DK143060B - - Google Patents

Download PDF

Info

Publication number
DK143060B
DK143060B DK639470AA DK639470A DK143060B DK 143060 B DK143060 B DK 143060B DK 639470A A DK639470A A DK 639470AA DK 639470 A DK639470 A DK 639470A DK 143060 B DK143060 B DK 143060B
Authority
DK
Denmark
Prior art keywords
bottle
approx
hose
extrusion
polymer
Prior art date
Application number
DK639470AA
Other languages
Danish (da)
Other versions
DK143060C (en
Inventor
Convers Wyeth Nathaniel
Newman Roseveare Ronald
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Publication of DK143060B publication Critical patent/DK143060B/da
Application granted granted Critical
Publication of DK143060C publication Critical patent/DK143060C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0276Bottom construction having a continuous contact surface, e.g. Champagne-type bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/14Clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/28Blow-moulding apparatus
    • B29C49/30Blow-moulding apparatus having movable moulds or mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C2049/4856Mounting, exchanging or centering moulds or parts thereof
    • B29C2049/4858Exchanging mould parts, e.g. for changing the mould size or geometry for making different products in the same mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/7879Stretching, e.g. stretch rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/081Specified dimensions, e.g. values or ranges
    • B29C2949/0811Wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/081Specified dimensions, e.g. values or ranges
    • B29C2949/0829Height, length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0862Crystallinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0872Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3041Preforms or parisons made of several components having components being extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/20Opening, closing or clamping
    • B29C33/26Opening, closing or clamping by pivotal movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/087Means for providing controlled or limited stretch ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

143060 i 0 '143060 in 0 '

Den foreliggende opfindelse angår eh plastflaske til væsker under gastryk og praktisk taget bestandig mod deformation forårsaget af tryk og mod gennemtrængen af. gasser.og.væsker, . samt en fremgangsmåde til fremstilling af en sådan flaske, der 5 især er anvendelig til f.eks. kylsyreholdigé drikkevarer eller til aerosoler, hvortil man hidtil kun har kunnet. .aSyende f lasker af . glas.The present invention relates to a plastic bottle for liquids under gas pressure and practically resistant to deformation caused by pressure and to the penetration of. gases and liquids,. and a method of making such a bottle which is particularly useful for e.g. carbonated beverages or aerosols for which only hitherto has been possible. .aLighting f washes off. glass.

Flasker, som skal kunne anvendes til kulsyreholdige drikkevarer, hvor der kommer noget autogent tryk i flasken,, må være 10 i besiddelse af visse nødvendige egenskaber. Disse egenskaber. .Bottles to be used for carbonated beverages where there is some autogenous pressure in the bottle must have 10 certain required properties. These properties. .

omfatter den nødvendige styrke til at kunne indeholdé drlkkeva- .. ' 2' - · . · · rer under tryk, der kan være så høje som 7 kg/cm , uden kendelig krybning eller alvorlig deformation'indén for det tempera-turområde fra ca. O til ca. 50°C, som der kan være tale om. Des-15 uden må flasken have ingen eller ringe gennemtrængelighed, især for carbondioxid og oxygen, idet et kontinuerligt tab af'carbondioxid fra en kulsyreholdig drikkevare eller indtrængen af oxygen i en drikkevare som f.eks. øl vil forkorte drikkevarens opbevaringsholdbarhed og ændre dens smag.includes the strength required to contain the drinking water .. '2' - ·. · Under pressure that can be as high as 7 kg / cm, with no noticeable creep or severe deformation in the temperature range from approx. 0 to approx. 50 ° C, which may be the case. In addition, the bottle must have no or little permeability, especially for carbon dioxide and oxygen, with a continuous loss of carbon dioxide from a carbonated beverage or the penetration of oxygen into a beverage such as e.g. beer will shorten the shelf life of the beverage and change its taste.

20 Hidtil har det ikke været muligt at erstatte·glasflasker til gasholdige væsker under tryk med plastflasker, da disse ikke har kunnet fremstilles med de ovenfor nævnte egenskaber.20 So far, it has not been possible to replace glass bottles for gas containing liquids under pressure with plastic bottles, as these have not been able to be manufactured with the above mentioned properties.

Nærværende opfindelse er baseret på den erkendelseat det ved anvendelse af et ganske specielt plastmateriale'ér muligt at 25 opnå en flaske, der opfylder" alle 'de nævn^ h^titegeleer;. og i overensstemmelse hermed er plastf lasken iføige><^(fliid^l;sen· ejendommelig ved, at den består af en eventuelt pigmenteretethylen-terephthalat-polymer eller -copolymer med en glasover^angsterapera-tur på mindst 50°C og et logaritmisk viskositetstal·.på mindst 30 0,55 dl/g (bestemt på en 1%'s opløsning’ af polymeren på.1% i en blanding af 37,5 vægt% tetrachlorethan og 62.,5 vægt% ghehdl yed..The present invention is based on the recognition that by using a very special plastic material it is possible to obtain a bottle which satisfies "all" the above-mentioned gels; and accordingly, the plastic bottle is characterized in that it consists of an optionally pigmented ethylene terephthalate polymer or copolymer having a glass surface temperature of at least 50 ° C and a logarithmic viscosity number of at least 30 0.55 dl / g ( determined on a 1% solution of the polymer of 1% in a mixture of 37.5 wt.% tetrachloroethane and 62. 5 wt.% ghehdl yed.

30°C) , samt at flaskekroppen er biaks ialt- -- get og omfatter en ret cylinderdel med en kryetaili1ffr€e€^; på'·"*'·" mindst 15%. .. ·.. tb. IP ; 35 Fremgangsmåden ifølge opfindelsen til*" fremstilling af den ne flaske er ifølge opfindelsen ejendommelig ved* at et hult præ- 0 2 163060 formet emne af eventuelt pigmenteret, amorf eller i hovedsagen amorf ethylenterephthalat-polymer eller -copolymer med en glasovergangstemperatur på mindst 50°C og et logaritmisk viskositetstal på mindst 0,55 dl/g strækkes biaksialt i en til dan-5 nelse af en flaske udformet form ved en temperatur på 80-130°C, således at den hovedpart af sidevæggene i det præformede emne, der kommer til at udgøre flaskens almindeligvis cylindriske del, strækkes højst 4 gange i aksialretningen og 2,5-7 gange i periferiretningen til dannelse af en flaske med et forhold mellem 10 vægten i gram og rumfanget i ml, der ligger mellem 0,005:1 og 0,2:1, og en krystallinitet på mindst 15%.30 ° C), and that the bottle body is bifacially assembled and comprises a straight cylinder portion with a crystalline body; at '· "*' ·" at least 15%. .. · .. tb. IP; The process of the invention for the preparation of the bottle according to the invention is characterized in that a hollow preformed article of any pigmented, amorphous or generally amorphous ethylene terephthalate polymer or copolymer having a glass transition temperature of at least 50 ° C and a logarithmic viscosity number of at least 0.55 dl / g are stretched biaxially in a bottle-shaped mold at a temperature of 80-130 ° C, so that the bulk of the sidewalls of the preform blank to constitute the generally cylindrical portion of the bottle, extends at most 4 times in the axial direction and 2.5-7 times in the circumferential direction to form a bottle having a ratio of 10 weight in grams to the volume in ml of between 0.005: 1 and 0; 2: 1, and a crystallinity of at least 15%.

