DK144801B - PROCEDURE FOR MANUFACTURING INORGANIC FIBERS - Google Patents

PROCEDURE FOR MANUFACTURING INORGANIC FIBERS Download PDF

Info

Publication number
DK144801B
DK144801B DK301771AA DK301771A DK144801B DK 144801 B DK144801 B DK 144801B DK 301771A A DK301771A A DK 301771AA DK 301771 A DK301771 A DK 301771A DK 144801 B DK144801 B DK 144801B
Authority
DK
Denmark
Prior art keywords
fibers
solution
process according
fiber
metal compound
Prior art date
Application number
DK301771AA
Other languages
Danish (da)
Other versions
DK144801C (en
Inventor
J D Birchall
J E Cassidy
M J Morton
Original Assignee
Ici Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB436971*[A external-priority patent/GB1360197A/en
Application filed by Ici Ltd filed Critical Ici Ltd
Publication of DK144801B publication Critical patent/DK144801B/en
Application granted granted Critical
Publication of DK144801C publication Critical patent/DK144801C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/78Preparation by contact processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Description

146801146801

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af uorganiske fibre, som omfatter fiberdannelse ved ekstru-dering ind i en gasstrøm af en blanding med en viskositet større end 1 poise, og som omfatter et polært opløsningsmiddel og en metalforbindelse valgt blandt kloriderne, sulfaterne, acetaterne, formi-aterne,hydroksyderne og nitraterne af aluminium, jern, zirkon, titan, beryllium, krom,· magnium, thorium, uran, yttrium, nikkel, vana-din, mangan, molybdæn, wolfram og kobolt samt 0,1-10 vægt% beregnet på den samlede vægt af blandingen af en organisk polymer, som har en 3 7 molekylvægt i området 10 -10 , idet både metalforbindelsen og den organiske polymer er opløselige i det nævnte opløsningsmiddel, eller også danner metalforbindelsen en sol i opløsningsmidlet, idet vægtandelen af den organiske polymer er mindre end 10% af vægtandelen af metalforbindelsen, fjernelse af i det mindste en del af opløsningsmidlet fra de fremstillede fibre og opvarmning af fibrene for at dekomponere metalforbindelsen og/eller den organiske polymer.The present invention relates to a process for the preparation of inorganic fibers which comprises fiber formation by extrusion into a gas stream of a viscosity mixture greater than 1 poise and comprising a polar solvent and a metal compound selected from the chlorides, sulfates, acetates , the formants, hydroxides and nitrates of aluminum, iron, zircon, titanium, beryllium, chromium, magnesium, thorium, uranium, yttrium, nickel, vanadium, manganese, molybdenum, tungsten and cobalt, and 0.1-10 weight % based on the total weight of the mixture of an organic polymer having a molecular weight in the range of 10 to 10, with both the metal compound and the organic polymer being soluble in said solvent, or the metal compound forming a sol in the solvent, the proportion by weight of the organic polymer is less than 10% by weight of the metal compound, removing at least a portion of the solvent from the fibers produced and heating the fibers for a t decompose the metal compound and / or the organic polymer.

Pra beskrivelserne til fransk patent nr. 1.316.535 og britisk patent nr. 1.030.232 kendes fremgangsmåder til fremstilling af uor- 2 146301 ganiske fibre ved ekstrudering ind i en gasstrøm af et fiberdannende materiale af passende viskositet. Ved disse kendte fremgangsmåder kan der ikke opnås fibre af ensartet og fri diameter, idet metoderne ikke muliggør at trække fibrene ned til en meget fri diameter under samtidig kontrol med fiberdiametrene. Endvidere har de kendte fremgangsmåder den ulempe, at der samtidig dannes partikler eller hagl af materialet. Disse ulemper afhjælpes ved fremgangsmåden ifølge opfindelsen.From the disclosures of French Patent No. 1,316,535 and British Patent No. 1,030,232, processes for making inorganic fibers are known by extrusion into a gas stream of a fiber-forming material of appropriate viscosity. By these known methods, fibers of uniform and free diameter cannot be obtained, as the methods do not allow the fibers to be pulled down to a very free diameter under simultaneous control of the fiber diameters. Furthermore, the known methods have the disadvantage of simultaneously forming particles or hail of the material. These disadvantages are overcome by the method according to the invention.

Ifølge opfindelsen er fremgangsmåden ejendommelig ved, at ekstruderingen udføres gennem en eller flere åbninger ind i mindst én gasstrøm, som har en komponent med stor hastighed i det ekstruderede materiales bevægelsesretning, idet der eventuelt anvendes en fiberdannende blanding, som indeholder et katalysatormateriale eller et forstadium til dette.According to the invention, the method is characterized in that the extrusion is carried out through one or more openings into at least one gas stream having a high speed component in the direction of movement of the extruded material, optionally using a fiber-forming mixture containing a catalyst material or a precursor to this.

Det skal forstås, at metalforbindelsen er opløselig i opløsningsmidlet, når den er i stand til at danne en ægte opløsning eller en kolloid opløsning (en sol) med opløsningsmidlet.It is to be understood that the metal compound is soluble in the solvent when capable of forming a true solution or a colloidal solution (a sol) with the solvent.

Den organiske polymer udgør mindre end 10 vægt% af metalforbindelsen, f.eks. fra 2 til 8 vægt% eller i nogle udførelsesformer fra 0,1 til 2 vægt%.The organic polymer constitutes less than 10% by weight of the metal compound, e.g. from 2 to 8% by weight or in some embodiments from 0.1 to 2% by weight.

Metalforbindelsen er fortrinsvis en vandopløselig metalforbindelse, f.eks. et metalsalt (som kan være et basisk salt), der giver en viskos opløsning eller sol i vand. Særligt foretrukket er metalsalte, som kan danne et ildfast oksyd, især aluminiumoksyklorid, basisk aluminium -acetat, basisk aluminiumformiat, zirkonoksyklorid, basisk zirkonacetat, basisk zirkonnitrat eller basisk zirkonformiat, blandinger deraf eller blandede salte deraf.The metal compound is preferably a water-soluble metal compound, e.g. a metal salt (which may be a basic salt) which gives a viscous solution or sol in water. Particularly preferred are metal salts which can form a refractory oxide, especially aluminum oxychloride, basic aluminum acetate, basic aluminum formate, zirconium oxychloride, basic zirconium acetate, basic zirconium nitrate or basic zirconformate, mixtures thereof or mixed salts thereof.

Opløsningsmidlet er et polært opløsningsmiddel, f.eks. en alkohol, især methanol eller ætanol, iseddike, dimethylsul&ksyd eller di= methylformamid. Det er særligt bekvemt at anvende vand som opløsningsmiddel. Blandinger af opløsningsmidler kan anvendes.The solvent is a polar solvent, e.g. an alcohol, especially methanol or ethanol, glacial acetic acid, dimethyl sulfide or di-methylformamide. The use of water as a solvent is particularly convenient. Mixtures of solvents may be used.

Den organiske polymer er fortrinsvis en vandopløselig, organisk polymer, hensigtsmæssigt en ikke-ionisk, vandopløselig, organisk polymer, 3 146801 en polyhydroksyleret, organisk polymer eller en naturlig vandopløselig gummi. Den organiske polymer er fortrinsvis termisk stabil under betingelserne for fiberdannelsen, f.eks. fra omgivelsernes temperatur til indenfor flere grader fra opløsningsmidlets kogepunkt. Eksempler på foretrukne organiske polymere er: delvis hydrolyseret polyvinylacetat polyvinylalkohol polyakrylamid og delvis hydrolyseret polyakrylamid polyakrylsyrer polyætylenoksyder karboksyalkylcelluloser, f.eks. karboksymetylcellulose hydroksyalkylcelluloser, f.eks. hydroksymetylcellulose alkylcelluloser, f.eks. metylcellulose hydrolyserede stivelser dextraner guargummi polyvinylpyrrolidoner polyætylenglykoler alginsyrer polyisobutylenderivater polyurethaner, og estere , copolymere eller blandinger deraf.The organic polymer is preferably a water-soluble organic polymer, suitably a nonionic, water-soluble organic polymer, a polyhydroxylated organic polymer or a natural water-soluble rubber. The organic polymer is preferably thermally stable under the conditions of fiber formation, e.g. from ambient temperature to within several degrees from the boiling point of the solvent. Examples of preferred organic polymers are: partially hydrolyzed polyvinyl acetate polyvinyl alcohol polyacrylamide and partially hydrolyzed polyacrylamide polyacrylic acids polyethylene oxides carboxyalkyl celluloses, e.g. carboxymethylcellulose hydroxyalkylcelluloses, e.g. hydroxymethyl cellulose alkyl celluloses, e.g. methyl cellulose hydrolyzed starches dextrans guar gum polyvinylpyrrolidones polyethylene glycols alginic acids polyisobutylene derivatives polyurethanes, and esters, copolymers or mixtures thereof.

De mest foretrukne organiske polymere er ligekædede organiske polymere med flere hydroxygrupper, f.eks. polyvinylalkohol, delvis hydrolyseret polyvinylacetat, polyætylenoksyd eller polyætylenglykol.The most preferred organic polymers are straight chain organic polymers having several hydroxy groups, e.g. polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, polyethylene oxide or polyethylene glycol.

33

Molekylvægten af den organiske polymer ligger i intervallet 10 til 7 10 , fortrinsvis så højt som er foreneligt med den organiske polymeres evne til at opløses i opløsningsmidlet, der anvendes ved fremgangsmåden ifølge opfindelsen. F.eks. foretrækkes det for polyvinyl= alkohol eller delvis hydrolyseret polyvinylacetat at have en middelstor eller høj molekylvægt, for polyætylenoksyd at have en molekylvægt på 104 til 106 og for de polymere afledt af cellulose at have en molekylvægt på 10.000 til 50.000.The molecular weight of the organic polymer is in the range of 10 to 710, preferably as high as is compatible with the ability of the organic polymer to dissolve in the solvent used in the process of the invention. Eg. for polyvinyl = alcohol or partially hydrolyzed polyvinyl acetate it is preferred to have a medium or high molecular weight, for polyethylene oxide to have a molecular weight of 104 to 106 and for the polymers derived from cellulose to have a molecular weight of 10,000 to 50,000.

Det foretrækkes, at koncentrationen af organisk polymer i den fiber 4 144801 dannende blanding er fra 0,1 til 2 vægt%.It is preferred that the concentration of organic polymer in the fiber forming mixture is from 0.1 to 2% by weight.

Det foretrækkes, at der kun sker ringe eller ingen kemisk reaktion mellem metalforbindelsen og den organiske polymer i den fiberdannende blanding.It is preferred that there is little or no chemical reaction between the metal compound and the organic polymer in the fiber-forming mixture.

Viskositeten af den fiberdannende blanding skal være over 1 poise. Hensigtsmæssigt er viskositeten i intervallet 1-3000 poise, fortrinsvis 100-1000 poise.The viscosity of the fiber-forming mixture should be over 1 poise. Conveniently, the viscosity is in the range of 1-3000 poise, preferably 100-1000 poise.

Fiberdannelse ved ekstrudering omfatter udpresning af den fiberdannende blanding gennem en eller flere åbninger ind i mindst én gasstrøm, der har en komponent med høj hastighed i bevægelsesretningen af den ekstruderede blanding. Dimensionerne og formen af åbningen kan variere meget. Det foretrækkes at anvende en åbning, som har mindst én dimension større end 50 mikron og mindre end 500 mikron. Gasstrømmen er fortrinsvis luft, fortrinsvis luft ved omgivelsernes temperatur. Det er bekvemt at anvende to gasstrømme, der mødes ved eller nær det punkt, hvor blandingen ekstruderes af åbningen. Fortrinsvis er vinklen mellem de sammenstødende gasstrømme fra 30-60°.Extrusion fiber formation comprises extruding the fiber forming mixture through one or more openings into at least one gas stream having a high speed component in the direction of movement of the extruded mixture. The dimensions and shape of the opening can vary greatly. It is preferred to use an aperture having at least one dimension greater than 50 microns and less than 500 microns. The gas stream is preferably air, preferably air at ambient temperature. It is convenient to use two gas streams that meet at or near the point where the mixture is extruded by the orifice. Preferably, the angle between the adjacent gas streams is from 30-60 °.

I det mindste en del af opløsningsmidlet i blandingen fjernes af gasstrømmen, og hastigheden af fjernelsen kan bekvemt reguleres ved at blande gasarten med opløsningsmiddeldamp, f.eks. kan anvendes luft med en relativ fugtighed større end 80fo, især til vandige blandinger. Hastigheden af gasstrømmen kan varieres indenfor vide grænser, men det foretrækkes at anvende hastigheder i området 60-460 m/sek. Trykket, der anvendes til at ekstrudere blandingen gennem åbningerne, afhænger af viskositeten af blandingen og af den ønskede ekstrude- 2 ringshastighed. Det har vist sig, at tryk fra 0,07 til 7 kg/cm absolut er bekvemme til blandinger, som har viskositeter op til ca.At least a portion of the solvent in the mixture is removed by the gas stream, and the rate of removal can be conveniently controlled by mixing the gas species with solvent vapor, e.g. can be used air with a relative humidity greater than 80o, especially for aqueous mixtures. The velocity of the gas flow can be varied within wide limits, but it is preferable to use velocities in the range of 60-460 m / sec. The pressure used to extrude the mixture through the openings depends on the viscosity of the mixture and on the desired extrusion rate. It has been found that pressures of 0.07 to 7 kg / cm are definitely convenient for mixtures having viscosities up to approx.

