Sat surfaces must schematically produce the solar generators.

I fig. 1.3 er jordkloden drejet 90°. Som det fremgår af fig. 1.3, beskriver den geostationære satellit Sat for hver jordradiostation tilsyneladende en lille cirkelbue om nord-syd-reguleringsaksen.In FIG. 1.3, the earth is rotated 90 °. As shown in FIG. 1.3, the geostationary satellite Sat for each earth radio station apparently describes a small circular arc about the north-south regulatory axis.

20 (Der ses her foreløbig bort fra den øst-vest-forskyd-ning, der fremgår af fig. 1.2; de som følge deraf opstående afvigelser udlignes ved øst-vest-regulering.)20 (The east-west offset shown in Fig. 1.2 is temporarily disregarded; the deviations resulting from this are offset by east-west regulation.)

Hvis nu også antennen drejes om denne akse, overstryger jordradiostationens stråle under positionsreguleringen 25 keglefladesektoren på en meget flad kegle. Fig. 1.3 viser denne sektor M af keglefladen, som overstryges af jordradiostationsantennens stråle under nord-syd-reguleringsbevægelsen. Denne bevægelse indeholder en lineær og en roterende komposant. Den del af satéllit-30 strålen, som når jordradiostationen, forbliver kongruent med jordradiostationens stråle og udsættes ligeledes for de samme bevægelseskomposanter. Således fremkommer der ud fra positionsreguleringen en polarisationsregulering som følge af den særlige orientering af nord-syd-35 reguleringsaksen.If the antenna is also rotated about this axis, the beam of the ground radio station, during position control 25, overcomes the cone surface sector on a very flat cone. FIG. Fig. 1.3 shows this sector M of the cone surface, which is obliterated by the beam of the radio station antenna during the north-south control movement. This motion contains a linear and a rotating component. The portion of the satellite beam reaching the ground radio station remains congruent with the beam of the ground radio station and is also exposed to the same motion components. Thus, from the position control, a polarization control arises as a result of the particular orientation of the north-south-axis of regulation.

Da satellitten, som det er antydet i fig. 1.2, også kan forskyde sig i øst-vest-retningen indenfor visse tolerancer, er det nødvendigt at udforme hele 5As the satellite, as indicated in FIG. 1.2, can also shift in the east-west direction within certain tolerances, it is necessary to design the entire 5

DK 154380 BDK 154380 B

systemet drejeligt parallelt med ækvatorialplanet. Øst-vest-reguleringen genudligner ved drejning af den forannævnte nord-syd-reguleringsakse under bibeholdelse af paralleliteten i forhold til ækvatorialplanet den fejl, 5 der opstår som følge af satellittens øst-vest-afvigel-se, der fremgår af fig. 1.2.the system rotates parallel to the equatorial plane. The east-west regulation re-offsets, by rotating the aforementioned north-south regulatory axis while maintaining parallelism with the equatorial plane, the error resulting from the satellite's east-west deviation shown in FIG. 1.2.

Den i overensstemmelse med opfindelsens tekniske lære indrettede akse for nord-syd-reguleringen kan også efterlignes ved hjælp af en mikroprocessor, som styrer 10 en anderledes lejret antennes reguleringsindretning, som om antennen var lejret som beskrevet i det foranstående.The axis of the north-south regulation arranged in accordance with the technical doctrine of the invention can also be mimicked by a microprocessor which controls a differently stored antenna's regulating device, as if the antenna were housed as described above.

Til opstilling og justering af en jordradiostation, som positions- og polarisationsreguleres efter det i det 15 foranstående skildrede princip, skal følgende data være kendte: - Geografisk bredde βIn order to set up and adjust an earth radio station that is position and polarization regulated according to the principle described in the 15 above, the following data must be known: - Geographical width β

Geografisk længdeafstand til den nominelle satellitposition λ 20 - Nord-syd-retningenGeographic longitude to the nominal satellite position λ 20 - North-South direction

Horisontalplanet E1 for den geografiske position E.Horizontal plane E1 for the geographical position E.