Polyethylenterephthalat-flaskerne ifølge opfindelsen har en massefylde, der ligger mellem ca. 1,331 og 1,402, og den rette cylinderdel af flasken har en aksial trækstyrke på mellem ca.The polyethylene terephthalate bottles according to the invention have a density which is between approx. 1,331 and 1,402, and the right cylinder portion of the bottle has an axial tensile strength of between approx.

2 15 350 og 2.100 kg/cm , en perifer trækstyrke på mellem ca. 1.400 2 2 og 5.600 kg/cm , en aksial flydespænding på mindst 280 kg/cm og 2 en perifer flydespænding på mindst 490 kg/cm . Typisk vil disse flasker have en vægtykkelse på 0,25 og 0,75 mm og en deformationskonstant lig med hældningen af logaritmen (den reciprokke værdi 20 af deformationsgraden) mod deformationen af en værdi på mindst ca. 0,65.2 15 350 and 2,100 kg / cm, a peripheral tensile strength of between approx. 1,400 2 2 and 5,600 kg / cm, an axial flow stress of at least 280 kg / cm and 2 a peripheral flow stress of at least 490 kg / cm. Typically, these bottles will have a wall thickness of 0.25 and 0.75 mm and a deformation constant equal to the slope of the logarithm (the reciprocal value 20 of the degree of deformation) against the deformation of a value of at least approx. 0.65.

Fremgangsmåden ifølge opfindelsen udføres hensigtsmæssigt ved hjælp af en form, for at flaskerne hele tiden kan blive ens.The process according to the invention is conveniently carried out by means of a mold so that the bottles can always be identical.

Den hule udgangsslange af polyethylenterephthalat extruderes 25 gennem et ringformet mundstykke ind i en giidelig form, der har en vulst-udsparing i den ene ende til modtagelse af extrudatet, og derefter bringes formen til at glide væk fra extrusionsmundstykket, efterhånden som den kontinuerlige extrusion foregår, hvorved extrudatet strækkes, medens det samtidig tvinges ind mod formens indven-3Q dige vægge ved indføring af et fluidum under tryk i det indre af den flaske, der er under dannelse.The hollow polyethylene terephthalate exit hose is extruded through an annular nozzle into a mold having a bead recess at one end for receiving the extrudate, and then the mold slides away from the extrusion nozzle as the continuous extrusion proceeds. thereby extending the extrudate while at the same time forcing the internal walls of the mold by introducing a pressurized fluid into the interior of the forming bottle.

Polyethylenterephthalater, der er egnede til fremstilling af plastflaskerne ifølge opfindelsen, omfatter (a) polymere, hvoraf mindst ca. 97% indeholder tilbagevendende ethylenterephthalat-35-enheder af formlen O 0 -och2ch2oc- -C- 3 143060 0 medens den resterende del er mindre mængder af esterdannende komponenter, samt (b) copolymere af ethylenterephthaiat, hvoraf op til ca. 10 mol% består af monomere enheder som f.eks. diethy-lenglycol, propan-1,3-diol, butan-1,4-diol, polytetramethylen-5 glycol, polyethylenglycol, polypropylenglycol og 1,4-hydroxy-methylcyclohexan i stedet for glycol-molekyIdelen ved fremstillingen af den copolymere eller f.eks. isophthalsyre, dibenzoe-syre, naphthalen-1,4- eller 2,6-dicarboxylsyre, adipinsyre, sebacinsyre eller decan-1,10-dicarboxylsyre i stedet for syre-10 molekyldelen ved fremstillingen af den copolymere.Polyethylene terephthalates suitable for preparing the plastic bottles of the invention comprise (a) polymers of which at least approx. 97% contains recurring ethylene terephthalate-35 units of formula O -O2 and 2C2-C-C while the remaining portion is smaller amounts of ester-forming components, and (b) copolymers of ethylene terephthalate, of which up to ca. 10 mol% consists of monomeric units such as e.g. diethylene glycol, propane-1,3-diol, butane-1,4-diol, polytetramethylene glycol, polyethylene glycol, polypropylene glycol and 1,4-hydroxy-methylcyclohexane in place of the glycol molecule in the preparation of the copolymer or f. eg. isophthalic acid, dibenzoic acid, naphthalene-1,4- or 2,6-dicarboxylic acid, adipic acid, sebacic acid or decane-1,10-dicarboxylic acid in place of the acid-molecular moiety in the preparation of the copolymer.

De bestemte grænser for comonomeren bestemmes af glasovergangstemperaturen for den polymere, idet det har vist sig, at når glasovergangstemperaturen går under ca. 50°C, vil resultatet blive en copolymer med nedsatte mekaniske egenskaber, og 15 dette svarer til tilsætning af ikke mere end ca. 10 mol% af en comonomer. En undtagelse fra dette er f.eks. tilsætningen af di-benzoesyre, hvor glasovergangstemperaturen for copolymeren forbliver over 50°C og ikke falder ved tilsætning af mere end 10 mol%. Andre lignende tilfælde vil være nærliggende for en 20 sagkyndig.The specific limits of the comonomer are determined by the glass transition temperature of the polymer, as it has been found that when the glass transition temperature goes below approx. 50 ° C, the result will be a copolymer with reduced mechanical properties and this corresponds to the addition of no more than approx. 10 mol% of a comonomer. An exception to this is e.g. the addition of dibenzoic acid, where the glass transition temperature of the copolymer remains above 50 ° C and does not decrease by the addition of more than 10 mol%. Other similar cases would be obvious to a 20 expert.

Desuden kan ethylenterephthalat-polymeren indeholde forskellige additiver, som ikke påvirker den polymere ugunstigt ved anvendelse, såsom stabilisatorer, f.eks. antioxidationsmid-ler eller midler mod ultraviolet lys, extrusionshjælpestoffer, 25 additiver til at gøre polymeren lettere sønderdelelig eller brændbar såsom oxidationskatalysatorer, samt farvestoffer eller pigmenter.In addition, the ethylene terephthalate polymer may contain various additives which do not adversely affect the polymer in use, such as stabilizers, e.g. antioxidants or ultraviolet light agents, extrusion aids, additives to make the polymer more easily degradable or combustible such as oxidation catalysts, and dyes or pigments.

Polyethylenterephthalatet skal som nævnt have et logaritmisk viskositetstal (målt på en 1%'s opløsning af polymeren 30 i en blanding af 37,5 vægt% tetrachlorethan og 62,5 vægt% phenol ved 30°C) på mindst 0,55 til opnåelse af de ønskede slutegen-skaber for den dannede flaske, og fortrinsvis skal egenviskositeten være mindst ca. 0,7 til opnåelse af en flaske med de bedste sejhedsegenskaber, dvs. resistens mod slagbelastning. Visko-35 siteten for polymer-opløsningen måles i forhold til viskositeten af opløsningsmidlet alene, og man får da 143060 4As mentioned, the polyethylene terephthalate must have a logarithmic viscosity number (measured on a 1% solution of polymer 30 in a mixture of 37.5 wt% tetrachloroethane and 62.5 wt% phenol at 30 ° C) of at least 0.55 the desired final properties of the formed bottle, and preferably the intrinsic viscosity should be at least about 0.7 to obtain a bottle with the best toughness properties, ie. resistance to impact load. The viscosity of the polymer solution is measured relative to the viscosity of the solvent alone, and then one obtains

OISLAND

nat log opløsningens viskositet , -i .. , . . opløsningsmidlets viskositet log. viskositetstal = -c-2—^- hvor C er koncentrationen udtrykt i gram polymer pr. 100 ml op-5 løsning.overnight log viscosity of the solution, -i ..,. . solvent viscosity log. viscosity number = -c-2 - ^ - where C is the concentration expressed in grams of polymer per 100 ml solution.