100 poise.100 poise.

Fibrene fremstillet ved ekstrudering ind i en gasstrøm har i almindelighed lille diameter, typisk fra 0,5 til 5,0 mikron, og er i almindelighed af diskontinuerlige længder, der dog kan have meget høje forhold mellem længde og diameter, f.eks. større end 5.000. Fibrene kan opsamles som individuelle fibre, eller de kan samles i form af et garn, en måtte eller filt. Hvis det ønskes, kan fibrene sammenbindes, f.eks. ved at samle fibrene, før de er tørre, og opvarme den fremkomne måtte eller filt. Binding af fibrene kan udføres ved anvendelse af et bindemiddel.The fibers produced by extrusion into a gas stream are generally small in diameter, typically from 0.5 to 5.0 microns, and are generally of discontinuous lengths, however, which may have very high length-to-diameter ratios, e.g. greater than 5,000. The fibers can be collected as individual fibers, or they can be collected in the form of a yarn, mat or felt. If desired, the fibers may be bonded together, e.g. by gathering the fibers before drying and heating the resulting mat or felt. Bonding of the fibers can be carried out using a binder.

5 1448015 144801

Den fiberdannende blanding kan bekvemt fremstilles ved at opløse metalforbindelsen og den organiske polymer i opløsningsmidlet. Rækkefølgen, hvori opløsningen udføres, er i reglen ikke af afgørende betydning og kan vælges af hensyn til størst bekvemmelighed i hver udførelsesform. En vandig sol kan bekvemt fremstilles ved hydrolyse eller opvarmning af en vandig opløsning af metalforbindelsen. Metalforbindelsen eller den organiske polymer kan dannes af et egnet forstadium, i reglen i nærværelse af opløsningsmidlet. Det kan være bekvemt at koncentrere opløsningen, fortrinsvis efter filtrering,for at fjerne fast stof, f.eks. ved afdampning af en del af opløsningsmidlet for at opnå den nødvendige viskositet til fiberdannelse. Eventuelt kan den fiberdannende blanding befries for luft før fiberdannelse.The fiber-forming mixture can be conveniently prepared by dissolving the metal compound and the organic polymer in the solvent. The order in which the solution is carried out is generally not essential and can be selected for the greatest convenience in each embodiment. An aqueous sol can be conveniently prepared by hydrolysis or heating an aqueous solution of the metal compound. The metal compound or organic polymer can be formed from a suitable precursor, usually in the presence of the solvent. It may be convenient to concentrate the solution, preferably after filtration, to remove solid, e.g. by evaporation of a portion of the solvent to obtain the necessary viscosity for fiber formation. Optionally, the fiber-forming mixture can be freed from air prior to fiber formation.

Det foretrækkes at fjerne opløsningsmiddel fra fibrene dannet ved fiberdannelse ved afdampning, f.eks. ved opvarmning til en temperatur fra 30 til 110°C, eventuelt under reduceret tryk.It is preferred to remove solvent from the fibers formed by fiber formation by evaporation, e.g. by heating to a temperature of 30 to 110 ° C, optionally under reduced pressure.

Fiberen kan opvarmes yderligere for at dekomponere metalforbindelsen og/eller den organiske polymer for at danne en fiber af anden sammensætning, især i udførelsesformer, hvor man ønsker at danne en fiber omfattende et ildfast metaloksyd, f.eks. aluminiumoksyd eller zirkondioksyd. lypisk kan fiberen opvarmes til en temperatur fra 100 til 2000°0 i en periode fra 5 minutter til 24 timer. Den dannede ildfaste fiber kan eventuelt sintres ved yderligere opvarmning til en temperatur fra 500 til 2000°C i en periode på f.eks. 5 minutter til 4 timer. Opvarmning med henblik på dekomponering eller sintring kan udføres trinvis, f.eks. i på hinanden følgende trin med stigende temperatur.The fiber may be further heated to decompose the metal compound and / or the organic polymer to form a fiber of a different composition, especially in embodiments where it is desired to form a fiber comprising a refractory metal oxide, e.g. alumina or zirconia. lypically, the fiber can be heated to a temperature of 100 to 2000 ° 0 for a period of 5 minutes to 24 hours. The resulting refractory fiber may optionally be sintered by further heating to a temperature of 500 to 2000 ° C for a period of e.g. 5 minutes to 4 hours. Heating for decomposition or sintering can be carried out in stages, e.g. in successive steps of increasing temperature.

Under fiberdannelsen og/eller fjernelsen af opløsningsmidlet og/eller den yderligere opvarmning kan fiberen underkastes spænding.During the fiber formation and / or removal of the solvent and / or the additional heating, the fiber may be subjected to stress.

Forskellige additiver kan inkluderes i fiberen enkeltvis eller i enhver kombination, hensigtsmæssigt ved at sætte dem til den fiberdannende blanding. Additiver kan også inkluderes på overfladen af fiberen på enhver egnet behandlingsmåde. Eksempler på additiver, der kan inkluderes, er: 6 144801 (a) kornvækstinhibitorer, f.eks. forbindelser af magnium, kalcium eller aluminium, (b) sintringshjælpemidler, f.eks. fluorider eller salte af natrium eller kalium, (c) overfladeaktive midler, f.eks. alkoholer, (d) stabiliseringsmidler for den fiberdannende blanding,, f. eks. myresyre, eddikesyre eller vinsyre, (e) stabiliseringsmidler for faseforandring, f.eks. forbindelser af litium, kalcium, magnium, hafnium, yttrium, lanthaniderne eller borsyre, (f) forstærkende partikler, såsom kolloid kiselByreanhydrid, f.Various additives can be included in the fiber individually or in any combination, conveniently by adding them to the fiber-forming mixture. Additives can also be included on the surface of the fiber in any suitable treatment mode. Examples of additives that may be included are: (a) cereal growth inhibitors, e.g. compounds of magnesium, calcium or aluminum; (b) sintering aids, e.g. fluorides or salts of sodium or potassium; (c) surfactants, e.g. alcohols, (d) stabilizers for the fiber-forming mixture, eg formic acid, acetic acid or tartaric acid; (e) stabilizers for phase change, e.g. compounds of lithium, calcium, magnesium, hafnium, yttrium, lanthanides or boric acid; (f) reinforcing particles such as colloidal silicaByric anhydride, f.

eks. kiselsyreanhydrid fremstillet ved en plasmaproces, (g) forbindelser, der forbedrer de ildfaste egenskaber af en ildfast fiber, f.eks. sure oksyder, især SiOg, BgO^ eHer P2O5 eller forbindelser, som dekomponerer til dannelse af sure oksyder, (h) katalysatormaterialer, f.eks. forbindelser af platin, kobber, palladium, sølv, ruthenium, nikkel, kobolt, krom, jern, titan, vanadin eller mangan, som beskrevet i det følgende, (i) luminisænte salte, f.eks. salte af thorium eller cerium, (3) farvende midler, f.eks. bejdsefarvestoffer eller pigmenter.(g) compounds that enhance the refractory properties of a refractory fiber, e.g. acidic oxides, especially SiOg, BgO4 or P2O5 or compounds which decompose to form acidic oxides, (h) catalyst materials, e.g. compounds of platinum, copper, palladium, silver, ruthenium, nickel, cobalt, chromium, iron, titanium, vanadium or manganese, as described below, (i) luminescent salts, e.g. salts of thorium or cerium, (3) staining agents, e.g. stain dyes or pigments.

Til udførelsesformer, hvor fiber omfattende zirkondioksyd fremstilles, foretrækkes det at anvende aluminiumoksyd som kornvækst inhibitor, fortrinsvis fra 0,2 til 20 vægt$ beregnet på zirkondioksydind-holdet. Som stabiliseringsmiddel for faseforandring for den nævnte fiber foretrækkes det at anvende yttriumoksyd eller kalciumoksyd, fortrinsvis fra 2 til 15 vægt$ af zirkondioksydet. Det foretrækkes især at anvende aluminiumoksyd i kombination med yttriumoksyd eller kalciumoksyd i en fiber omfattende zirkondioksyd.For embodiments in which fiber comprising zirconia is produced, it is preferred to use alumina as a grain growth inhibitor, preferably from 0.2 to 20% by weight based on the zirconia content. As the phase change stabilizer for said fiber, it is preferred to use yttria or calcium oxide, preferably from 2 to 15% by weight of the zirconia. It is particularly preferred to use alumina in combination with yttria or calcium oxide in a fiber comprising zirconia.

Fibrene, som fremstilles ifølge opfindelsen, kan behandles med mange forskellige materialer. F.eks. kan de overtrækkes med et appreteringsmiddel, såsom polyvinylalkohol eller stearinsyre. De kan neddykkes i en opløsning af ætylsilikat, vaskes og opvarmes til dannelse af Ί 144801 en fiber indeholdende siliciumdioksyd. De kan også vædes i opløsninger af metalsalte og de behandlede fibre opvarmes til dannelse af en fiber indeholdende yderligere ildfast metaloksyd.The fibers made according to the invention can be treated with many different materials. Eg. they may be coated with an adjuvant such as polyvinyl alcohol or stearic acid. They can be immersed in a solution of ethyl silicate, washed and heated to form Ί 144801 a fiber containing silica. They can also be wetted in solutions of metal salts and the treated fibers heated to form a fiber containing additional refractory metal oxide.

Ved fremgangsmåden ifølge opfindelsen kan der fremstilles f.eks. en fiber omfattende aluminiumoksyd eller zirkondioksyd. Zirkondiok-sydet er fortrinsvis i den tetragonale eller kubiske form. I reglen har fibrene en gennemsnitsdiameter fra 1/2 til 50 mikron, omend fremgangsmåden ikke er begrænset til fremstilling af fibre i dette diameterinterval . Fibre med diametre fra 1/2 til 5 mikron er særligt nyttige, da de er stærke og fleksible. Hvis det ønskes, kan de kontinuerlige fibre omdannes til korte længder, eller fiberen kan fremstilles fra begyndelsen i enhver bekvem længde.In the method according to the invention, e.g. a fiber comprising alumina or zirconia. Preferably, the zirconia is in the tetragonal or cubic form. As a rule, the fibers have an average diameter of 1/2 to 50 microns, although the method is not limited to producing fibers in this diameter range. Fibers with diameters from 1/2 to 5 microns are particularly useful as they are strong and flexible. If desired, the continuous fibers can be converted to short lengths or the fiber can be made from the beginning at any convenient length.

Som nævnt i det foregående kan den fiberdannende blanding indeholde et katalysatormateriale eller et forstadium til dette.As mentioned above, the fiber-forming mixture may contain a catalyst material or a precursor thereof.

Katalysatormaterialet kan findes på overfladen af fiberen, eller det kan være inkluderet i selve fiberen. Eventuelt kan katalysatormaterialet være delvis inde i fiberen og delvis på overfladen.The catalyst material may be found on the surface of the fiber or it may be included in the fiber itself. Optionally, the catalyst material may be partially inside the fiber and partly on the surface.

Når i det mindste en del af katalysatormaterialet er inkluderet inde i fiberen, er det bekvemt at dispergere katalysatormaterialet eller et forstadium til katalysatormaterialet i den fiberdannende blanding. I foretrukne udførelsesformer dispergeres katalysatormate-rialet eller dets forstadium i en fiberdannende blanding omfattende en aluminiumforbindelse eller zirkonforbindelse. Ved forstadium til et katalysatormateriale menes et materiale, som, når det behandles på passende måde, f.eks. ved opvarmning eller reduktion, udvikler et katalysatormateriale direkte eller indirekte.When at least a portion of the catalyst material is included within the fiber, it is convenient to disperse the catalyst material or a precursor to the catalyst material in the fiber-forming mixture. In preferred embodiments, the catalyst material or its precursor is dispersed in a fiber-forming mixture comprising an aluminum compound or zirconium compound. By precursor to a catalyst material is meant a material which, when appropriately treated, e.g. upon heating or reduction, a catalyst material develops directly or indirectly.

Særligt bekvemt kan katalysatormaterialet dispergeres i nævnte blanding ved at opløse det eller dets forstadium i blandingen. I foretrukne udførelsesformer ifølge opfindelsen opløses vandopløselige materialer, f.eks, salte af katalytiske metaller, især metalnitrater i vandige fiberdannende blandinger.Particularly conveniently, the catalyst material can be dispersed in said mixture by dissolving it or its precursor in the mixture. In preferred embodiments of the invention, water-soluble materials, for example, salts of catalytic metals, especially metal nitrates, are dissolved in aqueous fiber-forming mixtures.

