DK147833B - PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY - Google Patents

PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY Download PDF

Info

Publication number
DK147833B
DK147833B DK165281A DK165281A DK147833B DK 147833 B DK147833 B DK 147833B DK 165281 A DK165281 A DK 165281A DK 165281 A DK165281 A DK 165281A DK 147833 B DK147833 B DK 147833B
Authority
DK
Denmark
Prior art keywords
water
vapor
compressor
vacuum chamber
steam
Prior art date
Application number
DK165281A
Other languages
Danish (da)
Other versions
DK165281A (en
Inventor
Vagn Hovgaard Villadsen
Original Assignee
Sabroe & Co As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sabroe & Co As filed Critical Sabroe & Co As
Priority to DK165281A priority Critical patent/DK147833B/en
Priority to ZA822375A priority patent/ZA822375B/en
Priority to EP82901120A priority patent/EP0076294A1/en
Priority to PCT/DK1982/000030 priority patent/WO1982003679A1/en
Publication of DK165281A publication Critical patent/DK165281A/en
Publication of DK147833B publication Critical patent/DK147833B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/16Producing ice by partially evaporating water in a vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Description

147833147833

Den foreliggende opfindelse angår en fremgangsmåde til kontinuerlig fremstilling af løs og fortrinsvis tør is med stor kapacitet på den i indledningen til krav 1 angivne måde.The present invention relates to a process for the continuous production of bulk and preferably high capacity dry ice in the manner set forth in the preamble of claim 1.

Traditionelt er løs is eller skælis blevet fremstillet ved kontaktfrysning af vand på en tromleformet fryseflade, hvorfra den dannede is fjernes ved afskrabning eller afsmeltning, men denne fremstillingsmåde er uøkonomisk, når der skal arbejdes med stor produktionskapacitet. Jfr.Traditionally, loose ice or shell ice has been prepared by contact freezing water on a drum-shaped freezer surface, from which the ice formed is removed by scraping or melting, but this method of preparation is uneconomical when working with high production capacity. Cf..

DE patentskrift nr. 917 491 og indledningen til krav 1 kendes der en anden fremstillingsmåde, som netop ved stordrift er mere fordelagtig, idet man herved indsprøjter vand i et vacuumkammer, hvori vanddråberne fryser til is ved den optrædende voldsomme fordampning af vandet. Ispartiklerne kan på enkel måde udsluses fra vacuumkamme-ret, og.da de dannes frit i dette kammer, skal der ikke ofres energi på at løsgøre den fra en kontaktfryseflade.DE patent specification 917 491 and the preamble of claim 1, another method of manufacture is known, which is more advantageous in economies of scale, thereby injecting water into a vacuum chamber in which the water droplets freeze to ice in the event of violent evaporation of the water. The ice particles can be easily ejected from the vacuum chamber, and as they form freely in this chamber, no energy should be sacrificed to detach it from a contact freezing surface.

For den kontinuerlige drift er det nødvendigt, at den udviklede vanddamp løbende fjernes fra vacuumkammeret, nemlig for opretholdelse af et meget lavt tryk i dette kammer, og dette sker ved udsugning af dampen gennem en vanddampkompressor, der principielt skal aflevere dampen til den omgivende atmosfære ved sædvanligt atmosfæretryk.For continuous operation, it is necessary that the evolved steam vapor is continuously removed from the vacuum chamber, namely to maintain a very low pressure in this chamber, and this is done by extracting the steam through a water vapor compressor, which in principle must deliver the steam to the ambient atmosphere at usual atmospheric pressure.