Biaksial orientering af flaskekroppen er af betydning for at give flaskerne ifølge opfindelsen forbedrede fysiske egenskaber såsom forbedret trækstyrke og flydespænding. En biaksial orientering opnås ved strækning af det termoplastiske materiale 10 i den aksiale og den perifere retning, efterhånden som genstanden dannes. Flasken ifølge opfindelsen er molekylært orienteret ved at være strakt biaksialt gennemsnitlig op til 4,0 gange i aksialretningen og ca. 2,5-7,0 gange i periferiretningen. En sådan strækning udføres ved orienteringstemperaturen for det ter-15 moplastiske materiale, dvs. over glasovergangstemperaturen og under krystalsmeltepunktet. Graden af den molekylære orientering kan bestemmes efter kendte metoder, f.eks. som beskrevet i Journal of Polymer Science, bind XLVII, side 289-306 (1960) i artiklen "X-Ray Determination of the Crystallite Orientation 20 Distribution of Polyethylene Terephthalate Films" af C. J. Heffelfinger og R. L. Burton og i "Structure and Properties of Oriented Poly(ethylene Terephthalate) Films" af Heffelfinger og Schmidt i Journal of Applied Polymer Science, bind 9, side 2661 (1965).Biaxial orientation of the bottle body is important for providing the bottles of the invention with improved physical properties such as improved tensile strength and yield strength. A biaxial orientation is obtained by stretching the thermoplastic material 10 in the axial and peripheral directions as the article is formed. The bottle according to the invention is molecularly oriented by being stretched biaxially averaged up to 4.0 times in the axial direction and approx. 2.5-7.0 times in the peripheral direction. Such a stretch is performed at the orientation temperature of the thermoplastic material, i.e. above the glass transition temperature and below the crystal melting point. The degree of molecular orientation can be determined by known methods, e.g. as described in the Journal of Polymer Science, Vol XLVII, pages 289-306 (1960) in the article "X-Ray Determination of the Crystallite Orientation 20 Distribution of Polyethylene Terephthalate Films" by CJ Heffelfinger and RL Burton and in "Structure and Properties of Oriented Poly (Ethylene Terephthalate) Films "by Heffelfinger and Schmidt in Journal of Applied Polymer Science, Volume 9, page 2661 (1965).

25 De biaksialt orienterede dele får altså særlig gode styrkeegenskaber, men de områder, der er mindre orienteret og dermed svagere, vil have tykkere væg end de områder, der er stærkere orienteret, og flasken får derved en forholdsvis stor totalstyrke. Ved fremstilling af flasken ifølge opfindelsen 30 forekommer den mindste vægtykkelse i den rette cylinderdel, men denne del vil være den stærkest orienterede. I den rette cylinderdel af en polyethylenterephthaiatflaske, der er fremstillet ved fremgangsmåden ifølge opfindelsen, er trækstyrkerne og flydespændingerne typisk som følger: en aksial trækstyrke på ca.The biaxially oriented parts thus have particularly good strength properties, but the areas that are less oriented and thus weaker will have thicker wall than the areas that are more strongly oriented, and thus the bottle will have a relatively high overall strength. In preparing the bottle of the invention 30, the smallest wall thickness occurs in the proper cylinder portion, but this portion will be the most strongly oriented. In the proper cylinder portion of a polyethylene terephthalate bottle manufactured by the method of the invention, the tensile strengths and yield stresses are typically as follows:

2 2 35350-2100 kg/cm , en perifer trækstyrke på ca. 1400-5600 kg/cm , 2 og en aksial flydespænding på mindst 280 kg/cm og en perifer 2 0 5 143060 flydespænding på mindst 490 kg/cm . Værdierne for trækstyrke og flydespænding er bestemt efter den metode, der er angivet i ASTM D882 under "Tensile Testing".2 2 35350-2100 kg / cm, a peripheral tensile strength of approx. 1400-5600 kg / cm, 2 and an axial float stress of at least 280 kg / cm and a peripheral 2 0 5 143060 float stress of at least 490 kg / cm. The values for tensile strength and yield stress are determined by the method specified in ASTM D882 under "Tensile Testing".

Massefylden (g/cm3) for flasken ifølge opfindelsen kan 5 som nævnt variere fra ca. 1,331 til 1,402, målt efter den metode, der er beskrevet i ASTM 1505 under "Density Gradient, Technique". Massefylden er et mål for krystalliniteten, og det angivne massefyldeområde omfatter et krystallinitetsområde fra ca. O til 60%, idet den procentvise krystallinitet beregnes ud fra ligningen: 10 ps Pa % krystallinitet = pc—_ x 100, 3 hvor Ps = massefylden for forsøgsprøven (g/cm ) 3The density (g / cm3) of the bottle according to the invention can vary as mentioned above from approx. 1.331 to 1.402, measured by the method described in ASTM 1505 under "Density Gradient, Technique". Density is a measure of crystallinity, and the specified density range comprises a crystallinity range from ca. 0 to 60%, with the percent crystallinity calculated from the equation: 10 ps Pa% crystallinity = pc - x 100, 3 where Ps = density of the test sample (g / cm) 3

Pa = 1.333 (g/cm ), massefylden for en amorf film med 0% ]_5 krystallinitet, 3Pa = 1,333 (g / cm), the density of an amorphous film with 0%] crystallinity, 3

Pc = 1,455 (g/cm ), massefylden for krystallen beregnet ud fra enhedscelleparametre.Pc = 1.455 (g / cm), the density of the crystal calculated from unit cell parameters.

Flaskerne selv kan have varierende krystallinitet langs deres aksiale længde, i hvilket tilfælde flasken om ønsket kan 20 varmefikseres til opnåelse af en ensartet krystallinitet.The bottles themselves may have varying crystallinity along their axial length, in which case the bottle may be heat-fixed if desired to obtain a uniform crystallinity.

Orientering og krystallinitet bidrager hver til visse egenskaber, men under nogle betingelser virker de konkurrerende. Således vil f.eks. forøget orientering give forøgede trækstyrkeegenskaber, men vil være tilbøjelig til at nedsætte genstandens 25 termiske stabilitet. Til modvirkning af dette sidste kan flasken varmefikseres til forøgelse af krystalliniteten.Orientation and crystallinity each contribute to certain properties, but under some conditions they appear competitive. Thus, e.g. increased orientation gives increased tensile strength properties but will tend to decrease the thermal stability of the article. To counteract this last, the bottle can be heat-fixed to increase crystallinity.

Krystalliniteten har også relation til genstandens spærreegenskaber, især gennemtrængningsegenskaberne. Når kulsyreholdige drikkevarer under tryk såsom sodavand eller øl kommes på flasker, 30 er det vigtigt, at flasken har tilstrækkelige spærreegenskaber til at kunne fastholde kulsyren og vandet i drikkevaren og dog holde sådanne forureninger som oxygen ude.Crystallinity also relates to the barrier properties of the object, especially the penetration properties. When pressurized carbonated beverages such as soda or beer are bottled, it is important that the bottle has sufficient barrier properties to be able to retain the carbonic acid and water in the beverage and yet keep such contaminants as oxygen out.