Dispersion af katalysatormaterialet i den fiberdannende blanding kan også bekvemt udføres ved at blande uopløselig! eller delvis opløseligt, partikelformet katalysatormateriale med den fiberdannende 8 144801 blanding. Fortrinsvis er gennemsnitsstørrelsen af således disper-gerede partikler mindre end gennemsnitsdiameteren af den fremstillede fiber, og specielt skal partiklerne være af kolloid størrelse.Dispersion of the catalyst material in the fiber-forming mixture can also be conveniently accomplished by mixing insoluble! or partially soluble, particulate catalyst material with the fiber-forming mixture. Preferably, the average size of particles thus dispersed is smaller than the average diameter of the fiber produced, and in particular, the particles must be of colloidal size.

Enhver ønsket mængde katalysatormateriale kan dispergeres i den fiberdannende blanding, forudsat at den fremstillede fiber stadig er tilstrækkelig stærk og sammenhængende til brug som fibrøs katalysator. Det har vist sig, at op til ca. 5% af et katalysatormateriale af passende størrelse kan inkorporeres i fiberen uden alvorlig forringelse af fiberens egenskaber.Any desired amount of catalyst material can be dispersed in the fiber-forming mixture, provided the fiber produced is still sufficiently strong and coherent for use as a fibrous catalyst. It has been found that up to approx. 5% of a suitable size catalyst material can be incorporated into the fiber without seriously impairing the fiber's properties.

Det foretrækkes, at katalysatormaterialet er kemisk foreneligt med bestanddelene af den fiberdannende blanding.It is preferred that the catalyst material be chemically compatible with the constituents of the fiber-forming mixture.

Når fiberen opvarmes for at danne f.eks. et ildfast metaloksyd, som beskrevet i den foreliggende ansøgning, er det hensigtsmæssigt, at katalysatormaterialet er stabilt ved opvarmningstemperaturen.When the fiber is heated to form e.g. a refractory metal oxide, as described in the present application, it is convenient for the catalyst material to be stable at the heating temperature.

Hvis det drejer sig om et forstadium til et katalysatormateriale, er det ofte bekvemt, at katalysatoren dannes af forstadiet under opvarmningen af fiberen.In the case of a precursor to a catalyst material, it is often convenient for the catalyst to be formed by the precursor during the heating of the fiber.

Katalysatormaterialet kan bekvemt af le jr es i en passende form på i det mindste en del af fiberoverfladen. Til dette formål kan det eventuelt bindes til overfladen ved hjælp af et bindemiddel, der selv kan være et katalysatormateriale, f.eks. aluminiumfosfat. Binding kan også bevirkes ved hjælp af en påføring af fiberdannende · . blanding på overfladen eller på katalysatormaterialet eller begge dele og fjernelse af opløsningsmidlet fra blandingen.. Organiske polymere materialer kan også anvendes til at binde katalysatoren til fiberoverfladen .Conveniently, the catalyst material can be laid in an appropriate form on at least a portion of the fiber surface. For this purpose, it may optionally be bonded to the surface by a binder which itself may be a catalyst material, e.g. aluminum phosphate. Bonding can also be effected by the application of fiber forming ·. mixing on the surface or on the catalyst material or both and removing the solvent from the mixture. Organic polymeric materials can also be used to bond the catalyst to the fiber surface.

I udførelsesformer, hvori der ikke anvendes noget bindemiddel for at understøtte vedhængningen af katalysatormaterialet på fiberoverfladen, er det ofte muligt at bevirke nogen kemisk reaktion mellem katalysatormaterialet og fiberen for at forbedre bindingen. I de fleste udførelsesformer ifølge opfindelsen er det dog tilfredsstillende blot at aflejre katalysatormaterialet på fiberoverfladen i en form, der er tilstrækkelig fin til, at de normale fysiske tiltrækningskræf 9 144801 ter -virker. Det er således bekvemt at aflejre katalysatormaterialet fra en tåge eller damp omfattende katalysatormaterialet eller dets forstadium. Mest bekvemt aflejres katalysatormaterialet eller dets forstadium på fiberoverfladen ved at behandle overfladen med en dispersion omfattende katalysatormaterialet eller dets forstadium og en egnet væske. En opløsning af katalysatormaterialet eller dets forstadium i et flygtigt opløsningsmiddel er særlig nyttig. I tilfælde, hvor katalysatormaterialet dispergeres i en væske, som ikke opløser det, foretrækkes det, at katalysatormaterialet er i en findelt form og mest hensigtsmæssigt har en gennemsnitsstørrelse mindre end 0,5 mikron.In embodiments in which no binder is used to support the adhesion of the catalyst material to the fiber surface, it is often possible to effect some chemical reaction between the catalyst material and the fiber to improve bonding. However, in most embodiments of the invention, it is satisfactory to simply deposit the catalyst material onto the fiber surface in a form sufficiently fine to allow the normal physical attraction forces to work. Thus, it is convenient to deposit the catalyst material from a mist or vapor comprising the catalyst material or its precursor. Most conveniently, the catalyst material or its precursor is deposited on the fiber surface by treating the surface with a dispersion comprising the catalyst material or its precursor and a suitable liquid. A solution of the catalyst material or its precursor in a volatile solvent is particularly useful. In cases where the catalyst material is dispersed in a liquid which does not dissolve it, it is preferred that the catalyst material be in a finely divided form and most conveniently have an average size of less than 0.5 micron.

Den fibrøse katalysator kan behandles yderligere f.eks. for at bevirke ønskede ændringer i katalysatormaterialet. I tilfælde, hvor et forstadium til katalysatormateriale er blevet inkorporeret i eller på fiberen, vil det f.eks. være nødvendigt at udvikle det aktive katalysatormateriale ved en passende proceB. De normalt anvendte processer indbefatter kemisk reaktion til dannelse af en anden forbindelse, reduktion og opvarmning. Enhver af processerne, især opvarmning, kan kombineres med opvarmningen af fiberen for at dekomponere metalforbindelsen eller den organiske polymer i den fiberdannende blanding. Behandling af katalysatormaterialet for at opnå ønskede fysiske ændringer kan også udføres. F.eks. kan ændringer i overfladeareal eller krystalstruktur være ønskelige for at opnå specielle katalytiske virkninger. Behandling af den fibrøse katalysator for at eliminere uønskede stoffer, f.eks. katalysatorgifte, kan være nyttig i nogle udførelsesformer.The fibrous catalyst can be further treated e.g. to effect desired changes in the catalyst material. In cases where a precursor catalyst material has been incorporated into or onto the fiber, it will e.g. be necessary to develop the active catalyst material by a suitable process. The processes normally used include chemical reaction to form another compound, reduction and heating. Any of the processes, especially heating, can be combined with the heating of the fiber to decompose the metal compound or the organic polymer into the fiber-forming mixture. Treatment of the catalyst material to achieve desired physical changes may also be performed. Eg. changes in surface area or crystal structure may be desirable to achieve special catalytic effects. Treatment of the fibrous catalyst to eliminate undesirable substances, e.g. catalyst poisons may be useful in some embodiments.

Mange forskellige katalysatormaterialer kan anvendes, og de derved fremstillede fibrøse katalysatorer kan anvendes i et stort antal kemiske processer af industriel betydning.Many different catalyst materials can be used, and the fibrous catalysts thus produced can be used in a large number of industrial chemical processes.

Fosforsyre eller svovlsyre som katalysatormateriale giver et produkt, der er nyttigt til adiponitrilsyntese, polymerisation af blandede olefiner til motorbenzin, hydratisering af olefiner til alkoholer og alkylering af aromatiske forbindelser.Phosphoric acid or sulfuric acid as a catalyst material provides a product useful for adiponitrile synthesis, polymerization of mixed olefins for motor gasoline, hydration of olefins for alcohols and alkylation of aromatic compounds.

Produkter fremstillet ifølge opfindelsen omfattende metallerne kobber, ruthenium, nikkel, palladium, platin eller sølv eller kombinationer deraf er særligt nyttige i processer som følgende: 10 144801 dehydratisering af alkoholer metanolsyntese reduktion af nitrobenzol ammoniakdekomp oner ing dampreformering af nafta eller naturgas hydrogenering af definer, aromatiske forbindelser, nitrider, fedtstoffer og olier svovldioksydiltning hydrodealkylering me tanammoksydation ætylenoksyd af ætylen formaldehyd af metanol.Products made according to the invention comprising the metals copper, ruthenium, nickel, palladium, platinum or silver or combinations thereof are particularly useful in processes such as the following: alcohol dehydration methanol synthesis reduction nitrobenzene ammonia decomposition steam reforming of naphtha or natural gas hydrogenation, compounds, nitrides, fats and oils.

Anvendelsen af aluminiumoksydfibr e til nogle af disse reaktioner foretrækkes, især i tilfælde, hvor den rigtige fase af aluminiumoksyd anvendes, f.eks. gamma- eller etaformen.The use of alumina fibers for some of these reactions is preferred, especially in cases where the right phase of alumina is used, e.g. the gamma or stage form.

Halvledende oksyder er nyttige katalysatormaterialer. F.eks. kan Cr^Oj på gamma- eller etaaluminiumoksyd anvendes til paraffindehydrogener ing eller naftareformering.Semiconducting oxides are useful catalyst materials. Eg. For example, Cr 2 O 2 on gamma or ethyl alumina can be used for paraffin dehydrogenation or naphtha reforming.

Metalliske halogenider, f.eks. CuClg, SbCl^, AlCl^ eller OrOl^, giver produkter, der er nyttige som katalysator til mange forskellige klorer ingsreaktioner og oksykloreringsreaktioner eller isomerisering af paraffiner, olefiner og aromatiske forbindelser.Metallic halides, e.g. CuClg, SbCl ^, AlCl ^ or OrOl ^ provide products useful as catalysts for many different chlorination reactions and oxychlorination reactions or isomerization of paraffins, olefins and aromatic compounds.

Organometalliske katalysatorer kan bedst anvendes ifølge opfindelsen ved at væde eller overtrække den forud dannede fiber. De fibrøse katalysatorer er nyttige til fremstilling af ætylenoligomere, poly= ætylener og polyestere. Me talkar bonyler, f.eks. HCo(G0^ giver fibrøse katalysatorer, der er egnede til udførelse af oksoprocesser.Organometallic catalysts can best be used according to the invention by wetting or coating the pre-formed fiber. The fibrous catalysts are useful for the preparation of ethylene oligomers, polyethylenes and polyesters. Me talk bonylons, e.g. HCO (G0 ^) provides fibrous catalysts suitable for carrying out oxo processes.

De fibrøse katalysatorer, især de der indeholder platin, palladium, molybdæn, Co^O^, MnOg, FegO^ eller NiO eller kombinatio ner deraf, kan anvendes til at katalysere iltningen af bilers udstødningsgas, f.eks. i en efterbrænder.The fibrous catalysts, especially those containing platinum, palladium, molybdenum, Co 2 O 2, MnOg, FegO 2 or NiO or combinations thereof, can be used to catalyze the oxygenation of vehicle exhaust gas, e.g. in an afterburner.

Andre katalytiske materialer, der har vist sig nyttige, indbefatter: 11 144801 koboltmolybdat nikkelmolybdat vismutmolybdat kobbermolybdat zinkkromit koboltoksyd Co^O^.Other catalytic materials which have been found useful include: cobalt molybdate nickel molybdate bismuth molybdate copper molybdate zinc chromite cobalt oxide Co 2 O 2.

Fibrøse katalysatorer fremstillet ifølge opfindelsen er fordelagtige på grund af deres store ydre overfladearealer. Fibrøse katalysatorer omfattende et ildfast oksyd, især aluminiumoksyd eller zirkondioksyd, er varme resistente og mekanisk stærke.Fibrous catalysts made according to the invention are advantageous because of their large outer surface areas. Fibrous catalysts comprising a refractory oxide, especially alumina or zirconia, are heat resistant and mechanically strong.

Opfindelsen er således nyttig til fremstilling af fibre, der kan have en meget lille diameter, være tætte, ildfaste, stærke og have højt modul. De kan bekvemt anvendes f.eks. som hø 3 tempera tur isolationsmaterialer, fyldstoffer, som armering for harpikser, metaller og keramiske materialer, indifferente filtre, katalysatorer eller katalysa-•j:orunderstøtninger. Fibrene kan spindes til garn, som kan væves til klæde.Thus, the invention is useful for the production of fibers which may have a very small diameter, be dense, refractory, strong and have high modulus. They can be conveniently used e.g. such as hay 3 tempera- ture insulation materials, fillers, such as reinforcement for resins, metals and ceramic materials, inert filters, catalysts or catalysts: supports. The fibers can be spun into yarns which can be woven into cloth.

Opfindelsen illustreres af følgende eksempler. Forkortelsen i eksemplerne w/w betyder vægt/vægt, og w/v betyder vægt/volumen.The invention is illustrated by the following examples. The abbreviation in the examples w / w means weight / weight and w / v means weight / volume.