En aflevering af dampen til atmosfæren kræver på bekostelig måde en meget høj grad af kompression af dampen fra vacuumkammeret, og jfr. nævnte DE patentskrift er det allerede indset, at en billigere løsning er opnåelig ved, at dampen kun komprimeres til et mellemtrin, hvorefter den sidste del af den nødvendige dampfortætning udvirkes ved, at den mellemkomprimerede damp føres til en dampkondensator, som kan udvirke en slutfortætning af dampen i form af en kondensering af denne ved varmeveksling med kølevand, der stort set har omgivelsernes naturlige temperatur. Herved kan den benyttede vanddampkompressor billiggøres, fordi den kun skal kunne komprimere dampen til det nævnte mellemtrin.Delivery of the steam to the atmosphere requires a very high degree of compression of the steam from the vacuum chamber, and cf. said DE patent specification, it has already been realized that a cheaper solution is obtainable by compressing the steam only to an intermediate stage, after which the last part of the necessary vapor condensation is effected by passing the intercompressed vapor to a vapor capacitor which can produce a final condensation of the steam in the form of a condensation thereof by heat exchange with cooling water, which has largely the natural temperature of the surroundings. This allows the water vapor compressor used to be cheapened because it must only be able to compress the steam to the said intermediate stage.

147833 2147833 2

Imidlertid er der herved fortsat tale om et betydeligt komprimeringsarbejde, som i praksis skal udføres af en mangetrinskompressor; således tales der i nævnte DE patentskrift om en fjortentrins aksialkompressor, som er bekostelig både i anskaffelse og drift. JHowever, there is still considerable compression work to be done in practice by a multistage compressor; Thus, in the said DE patent, a four-stage axial compressor is mentioned, which is expensive in both procurement and operation. J

Den foreliggende opfindelse bygger på den erkendelse, at en yderligere billiggjort isfremstilling vil muliggøres ved, at den benyttede vanddampkompressor kun skal være indrettet til at komprimere dampen gennem et enkelt eller ganske få kompressionstrin, medens man så til gengæld udvirker den nævnte kondensation af dampen ved en temperatur, som er væsentligt lavere end omgivelsernes sædvanlige temperatur, idet man herved benytter et separat køleanlæg til aktiv køling af kondensatoren. Man erstatter således et stort antal kompressortrin med et køleanlæg, men dette anlæg kan være et relativt billigt standardanlæg, medens de nævnte kompressortrin ville repræsentere en langt dyrere udrustning. Det er her væsentligt, at det netop er de trykmæssigt øverste kompressionstrin, som kan spares, da disse er væsentligt dyrere end det eller de laveste kompressionstrin, som bibeholdes, idet de sidstnævnte kun skal arbejde med damp under meget lave tryk, dvs. med ringe gastæthed, hvilket betinger en simpel kompressorkonstruktion af centrifugaltypen .The present invention is based on the realization that a further low-cost ice cream production will be made possible by the fact that the water vapor compressor used must be adapted to compress the steam only through a single or very few compression steps, while in turn effecting the said condensation of the steam at a temperature which is substantially lower than the usual ambient temperature, using a separate cooling system for active cooling of the capacitor. Thus, a large number of compressor stages are replaced with a cooling system, but this system may be a relatively inexpensive standard system, while the said compressor stages would represent a much more expensive equipment. It is essential here that it is precisely the highest compressional steps which can be saved, since these are considerably more expensive than the lowest compression stage or stages which are maintained, the latter having to work only with steam under very low pressures, ie. with low gas density, which requires a simple centrifugal type compressor design.

Det er for opfindelsen væsentligt, at den fra vacuumkamme-ret afsugede vanddamp komprimeres op til et sådant tryk, at dampen derefter kan kondenseres ved en temperatur lidt over frysepunktet for det kondenserede vand, da der ellers ville opstå betydelige problemer m.h.t. isdannelse i kondensatoren. Dette betyder på den ene side, at man ikke helt kan undlade en dampkomprimering, men på den anden side dels at denne komprimering kun behøver at være beskeden og dels at kondenseringen af dampen kan foregå ved en temperatur ved eller lige over vandets frysepunkt, hvilket betinger en høj virkningsgrad af det køleanlæg, som 147833 3 køler kondensatoren.It is essential for the invention that the water vapor extracted from the vacuum chamber be compressed up to such a pressure that the vapor can then be condensed at a temperature slightly above the freezing point of the condensed water, since otherwise significant problems would arise. ice formation in the capacitor. This means, on the one hand, that vapor compression cannot be entirely avoided, but on the other hand that this compression only needs to be modest and partly that the condensation of the vapor can take place at a temperature at or just above the freezing point of the water, which requires a high efficiency of the cooling system which cools the capacitor.