Det har vist sig, at en forøgelse af krystalliniteten formindsker carbondioxids, oxygens eller vanddamps evne til at gen-35 nemtrænge flasken. Med udtrykket "gennemtrænge" og dets afledninger som anvendt i det foreliggende tilfælde menes evnen af et 6 143060It has been found that an increase in crystallinity decreases the ability of carbon dioxide, oxygen or water vapor to penetrate the bottle. By the term "penetrate" and its derivatives as used in the present case is meant the ability of a 6

OISLAND

middel såsom carbondioxid, oxygen eller vanddamp til at passere gennem eller diffundere gennem væggen i en flaske ifølge opfindelsen. Den gennemtrængningsgrad, der mødes under anvendelse af en flaske, vil afhænge af mange variable, indbefattende flaskens 5 samlede overfladeareal, omgivelsestemperaturen, trykket inde i flasken, samt typen og mængden af væske i flasken.agent such as carbon dioxide, oxygen or water vapor to pass through or diffuse through the wall of a bottle according to the invention. The degree of penetration encountered using a bottle will depend on many variables, including the total surface area of the bottle 5, the ambient temperature, the pressure inside the bottle, as well as the type and amount of liquid in the bottle.

Når flaskens krystallinitet er mindst ca. 15% (massefylde ca. 1,348), og flasken anvendes på sædvanlig måde til sodavand eller øl i sædvanlig forbrugsmængde, dvs. 18, 24, 34, 36 10 eller 48 cl, er gennemtrængningsgraden for de forskellige gennemtrængende medier, der kan blive tale om, tilstrækkelig til at opfylde kommercielle standarder. Således vil f.eks. i flasker, der indeholder op til ca. 48 cl sodavand eller øl under et auto- 2 gent overtryk på ca. 5,25 kg/cm ved stuetemperatur, dvs. ca.When the crystallinity of the bottle is at least approx. 15% (density approx. 1,348) and the bottle is used in the usual way for soda or beer in usual consumption, ie. 18, 24, 34, 36 10 or 48 cl, the degree of permeability of the various permeable media which may be discussed is sufficient to meet commercial standards. Thus, e.g. in bottles containing up to approx. 48 cl of soda or beer under an auto overpressure of approx. 5.25 kg / cm at room temperature, i.e. ca.

15 25°C, og hvor vægtykkelsen er mellem 0,25 og 0,75 mm og forhol- 3 det mellem vægten i gram og rumfanget i cm er mellem ca.15, where the wall thickness is between 0.25 and 0.75 mm and the ratio between the weight in grams and the volume in cm is between approx.

0,2:1 og 0,005:1, det carbondioxid, der forlader flasken, ikke udgøre mere end 15% på 30 døgn, oxygengennemtrængningen gennem væggen ind i væsken vil ikke være større end 5 dpm på 30 døgn, 20 og mængden af vand, der tabes fra væsken, vil ikke være større end 5% på 90 døgn.0.2: 1 and 0.005: 1, the carbon dioxide leaving the bottle does not exceed 15% in 30 days, the oxygen penetration through the wall into the liquid will not be greater than 5 ppm in 30 days, 20 and the amount of water, lost from the liquid will not be greater than 5% in 90 days.

Carbondioxidgennemtrængningen måles ved, at man sætter 2 en flaske under et overtryk på 5,25 kg/cm med carbondioxid, lukker flasken med sædvanlige lukkeanordninger, anbringer den under 25 tryk værende flaske i et vakuumkammer, hvori vakuet er 1 micron Hg, og tillader flasken i vakuumkammeret at komme på ligevægt, hvorefter man måler trykforøgelsen i vakuumkammeret som en funktion af tiden. Alternativt kan den samme under tryk værende flaske anbringes i et lukket kammer med en strøm af nitrogen, der 30 passerer forbi flasken og derefter ledes ned i og vaskes i et natriumhydroxid-bad, hvorpå titrering af standard-natriumhydroxid vil angive mængden af carbondioxid, der er optaget ved passage af nitrogenstrømmen. Den mængde carbondioxid, der måles pr. tidsenhed, giver graden af carbondioxidgennemtrængningen.The carbon dioxide penetration is measured by placing 2 a bottle under a pressure of 5.25 kg / cm with carbon dioxide, closing the bottle with conventional closures, placing the bottle under 25 pressure in a vacuum chamber in which the vacuum is 1 micron Hg, and allowing the bottle in the vacuum chamber to reach equilibrium, after which the pressure increase in the vacuum chamber is measured as a function of time. Alternatively, the same pressurized bottle may be placed in a closed chamber with a stream of nitrogen passing through the bottle and then passed into and washed in a sodium hydroxide bath, whereupon titration of standard sodium hydroxide will indicate the amount of carbon dioxide is occupied by passage of the nitrogen stream. The amount of carbon dioxide measured per unit of time, gives the degree of carbon dioxide penetration.

35 Oxygengennemtrængningen måles ved, at man fylder en fla ske med afgasset vand, lukker flasken på sædvanlig måde og der- 0 7 143060 efter opbevarer den ved stuetemperatur og -tryk, idet man periodisk måler oxygenindholdet i vandet inde i flasken på kendt måde, f.eks. ved potentiometrisk titrering med sølv-elektrode.The oxygen penetration is measured by filling a bottle with degassed water, closing the bottle in the usual manner and then storing it at room temperature and pressure, periodically measuring the oxygen content of the water inside the bottle in a known manner, e.g. .g. by potentiometric titration with silver electrode.

Vandgennemtrængningen måles ved, at man anbringer et tør-5 remiddel i en tør flaske, lukker flasken og derpå opbevarer den ved 37,8°C i en atmosfære med en konstant relativ fugtighed på 100%, hvorefter flasken vejes periodisk til bestemmelse af den af tørremidlet optagne mængde vand. Alternativt kan flasken fyl- 2 des med vand, sættes under et autogent overtryk på 5,25 kg/cm 10 og lukkes, derefter anbringes i en atmosfære med en relativ fugtighed på ca. 15% ved 25°C og vejes med mellemrum til bestemmelse af vandtabet.The water penetration is measured by placing a desiccant in a dry bottle, closing the bottle and then storing it at 37.8 ° C in an atmosphere of constant relative humidity of 100%, after which the bottle is periodically weighed to determine the the desiccant absorbed amount of water. Alternatively, the bottle may be filled with water, put under an autogenous overpressure of 5.25 kg / cm 2 and closed, then placed in an atmosphere of relative humidity of approx. 15% at 25 ° C and weighed at intervals to determine the water loss.