Eksempel 1 50 ml aluminiumoksykloridopløsning indeholdende 11,2 vægt# Al og 8,1 vægt# Cl blev blandet med 30 ml af en 2 vægt# opløsning af en højmo-lekulær polyvinylalkohol. Blandingen blev koncentreret ved fordampning under reduceret tryk til en viskositet på 50 poise. Den koncentrerede opløsning blev indført i et fiberblæsningsapparat, hvori to luftstrømme med en hastighed nær lydens hastighed stødte sammen fra hver side i en vinkel på 30° med en strøm af opløsningen, der kom ud fra en 25 mikron bred spalte under tryk. luftstrømmene havde en temperatur på 35°C og en relativ fugtighed på 40#.Example 1 50 ml of aluminum oxychloride solution containing 11.2 wt # Al and 8.1 wt # Cl were mixed with 30 ml of a 2 wt # solution of a high molecular weight polyvinyl alcohol. The mixture was concentrated by evaporation under reduced pressure to a viscosity of 50 poise. The concentrated solution was introduced into a fiber blowing apparatus in which two streams of air at a velocity near the velocity of the sound collided from each side at an angle of 30 ° with a stream of the solution emerging from a 25 micron wide gap under pressure. the air currents had a temperature of 35 ° C and a relative humidity of 40 #.

En måtte af meget fine fibre med længder op til 10 cm og diametre anslået til at være 1 mikron blev opsamlet på en fin trådvævssigte. Måtten blev opvarmet til 800°C i 1 time til dannelse af klare, glas-agtige fibre, som var silkeagtige og fleksible.A mat of very fine fibers with lengths up to 10 cm and diameters estimated to be 1 micron was collected on a fine wire mesh screen. The mat was heated to 800 ° C for 1 hour to form clear, glassy fibers which were silky and flexible.

12 14480112 144801

En anden måtte af ubrændte fibre blev opvarmet til 600°C i 15 minutter, vædet i en alkoholisk ætylsilikatopløsning, vasket med ætanol og fik lov at tørre. Fibrene blev genopvarmet ved at hæve temperaturen til 1000°C over en periode på 24 timer for at danne et fleksibelt, silkeagtigt produkt med forbedret trækstyrke.Another mat of unburned fiber was heated to 600 ° C for 15 minutes, soaked in an alcoholic ethyl silicate solution, washed with ethanol and allowed to dry. The fibers were reheated by raising the temperature to 1000 ° C over a period of 24 hours to form a flexible, silky product with improved tensile strength.

Eksempel 2Example 2

Der blev fremstillet en vandig opløsning indeholdende følgende: 200 g zirkonoksykloridopløsning (50$ w/w ZrOClg, eiigO) 200 cm^ zirkonacetatopløsning (20$ w/w Zr0o) 125 cnr 2 vægt$ polyvinylalkoholopløsning 12 cm koncentreret HCl 8 g aluminiumoksykloridopløsning (26$ w/w AlgO^).An aqueous solution was prepared containing the following: 200 g of zirconium oxychloride solution (50 $ w / w ZrOClg, eIgO) 200 cm 2 of zirconium acetate solution (20 $ w / w Zr0o) 125 cnr 2 wt $ polyvinyl alcohol solution 12 cm concentrated HCl 8 g of aluminum oxychloride solution (26 $ w / w AlgO ^).

Opløsningen blev grundigt blandet, og alle partikler større end 0,3 mikron blev filtreret ud. Opløsningen blev koncentreret ved fjernelse af vand ved 40°0 under delvis vakuum, indtil viskositeten målt ved 25°C var 4,2 poise. Opløsningen blev dannet til fibre ved udpresning gennem en række små huller i en medstrøm af luft, der bevægede sig med hastigheder nær lydens hastighed, luftstrømmen havde en relativ fugtighed på 90$ ved 25°C. Fibrene dannet i denne strøm blev delvis tørret af en anden strøm af tør luft, som blandedes med fibrene ca. 1,2 m under spindedyserne. Fibrene blev af lejret på et bevægeligt bånd, som passerede gennem en ovn ved 1000°C med en opholdstid på 5 minutter i ovnen. Produkterne var bløde, hvide og bøjelige.The solution was thoroughly mixed and all particles larger than 0.3 microns were filtered out. The solution was concentrated by removing water at 40 ° 0 under partial vacuum until the viscosity measured at 25 ° C was 4.2 poise. The solution was formed into fibers by extruding through a series of small holes in a co-stream of air moving at velocities near the velocity of sound, the air stream having a relative humidity of $ 90 at 25 ° C. The fibers formed in this stream were partially dried by a second stream of dry air which was mixed with the fibers for approx. 1.2 m below the spinning nozzles. The fibers were deposited on a moving band passing through an oven at 1000 ° C with a residence time of 5 minutes in the oven. The products were soft, white and pliable.

Zirkondioksydet var i en krystallinsk form med en gennemsnitlig kry-stallitstørrelse på 100 Å. Undersøgelser med stereo skanderende elektronmikroskop viste, at overfladen af fibrene var i det væsentlige glat, og at gennemsnitsdiameteren var 1 mikron.The zirconia was in a crystalline form with an average crystallite size of 100 Å. Studies with stereo scanning electron microscope showed that the surface of the fibers was substantially smooth and that the average diameter was 1 micron.

Fibrene blev imprægneret med et nikkelkatalysatormateriale som følger: 10 g Zirkondioksydfiber, fremstillet som ovenfor, blev vædet i en varm (60°C) opløsning af nikkelklorid i vand (50 vægt$ mættet EiClg^HgO ved 25°G) i 10 minutter. Fibrene blev centrifugeret, medens de endnu var varme, og opvarmet til 800°C i 5 minutter.The fibers were impregnated with a nickel catalyst material as follows: 10 g of zirconia, prepared as above, were soaked in a hot (60 ° C) solution of nickel chloride in water (50 wt. Saturated EiCl The fibers were centrifuged while still warm and heated to 800 ° C for 5 minutes.

13 14480113 144801

Pibrene blev derpå opvarmet i en blanding i rumfangsforholdet 3:1 af kvælstof og brint til 600°0 i 10 minutter for at fremstille sorte fibre indeholdende 5 vægt# nikkel.The fibers were then heated in a 3: 1 volume ratio of nitrogen and hydrogen to 600 ° 0 for 10 minutes to produce black fibers containing 5 wt% nickel.

Eksempel 3Example 3

Pibre fremstillet som beskrevet i eksempel 2 blev sintret ved 145°C i 10 minutter for at forøge tætheden og forbedre styrken og stivhe-den af fibrene. ,Stereoskanderende elektronmikrografer viste, at overfladen af fibrene var ret ru. Disse fibre blev overtnikket med koboltoksyd (Co^O^) ved at væde dem i en 10 vægt# opløsning af kobo ltnitrathydr at i metanol efterfulgt af grundig dræning af fibrene og opvarmning til 450°C i 10 minutter. De således fremstillede fibre var sorte og bestod af en belægning af koboltoksyd (Co^O^) anslået til at være ca. 1/10 mikron tyk på zirkondioksydfibre. De var stærke og fleksible.The fibers prepared as described in Example 2 were sintered at 145 ° C for 10 minutes to increase the density and improve the strength and stiffness of the fibers. , Stereo-scanning electron micrographs showed that the surface of the fibers was quite rough. These fibers were supercharged with cobalt oxide (Co 2 O 2) by wetting them in a 10 weight # solution of cobalt nitrate hydrate in methanol followed by thorough draining of the fibers and heating to 450 ° C for 10 minutes. The fibers thus produced were black and consisted of a coating of cobalt oxide (Co 1/10 micron thick on zirconia fibers. They were strong and flexible.

Eksempel 4Example 4

Pibre fremstillet som i eksempel 2 blev vædet i en 10# opløsning af koboltnitrathydrat i kogende vand. Pibrene blev så centrifugeret og opvarmet til 500°C i luft i 15 minutter. Stigningen i vægt som følge af koboltoksydet Co^O^, som var aflejret i overfladelaget og på overfladen af fiberen, var ca. 5#.Pipes prepared as in Example 2 were soaked in a 10 # solution of cobalt nitrate hydrate in boiling water. The tubes were then centrifuged and heated to 500 ° C in air for 15 minutes. The increase in weight due to the cobalt oxide Co ^ O ^ deposited in the surface layer and on the surface of the fiber was approx. # 5.

Eksempel 5Example 5

Pibre fremstillet som i eksempel 2 blev opvarmet til 1000°C i 3 timer for at fjerne resterende kloridion og blev belagt med koboltoksyd CojO^ som i eksempel 2. Aktiviteten af katalysatoren blev forøget ved fjernelse af kloridionen.Pipes prepared as in Example 2 were heated to 1000 ° C for 3 hours to remove residual chloride ion and coated with cobalt oxide Co 2 O as in Example 2. The activity of the catalyst was increased by removal of the chloride ion.

Eksempel 6Example 6

Pibre, fremstillet som beskrevet i eksempel 2 og forarbejdet til dannelse af et filt med en tykkelse på 2 1/2 mm, blev sprøjtet med en 30# w/v opløsning af koboltnitrathydrat. Det fremkomne filt blev behandlet ved 450°0 i luft i 30 minutter. Tægten af fibrene var forøget med 5# som følge af dannelsen af en belægning af Oo^0^.Pipes, prepared as described in Example 2 and processed to form a felt with a thickness of 2 1/2 mm, were sprayed with a 30 # w / v solution of cobalt nitrate hydrate. The resulting felt was treated at 450 ° C in air for 30 minutes. The thickness of the fibers was increased by 5 # as a result of the formation of a coating of 0 ^ 0 ^.

Eksempel 7Example 7

Pibre, fremstillet som beskrevet i eksempel 2 , blev vædet i fortyn-det svovlsyre og opvarmet til 700°0 i 5 minutter.Pipes, prepared as described in Example 2, were soaked in dilute sulfuric acid and heated to 700 ° for 5 minutes.

Eksempel .8 14 144801Example .8 14 144801

Fibre, fremstillet som beskrevet i eksempel 2, blev vædet i en 1 vægt$ opløsning af klorplatinsyre i fortyndet saltsyre. Eibrene blev derpå opvarmet til 800°0.Fibers prepared as described in Example 2 were wetted in a 1 wt. Solution of chloroplatinic acid in dilute hydrochloric acid. The eggs were then heated to 800 ° 0.

Eksempel 9Example 9

Der blev fremstillet fibre, som beskrevet i eksempel 2, med undtagelse af at der blev anvendt følgende sammensætning: 200 g zirkonoksykloridopløsning (50$ w/w ZrOCl9,8H«0) •Z C. C.Fibers were prepared as described in Example 2 except that the following composition was used: 200 g of zirconium oxychloride solution (50 $ w / w ZrOCl9.8H «0) • Z C. C.

230 cm zirkonacetatopløsning (20$ w/w Zr09) z 125 cm 2 vsegt$ polyvinylalkoho 1 opløsning 40 g aluminiumoksyklorid (20$ w/v A120^) indeholdende 2,0 g H2S04.230 cm zirconium acetate solution (20 $ w / w Zr09) z 125 cm 2 vs $ polyvinyl alcohol 1 solution 40 g aluminum oxychloride (20 $ w / v A120 ^) containing 2.0 g H2SO4.

Efter brænding ved 1000°C gav denne sammensætning zirkondioksyd i den kubiske fase og var særlig nyttig til sur katalyse.After firing at 1000 ° C, this composition gave zirconia in the cubic phase and was particularly useful for acid catalysis.

Eksempel 10.Example 10.

En opløsning med passende viskositet til spinding blev fremstillet ved sammen at opløse følgende komponenter i en industriel zirkonaoe-tatopløsning: 50 g Zr0Cl2,8H20 115 ml zirkonacetatopløsning (22$ Zr02) 1,25 g polyvinylalkohol af middel molekylvægt.A solution of appropriate viscosity for spinning was prepared by dissolving together the following components in an industrial zircononeate solution: 50 g ZrOCl2.8H2O 115 ml zirconium acetate solution (22 $ ZrO2) 1.25 g of medium molecular weight polyvinyl alcohol.

Opløsningen blev omdannet til fibre, som beskrevet i eksempel 2, og de dannede fibre blev opvarmet til 1000°C i 10 minutter til dannelse af stærke, fleksible zirkondioksydfibre med en gennemsnitsdiameter på 1 mikron.The solution was converted into fibers as described in Example 2 and the fibers formed were heated to 1000 ° C for 10 minutes to form strong, flexible zirconia fibers having an average diameter of 1 micron.

Fibrene blev overtrukket ved at sprøjte dem med en 5 vægt% opløsning af Ni(N03)2,6H20 i metanol efterfulgt af opvarmning til 800°C. Vægtforøgelsen i fibrene som følge af nikkeloksydbelægningen var 5%.The fibers were coated by spraying them with a 5 wt% solution of Ni (NO 3) 2.6 H 2 O in methanol followed by heating to 800 ° C. The weight gain in the fibers due to the nickel oxide coating was 5%.