Øst-vest-reguleringsaksen hælder på den nordlige (sydlige) halvkugle i forhold til horisontalplanet E' 25 mod nord (mod syd) og danner med horisontalplanet E' en vinkel, som er lig med den geografiske bredde for opstillingsstedet (β). Dermed forløber den parallelt med jordaksen.The east-west control axis slopes in the northern (southern) hemisphere relative to the horizontal plane E '25 to the north (to the south) and forms, with the horizontal plane E', an angle equal to the geographical width of the location (β). Thus, it runs parallel to the earth's axis.

Nord-syd-reguleringsaksen står vinkelret på øst-30 vest-reguleringsaksen, og den hæver sig i forhold til horisontalplanet E' med vinklen 6 = arcsin (sin λ · cos β ) i en retning, der på den nordlige halvkugle øst (vest) 35 for satellitpositionen afviger fra sydretningen mod øst (vest) med en vinkelThe north-south regulatory axis is perpendicular to the east-30 west regulatory axis, and it rises relative to the horizontal plane E 'at angle 6 = arcsin (sin λ · cos β) in a direction that is in the northern hemisphere east (west) 35 for the satellite position differs from the south direction to the east (west) at an angle

DK 154380 BDK 154380 B

6 γ = arotang tang χ . sln 66 γ = arotang tang χ. sln 6

Dette gælder analogt også for den sydlige halvkugle.This also applies by analogy to the southern hemisphere.

Fig. 2.1 viser de to rumligt vinkelret på hinanden 5 stående reguleringsakser N/S og O/W som koordinatsystem over det horisontale plan E' for jordradiostationens opstillingssted set fra øst. Den geografiske position svarer til den i fig. 1 viste. Nordretningen N ligger i tegningsplanet til højre. Aksen O/W lig-10 ger i tegningsplanet/ og dens elevationsvinkel 3 er vist i naturlig størrelse på 50^. Aksen N/S peger noget mod sydvest. Dens elevationsvinkel δ er projiceret på tegningsplanet og kan derfor ikke vises i naturlig størrelse.FIG. 2.1 shows the two spatially perpendicular control axes N / S and O / W as a coordinate system over the horizontal plane E 'of the earth radio station's installation location as seen from the east. The geographical position corresponds to that of FIG. 1. The north direction N is in the drawing plane to the right. The axis O / W lies in the drawing plane / and its elevation angle 3 is shown at a natural size of 50 ^. Axis N / S points somewhat to the southwest. Its elevation angle δ is projected on the drawing plane and therefore cannot be shown in natural size.

15 Fig. 2.2 viser den samme fremstilling med blikret ning mod nord N, sådan som det er vist ved pilen N.FIG. 2.2 shows the same view with the north facing N as shown by the arrow N.

De to reguleringsakser ligger ikke i tegningsplanet.The two control axes are not in the drawing plane.

Fig. 2.3 viser det samme koordinatsystem set fra oven med nordretningen N opefter. Vinklen γ viser 20 reguleringsaksen N/S"s afvigelse fra nord-syd-retningen henholdsvis jordaksen. Pilen A viser den synsretning, der anvendes ved forklaringen af den i det efterfølgende beskrevne antenne, som er vist i fig. 3.FIG. 2.3 shows the same coordinate system seen from above with the north direction N upwards. The angle γ shows the deviation axis N / S "deviation from the north-south direction and the earth axis, respectively. The arrow A shows the direction of vision used in the explanation of the antenna described in the following, which is shown in Figure 3.