En anden vigtig egenskab for, at flaskerne ifølge opfindelsen kan accepteres til anvendelse til væsker under tryk, er, 15 at de udviser forholdsvis ringe krybning, især når der er tale om tyndvæggede flasker med ringe vægt. Krybning er den ændring i genstandens strukturdimension, der sker ved udsættelse for belastning, og den afhænger af mange faktorer, indbefattende belastningsniveauet, arten af polymer, den polymeres fysiske tilstand, 20 omgivelsestemperaturen og belastningstidsrummet. Fbr krybningen i en almindelig cylindrisk flaske er også flaskens størrelse og form af betydning. Desuden vil det autogene tryk i flasken stige med stigende temperatur, og derfor må krybningsresistensen være forholdsvis konstant over et rimeligt anvendelsesområde for tem-25 peratur og tryk. Til typiske anvendelser f.eks. til øl eller sodavand er dette temperaturområde ca. 0-50°C, og trykområdet er 2 ca. 0-7 kg/cm .Another important feature that the bottles of the invention can be accepted for use in pressurized liquids is that they exhibit relatively poor creep, especially in the case of thin-walled, low-weight bottles. Creep is the change in the structural dimension of the object that occurs upon exposure to strain, and it depends on many factors, including the load level, the nature of the polymer, the physical state of the polymer, the ambient temperature and the load time. For the creep in a regular cylindrical bottle, the size and shape of the bottle is also important. In addition, the autogenous pressure in the bottle will increase with increasing temperature and therefore the creep resistance must be relatively constant over a reasonable range of temperature and pressure. For typical applications e.g. for beer or soda, this temperature range is approx. 0-50 ° C and the pressure range is about 2 0-7 kg / cm.

De spændingsværdier, der optræder i en flaske anvendt til en væske under tryk såsom en kulsyreholdig drikkevare, er di-30 rekte proportionale med det autogene tryk i flasken og flaskens diameter og omvendt proportionale med vægtykkelsen. Spændingen kan meget tæt tilnærmes ved udtrykkene perifert - Pr^t aksialt " Pr/2t 35 hvor \/ = spændingen P = autogent tryk r = radius for den rette cylinder t = vægtykkeIse.The stress values appearing in a bottle used for a pressurized liquid such as a carbonated beverage are directly proportional to the autogenous pressure of the bottle and the diameter of the bottle and inversely proportional to the wall thickness. The voltage can be very closely approximated by the terms peripheral - Pr ^ t axially "Pr / 2t 35 where \ / = voltage P = autogenous pressure r = radius of the proper cylinder t = wall thickness.

0 8 1430600 8 143060

Typisk vil en flaske med en diameter på ca. 5 cm og en vægtykkelse for den rette cylinder på ca. 0,50 mm ved stuetem- 2 peratur og sat under et overtryk på ca. 5,25 kg/cm blive ud- 2 sat for og kunne modstå en perifer spænding på ca. 262,5 kg/cm 5 (3.750 psig).Typically, a bottle having a diameter of approx. 5 cm and a wall thickness for the right cylinder of approx. 0.50 mm at room temperature and put under an overpressure of approx. 5.25 kg / cm are exposed to and could withstand a peripheral voltage of approx. 262.5 kg / cm 5 (3,750 psig).

Tyndvæggede flasker er ønskelige, da dette betyder anvendelse af mindre polymer og gør flasken billigere at fremstille, men tynde vægge fører til større spændingsniveauer og nødvendighed af større krybningsresistens. Biaksial orientering af 10 en polymer vil, når de andre faktorer forbliver ens, forøge flaskens flydespændinger, og dette er derfor en vigtig grund til orientering.Thin-walled bottles are desirable as this means using less polymer and making the bottle cheaper to manufacture, but thin walls lead to greater levels of tension and necessity for greater creep resistance. Biaxial orientation of a polymer, when the other factors remain the same, will increase the yield stress of the bottle and this is therefore an important reason for orientation.

Krybningen måles sædvanligvis på polymere ved, at en prøve anbringes under en bestemt belastning, dvs. spænding, ved 15 konstant temperatur, hvorefter spændingsdeformationen (strain deformation) måles som en funktion af tiden. Kurverne for termo-plastiske materialer har en karakteristisk form, hvor deformationshastigheden (the rate of strain) aftager som en funktion af tiden. En afsætning af logaritmen (den reciprokke værdi af defor-20 mationshastigheden) mod spændingen giver et lineært forløb over en væsentlig del af krybningskurven. Hældningen for det lige kurvestykke, der her er betegnet som deformationskonstanten, udtrykkes matematisk som 25 DC = d -lo? (dydt) . d= hvor DC = deformationskonstanten dt = tidsdifferentialet de = spændingsdifferentialet.The creep is usually measured on polymers by placing a sample under a certain load, i.e. voltage, at constant temperature, after which the strain deformation is measured as a function of time. The curves for thermoplastic materials have a characteristic shape where the rate of strain decreases as a function of time. Placing the logarithm (the reciprocal value of the deformation velocity) against the voltage provides a linear course over a substantial portion of the creep curve. The slope of the straight curve, referred to here as the deformation constant, is mathematically expressed as 25 DC = d -lo? (virtue). d = where dc = deformation constant dt = time differential de = voltage differential.

30 Denne deformationskonstant er anvendelig til beslægtede termopla-stiske materialer og kan anvendes til sammenligning af opførslen med hensyn til krybning ved sammenligning af hældningsværdierne.This deformation constant is applicable to related thermoplastic materials and can be used to compare the creep behavior when comparing the slope values.

En deformationskonstant på 0 angiver, at den undersøgte prøve forlænger sig med sin naturlige deformationshastighed, eller at 35 deformationshastigheden ved den angivne belastning er konstant.A deformation constant of 0 indicates that the specimen examined extends with its natural deformation rate or that the deformation rate at the specified load is constant.

En deformationskonstant på uendelig angiver, at der ikke er an- 9 143060 0 givet nogen målelig deformation. 7A deformation constant of infinity indicates that no measurable deformation has been given. 7

For flasker fremstillet ifølge opfindelsen er deformationskonstanten mindst ca. 0,65, hvilket angiver en deformation på mindre end 5% på 100 timer ved 50°C med et autogent overtryk på 5 5,25 kg/cm2.For bottles made according to the invention, the deformation constant is at least approx. 0.65, indicating a deformation of less than 5% in 100 hours at 50 ° C with an autogenous overpressure of 5.25 kg / cm 2.

Endnu en karakteristisk egenskab for de biaksialt orienterede polyethylenterephthalat-flasker ifølge opfindelsen er sejhed eller slagresistens, men denne er især forbundet med po-lyterephthalatets logaritmiske viskositetstal, idet en forøgelse 10 af dette almindeligvis vil forøge flaskens slagresistens. Dette illustreres ved en faldprøve, hvor en flaske fyldes og lukkes under typiske påfyldningsbetingelser med et autogent overtryk på 2 4,2 kg/cm , hvorefter flasken falder ned på et cementgulv, således at slagpunktet findes på kanten af grundfladen. Ved prøvning af 15 flasker, der er fremstillet på ens måde, men afviger med hensyn til det logaritmiske viskositetstal, har det ved fald ved 0°C vist sig, at (a) flasker med et logaritmisk viskositetstal på 0,85 gennemsnitligt vil overleve et fald på 180 cm, men svigte, dvs. revne eller gå i stykker, ved et fald på 240 cm, medens (b) 20 flasker med et logaritmisk viskositetstal på 0,95 gennemsnitligt vil overleve to fald på 240 cm, men vil svigte ved det tredje fald, og (c) flasker med et logaritmisk viskositetstal på 1,1 vil overleve fem fald på 240 cm.Yet another characteristic of the biaxially oriented polyethylene terephthalate bottles of the invention is toughness or impact resistance, but this is especially associated with the logarithmic viscosity of the polyphthalate, an increase of which will generally increase the impact resistance of the bottle. This is illustrated by a drop test where a bottle is filled and closed under typical filling conditions with an autogenous overpressure of 2.2 kg / cm, after which the bottle falls on a cement floor so that the impact point is on the edge of the base surface. When testing 15 bottles which are manufactured in a similar manner but differ in logarithmic viscosity, it has been found, at a drop at 0 ° C, that (a) bottles with a logarithmic viscosity number of 0.85 will survive on average a drop of 180 cm, but fail, ie. crack or break, at a fall of 240 cm, while (b) 20 bottles with a logarithmic viscosity number of 0.95 will survive on average two falls of 240 cm, but will fail at the third fall, and (c) bottles of a logarithmic viscosity number of 1.1 will survive five falls of 240 cm.