Eksempel 11Example 11

Der blev fremstillet en opløsning af en filmdannende kvalitet af polyvinylalkohol, der havde følgende sammensætning: 144801 15 200 g zirkonoksykloridopløsning (50% w/w Zr0Cl.,8Ho0) λ 4 4 250 cirr zirkonacetatopløsning (20% ZrC>2 industriel kvalitet.) 3 150 cm 2 vægt% lavmolekulær polyvinylalkoholopløsning 3 12 xm koncentreret HC1 8 g aluminiumoksykloridopløsning (26% w/w A^O^) .A solution of a polyvinyl alcohol film-forming quality having the following composition was prepared: 144801 15 200 g of zirconium chloride solution (50% w / w ZrOCl., 8HoO) λ 4 4 250 cirr zirconium acetate solution (20% ZrC> 2 industrial grade.) 3 150 cm 2 wt% low molecular weight polyvinyl alcohol solution 3 12 x m concentrated HCl 8 g alumina solution (26% w / w A ^ O ^).

Opløsningen blev filtreret for at fjerne alle partikler større end 0,5 mikron og inddampet til en viskositet på 4 poise under delvis vakuum ved 40°C. Opløsningen blev omdannet til fibre med luft i medstrøm ved ekstrudering og blæsning af hastighed nær lydens hastighed ved 30°C og ved relativ fugtighed på 85$. Fibrene blev opvarmet til 1000°C i 10 minutter for at danne en fibrøs katalysator.The solution was filtered to remove all particles larger than 0.5 micron and evaporated to a viscosity of 4 poise under partial vacuum at 40 ° C. The solution was converted to co-flow air fibers by extrusion and blowing speed near the speed of sound at 30 ° C and at relative humidity of $ 85. The fibers were heated to 1000 ° C for 10 minutes to form a fibrous catalyst.

Eksempel 12Example 12

Der blev fremstillet en opløsning med følgende komponenter: 100 g aluminiumoksykloridopløsning (25% w/w A1203) 10,4 g zirkonacetatopløsning (22% w/w Zr02) 64 g 2% w/w opløsning af polyvinylalkohol.A solution was prepared with the following components: 100 g alumina solution (25% w / w Al 2 O 3) 10.4 g zirconium acetate solution (22% w / w ZrO 2) 64 g 2% w / w polyvinyl alcohol solution.

Blandingen blev ved afdampning koncentreret til en viskositet på 10 poise og indsprøjtet gennem et 250 mikron hul i en hurtigtgående strøm af luft i medstrøm med en hastighed nær lydens hastighed til dannelse af fibre med en gennemsnitsdiameter på 4 mikron. Fibrene var lange og silkeagtige med meget lille changerende indhold.The mixture, by evaporation, was concentrated to a viscosity of 10 poise and injected through a 250 micron hole into a fast stream of co-flow air at a velocity near the velocity of sound to produce fibers having an average diameter of 4 microns. The fibers were long and silky with very little changing content.

Fibrene blev tørret ved 100°C i 10 minutter, ved 200°C i 1/2 time og til slut brændt ved 520°C i 1 time. Produktet i form af en uldagtig måtte var blødt og silkeagtigt at føle på.The fibers were dried at 100 ° C for 10 minutes, at 200 ° C for 1/2 hour, and finally burned at 520 ° C for 1 hour. The product in the form of a woolly mat was soft and silky to feel.

Eksempel 13Example 13

En opløsning egnet til fremstilling af en over for høje temperaturer resistent zirkondioksydfiber stabiliseret med yttriumoksyd, og som er særlig nyttig til varmeisolering, blev fremstillet af: 144801 16 550 g zirkonacetatopløsning (22% w/w ZrO_) 3 ^ 220 cm 1% w/w polyætylenoksydopløsning 12,8 g yttriumkloridhydrat 3 2 cm koncentreret saltsyre.A solution suitable for preparing a high temperature resistant zirconia fiber stabilized with yttrium oxide, and which is particularly useful for heat insulation, was prepared from: 144801 16 550 g of zirconium acetate solution (22% w / w ZrO w polyethylene oxide solution 12.8 g of yttrium chloride hydrate 3 2 cm of concentrated hydrochloric acid.

Opløsningen blev på roterende vakuumfordamper reduceret til én viskositet på 15 poise ved 20°C og anbragt i en beholder udstyret med et spindedysehul med en diameter på 0,0025 cm.The solution was reduced on a rotary vacuum evaporator to one viscosity of 15 poise at 20 ° C and placed in a container equipped with a spinning nozzle hole of 0.0025 cm diameter.

En strøm af luft med hastighed nær lydens hastighed, der kom ud gennem spalter på hver side af dette hul og mødtes i en vinkel på 30°, tjente til at nedtraekke en stråle af væske fra hullet til i hovedsagen knudefri fiber med en gennemsnitsdiameter på 1,5 mikron.A stream of air at velocity near the velocity of sound coming out through slits on each side of this hole and met at an angle of 30 ° served to draw a jet of liquid from the hole into substantially knotless fiber having an average diameter of 1 , 5 microns.

Fibrene blev tørret ved 200°C i 1/2 time og brændt ved 1000°C i 1/2 time til dannelse af fibre med en gennemsnitsdiameter på 1 mikron.The fibers were dried at 200 ° C for 1/2 hour and burned at 1000 ° C for 1/2 hour to form fibers having an average diameter of 1 micron.

EKsempel 14Example 14

En opløsning egnet til fremstilling af zirkondioksydfibre blev frem. stillet ved at opløse følgende bestanddele i 115 ml af en industriel zirkonacetatopløsning (22% w/w Zr02): .A solution suitable for the preparation of zirconia fibers was obtained. provided by dissolving the following ingredients in 115 ml of an industrial zirconium acetate solution (22% w / w ZrO 2):.

krystallinsk yttriumklorid fremstillet af 3,2 g ren yttriumoksyd 50 g zirkonoksyklorid (ZrOCl2,βΗ^Ο) 3 g polyvinylalkohol af middel molekylvægt.crystalline yttrium chloride prepared from 3.2 g of pure yttria 50 g of zirconium oxychloride (ZrOCl2, βΗ ^ Ο) 3 g of medium molecular weight polyvinyl alcohol.

Opløsningen blev fortyndet med 4 ml vand til dannelse af en viskositet egnet til spinding ved blæsning, og efter filtrering blev den udpresset gennem et 200 mikron hul i en strøm af luft i medstrøm med en hastighed nær lydens hastighed for at danne fibre med en gennemsnitsdiameter på 2 mikron.The solution was diluted with 4 ml of water to form a viscosity suitable for spinning by blowing and after filtration it was extruded through a 200 micron hole in a stream of co-flow air at a velocity close to the velocity of sound to form fibers having an average diameter of 2 microns.

Fibrene blev opsamlet som en måtte på metaltrådsnet, og efter tørring ved 200°C blev de brændt ved 1000°C til dannelse af et blødt, hvidt og fleksibelt produkt.The fibers were collected as a mat on metal wire mesh, and after drying at 200 ° C they were burned at 1000 ° C to form a soft, white and flexible product.

Eksempel 15 17 146801Example 15 17 146801

Zirkonoksydfibre indeholdende kobolt blev fremstillet af et kloridfrit system som følgers 13 g koboltnitratheksahydrat 125 ml 1% w/w opløsning af polyætylenoksyd (molekylvægt 300.000) 240 g zirkonacetatopløsning (22% w/w Zr02) 3,7 g sjældne jordartoksyder (60% w/w Y203) °PiØst i 50 ml 30% HNO.J og inddampet til tørhed.Zirconium oxide fibers containing cobalt were prepared from a chloride-free system following 13 g of cobalt nitrate hexahydrate 125 ml of 1% w / w solution of polyethylene oxide (molecular weight 300,000) 240 g of zirconium acetate solution (22% w / w Zr02) 3.7 g of rare earth oxides (60% w / w w Y 2 O 3) PIoS in 50 ml of 30% HNO.J and evaporated to dryness.

Disse komponenter blev sammenblandet til dannelse af en homogen opløsning og inddampet til en viskositet på 1,3 poise ved 20°C i en roterende fordamper.These components were mixed to form a homogeneous solution and evaporated to a viscosity of 1.3 poise at 20 ° C in a rotary evaporator.

Lyserøde fibre blev fremstillet ved at udpresse væsken i luft i medstrøm af en hastighed nær lydens hastighed. Fibrene blev tørret ved 200°C i 1 time til dannelse af en lilla farve og brændt ved 800°C i 15 minutter til dannelse af grå, fleksible fibre.Pink fibers were made by squeezing the liquid into air at a rate near a velocity of sound. The fibers were dried at 200 ° C for 1 hour to form a purple color and burned at 800 ° C for 15 minutes to form gray flexible fibers.

En del af fibrene blev reduceret ved 650°C i en strøm af brint og kvælstof til dannelse af sorte, fleksible fibre indeholdende koboltmetal .Part of the fibers were reduced at 650 ° C in a stream of hydrogen and nitrogen to form black, flexible fibers containing cobalt metal.

Eksempel 16Example 16

Zirkondioksydfibre indeholdende kobberoksyd blev fremstillet som følger: 40 ml 1% w/w polyætylenoksydopløsning 240 g zirkonacetatopløsning (22% w/w Zr02) 9 g kuprinitratheksahydrat 3,2 g sjældne jordartoksyder (70% w/w yttriumokayd) (opløst i den mindst mulige mængde salpetersyre og inddampet til tørhed.Zirconium dioxide fibers containing copper oxide were prepared as follows: 40 ml of 1% w / w polyethylene oxide solution 240 g of zirconium acetate solution (22% w / w ZrO amount of nitric acid and evaporated to dryness.

Disse komponenter blev sammenblandet til dannelse af en opløsning og inddampet til en viskositet på 3,7 poise under anvendelse af en roterende vakuumfordamper. Opløsningen blev filtreret og udpresset som en stråle i luft i medstrøm af en hastighed nær lydens hastighed.These components were mixed together to form a solution and evaporated to a viscosity of 3.7 poise using a rotary vacuum evaporator. The solution was filtered and squeezed like a jet of air at a stream near a velocity of sound.

De dannede bleggrønne fibre blev opsamlet på et metaltrådsnet og brændt i 15 minutter ved 800°0. Produkterne var stærke og fleksible.The pale green fibers formed were collected on a metal wire mesh and burned for 15 minutes at 800 ° 0. The products were strong and flexible.

Eksempel 17 18 144801Example 17 18 144801

Zirkondioksydfibre indeholdende 10% aluminiumoksyd og 3% kobolt blev fremstillet af: 100 g 50% w/w opløsning af ZrOC^/S^Q 115 citf* zirkonacetatopløsning (22% w/w ZrO^) 27.4 g aluminiumoksykloridopløsning (26% w/w A1_0_) 3 w 125 cin 1% w/w polyvinylalkoholopløsning med høj molekylvægt 6.4 g koboltkloridheksahydrat.Zirconium dioxide fibers containing 10% alumina and 3% cobalt were made from: 100 g 50% w / w solution of ZrOC ^ / S ^ Q 115 citf * zirconium acetate solution (22% w / w ZrO ^) 27.4 g alumina solution (26% w / w A1_0_) 3 w 125 cin 1% w / w high molecular weight polyvinyl alcohol solution 6.4 g cobalt chloride hexahydrate.

Opløsningen blev inddampet til at give en viskositet på 1,4 poise målt ved 20°C, og væsken blev indsprøjtet som en stråle fra et 20 mikron hul ind i en strøm af luft i medstrøm med en hastighed nær lydens hastighed, og fibre med en gennemsnitsdiameter på 2 mikron blev opsamlet på et metaltrådsnet.The solution was evaporated to give a viscosity of 1.4 poise measured at 20 ° C, and the liquid was injected as a jet from a 20 micron hole into a stream of co-stream air at a velocity near the velocity of sound, and fibers with a average diameter of 2 microns was collected on a metal wire mesh.

De blå fibre blev tørret ved 200°C, ved hvilken temperatur de blev grønne, og derefter blev de brændt direkte ved 800°0 til dannelse af et grålilla produkt.The blue fibers were dried at 200 ° C, at which temperature they turned green, and then burned directly at 800 ° 0 to form a gray-purple product.

En portion af fibrene blev brændt igen ved 1000° C i 1 time til dannelse af lyseblå, fleksible, bløde fibre i form af ep måtte med styrke som silkepapir.A portion of the fibers were burnt again at 1000 ° C for 1 hour to form light blue, flexible, soft fibers in the form of ep mats with strength as tissue paper.

Eksempel ir 19 144801Example ir 19 144801

Der blev fremstillet en opløsning af: 100 g 50$ w/w ZrOCl2,8H20 115 cm^ zirkonacetat (22$ w/w Zr02) opløsning 62 cm^ 1$ w/w opløsning af polyætylenoksyd 6.7 g MC12,6H20 27,4 g aluminiumoksykloridopløsning (9,3$ w/w Al).A solution of: 100 g of 50 $ w / w ZrOCl2.8H20 115 cm 2 aluminum oxychloride solution ($ 9.3 w / w Al).

33

Blandingen blev filtreret, og ca. 150 cm vand blev fjernet på en roterende fordamper til dannelse af en opløsning med en viskositet på 3 poise.The mixture was filtered and ca. 150 cm of water was removed on a rotary evaporator to form a solution with a viscosity of 3 poise.