I overensstemmelse med disse betragtninger er fremgangsmåden ifølge opfindelsen ejendommelig ved, at vanddampen komprimeres gennem kun et eller højst ganske få kompressionstrin, fortrinsvis til 5-10 mm Hg, og at den aktivt kølede kondensator har en arbejdstemperatur ved eller umiddelbart over vandets frysepunkt, svarende til det kun let forøgede damptryk i afgangen fra kompressoren.In accordance with these considerations, the process of the invention is characterized in that the water vapor is compressed through only one or a very few compression steps, preferably to 5-10 mm Hg, and that the actively cooled condenser has a working temperature at or immediately above the freezing point of the water, corresponding to it only slightly increased vapor pressure in the outlet of the compressor.

Opfindelsen omfatter tillige det i krav 2 angivne anlæg til udøvelse af denne fremgangsmåde. Af de forannævnte grunde vil dette anlæg udmærke sig ved at være lige så effektivt, men mærkbart billigere end kendte anlæg, hvori vanddampen komprimeres til et højt tryk gennem mange kompressionstrin.The invention also includes the apparatus as claimed in claim 2 for carrying out this method. For the aforementioned reasons, this plant will be distinguished by being just as effective, but noticeably cheaper than known plants, in which the water vapor is compressed to a high pressure through many compression stages.

Opfindelsen forklares i det følgende nærmere under henvisning til tegningen, der skamatisk viser et eksempel på et anlæg ifølge opfindelsen.The invention will now be explained in more detail with reference to the accompanying drawing, which schematically shows an example of a plant according to the invention.

Det viste anlæg omfatter et varmeisoleret vacuumkammer 2 med en bundudføringssluse 4. En lille vacuumpumpe 6 har til opgave at kompensere for det vacuumtab, som en materialeudslusning uundgåeligt vil medføre, ligesom pumpen kan benyttes til at opbygge det fornødne vacuum ved start af anlægget. I midten af kammeret 2 er anbragt en vandindsprøjtningsdyse 8, der forsynes fra et tilgangsrør 10 fra en vandforsyningskilde 12 gennem en aflufterenhed 40.The system shown comprises a heat-insulated vacuum chamber 2 with a bottom discharge sluice 4. A small vacuum pump 6 has the task of compensating for the loss of vacuum that a material quench will inevitably cause, and the pump can be used to build the necessary vacuum at the start of the plant. In the center of chamber 2 is arranged a water injection nozzle 8 provided from an inlet pipe 10 from a water supply source 12 through a vent unit 40.

I højre side af tegningen er vist et hjælpekøleanlæg, der udnyttes til at køle vacuumkammeret og eventuelt til at køle tilgangsvandet til dysen 8, idet vandet passerer en køler 14.In the right side of the drawing is shown an auxiliary cooling system which is utilized to cool the vacuum chamber and optionally to cool the inlet water to the nozzle 8 as the water passes through a cooler 14.

I toppen af vacuumkammeret 2 er anbragt en vanddampkompressor 16, som med stor kapacitet kan opsuge vanddamp fra kammeret 2 og trykke dampstrømmen ind i en varmeisoleret ledning 18, der ender i en kondensator 20, hvis køleflade 147833 4 22 udgør en fordamperenhed i et køleanlæg vist i tegningens venstre side. Dette anlæg omfatter en kølekompressor 24, en kondensator 26 og en fordamperenhed i form af den nævnte kondensator 20, der udgør en fordamperkondensator i forbindelse med en tilhørende væskeudskiller 28 for kølemidlet. På figuren er vist en fordamperenhed med selvcirkulation af kølemidlet, men der kan naturligvis også anvendes andre fordampertyper. Kølekompressorens sugeside er forbundet til toppen af beholderen 28. Køleanlægget er indrettet til at arbejde med en fordampertemperatur på ca. 0°C, medens det i højre side viste hjælpekøleanlæg er beregnet til at frembringe lavere temperaturer.At the top of the vacuum chamber 2 is arranged a water vapor compressor 16, which can absorb large steam water vapor from the chamber 2 and push the vapor stream into a heat insulated conduit 18 ending in a condenser 20, the cooling surface of which forms an evaporator unit in a refrigeration system shown. in the left side of the drawing. This system comprises a cooling compressor 24, a capacitor 26 and an evaporator unit in the form of said capacitor 20, which constitutes an evaporator capacitor in connection with an associated liquid separator 28 for the refrigerant. The figure shows an evaporator unit with self-circulation of the refrigerant, but other evaporator types can of course also be used. The suction side of the cooling compressor is connected to the top of the container 28. The cooling system is arranged to work with an evaporator temperature of approx. 0 ° C, while the auxiliary refrigeration system shown on the right is intended to produce lower temperatures.