I det følgende skal fremgangsmåden ifølge opfindelsen for-25 klares nærmere under henvisning til tegningen, der viser de essentielle dele af et apparat til fremstilling af plastflasker ifølge opfindelsen, idet fig. 1 i tværsnit viser selve formningsdelen i apparatet i dens stilling under det indledende trin af formningen af en 3Q flaske og især dannelsen af den ringformede vulst, fig. 2 viser den samme del af apparatet i stillingen under et mellemtrin af formningen af en flaske og især det afgørende trin, som består i en kombination af ikke-smelte-extrusion og expansion ved anvendelse af interne fluidumkræfter, 35 fig. 3 viser denne del igen, men i stillingen, hvor dan nelsen af flasken er afsluttet, 143060 ίο o fig. 4 viser et forstørret deltværsnit gennem en del af den i fig. 5 viste apparatdel, nemlig området omkring det ringformede extrusionsmundstykke i nærheden af afslutningen af den kombinerede extrusion og expansion, og 5 fig. 5 er et forstørret deltværsnit svarende til fig. 6, men visende området omkring det ringformede extrusionsmundstykke, efter at dannelsen af flasken er tilendebragt.In the following, the process according to the invention will be explained in more detail with reference to the drawing, which shows the essential parts of an apparatus for making plastic bottles according to the invention, fig. 1 is a cross-sectional view of the forming part of the apparatus in its position during the initial stage of forming a 3Q bottle and, in particular, the formation of the annular bead; Figure 2 shows the same part of the apparatus in the position during an intermediate stage of the formation of a bottle and, in particular, the decisive step, which consists of a combination of non-melt extrusion and expansion using internal fluid forces; 3 shows this part again, but in the position where the formation of the bottle has ended, FIG. 4 is an enlarged partial cross-sectional view of a portion of FIG. 5, namely the area around the annular extrusion nozzle near the end of the combined extrusion and expansion; and 5; 5 is an enlarged partial sectional view similar to FIG. 6, but showing the area around the annular extrusion nozzle after the formation of the bottle is completed.

I fig. 1 anbringes en slange 1 af polyethylenterephthalat i et extrusionskammer 2, og et extrusionsstempel 15 aktiveres så-10 ledes, at det tvinger en del af det ikke-smeltede plastmateriale i slangen 1 gennem den ringformede extrusionsåbning 11 og ind i en ringformet rille 14 i enden af formhulheden 5. Formålet med dette første trin er at extrudere en ringformet vulst ud fra den termoplastiske slange 1. Det vil ses, at den første del af 15 slangen 1, der forlader den ringformede extrusionsåbning 11 og træder ind i den ringformede rille 14, danner en bro eller et diaphragma omkring hele den øverste del af det ringformede mellemrum mellem ydersiden af extrusionscylinderen 3 og indersiden af formhulheden 5 og derved giver en tillukning. Extrusionen af 20 slangen ind i rillen 14 gør det muligt i de derpå følgende trin at give extrudatet aksial spænding ved, at formen bevæges til strækning eller trækning ai extrudatet.In FIG. 1, a hose 1 of polyethylene terephthalate is placed in an extrusion chamber 2 and an extrusion piston 15 is activated so as to force a portion of the non-melted plastic material into the hose 1 through the annular extrusion opening 11 and into an annular groove 14 at the end. of the mold cavity 5. The purpose of this first step is to extrude an annular bead from the thermoplastic tubing 1. It will be seen that the first portion of the tubing 1 leaving the annular extrusion opening 11 and enters the annular groove 14 forming a bridge or diaphragm around the entire upper portion of the annular gap between the outside of the extrusion cylinder 3 and the inside of the mold cavity 5, thereby providing a closure. The extrusion of the hose into the groove 14 allows the extrudate to provide axial tension in the subsequent steps by moving the mold to stretch or pull in the extrudate.

Umiddelbart efter, at dannelsen af vulsten i formhulheden 5 er afsluttet, og samtidig med den fortsatte bevægelse af 25 extrusionsstemplet 15 bevæges formen 6 med ensartet hastighed, og et fluidum såsom komprimeret luft eller væske fra en beholder presses ind i en fluidumpassage 8, ud af fluidumudgangsåbninger 9 og 10 og ind i den hulhed 16, som dannes af den udvendige overflade af dornen 7, det extruderede lukke ved den ringformede 30 rille 14 og det formlegeme 17, som er extruderet gennem den ringformede extrusionsåbning 11 og udvidet af den komprimerede luft fra udgangsåbningerne 9 og 10. Dette er vist i fig. 3.Immediately after the formation of the bead in the mold cavity 5 is completed and at the same time as the continued movement of the extrusion piston 15, the mold 6 is moved at uniform speed and a fluid such as compressed air or liquid from a container is pressed into a fluid passage 8, out of fluid outlet openings 9 and 10 and into the cavity 16 formed by the outer surface of the mandrel 7, the extruded closure at the annular groove 14 and the mold body 17 extruded through the annular extrusion opening 11 and expanded by the compressed air from the output openings 9 and 10. This is shown in FIG. Third

Herved vil, efterhånden som formen 16 bevæger sig i forhold til åbningen 11, den i den ringformede rille 14 dannede 35 vulst forankre den nyligt dannede flasketop til formen 6 og effektivt bevæge det friske extrudat forbi den komprimerede luft, 11 143060 o der strømmer ud fra udgangsåbningerne 9 og 10, hvilket bevirker, at dette extrudat næsten øjeblikkeligt tvinges ind mod væggen af formhulheden 5, når det kommer frem fra åbningen 11.Hereby, as the mold 16 moves relative to the opening 11, the bead formed in the annular groove 14 will anchor the newly formed bottle top to the mold 6 and effectively move the fresh extrudate past the compressed air flowing from the outlet openings 9 and 10, causing this extrudate to be forced almost immediately against the wall of the mold cavity 5 as it emerges from the opening 11.

Ved den for øjeblikket foretrukne metode fremstilles der 5 en plastflaske med ikke-ensartet vægtykkelse, fordi extrusions-hastigheden og formens hastighed holdes konstante, medens formen selv har varierende udformning. Det er imidlertid velkendt, at vægtykkelsen kan reguleres ved rigtig programmering af appa-ratet til opnåelse af enten en ensartet eller en ikke-ensartet 10 tykkelse. Kendte metoder til programmering af vægtykkelsen omfatter variering af hastigheden for den glidende form eller va-riering af extrusionshastigheden for slangen.In the presently preferred method, a plastic bottle of non-uniform wall thickness is produced because the extrusion rate and the speed of the mold are kept constant while the mold itself has varying shapes. However, it is well known that the wall thickness can be controlled by proper programming of the apparatus to obtain either a uniform or a non-uniform thickness. Known methods for programming the wall thickness include varying the speed of the sliding mold or varying the extrusion speed of the hose.