Fibrene blev dannet ved at indsprøjte en stråle af opløsningen gennem et 300 mikron bul i luft a*.medstirø» med en hastighed nær lydens hastighed.The fibers were formed by injecting a beam of the solution through a 300 micron bulb into the air at a rate near the speed of sound.

Fibrene blev opsamlet på et trådvæv, tørret ved 200°C og brændt ved 800°C i 1 time.The fibers were collected on a wire cloth, dried at 200 ° C and burned at 800 ° C for 1 hour.

Fibrene havde en uren hvid farve, var fleksible, bløde at føle på og havde et silkeagtigt skær.The fibers were of an impure white color, were flexible, soft to the touch and had a silky cut.

En portion af fibrene blev reduceret i hydrogen ved 650°C til dannelse af et sort produkt uden kendeligt tab af styrke.A portion of the fibers was reduced in hydrogen at 650 ° C to form a black product without appreciable loss of strength.

Eksempel 19Example 19

Zirkondioksydfibre indeholdende platin til brug som oksydationskata-lysator blev fremstillet af: 200 g zirkonoksykloridopløsning (50$ w/w Zr0Cl2,8H20) 230 em^ zirkonacetatopløsning (22$ w/w Zr0o) •z £ 250 cur 1# w/w pol^rrinylalkoliolopløsnlng 6.7 g sjældne jordartoksyder (60$ w/w YgO^) opløst i 16 cm^ koncentreret H01 0,29 g klorplatinsyrehydrat.Zirconium dioxide fibers containing platinum for use as an oxidation catalyst were prepared from: 200g of zirconium chloride solution (50 $ w / w Zr0Cl2.8H2O) 230 cm 2 zirconium acetate solution (22 $ w / w Zr0o) 6.7 g Rare Earth Toxides (60 $ w / w YgO 2) dissolved in 16 cm 2 of concentrated H01 0.29 g of chloroplatinic acid hydrate.

Opløsningen blev inddampet til en viskositet på 4 poise målt ved 20°C og pustet til fibre ved indsprøjtning i luft i medstrøm med en hastighed nær lydens hastighed.The solution was evaporated to a viscosity of 4 poise measured at 20 ° C and inflated to fibers by injection into co-flow air at a velocity near the velocity of sound.

20 14480120 144801

Fibrene blev tørret ved 100°C og brændt 1 time ved 800°C. De var hvide, stærke og bøjelige.The fibers were dried at 100 ° C and burned for 1 hour at 800 ° C. They were white, strong and pliable.

Eksempel 20Example 20

Der blev fremstillet en opløsning af følgende sammensætning: 250 g zirkonacetatopløsning (22% w/w ZrC^) 31 g aluminiumoksyklorid (10% w/w Al) 3 110 cm 1% w/w opløsning af polyætylenoksyd 3 28 cm kalciumkloridopløsning (10% w/w CaO).A solution of the following composition was prepared: 250 g zirconium acetate solution (22% w / w ZrC 2) 31 g aluminum oxychloride (10% w / w Al) 3 110 cm 1% w / w solution of polyethylene oxide 3 28 cm calcium chloride solution (10% w / w CaO).

Opløsningen blev inddampet på roterende fordamper til en viskositet på 10 poise ved 20°C og omdannet til fibre ved indsprøjtning i medstrøm i en luftstrøm med en hastighed nær lydens hastighed til dannelse af fibre med en gennemsnitsdiameter på 3 mikron.The solution was evaporated on rotary evaporator to a viscosity of 10 poise at 20 ° C and converted into fibers by co-injection in an air stream at a velocity near the velocity of sound to produce fibers having an average diameter of 3 microns.

Fibrene blev tørret ved 200°C i 1/2 time og brændt ved 1000°C i 1 time. Fibrene var hvide, bløde og bøjelige. Røntgenanalyse viste, at zirkon-dioksydet fandtes i kubisk fase.The fibers were dried at 200 ° C for 1/2 hour and burned at 1000 ° C for 1 hour. The fibers were white, soft and pliable. X-ray analysis showed that the zirconia was in the cubic phase.

Eksempel 21Example 21

Der blev fremstillet fibre af følgende sammensætning: 250 g zirkonacetatopløsning (22$ w/w Zr0o) 28 cm kalciumkloridopløsning (10$ w/w OaO) «Ζ 110 cnr polyætylenoksydopløsning (1$ w/w) 52 g aluminiumoksykloridopløsning (10$ w/w Al) 21 1U801Fibers of the following composition were prepared: 250 g of zirconium acetate solution (22 $ w / w Zr0o) 28 cm calcium chloride solution (10 $ w / w OaO) Ζ 110 cc polyethylene oxide solution (1 $ w / w) 52 g alumina solution (10 $ w / w w Al) 21 1U801

Opløsningen blev inddampet på roterende fordamper til en viskositet på 20 poise ved 20°C og fik lov at kenstå 24 timer. På dette tidspunkt var der dannet en meget fin suspension i opløsningen, hvis viskositet var nået op på 50 poise.The solution was evaporated on a rotary evaporator to a viscosity of 20 poise at 20 ° C and allowed to stand for 24 hours. At this point, a very fine suspension had formed in the solution whose viscosity reached 50 poise.

Opløsningen blev omdannet til fibre ved udpreening under et tryk på 0,7 kg/cm gennem et 250 mikron hul i en luftstrøm med en hastighed nær lydens hastighed der mødtes fra to spalter, som hver dannede en vinkel på 30° med væskestrålen.The solution was converted into fibers by spreading out at a pressure of 0.7 kg / cm through a 250 micron hole in an air stream at a velocity near the velocity of sound met from two slits, each forming an angle of 30 ° with the liquid jet.

Fibrene med en gennemsnitsdiameter på 3 mikron blev opsamlet på et metaltrådsnet, tørret ved 200°C og kalcineret ved 800°C i 30 minutter efterfulgt af 30 minutter ved 1000°C. Produkterne havde en himmelblå farve, var stærke og bøjelige.The fibers with an average diameter of 3 microns were collected on a metal wire mesh, dried at 200 ° C and calcined at 800 ° C for 30 minutes followed by 30 minutes at 1000 ° C. The products had a sky blue color, were strong and pliable.

Eksempel 22Example 22

Eibre indeholdende vismutoksyd og molybdænoksyd blev fremstillet af følgende sammensætning: 3,1 g vismutnitrat 2,4 g ammoniummolybdat 100 g zirkonoksykloridopløsning (20# w/w ZrOQ) •z C.Oils containing bismuth oxide and molybdenum oxide were prepared from the following composition: 3.1 g bismuth nitrate 2.4 g ammonium molybdate 100 g zirconium oxychloride solution (20 # w / w ZrOQ) • z C.

115 cm zirkonacetatopløsning (22# w/w Zr0o) 5 ^ 125 cm polyvinylalkoholopløsning (l# w/w) 30 g aluminiumoksykloridopløsning (10# w/w Al) 3 5 cm koncentreret saltsyre.115 cm zirconium acetate solution (22 # w / w ZrOo) 5 ^ 125 cm polyvinyl alcohol solution (l # w / w) 30 g alumina solution (10 # w / w Al) 3.5 cm concentrated hydrochloric acid.

Den homogene opløsning blev inddampet til en viskositet på 6 poise (20°0) og omdannet til fibre ved indsprøjtning gennem et 300 mikron hul i en konvergent luftstrøm med en hastighed nær lydens hastighed. Fibrene blev tørre ved 200°C og brændt i 10 minutter ved 800°C til dannelse af et bleggult produkt med en gennemsnitsdiameter på 6 mikron.The homogeneous solution was evaporated to a viscosity of 6 poise (20 ° 0) and converted into fibers by injection through a 300 micron hole in a convergent air stream at a velocity near the velocity of sound. The fibers were dried at 200 ° C and burned for 10 minutes at 800 ° C to form a pale yellow product with an average diameter of 6 microns.

Eksempel 23Example 23

Der blev fremstillet en opløsning ved at blande 47 vægtdele alumini-umklorfosfathydrat med 53 vægtdele af en 1# w/w vandig opløsning af polyætylenoksyd med en molekylvægt på 300.000. Opløsningen havde følgende sammensætning: 144801 22 fo w/w MolekylforholdA solution was prepared by mixing 47 parts by weight of aluminum chlorophosphate hydrate with 53 parts by weight of a 1 # w / w aqueous solution of polyethylene oxide having a molecular weight of 300,000. The solution had the following composition: Molecular ratio

Cl 14,6 0,81Cl 14.6 0.81

Al 13,6 1,00 P04 44,9 0,93 H20 23,4 2,58Al 13.6 1.00 PO4 44.9 0.93 H2O 23.4 2.58

Blandingen -van svagt uklar og gav efter filtrering en klar opløsning med en viskositet på 9,4 poise ved 20°C. Opløsningen "blev indsprøjtet gennem ni trekantede kuller, hver med en højde på 0,025 cm og en grundflade på .0,05 cm, i en luftstrøm af stor hastighed, som var ble-vet mættet med vand, ved et tryk på 0,42 kg/cnr og 16°C. Der blev produceret fibre.med 3-4 mikron i diameter, og disse gav efter brænding i 1 time ved 200°C og 2 timer ved 500°C en stabil, dunet måtte.The mixture was slightly cloudy and after filtration gave a clear solution with a viscosity of 9.4 poise at 20 ° C. The solution "was injected through nine triangular litters, each with a height of 0.025 cm and a base of .0.05 cm, in a high velocity air stream which was saturated with water at a pressure of 0.42 kg fibers were produced at 3-4 microns in diameter and these, after firing for 1 hour at 200 ° C and 2 hours at 500 ° C, produced a stable downy mat.

luftstrømmen blev udsendt fra to spalter, der hver var 0,0125-0,02 cm x 2,5 cm, og som havde en indbyrdes afstand på 0,1 cm og stødte sammen i en. vinkel på 60°, idet de var anbragt på hver side af rækken af huller. Hastigheden af luftstrømmen var 70 1 pr. 2,5 cm ved atmosfæriske betingelser.the airflow was emitted from two slots, each of 0.0125-0.02 cm x 2.5 cm, spaced 0.1 cm apart and bumped into one. angle of 60 °, being located on each side of the row of holes. The rate of air flow was 70 l 2.5 cm under atmospheric conditions.

Eksempel 24Example 24

Der blev fremstillet en opløsning ved at blande 45 vægtdele alumini-umklorfosfathydrat og 55 vægtdele af den 2f> w/w polyætylenoksydopløs-ning. Filtrering var unødvendig, og opløsningens viskositet viste sig at være 1,6 poise ved 20°C.A solution was prepared by mixing 45 parts by weight of aluminum chlorophosphate hydrate and 55 parts by weight of the 2f> w / w polyethylene oxide solution. Filtration was unnecessary and the viscosity of the solution was found to be 1.6 poise at 20 ° C.

Fibre 1-2 mikron i diameter indeholdende nogle klumper blev dannet, når opløsningen blev indsprøjtet gennem en 0,0125 cm stråle i en konvergent strøm af tør luft med en hastighed nær lydens hastighed.Fibers 1-2 microns in diameter containing some lumps were formed when the solution was injected through a 0.0125 cm beam into a convergent stream of dry air at a velocity near the velocity of sound.

Eksempel 25 23 144801Example 25 23 144801

Der "blev fremstillet en sur katalysator til krakningsreaktioner på følgende måde:An acid catalyst for cracking reactions was prepared as follows:

En prøve af zirkonoksyklorid blev opløst i en "blanding i forholdet 1:1 af H01 og vand og omkrystalliseret for at formindske graden af natriumurenhed. Krystallerne "blev genopløst i vand og dialyseret overfor en 20 vægt$ opløsning af eddikesyre, indtil pH-værdien var ca. 2, hvorved kloridindholdet blev nedsat.A sample of zirconium oxychloride was dissolved in a "1: 1 ratio of H01 and water and recrystallized to reduce the degree of sodium impurity. The crystals" were redissolved in water and dialyzed against a 20 weight solution of acetic acid until the pH was ca. 2, thereby reducing the chloride content.

tilstrækkelig meget polyætylénoksydopløsning (molekylvægt 300.000) og aluminiumsulf at opløsning blev tilsat til at give henholdsvis 1$ w/w polymer og 12$ w/w Al^O·^ Indhold beregnet på ZrOg indholdet i opløsningen.sufficient polyethylene oxide solution (molecular weight 300,000) and aluminum sulfur solution were added to give 1 $ w / w polymer and 12 $ w / w Al

Opløsningen blev inddampet til en viskositet på 10 poise og indsprøjtet gennem en række huller med en diameter på 0,038 cm på mødestedet for luftstrømme med hastigheder nær lydens hastighed, der kom ud fra to spalter^n^ 24 1448Q1 Tæstestrålerne blev svækket og delvis tørret af luftstrømmene og gav i hovedsagen klumpefri fibre med en gennemsnitsdiameter på 3 mikron. Fibrene blev opsamlet på trådvæv.The solution was evaporated to a viscosity of 10 poise and injected through a series of holes with a diameter of 0.038 cm at the point of airflow at velocities near the velocity of sound coming from two slits. The test jets were attenuated and partially dried by the air currents. and gave substantially lump-free fibers with an average diameter of 3 microns. The fibers were collected on filamentous tissue.