Et udførelseseksempel på opfindelsen forklares nu 25 nærmere under henvisning til det i fig. 3 viste principskema. På jordoverfladen E' er en retningsantenne C - i det foreliggende tilfælde en Cassegrain-antenne med ikke nærmere vist hoved- og hjælpereflektor - i de to punkter K og D lejret bevægeligt på ikke nærmere 30 viste faste understøtninger. Punktet K udgør et kugleled. Det tillader følgelig dels drejning om øst-vest-aksen O/W på den ved en cirkelpil O/W antydede måde ud af henholdsvis ind i tegningsplanet ad et cirkelsegment, som er begrænset til få vinkelgrader, over den 35 glidende lejring G ved angrebspunktet D. Desuden tillader kugleleddet K svingning af antennen om nord-syd-aksen på den ved cirkelpilen N/S antydede måde, 7An embodiment of the invention is now explained in greater detail with reference to the embodiment of FIG. 3. On the ground surface E ', a directional antenna C - in the present case a Cassegrain antenna with no main and auxiliary reflector not shown - is movably mounted on the two points K and D on fixed supports not shown. The point K is a ball joint. Accordingly, it allows rotation of the east-west axis O / W in the manner indicated by a circular arrow O / W, respectively, into the drawing plane, respectively, of a circle segment limited to a few angular degrees, over the sliding bearing G at the point of attack D In addition, the ball joint K permits oscillation of the antenna about the north-south axis in the manner indicated by the circle arrow N / S, 7

DK 154380BDK 154380B

hvorhos svingningskræfterne angriber i tyngdepunktet S. De to vinkelret på hinanden stående akser er anord-net i overensstemmelse med vinkelfremstillingerne 2.1- 2.3. Antennen C er monteret således på nord—syd-regu-5 leringsaksen N/S, at hovedstråleretningen 33' med nord-syd-reguleringsaksen danner vinklen \/ (r-R *cos3 -cosX)2 + R2 “ sin2 3 α = arctang ——----1-- R cos 3 · sin λ (Den i fig. 3 viste hovedstrålingsretning H'' er ikke identisk med den virkelige hovedstrålingsretning H i 10 fig. 1, fordi vinklen α da ikke ville kunne vises i naturlig størrelse)- I de foranstående angivelser betyder: R = Jordradius, r = afstand satellit-jordmidtpunkt, 15 α = vinkel mellem antennens hovedstråleretning (H) og nord-syd-reguleringsaksen (N/S), 3 = geografisk bredde = elevationsvinkel for øst-vest- reguleringsaksem (O/W), γ = nord-syd-reguleringsaksens (N/S) retningsafvigelse 20 fra syd (nord), δ = elevationsvinkel for nord-syd-reguleringsaksen (N/S), λ = forskellen mellem de geografiske længder for jordradiostationen og satellitpositionen.wherein the oscillatory forces strike at the center of gravity S. The two perpendicular axes are arranged in accordance with the angular representations 2.1 to 2.3. The antenna C is mounted on the north-south control axis N / S so that the main beam direction 33 'with the north-south control axis forms the angle \ / (rR * cos3-cosX) 2 + R2 "sin2 3 α = arctang --- ---- 1-- R cos 3 · sin λ (The principal radiation direction H '' shown in Fig. 3 is not identical to the actual main radiation direction H in Fig. 1, since the angle α would then not be able to appear in natural size). - In the foregoing indications: R = Earth radius, r = satellite-earth center distance, 15 α = angle between the main beam direction of the antenna (H) and the north-south control axis (N / S), 3 = geographical latitude = elevation angle for east-west - control eczema (O / W), γ = north-south regulatory axis (N / S) direction deviation 20 from south (north), δ = elevation angle of north-south regulatory axis (N / S), λ = difference between geographical lengths for the ground radio station and satellite position.