Det termoplastiske polymere materiale i den slange 1, som extruderes gennem den ringformede extrusionsåbning 11, bli-15 ver biaksialt orienteret delvist ved selve extrusionsoperatio-nen, medens den øvrige del af den ønskede biaksiale orientering for det extruderede formlegeme 17 sker, når extrudatet strækkes og udvides mod overfladen af formhulheden 5 i formen 6. Der ses en væsentlig formindskelse, f.eks. på op til 50% eller mere, af 20 vægtykkelsen for extrudatet, efter at det er strakt og ekspanderet.The thermoplastic polymeric material in the tube 1 extruded through the annular extrusion opening 11 becomes biaxially oriented partially by the extrusion operation itself, while the other portion of the desired biaxial orientation of the extruded mold body 17 occurs when the extrudate is stretched and is expanded toward the surface of the mold cavity 5 of the mold 6. A substantial reduction is seen, e.g. up to 50% or more, of the 20 wall thickness of the extrudate after it is stretched and expanded.

Slangen 1 fortsætter med at blive extruderes gennem den ringformede extrusionsåbning 11 af extrusionsstemplet 15, medens formen 6 bevæger sig mod sin anden stilling op over dornen 7.The hose 1 continues to be extruded through the annular extrusion opening 11 of the extrusion piston 15, while the mold 6 moves toward its second position above the mandrel 7.

25 Den samlede virkning af extrusionen af slangen 1 og ekspansionen 16 resulterer i den ønskede form for den i fig. 3 viste flaske 18, men den har stadig en ulukket bunddel, som det bedst ses i fig. 4.. Bunddelen af flasken 18 lukkes ved fjernelse af den understøttende midterstang 4, medens formen 6 standser, og extru-30 sionsstemplet 15 fortsætter med at udøve en kraft på det resterende polymere materiale i extrusionskammeret 2. Dette er vist i fig. 3 med den færdigdannede flaske 19, som er i stærkt biaksialt orienteret tilstand.The overall effect of the extrusion of the hose 1 and the expansion 16 results in the desired shape of the one shown in FIG. 3, but it still has a closed bottom portion as best seen in FIG. 4. The bottom portion of the bottle 18 is closed by removing the supporting center bar 4 while the mold 6 stops and the extrusion piston 15 continues to exert a force on the remaining polymeric material in the extrusion chamber 2. This is shown in FIG. 3 with the finished bottle 19, which is in a strongly biaxially oriented state.

Fig. 4 og 5 viser mere detaljeret den foretrukne måde til 35 bundlukning, hvor den delvise fjernelse af midterstangen 4 tillader polymert materiale i slangen under den fortsatte frempresning 0 12 143060 af extrusionsstemplet 15 at strømme indad og bevirke en lukning. Alternativt kan bunden lukkes på den måde, som er beskrevet i USA patentansøgning nr. 57.679 fra 23. juli 1970, hvor en friktionsvej set bundlukning af en plastflaske hidføres ved, at 5 bunden af flasken i det område, der støder umiddelbart op til bundåbningen, bringes i berøring med et friktionslukkehoved til hævning af det termoplastiske materiales temperatur til ca. dets smeltepunkt, hvorefter det varme termoplastiske materiale indarbejdes i og indsvejses i bundåbningen, hvorpå den lukkede 10 åbning bratkøles. Denne metode kan udføres, medens flasken stadig befinder sig i formen, eller som en særskilt operation, efter at flasken er fjernet fra formen.FIG. 4 and 5 show in more detail the preferred way of bottom closure, where the partial removal of the center bar 4 allows polymeric material in the tubing during the continued pressing of the extrusion piston 15 to flow inward and effect a closure. Alternatively, the bottom may be closed in the manner described in U.S. Patent Application No. 57,679 of July 23, 1970, wherein a frictional path seen bottom closure of a plastic bottle is provided by the bottom of the bottle in the area adjacent to the bottom opening, be brought into contact with a friction closure head to raise the temperature of the thermoplastic material to approx. its melting point, after which the hot thermoplastic material is incorporated into and welded into the bottom opening, whereupon the closed opening is quenched. This method can be carried out while the bottle is still in the mold, or as a separate operation after the bottle is removed from the mold.

fig. 5 viser stillingen af apparatets dele efter afslutningen af fremgangsmåden til dannelse af en hul genstand ud fra 15 en hul slange. I fig. 5 er midterstangen 4 blevet fjernet, medens extrusionsstemplet 15 presser den resterende del af den termoplastiske slange 1 ind i det rum, der er blevet ledigt ved tilbagetrækning af stangen 4.FIG. 5 shows the position of the parts of the apparatus after completing the method of forming a hollow article from a hollow hose. In FIG. 5, the center rod 4 has been removed, while the extrusion piston 15 presses the remaining portion of the thermoplastic tube 1 into the space which has become vacant by retraction of the rod 4.

Efter dannelse af den termoplastiske flaske kan den var-20 mebehandles efter kendte metoder til forøgelse af krystallini-tetsgraden, hvorved der opnås en formindskelse af gassers evne til at gennemtrænge væggen og en forbedring af den dimensionelle stabilitet, hvilket er vigtigt, hvis genstanden anvendes til varme drikkevarer eller skal udsættes for høje temperaturer og tryk 25 i en pasteuriseringsproces.After forming the thermoplastic bottle, it can be heat-treated according to known methods of increasing the degree of crystallinity, thereby achieving a decrease in the ability of gases to penetrate the wall and an improvement in dimensional stability, which is important if the article is used for hot beverages or must be exposed to high temperatures and pressures 25 in a pasteurization process.

Varmebehandlingen udføres ved temperaturer på mellem ca.The heat treatment is carried out at temperatures of between approx.

140 og 220°C, og behandlingstiden er forholdsvis kort. Imidlertid er det almindeligvis ønskeligt at udføre varmebehandlingen over et tidsrum, der er tilstrækkeligt til i det færdige produkt 30 at give en krystallinitetsgrad, der fortrinsvis er mindst ca.140 and 220 ° C and the treatment time is relatively short. However, it is generally desirable to carry out the heat treatment over a period of time sufficient to give in the finished product 30 a degree of crystallinity which is preferably at least approx.

30% og op til 50% eller mere, idet den maksimalt opnåelige krystallisation for polyethylenterephthalat er ca. 60%. Almindeligvis er særlig gode resultater blevet iagttaget, når dette varmebehandlingstrin udføres over et tidsrum på mellem ca. 0,1 og 356ΟΟ sekunder. Den øvre grænse for denne behandling er ikke særlig kritisk, undtagen fra et økonomisk synspunkt, og en varighed af behandlingen på op til 100 minutter er mulig.30% and up to 50% or more, with the maximum achievable crystallization for polyethylene terephthalate being approx. 60%. Generally, particularly good results have been observed when this heat treatment step is carried out over a period of between approx. 0.1 and 356ΟΟ seconds. The upper limit of this treatment is not very critical except from an economic point of view and a duration of treatment of up to 100 minutes is possible.

0 13 1430600 13 143060

Den termoplastiske slange, der anvendes til fremgangsmåden ifølge opfindelsen, er hul, men hermed er også, med mindre andet er angivet, ment en rørlignende slange med begge ender åbne såvel som en rørlignende slange med den ene ende åben og den anden luk-5 ket, dvs. en "blind" slange, hvilken sidste anbringes således i extrusionscylinderen, at den lukkede ende vil danne flaskens bund.The thermoplastic tube used for the method of the invention is hollow, but hereby, unless otherwise indicated, a tube-like tube with both ends is open as well as a tube-like tube with one end open and the other closed. , ie a "blind" hose, the latter being placed in the extrusion cylinder such that the closed end will form the bottom of the bottle.