Fibrene blev tørret ved 2Q0°C og kalcineret i 30 minutter ved 800°C til dannelse af hvide, bløde, bøjelige fibre.The fibers were dried at 20 ° C and calcined for 30 minutes at 800 ° C to form white, soft, flexible fibers.

En prøve på 1 g blev anbragt i et katalytisk reaktorrør, og en strøm af cumoldamp blev ledet over katalysatoren ved en temperatur på 450°C og med en rumhastighed beregnet på vægt/time på 5 timer-1. .Analyse af produktet viste, at der var sket krakning af cumol, og der var 5 rumfangsprocent benzol i produktet.A sample of 1 g was placed in a catalytic reactor tube and a stream of cumulated vapor was passed over the catalyst at a temperature of 450 ° C and at a room rate calculated at weight / hour of 5 hours -1. .Analysis of the product showed that there was cracking of cumol and 5% by volume of benzene in the product.

Analyse af zirkondioksydfiberen bekræftede, at der var 12 vægtΊ> alu-miniumoksyd i fiberen. Mængden af natriumurenhed var 0,1 vægt$.Analysis of the zirconia fiber confirmed that there was 12 wt> alumina in the fiber. The amount of sodium impurity was 0.1 wt $.

Eksempel 26 1,067 g Af en fiber, fremstillet som beskrevet i eksempel 16., blev skubbet fast ind i et Pyrex reaktorrør med en indre diameter på 1,5 cm. Kvælstof sammen med ætylen, ilt og klorbrinte kunne ledes gennem katalysatorleget ved temperaturer op til 350°0. Temperaturen af katalysatoren blev målt direkte ved hjælp af et termoelement.Example 26 1.067 g of a fiber prepared as described in Example 16. was pushed into a 1.5 cm diameter Pyrex reactor tube. Nitrogen along with ethylene, oxygen and hydrogen chloride could be passed through the catalyst bed at temperatures up to 350 ° 0. The temperature of the catalyst was measured directly by means of a thermocouple.

Katalysatoren blev behandlet først i en strøm af HC1 og kvælstof i 1 1/2 time ved 300°0. Katalysatoren blev afkølet til 200°C, og ætylen og ilt blev sat til reaktoren. Sammensætningen af gassen var:The catalyst was first treated in a stream of HCl and nitrogen for 1 1/2 hours at 300 ° 0. The catalyst was cooled to 200 ° C and ethylene and oxygen were added to the reactor. The composition of the gas was:

Rumfangsprocent E2 60 H01 20 c2h4 10 02 10 144801 25Volume percentage E2 60 H01 20 c2h4 10 02 10 144801 25

Hastigheden af ætylens tremmen var 1,25 x 10”^ mol/minut.The rate of the ethylene clamp was 1.25 x 10 6 moles / minute.

Prøver af gassen, der forlod reaktoren, "blev opsamlet med henblik på gaskromatografisk analyse for ætylen og klorholdige produkter.Samples of the gas leaving the reactor "were collected for gas chromatographic analysis for ethylene and chlorine-containing products.

Oksyklorering blev sporet ved 200°C, idet det vigtigste produkt var 1.2- diklorætan. Ætylklorid blev også sporet. Mængderne af hver var lille svarende til omsætninger på 0,34$ og 0,11$ af ætylenet.Oxychlorination was traced at 200 ° C, the most important product being 1.2-dichloroethane. Ethyl chloride was also detected. The quantities of each were small, corresponding to revenue of $ 0.34 and $ 0.11 of the ethylene.

Omsætningerne er her defineret som (antal mol af en given forbindelse produceret på enheds tid) x 100 divideret med (antal mol ætylenoksyd ledt gennem reaktoren pr. tidsenhed).The reactions are defined here as (number of moles of a given compound produced in unit time) x 100 divided by (number of moles of ethylene oxide passed through the reactor per unit of time).

Hår temperaturen blev sat i vejret, nåede selektiviteten af reaktionen i retning af 1,2-diklorætan, som er det ønskede produkt, en konstant værdi på ca. 90$. (Selektiviteten defineres som (antal mol 1.2- diklorætan fremstillet pr. tidsenhed) x 100 divideret med (totalt antal mol af alle forbindelser produceret pr. tidsenhed)). Ted 300°0 og over blev der sporet vinylklorid, medens der ved 350°C blev fundet små mængder cis- og trans-diklorætylen.As the temperature was raised, the selectivity of the reaction towards 1,2-dichloroethane, which is the desired product, reached a constant value of approx. $ 90. (The selectivity is defined as (number of moles of 1.2-dichloroethane produced per unit of time) x 100 divided by (total number of moles of all compounds produced per unit of time)). Ted 300 ° 0 and above, vinyl chloride was traced, while small amounts of cis and trans dichloroethyl were found at 350 ° C.

Ætylenomdannelser og reaktionsselektivitet er anført i enkeltheder i følgende tabel.Ethylene conversions and reaction selectivity are listed in detail in the following table.

1,2- Diklor=1,2- Dichloro =

Temp. Ætyl= diklor= Vinyl= ætylen °0 klorid ætan klorid cis trans Selektivitet 200 0,1 0,3 - - - 75 250 0,3 3,3 - - 92 300 1,2 16,5 0,2 - - 92 350 1,2 26,0 1,2 0,4 0,2 90Temp. Ethyl = dichloro = Vinyl = ethylene ° 0 chloride ethan chloride cis trans Selectivity 200 0.1 0.3 - - - 75 250 0.3 3.3 - - 92 300 1.2 16.5 0.2 - - 92 350 1.2 26.0 1.2 0.4 0.2 90

Eksempel27 1,47 g Af en katalysator indeholdende 0,3 vægt$ platin i zirkondiok-sydfiber (fremstillet som beskrevet i eksempel 19 ) blev pakket i en kvartsreaktor med en indre diameter på 2,5 cm og en termoelementlomme med en diameter på 0,8 cm ned langs aksen. Katalysatoren optog et 3 26 146801 rumfang pa 11 cm .EXAMPLE 27 1.47 g of a 0.3 wt.% Platinum zirconium-Southern fiber catalyst (prepared as described in Example 19) was packed in a 2.5 cm internal diameter quartz reactor and a thermocouple pocket having a diameter of 0. 8 cm down the axis. The catalyst occupied a volume of 11 cm.

En luftformig "blanding indeholdende 1,27 rumfangsprocent kulilte og 1,32 rumfangsprocent ilt i kvælstof "blev ledet over katalysatoren med en rumhastighed på 23.200 timer-^. Koncentrationerne af kulilte, kuldioksyd og ilt i udgangsstrømmen fra reaktoren hlev overvåget. Katalysatoren "begyndte at virke ved 300°C, og ved 460°C var der en 97% omdannelse af kulilte til kuldioksyd.An gaseous "mixture containing 1.27% by volume of carbon monoxide and 1.32% by volume of oxygen in nitrogen" was passed over the catalyst at a room rate of 23,200 hours. The concentrations of carbon monoxide, carbon dioxide and oxygen in the reactor output stream were monitored. The catalyst "began to operate at 300 ° C and at 460 ° C there was a 97% conversion of carbon monoxide to carbon dioxide.

Under forsøgsbetingelserne hiiver den ikke-katalyserede, homogene oksydation af kulilte til kuldioksyd ikke væsentlig, før temperaturen overskrider 830°C.Under the experimental conditions, the non-catalyzed homogeneous oxidation of carbon monoxide to carbon dioxide does not rise substantially until the temperature exceeds 830 ° C.

Eksempel 28Example 28

Katalytiske zirkondioksydfibre indeholdende 3$ kobolt og 1% kobber blev fremstillet af: 115 ml zirkonacetatopløsning (22% Zr02) 2,2 g sjældne jordartoksyder indeholdende 60% yttriumoksyd opløst i 5 cm koncentreret HKO^ og opvarmet 'til tørhed 65 ml 1% opløsning af polyætylenoksyd 1,26 g Cu(U05)2,3H20 4,9 g Co(K05)2,6H20.Catalytic zirconia fibers containing 3 $ cobalt and 1% copper were prepared from: 115 ml of zirconium acetate solution (22% Zr02) 2.2 g of rare earth oxides containing 60% yttrium oxide dissolved in 5 cm of concentrated H polyethylene oxide 1.26 g Cu (U05) 2.3H2O 4.9 g Co (CO5) 2.6H2O.

Opløsningen blev filtreret for at fjerne partikler større end 0,3 mikron og inddampet til en viskositet på 2,8 poise.The solution was filtered to remove particles larger than 0.3 microns and evaporated to a viscosity of 2.8 poise.

Opløsningen blev anbragt i en beholder med et kileformet hoved indeholdende 250 mikron huller i en række. På hver side af disse huller kom der luft med en hastighed nær lydens hastighed ud fra 250 mikron brede spalter parallelle med hulrækken og stødende sammen i en vinkel på 30° med væskestrømmene fra hullerne. Der blev dannet fibre af væsken, som kom ud uden anvendelse af tryk, idet der blev anvendt afsvæk-The solution was placed in a container with a wedge-shaped head containing 250 micron holes in a row. On each side of these holes, air at a velocity near the velocity of sound emerged from 250 micron wide slots parallel to the row of holes and bumping together at an angle of 30 ° with the fluid flows from the holes. Fibers were formed from the liquid which came out without the use of pressure, using attenuation.

OISLAND

kende luft med et tryk på 0,7 kg/cm målt i reservoiret over luftspalterne. Den afsvækkende luft blev ledet gennem en pakket befugtnings-kolonne indeholdende vand ved 23°0.know air with a pressure of 0.7 kg / cm measured in the reservoir above the air gaps. The attenuating air was passed through a packed humidifier column containing water at 23 °.

Fibrene blev opsamlet på et trådnet i form af en måtte ca. 1,2 m under spindeaggregatet.The fibers were collected on a wire mesh in the form of a mat. 1.2 m below the spinning assembly.

27 U480127 U4801

Fibrene blev tørret ved 200°C og brændt ved 800°C i 1/2 time. Fogle af disse fibre blev reduceret i en strøm af H2/F2 ved 650°C. Gennemsnitsdiameteren var 3 mikron.The fibers were dried at 200 ° C and burned at 800 ° C for 1/2 hour. Birds of these fibers were reduced in a stream of H2 / F2 at 650 ° C. The average diameter was 3 microns.

Eksempel 29Example 29

Zirkondioksydfibre indeholdende 3# w/w kobolt og 1# mangan med ca. 7# sjældne jordartoksyder som fasestabilisatorer blev fremstillet af følgende sammensætning: 250 g zirkonacetatopløsning (22# w/w Zr02) 110 ml 1# w/w opløsning af polyætylenoksyd 9,5 g sjældne jordartklorider (50# w/w yttriumoksyd) 8,1 g koboltnitrathydrat 1 g manganokloridhydrat.Zirconia fibers containing 3 # w / w cobalt and 1 # manganese with approx. 7 # rare earth oxides as phase stabilizers were prepared from the following composition: 250 g zirconium acetate solution (22 # w / w ZrO 2) 110 ml 1 # w / w solution of polyethylene oxide 9.5 g rare earth chlorides (50 # w / w yttrium oxide) 8.1 g cobalt nitrate hydrate 1 g manganese chloride hydrate.

Opløsningen blev inddampet til en viskositet på 10 poise og udpresset gennem huller med en diameter på 0,038 cm under anvendelse af et abso- lut tryk på 0,2 kg/cm ind i en strøm af luft med en hastighed nær lydens hastighed, der kom ud fra konvergerende spalter i en vinkel på 30° med væskestrålen. Trykket af den afsvækkende luft var 0,7 kg/cm2.The solution was evaporated to a viscosity of 10 poise and extruded through holes of 0.038 cm diameter using an absolute pressure of 0.2 kg / cm into a stream of air at a velocity near the velocity of sound coming out from converging slots at an angle of 30 ° with the liquid jet. The pressure of the attenuating air was 0.7 kg / cm 2.

Fibrene blev tørret ved 200°0, brændt ved 800°0 i 1/2 time og reduceret i en atmosfære af brint og kvælstof ved 700°C til dannelse af en sort, fibrøs måtte. Rodede måtter af disse fibre blev fremstillet til katalytiske iltningsreaktioner.The fibers were dried at 200 ° 0, burned at 800 ° 0 for 1/2 hour and reduced in an atmosphere of hydrogen and nitrogen at 700 ° C to form a black fibrous mat. Rooted mats of these fibers were prepared for catalytic oxygenation reactions.