Kondensatoren 20 har et bundudløb 34 for den kondenserede vanddamp, og dette vand føres gennem en trykpumpe 36 og en ledning 38 tilbage til vandtilgangsrøret 10 eller ud til brug for andet formål igennem en ledning 39.The capacitor 20 has a bottom outlet 34 for the condensed water vapor, and this water is fed through a pressure pump 36 and a conduit 38 back to the water supply pipe 10 or out for other purposes through a conduit 39.

... Før starten opbygges der i det viste varmeisolerende sy stem 2,18,20 et vacuum på ca. 2,5 mm Hg ved hjælp af va-cuumpumpen 6 eller på anden måde. Derefter startes kompressoren 16, og der lukkes op for vandtilgangen til sprededysen 8 efter at både hoved- og hjælpekøleanlægget er startet. *... Before the start, a vacuum of approx. 2.5 mm Hg by means of the vacuum pump 6 or otherwise. The compressor 16 is then started and the water supply to the nozzle 8 is opened after both the main and auxiliary cooling system have been started. *

Det fra dysen 8 udsprøjtede vand vil undergå et pludseligt trykfald til de nævnte ca. 2,5 mm Hg, hvorved vandet koger op og ved den hermed forbundne kraftige fordampning antager en temperatur på ca. -7°C, således at det resterende frie vand i vandtågen eller -dråberne meget hurtigt vil fryse til is, dvs. blive til sne eller ispartikler. Af den indsprøjtede vandmængde vil ca.The water ejected from the nozzle 8 will undergo a sudden pressure drop to the said approx. 2.5 mm Hg, whereby the water boils up and, with the associated vaporisation associated with it, assumes a temperature of approx. -7 ° C so that the remaining free water in the water mist or droplets will very quickly freeze to ice, ie. turn into snow or ice particles. Of the injected water volume, approx.

6/7 fryse til sne eller is, medens ca. 1/7 udskilles som vanddamp. Frysningen vil foregå næsten momentant, således at der f.eks. ikke bliver tale om, at ikke-frosset vand, eventuelt i underafkølet tilstand, når ud til væggene af vacuumkammeret inden isdannelsen har fundet 147833 5 sted, dvs. der opbygges ikke noget fast islag på disse vægge.6/7 freeze for snow or ice, while approx. 1/7 is excreted as water vapor. The freezing will take place almost instantaneously, so that e.g. it is not said that unrefrigerated water, possibly in the undercooled state, reaches the walls of the vacuum chamber before the ice formation has taken place, ie. no solid ice layer builds up on these walls.

Den dannede sne- eller ispartikelmasse udledes fra vacuum-kammeret gennem bundslusen 4 til en egnet modtageindretning 34, og den udviklede vanddamp udsuges kontinuerligt ved hjælp af kompressoren 16. Denne er indrettet til at frembringe en trykstigning af vanddampen fra nævnte ca.The snow or ice particle mass formed is discharged from the vacuum chamber through the bottom door 4 to a suitable receiving device 34, and the developed water vapor is continuously extracted by means of the compressor 16. This is arranged to produce a pressure rise of the water vapor from said ca.

2,5 mm Hg til ca. 6 mm Hg i ledningen 18, hvilket svarer til en temperaturstigning fra ca. -7°C til ca. +5°C.2.5 mm Hg to approx. 6 mm Hg in line 18, which corresponds to a temperature rise of approx. -7 ° C to approx. + 5 ° C.