Claims (3)

1. Antenne (C) til jordradiostationer, som er lejret svingeligt om to vinkelret på hinanden stående akser, hvoraf den ene (O/W) tjener til øst-vest-regulering og forløber parallelt med jordaksen, til indstilling efter 5 en geostationær jordsatellits varierende position, hvilken satellit med henblik på polarisationen af den fra satellitten udstrålede bølge er gireaksestabiliseret i forhold til dens positions geografiske længde, kendetegnet ved, at antennens (C) anden svingningsakse 10 (N/S) tjener til nord-syd-regulering og står vinkelret på det længdekredsplan, hvori satellitpositionen befinder sig.1. Antenna (C) for earth radio stations pivotally mounted about two perpendicular axes, one of which (O / W) serves for east-west regulation and runs parallel to the earth's axis, for tuning according to a geostationary earth satellite varying position which, for the purpose of polarization of the wave radiated from the satellite, is gear axis stabilized relative to the geographical length of its position, characterized in that the second pivot axis 10 (N / S) of the antenna (C) serves for north-south regulation and is perpendicular on the longitudinal plane in which the satellite position is located. 2. Antenne ifølge krav 1, kendetegnet ved, at nord-syd-reguleringsaksen (N/S) 15 a) med horisontalplanet E' på antennens (C) opstillingssted (E) danner en vinkel δ = arcsin (sin λ · cos β), b) hælder mod en retning, som afviger fra længdekredsen i retning mod ækvator med en vinkel γ = 20 arctang sfnp nemlig øst for satellitposi tionen mod øst og vest for satellitpositionen mod vest, og c) med antennens hovedstråleretning (H) danner vinklen α = arctang V(r-R-cos8 · cosX)2 + R2 · sin2!!An antenna according to claim 1, characterized in that the north-south control axis (N / S) 15 a) with the horizontal plane E 'at the position (E) of the antenna (C) forms an angle δ = arcsin (sin λ · cos β) , b) inclined towards a direction which deviates from the longitudinal circle towards the equator at an angle γ = 20 arctang sfnp namely east of the satellite position to the east and west of the satellite position to the west, and c) with the main beam direction of the antenna (H) forming the angle α = arctang V (rR-cos8 · cosX) 2 + R2 · sin2 !! 25 Rcostf * sinA hvor det i alle formler gælder, at R står for jordradius, r står for afstanden satellit-jordmidtpunkt, β står for den geografiske bredde for jordradiostationens opstillingssted, og λ står for den geo- 30 grafiske længdeforskel mellem jordradiostationens opstillingssted og den nominelle satellitposition, (fig. 2, fig. 3).25 Rcostf * sinA where in all formulas, R stands for earth radius, r stands for the satellite earth center distance, β stands for the geographical latitude of the earth radio station's location, and λ represents the geographical length difference between the location of the earth radio station and the nominal satellite position, (fig. 2, fig. 3). 3. Antenne ifølge krav 1 eller 2, kendetegnet ved, at øst-vest-reguleringsaksen (O/W) med vand- 35 ret danner en vinkel β, som svarer til opstillingsstedets (E) geografiske bredde og på den nordlige halvkugle hælder mod nord og på den sydlige halvkugle hælder mod syd.Antenna according to claim 1 or 2, characterized in that the east-west regulating axis (O / W) with the water forms an angle β corresponding to the geographical width of the installation site (E) and in the northern hemisphere inclined to the north and in the southern hemisphere slopes to the south.
DK551980A 1979-12-24 1980-12-23 ANTENNA FOR EARTH RADIO STATIONS DK154380C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792952317 DE2952317C2 (en) 1979-12-24 1979-12-24 Position-tracking antenna for earth radio stations on a geostationary earth satellite
DE2952317 1979-12-24

Publications (3)

Publication Number Publication Date
DK551980A DK551980A (en) 1981-06-25
DK154380B true DK154380B (en) 1988-11-07
DK154380C DK154380C (en) 1989-04-17

Family

ID=6089651

Family Applications (1)

Application Number Title Priority Date Filing Date
DK551980A DK154380C (en) 1979-12-24 1980-12-23 ANTENNA FOR EARTH RADIO STATIONS

Country Status (5)