Eksempel3QEksempel3Q

0,76 g Katalysator indeholdende 3 vægt# kobolt, 1 vægt# kobber, 7 vægt# sjældne jordartoksyder i zirkondioksydfibre (fremstillet som beskrevet i eksempel 28) blev pakket i en kvartsreaktor med en indre diameter på 2,5 cm. Der var en termoelementlomme med en diameter på 0,8 cm ned langs rørets" akse. Katalysatoren optog et rumfang på 17 3 cm .0.76 g of Catalyst containing 3 wt # cobalt, 1 wt # copper, 7 wt # rare earth oxides in zirconia (prepared as described in Example 28) was packed in a 2.5 cm quartz inner reactor. There was a thermocouple pocket with a diameter of 0.8 cm down the axis of the pipe. The catalyst took up a volume of 17 3 cm.

Eh gasblanding indeholdende 1,23 rumfangsprocent kulilte og 1,34 rumfangsprocent ilt i kvælstof blev ledet over katalysatoren med en rumhastighed på 15.000 timer"^. Katalysatoren begyndte at virke ved 250°C, og ved 375°0 var der 75# omdannelse af kulilte til kuldioksyd.A gas mixture containing 1.23% by volume of carbon monoxide and 1.34% by volume of oxygen in nitrogen was passed over the catalyst at a room rate of 15,000 hours. The catalyst began to operate at 250 ° C and at 375 ° 0 there was 75 # conversion of carbon monoxide. for carbon dioxide.

Claims (15)

28 146801 Patentkrav.28 146801 Patent Claims. 1. Fremgangsmåde til fremstilling af uorganiske fibre, som omfatter fiberdannelse ved ekstrudering ind i en gasstrøm af en blanding med en viskositet større end 1 poise, og som omfatter et polært opløsningsmiddel og en metalforbindelse valgt blandt kloriderne, sulfaterne, ace= taterne, formiaterne, hydroksyderne og nitraterne af aluminium, jern, zirkon, titan, beryllium, krom, magnium, thorium, uran, yttrium, nikkel, vanadin, mangan, molybdæn, wolfram og kobolt samt 0,1-10 vægt% beregnet på den samlede vægt af blandingen af en organisk polymer, som har en molekylvægt i området 10 -10 , idet både metalforbindelsen og den organiske polymer er opløselige i det nævnte opløsningsmiddel, eller også danner metalforbindelsen en sol i opløsningsmidlet, idet vægtandelen af den organiske polymer er mindre end 10% af vægtandelen af metalforbindelsen, fjernelse af i det mindste én del af opløsningsmidlet fra de fremstillede fibre og opvarmning af fibrene for at dekomponere metalforbindelsen og/eller den organiske polymer, kendetegnet ved, at ekstruderingen udføres gennem en eller flere åbninger ind i mindst én gasstrøm, som har en komponent med stor hastighed i det ekstruderede materiales bevægelsesretning, idet der eventuelt anvendes en fiberdannende blanding, som indeholder et katalysatormateriale eller et forstadium til dette.A process for preparing inorganic fibers which comprises fiber formation by extrusion into a gas stream of a viscosity mixture greater than 1 poise and comprising a polar solvent and a metal compound selected from the chlorides, sulfates, acetates, formates, the hydroxides and nitrates of aluminum, iron, zircon, titanium, beryllium, chromium, magnesium, thorium, uranium, yttrium, nickel, vanadium, manganese, molybdenum, tungsten and cobalt and 0.1-10% by weight based on the total weight of the mixture of an organic polymer having a molecular weight in the range of 10 to 10, with both the metal compound and the organic polymer being soluble in said solvent, or the metal compound forming a sol in the solvent, the weight proportion of the organic polymer being less than 10% by weight. the proportion of weight of the metal compound, removal of at least one portion of the solvent from the fibers produced and heating the fibers to decompose the metal compound and / or is the organic polymer, characterized in that the extrusion is carried out through one or more openings into at least one gas stream having a high velocity component in the direction of movement of the extruded material, optionally using a fiber-forming mixture containing a catalyst material or a precursor stage. for this. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at der anvendes en vandopløselig metalforbindelse.Process according to claim 1, characterized in that a water-soluble metal compound is used. 3. Fremgangsmåde ifølge krav 1 og 2, kendetegnet ved, at der som opløsningsmiddel anvendes vand, som metalforbindelse et metalsalt eller et basisk metalsalt, som giver en viskos opløsning eller sol i vand, og at der anvendes en vandopløselig organisk polymer.Process according to claims 1 and 2, characterized in that water is used as a solvent, as a metal compound, a metal salt or a basic metal salt, which gives a viscous solution or sol in water and that a water-soluble organic polymer is used. 4. Fremgangsmåde ifølge krav 1, kendetegne t ved, at der som metalforbindelse anvendes et metalsalt, som kan danne et ildfast oksyd. 1 Fremgangsmåde ifølge et af de foregående krav, kendete g- 144801 net ved, at der som metalforbindelse anvendes aluminiumoksyklorid, basisk aluminiumacetat, basisk aluminiumformiat, zirkonoksyklorid, basisk zirkonacetat, basisk zirkonitrat eller basisk zirkonformiat.Process according to claim 1, characterized in that a metal salt is used which can form a refractory oxide as a metal compound. 1. A process according to any one of the preceding claims, characterized in that aluminum oxychloride, basic aluminum acetate, basic aluminum formate, zirconium oxychloride, basic zirconium acetate, basic zirconitrate or basic zirconformate are used as the metal compound. 6. Fremgangsmåde ifølge et af de foregående krav, kendetegnet ved, at der som organisk polymer anvendes en ligekædet, poly= hydroksyleret polymer.Process according to one of the preceding claims, characterized in that a straight chain poly = hydroxylated polymer is used as an organic polymer. 7. Fremgangsmåde ifølge krav 1-5, kendetegnet ved, at der som organisk polymer anvendes polyvinylalkohol eller delvis hydrolyseret polyvinylacetat.Process according to claims 1-5, characterized in that polyvinyl alcohol or partially hydrolyzed polyvinyl acetate is used as an organic polymer. 8. Fremgangsmåde ifølge krav 1-5, kendetegnet ved, at der som organisk polymer anvendes polyætylenoksyd eller polyætylen= glyko1.Process according to claims 1-5, characterized in that polyethylene oxide or polyethylene = glycol is used as an organic polymer. 9. Fremgangsmåde ifølge krav 7, kendetegnet ved, at der anvendes en polyvinylalkohol eller et delvis hydrolyseret poly= vinylacetat,som har middelstor eller høj molekylvægt.Process according to claim 7, characterized in that a polyvinyl alcohol or a partially hydrolyzed polyvinyl acetate having medium or high molecular weight is used. 10. Fremgangsmåde ifølge krav 8, kendetegnet ved, at der Æ fi anvendes et polyætylenoksyd med en molekylvægt på l(r til 10 .Process according to claim 8, characterized in that a polyethylene oxide having a molecular weight of 1 (r to 10) is used. 11. Fremgangsmåde ifølge et af de foregående krav, kendetegnet ved, at den fiberdannende blanding anvendes med en viskositet i området 1-100 poise.Process according to one of the preceding claims, characterized in that the fiber-forming mixture is used with a viscosity in the range 1-100 poise. 12. Fremgangsmåde ifølge et af de foregående krav, kendetegnet ved, at der anvendes en åbning med mindst én dimension fra 50-500 mikron.Method according to one of the preceding claims, characterized in that an aperture having at least one dimension of 50-500 microns is used. 13. Fremgangsmåde ifølge et af de foregående krav, kendetegnet ved, at der som gasstrøm anvendes luft.Process according to one of the preceding claims, characterized in that air is used as a gas stream. 14. Fremgangsmåde ifølge krav 13, kendetegnet ved, at luften har omgivelsernes temperatur.Process according to claim 13, characterized in that the air has the ambient temperature. 15. Fremgangsmåde ifølge et af de foregående krav, kendeteg-Method according to one of the preceding claims, characterized in
DK301771A 1970-06-19 1971-06-18 PROCEDURE FOR MANUFACTURING INORGANIC FIBERS DK144801C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB2990970 1970-06-19
GB2990970 1970-06-19
GB436971 1971-02-10
GB436971*[A GB1360197A (en) 1970-06-19 1971-02-10 Fibres

Publications (2)

Publication Number Publication Date
DK144801B true DK144801B (en) 1982-06-07
DK144801C DK144801C (en) 1982-11-01

Family

ID=26239075

Family Applications (1)

Application Number Title Priority Date Filing Date
DK301771A DK144801C (en) 1970-06-19 1971-06-18 PROCEDURE FOR MANUFACTURING INORGANIC FIBERS

Country Status (13)

Country Link
AR (1) AR194926A1 (en)
AT (1) AT336767B (en)
BE (1) BE768446A (en)
CA (1) CA994510A (en)
CH (1) CH527281A (en)
DE (1) DE2130315C3 (en)
DK (1) DK144801C (en)
FR (1) FR2099253A5 (en)
IE (1) IE35325B1 (en)
IL (1) IL37050A (en)
NL (1) NL172175C (en)
NO (1) NO140895C (en)
SE (1) SE387375B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1417791A (en) * 1972-06-30 1975-12-17 Du Pont Fibres
GB1425934A (en) * 1972-03-15 1976-02-25 Ici Ltd Alumina
DE2325575A1 (en) * 1973-05-19 1974-11-28 Bayer Ag METHOD OF AFTER-TREATMENT OF INORGANIC FIBERS
JPS584096B2 (en) * 1976-07-23 1983-01-25 東芝モノフラツクス株式会社 Method for producing oxide polycrystalline fiber
EP0208506B1 (en) * 1985-07-02 1990-06-27 The Dow Chemical Company Magnesium aluminate fiber composition and process therefor
US4753904A (en) * 1986-08-20 1988-06-28 E. I. Du Pont De Nemours And Company Zirconia-modified alumina fiber
DE102008052169B4 (en) * 2007-10-27 2013-07-18 Bayerische Motoren Werke Aktiengesellschaft Process for the preparation of oxide ceramic fibers and use of fibers produced therefrom

Also Published As

Publication number Publication date
NO140895C (en) 1979-12-05
IL37050A (en) 1974-07-31
FR2099253A5 (en) 1972-03-10
AT336767B (en) 1977-05-25
CA994510A (en) 1976-08-10
AR194926A1 (en) 1973-08-30
DE2130315C3 (en) 1980-10-23
NL7108399A (en) 1971-12-21
DE2130315B2 (en) 1980-02-07
CH527281A (en) 1972-08-31
NO140895B (en) 1979-08-27
NL172175C (en) 1983-07-18
IE35325B1 (en) 1976-01-07
DE2130315A1 (en) 1972-01-13
ATA537471A (en) 1976-09-15
IE35325L (en) 1971-12-19
NL172175B (en) 1983-02-16
IL37050A0 (en) 1971-08-25
SE387375B (en) 1976-09-06
BE768446A (en) 1971-12-13
DK144801C (en) 1982-11-01

Similar Documents

Publication Publication Date Title
US3992498A (en) Refractory fiber preparation with use of high humidity atmosphere
US4320074A (en) Process for preparing shaped body of alumina
CS203055B2 (en) Sheped solid,especially a filament containing crystalline alumina and method of manufacturing same
US4094690A (en) Liquid composition
US3843561A (en) Mat of inorganic oxide fibers,its method of preparation and its impregnation with catalytic materials
JP4044673B2 (en) Polybetaine-stabilized palladium-containing nanoparticles, method for preparing the particles, and catalyst prepared from the particles to produce vinyl acetate
US3652749A (en) Continuous drawing of fibers from a mixture containing an inorgani oxide sol covered by a protective fluid
US3560408A (en) Catalytic mineral fibers and their preparation
DE2317560A1 (en) CATALYTIC DEVICE AND PROCEDURE
DE2712785A1 (en) PROCESS FOR THE PRODUCTION OF MODIFIED SILVER CATALYSTS AND THEIR USE FOR OXYDATION PROCESSES, IN PARTICULAR FOR THE OXYDATION OF ETHYLENE TO GENERATE ETHYLENE OXIDE
US4937212A (en) Zirconium oxide fibers and process for their preparation
US3994740A (en) Shaped bodies of alumina and silica
DK144801B (en) PROCEDURE FOR MANUFACTURING INORGANIC FIBERS
RU2532924C1 (en) Catalyst of oxidation conversion of hydrocarbon gases with obtaining of carbon oxide and hydrogen
US4250131A (en) Refractory inorganic oxide fibers
EP0195353A2 (en) Hollow ceramic fibers
DE2303884A1 (en) CATALYST ON A CERAMIC SUPPORT MATERIAL CONSTRUCTED FROM FIBERS WITH A LARGE SURFACE AREA, METHOD OF ITS MANUFACTURING AND ITS USE
DE1964914C3 (en) Process for the production of refractory mineral fibers
US3951867A (en) Coprecipitated CeO2 --SnO2 catalyst supports
JPS6321206A (en) Production of fine oxide particle
US4533508A (en) Metal oxide fibers from acrylate salts
US4520223A (en) Dehydrogenation process
Morton et al. Fibres
JP7328991B2 (en) METHOD FOR MANUFACTURING COMPOSITE HAVING METAL OR METAL OXIDE
Morton et al. Zirconia fibres

Legal Events

Date Code Title Description
PUP Patent expired