Som nævnt arbejdes der i kondensatoren 20 med en indven- · dig fordampertemperatur på ca. 0°, og ved en udvendig kondensering af vanddampen ved ca. 5°C svarende til et tryk på ca. 6 mm Hg undgår man frysning af den kondenserede vanddamp. Det kondenserede vand vil udgøre et egentligt destillat og kan eventuelt efter aflevering fra trykpumpen 36 opsamles til forhandling som destilleret vand, dog med den begrænsning, at vandet ikke har været opvarmet til pasteuriseringstemperatur og derfor ikke tillige kan betegnes som værende sterilt. Det vil dog være udmærket anvendeligt til mange tekniske formål, omend det eventuelt afleveres i så store mængder, at der næppe er tilsvarende afsætning for det. Vandet kan derfor eventuelt betragtes som rent spildevand, eller det kan som vist føres tilbage til vandindgangen 10 til dysen 8, hvorved det vil være fordelagtigt, at dets temperatur normalt vil være lavere end for det vand, der tilføres fra tilgangen 12.As mentioned, the capacitor 20 is operated with an internal evaporator temperature of approx. At an external condensation of the water vapor at approx. 5 ° C corresponding to a pressure of approx. 6 mm Hg avoids freezing of the condensed water vapor. The condensed water will constitute an actual distillate and may, after delivery from the pressure pump 36, be collected for negotiation as distilled water, however, with the restriction that the water has not been heated to pasteurization temperature and therefore cannot be described as sterile. However, it will be very useful for many technical purposes, although it may be delivered in such large quantities that there is hardly any corresponding sales for it. Therefore, the water may optionally be regarded as pure wastewater, or it may be returned to the water inlet 10 to the nozzle 8, whereby it will be advantageous that its temperature will normally be lower than that of the water supplied from the inlet 12.

Det skal dog bemærkes, at det for anlæggets driftsøkonomi egentlig er af mindre betydning, om tilgangsvandet er særligt koldt, fordi kuldedannelsen ved vandets fordampning i vacuumkammeret er meget større end den varmemængde, som repræsenteres ved en let forhøjet eller formindsket temperatur af eller i selve tilgangsvandet.However, it should be noted that for the operating economy of the plant, it is really less important if the inlet water is particularly cold, because the cold formation by the evaporation of the water in the vacuum chamber is much greater than the heat represented by a slightly elevated or reduced temperature of or in the inlet water itself. .

Det på tegningen illustrerede anlæg er beregnet til at 147833 6 fremstille løs is med en kapacitet på ca. 15 tons i timen. Om ønsket kan den i kondensatoren 26 udviklede varme anvendes til opvarmningsformål, idet der vil produceres betydelige mængder af varme.The system illustrated in the drawing is intended to produce loose ice with a capacity of approx. 15 tons per hour. If desired, the heat generated in the capacitor 26 can be used for heating purposes, since considerable amounts of heat will be produced.

Det skal slutteligt bemærkes, at det er kendt at fremstille ferskvand ud fra saltvand ved en lignende metode, hvor saltvandet indsprøjtes i et vacuumkammer, hvori der dannes en blanding af is og koncentreret saltvand, medens vanddampen kontinuerligt udledes gennem en kompressor netop til kondensering til ferskvand.Finally, it should be noted that it is known to produce fresh water from saline by a similar method in which the saline is injected into a vacuum chamber in which a mixture of ice and concentrated saline is formed, while the water vapor is continuously discharged through a fresh water condensing compressor. .