Country Link
EP (1) EP0032227B1 (en)
JP (1) JPS5698947A (en)
DE (1) DE2952317C2 (en)
DK (1) DK154380C (en)
IE (1) IE50678B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3145207A1 (en) * 1981-02-28 1982-09-23 Siemens AG, 1000 Berlin und 8000 München TELECOMMUNICATION SATELLITE SYSTEM WITH GEOSTATIONAL POSITION LOOPS
EP0227930B1 (en) * 1985-11-15 1990-08-08 Siemens Aktiengesellschaft Supporting structure for a parabolic reflector antenna for a satellite communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126865A (en) * 1975-11-11 1978-11-21 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Satellite tracking dish antenna

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576281B1 (en) * 1970-06-08 1982-02-04
US3714660A (en) * 1970-07-23 1973-01-30 Itt Antenna mounting structure
DE2037840A1 (en) * 1970-07-30 1972-02-03 Rohde & Schwarz Antenna especially for satellite earth stations
FR2247829A1 (en) * 1973-10-16 1975-05-09 Alsthom Cgee Ground aerial for geostationary satellite - two jacks allow reflector to pivot about an upper ball and socket joint
FR2248623A1 (en) * 1973-10-17 1975-05-16 Alsthom Cgee Ground antenna for geostationary satellite - elevation of pyramidal frame is varied by adjusting length of rear leg
FR2252663B1 (en) * 1973-11-22 1978-12-01 Gueguen Michel
FR2349969A2 (en) * 1973-11-22 1977-11-25 Gueguen Michel Directional mount for telecommunication antenna - has antenna reflector frame mounted on double articulated joint and on spindle to give movement about three axes
JPS51117553A (en) * 1975-04-08 1976-10-15 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna equipment
JPS51130143A (en) * 1975-05-08 1976-11-12 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna unit
JPS5548562Y2 (en) * 1975-06-26 1980-11-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126865A (en) * 1975-11-11 1978-11-21 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Satellite tracking dish antenna

Also Published As

Publication number Publication date
JPS5698947A (en) 1981-08-08
DE2952317A1 (en) 1981-07-02
DK154380C (en) 1989-04-17
EP0032227B1 (en) 1984-03-14
DK551980A (en) 1981-06-25
EP0032227A1 (en) 1981-07-22
DE2952317C2 (en) 1984-03-08
IE802720L (en) 1981-06-24
IE50678B1 (en) 1986-06-11

Similar Documents

Publication Publication Date Title
US4126865A (en) Satellite tracking dish antenna
Walraven Calculating the position of the sun
US5657031A (en) Earth station antenna system
US4776540A (en) Method of orienting a synchronous satellite
Taff et al. Some comments on the astrometric properties of the Guide Star Catalog
CN105387874A (en) Ship-borne high-precision star sensor setting angle calibrating method
EP1783050B1 (en) Ultrahigh altitude sun synchronous orbit satellite system
US3838834A (en) Solar torque compensation for a satellite
DK154380B (en) ANTENNA FOR EARTH RADIO STATIONS
US11947023B2 (en) Tracking Non-Geo Synchronous Orbit satellites on orbiting planes of regular motion patterns
CN112833878B (en) Near-ground multi-source astronomical autonomous navigation method
RU2558959C2 (en) Method for monitoring collocation at geostationary orbit
Guiar et al. Antenna pointing systematic error model derivations
US6135389A (en) Subterranean target steering strategy
Grafarend et al. The generalized Laplace condition
Findlay Filled-aperture antennas for radio astronomy
US4821047A (en) Mount for satellite tracking devices
Linnes et al. Ground antenna for space communication system
Dunlop et al. The satellite tracking keyhole problem: a parallel mechanism mount solution
Matthews et al. Aperture synthesis observations of M17 at 5 GHz
Eagleson et al. Single GPS Antenna Attitude Vector Pair-NEOSSat Recovery
US2595205A (en) Device for automaticallly tracking heavenly bodies
von Hoerner Strong coma lobes from small gravitational deformations
Hu et al. Application of AsiaSat-3S satellite in CAPS system
JP3613282B2 (en) Radio wave lens antenna device