Claims (2)

147833 PATENTKRAV ί147833 PATENT REQUIREMENT ί 1. Fremgangsmåde til kontinuerlig.fremstilling af løs og fortrinsvis tør is med stor kapacitet ved, at man indsprøjter vand i et vacuumkammer (2), hvori der hersker så lavt et tryk, at vandet under kraftig fordampning fryser, inden det når ud til kammerets vægge, idet den udviklede vanddamp kontinuerligt fjernes fra vacuumkamme-ret ved hjælp af en vanddampkompressor (16) af centrifugaltypen, som bringer vanddampstrømmen op på et tryk- og temperaturniveau, som tillader dampen at kondenseres i en ekstern, aktivt kølet kondensator (20) , hvorfra den udsugede damp afledes i form af vand, medens den i vacuumkam-meret (2) dannede is fortrinsvis kontinuerligt udsluses fra dette kammer, kendetegnet ved, at vanddampen komprimeres genem kun ét eller højst ganske få kompressionstrin, fortrinsvis til 5-7 mm Hg, og at den aktivt kølede kondensator (20) har en arbejdstemperatur ved eller umiddelbart over vandets frysepunkt, svarende til det kun let forøgede damptryk i afgangen fra kompressoren (16).A method of continuously producing loose and preferably high-capacity dry ice by injecting water into a vacuum chamber (2) under which there is a pressure so low that the water freezes under vaporization before reaching the chamber. walls, the continuous vapor being continuously removed from the vacuum chamber by means of a centrifugal-type water vapor compressor (16) which brings the vapor stream to a pressure and temperature level which allows the vapor to be condensed in an external, actively cooled condenser (20), from which the extracted steam is discharged in the form of water, while the ice formed in the vacuum chamber (2) is preferably continuously discharged from this chamber, characterized in that the water vapor is compressed through only one or at most a few compression steps, preferably to 5-7 mm Hg. and that the actively cooled condenser (20) has a working temperature at or immediately above the freezing point of the water, corresponding to the only slightly increased vapor pressure in the outlet of the compressor (16). 2. Anlæg til udøvelse af fremgangsmåden ifølge krav 1, omfattende et varmeisoleret vacuumkammer (2) med en indre udsprøjtningsdyse (8) for vand, en nedre udslusningsindretning (4) for is eller sne dannet i kammeret (2) og en øvre udsugningsåbning for vanddamp, hvilken åbning er tilsluttet sugesiden af en vanddampkompressor (16) af centrifugaltypen, hvis trykside er tilsluttet en kanal (18), som fører frem til en dampkondensator (20), der har et kondensatafløb (34), kendetegnet ved, at vanddampkompressoren er udformet med kun et enkelt eller ganske få kompressionstrin, og at dampkondensatoren (20) indeholder køleelementer (22) , der indgår som fordampere i et køleanlæg med separat kondensator (26), idet dette anlæg er indrettet til at bibringe dampkondensatoren (20) en arbejdstemperatur, som er tilstrækkeligA system for carrying out the method according to claim 1, comprising a heat-insulated vacuum chamber (2) with an internal water spray nozzle (8), a lower ice or snow quenching device (4) formed in the chamber (2) and an upper water vapor suction opening. , which opening is connected to the suction side of a centrifugal-type water vapor compressor (16), the pressure side of which is connected to a channel (18) which leads to a steam capacitor (20) having a condensate outlet (34), characterized in that the water vapor compressor is designed with only a single or very few compression steps, and the steam capacitor (20) contains cooling elements (22) which act as evaporators in a cooling system with separate capacitor (26), said system being adapted to impart a working temperature to the steam capacitor (20), which is sufficient
DK165281A 1981-04-13 1981-04-13 PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY DK147833B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK165281A DK147833B (en) 1981-04-13 1981-04-13 PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY
ZA822375A ZA822375B (en) 1981-04-13 1982-04-07 A method and a system for production of loose ice at large capacity
EP82901120A EP0076294A1 (en) 1981-04-13 1982-04-13 A method and a system for production of loose ice at large capacity
PCT/DK1982/000030 WO1982003679A1 (en) 1981-04-13 1982-04-13 A method and a system for production of loose ice at large capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK165281 1981-04-13
DK165281A DK147833B (en) 1981-04-13 1981-04-13 PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY

Publications (2)

Publication Number Publication Date
DK165281A DK165281A (en) 1982-10-14
DK147833B true DK147833B (en) 1984-12-17

Family

ID=8106907

Family Applications (1)

Application Number Title Priority Date Filing Date
DK165281A DK147833B (en) 1981-04-13 1981-04-13 PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY

Country Status (4)

Country Link
EP (1) EP0076294A1 (en)
DK (1) DK147833B (en)
WO (1) WO1982003679A1 (en)
ZA (1) ZA822375B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200922A (en) * 1982-03-05 1983-10-03 Tno HEAT PUMP.
DK311883A (en) * 1983-07-06 1985-01-07 Vagn Hovgaard Villadsen PROCEDURE AND ESTABLISHMENT FOR THE BUILDING OF A LATER FOR LATER COOLING TO AN EXTERNAL COOLING CIRCUIT
NL1010857C2 (en) * 1998-12-21 2000-06-23 Doomernik Bv Method and device for making a water-ice mixture.
CA2327994A1 (en) 2000-12-08 2002-06-08 Robert H. Mcleod Hydraulic drive line for pull-type crop harvester
NL1017722C2 (en) * 2001-03-28 2002-10-01 Solutherm B V Method and device for removing an ice / water mixture from a container via a drain.
ES2262454B1 (en) * 2006-07-20 2007-12-16 Universidad Politecnica De Madrid PROCEDURE FOR OBTAINING LIQUID ICE.
CN104748452B (en) * 2015-03-27 2020-06-19 中国建筑上海设计研究院有限公司 Multi-working-condition air conditioner water chilling unit capable of simultaneously preparing cold water with different temperatures
CN106969519B (en) * 2017-03-07 2019-08-02 广东美芝制冷设备有限公司 Refrigerating plant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1344502A (en) * 1919-06-10 1920-06-22 Willburn C Grant Ice-machine
US1976204A (en) * 1932-01-08 1934-10-09 Standard Oil Co Process of making ice
DE917491C (en) * 1949-09-22 1954-09-06 Max Adolf Mueller Dipl Ing Vacuum pump, in particular for systems for the production of artificial ice
NL288322A (en) * 1962-05-16
FR2228203A1 (en) * 1973-05-04 1974-11-29 Gaz De France Solid carbon dioxide mfd from liquified natural gas - in a process which requires no outside energy supply

Also Published As

Publication number Publication date
ZA822375B (en) 1983-02-23
DK165281A (en) 1982-10-14
WO1982003679A1 (en) 1982-10-28
EP0076294A1 (en) 1983-04-13

Similar Documents

Publication Publication Date Title
CN105043014B (en) Denitrogenated using integrated in the liquefied natural gas (LNG) production in special fill-before-fire loop
US2738658A (en) Separation of gas by solidification
US4699642A (en) Purification of carbon dioxide for use in brewing
NO141385B (en) PROCEDURE FOR PRESERVATION OF NATURAL GAS
JP2008531965A (en) Small heat pump using water as refrigerant
DK147833B (en) PROCEDURE AND PLANT FOR THE MANUFACTURE OF LOOSE ICE WITH LARGE CAPACITY
RU2695209C1 (en) Apparatus for regenerating an aqueous solution of methanol
CN107024045A (en) Condenser-reboiler system and its operating method
US20220128272A1 (en) Heating and refrigeration system
US2570212A (en) Milk evaporation process
CN103109145B (en) For compressing the method and apparatus with cooling-air
US4845954A (en) Method and device for the manufacture of an ice slurry
US3616833A (en) Evaporation of liquor
DE3174599D1 (en) Method of refrigeration and a refrigeration system
US4735641A (en) Apparatus and method of producing refrigeration as ice at the triple point of water
KR100596157B1 (en) Refrigerator using mixed refrigerant with carbon dioxide
US1755810A (en) Method of refrigeration
US1735995A (en) Refrigerating system
CN113518656B (en) Method and device for separating a gas mixture comprising diborane and hydrogen
US1889191A (en) Refrigerating system
US2062537A (en) Method of separating gases by freezing
US2570210A (en) Evaporation method and apparatus
US1483990A (en) Refrigerating machine
GB686375A (en) Improvements in or relating to a process and apparatus for evaporating liquids
SU939895A1 (en) Installation for producing liquid and gaseous carbon dioxide

Legal Events

Date Code Title Description
PTS Application withdrawn