Den rørlignende slange med begge ender åbne kan anvendes sammen med apparatet omfattende en stationær midterstang eller en bevægelig midterstang, medens en "blind" slange kun kan anvendes sam-10 men med apparatet indbefattende en bevægelig midterstang.The tube-like hose with both ends open can be used with the apparatus comprising a stationary center bar or a movable center bar, while a "blind" hose can only be used in conjunction with the apparatus including a movable center bar.

Slangen fremstilles fortrinsvis ved sædvanlige extrusicns-eller injektionsstøbemetoder ud fra termoplastiske materialer, der kan bibringes forøget styrke eller forstærkning ved biaksial orientering. Slangen selv kan før anvendelsen være biaksialt oriente-15 ret eller uorienteret. Hvis der anvendes en orienteret slange, vil den yderligere orientering, der sker ved extrusion, trækningen og ekspansionen af den extruderede slange, give en addivit effekt. Desuden bør slangen være praktisk taget amorf med en krystallini-tet på ikke mere end ca. 5%, og den bør være klar, da dette vil 20 resultere i en klar færdig flaske. Hvis det imidlertid ønskes, at flasken skal være farvet, kan et farvende middel såsom et farvestof sættes til den slangedannende polymere.The hose is preferably made by conventional extrusion or injection molding methods from thermoplastic materials which can be imparted to increased strength or reinforcement by biaxial orientation. The hose itself may be biaxially oriented or unoriented prior to use. If an oriented hose is used, the additional orientation that occurs during extrusion, drawing and expansion of the extruded hose will give an additive effect. In addition, the tube should be practically amorphous with a crystallinity of no more than ca. 5% and it should be clear as this will result in a clear finished bottle. However, if it is desired for the bottle to be colored, a coloring agent such as a dye may be added to the tubular polymer.

Dimensionerne af den slange, der skal anvendes, bestemmes af mange faktorer, indbefattende den ønskede tykkelse og den øn-25 skede orienteringsgrad. Typisk er slangen hul, og de radiale dimensioner er lidt mindre end for halsen af den flaske, der skal fremstilles som det fremgår af tegningen. Den aksiale længde af slangen er lidt kortere end dimensionen mellem toppen og bundmidten, målt langs ydersiden af den flaske, der skal fremstilles.The dimensions of the tubing to be used are determined by many factors, including the desired thickness and the desired orientation. Typically, the tube is hollow and the radial dimensions are slightly smaller than that of the neck of the bottle to be made as shown in the drawing. The axial length of the hose is slightly shorter than the dimension between the top and bottom center, measured along the outside of the bottle to be manufactured.

30 Til forbedring af flaskens dimensionelle stabilitet, især de radiale dimensioner af flaskehalsen, dannes slangen først med radiale dimensioner af væsentlig overstørrelse, hvorpå den bratkøles til en temperatur under det krystallinske smeltepunkt for polymeren og derefter presses gennem et tykkelsesformindskende 35 mundstykke, der er lidt mindre end de ønskede radiale dimensioner for flaskehalsen som vist på tegningen. Til yderligere forbedringTo improve the dimensional stability of the bottle, especially the radial dimensions of the neck of the bottle, the tube is first formed with radial dimensions of substantial oversize, then quenched to a temperature below the crystalline melting point of the polymer and then pressed through a thickness reducing nozzle slightly smaller. than the desired radial dimensions for the bottleneck as shown in the drawing. For further improvement

OISLAND

143060 14 af den dimensionelle stabilitet kan slangen sammenpresses i et kammer, der opretholder den samme udvendige diameter med en tilspidset dorn i midten af kompressionskammeret, hvilket vil resultere i en meget kort slange med en udvendig diameter, der har 5 en lidt mindre størrelse som den udvendige diameter af flaskehalsen, og en indvendig diameter på praktisk taget O, hvilket vil resultere i et meget smalt hulrum af ca. samme størrelse som et knappenålshul, der løber gennem midten af slangen. Sammenpressede slanger anvendes i det ovenfor beskrevne apparat 10 uden tilstedeværelse af midterstangen eller med denne trukket fuldt tilbage.Of dimensional stability, the hose can be compressed in a chamber which maintains the same outside diameter with a tapered mandrel in the center of the compression chamber, which will result in a very short hose with an outside diameter having a slightly smaller size than the outside diameter of the bottleneck, and an inside diameter of practically 0, which will result in a very narrow cavity of approx. the same size as a pinhole that runs through the center of the hose. Compressed hoses are used in the apparatus 10 described above without the presence of the center bar or with the fully retracted one.

Grunden til, at det anvendte materiale er polyethylen-terephthalat, er, at det efter orientering udviser fremragende styrke, krybningsresistens og lav gennemtrængningsfaktor, især 15 med hensyn til carbondioxid, oxygen og vanddamp, hvilket gør det fremragende egnet til beholdere for under tryk aftappede væsker såsom sodavand, øl eller aerosoler. Det er fordelagtigt at gå ud fra praktisk taget amorft materiale, dvs. en krystallinitet på ikke mere end 5%, til opnåelse af en klar flaske. Anvendelige 20 polyethylenterephthalat-polymere har et logaritmisk viskositetstal på mindst 0,55, målt for en polymer-koncentration på IS i en 37,5/62,5 vægtS's opløsning af tetrachlorethan/phenol ved 30°C. Fortrinsvis er viskositetstallet mindst 0,7, fordi der herved vil fås en flaske med betydeligt forbedrede sejhedsegenskaber, 25 f.eks. forøget slagresistens.The reason why the material used is polyethylene terephthalate is that, by orientation, it exhibits excellent strength, creep resistance and low penetration factor, especially 15 with respect to carbon dioxide, oxygen and water vapor, making it excellent for containers for pressurized liquids. such as sodas, beer or aerosols. It is advantageous to assume practically amorphous material, ie. a crystallinity of not more than 5%, to obtain a clear bottle. Applicable 20 polyethylene terephthalate polymers have a logarithmic viscosity number of at least 0.55, measured for a polymer concentration of IS in a solution of tetrachloroethane / phenol at 37 ° C at 30 ° C. Preferably, the viscosity number is at least 0.7 because a bottle having significantly improved toughness properties will be obtained, e.g. increased impact resistance.

Slagresistensen måles ved, at man lader en slange falde ned på et betongulv fra forskellige højder. Ved en faldprøve udført på 15 cm lange slanger af amorft polyethylenterephtha-lat med en egenviskositet på ca. 1,1, hvor der anvendtes tre 30 slanger til prøvning med en gennemsnitlig vægtykkelse på ca. 3,5, 2,3 og 2,4 mm og en vægt på henholdsvis 27,8 g, 21,2 g og 21,6 g, modstod hver slange to fald fra en højde på 0,3, 0,6, 1,5 og 2,40 m uden nogen synlig beskadigelse af slangen, og desuden modstod hver slange slaget af en vægt på 2,27 kg, der faldt to 35 gange ned på slangen fra en højde på 0,3 m.Impact resistance is measured by dropping a hose onto a concrete floor from different heights. In a drop test carried out on 15 cm long tubes of amorphous polyethylene terephthalate with an intrinsic viscosity of approx. 1.1, where three 30 tubes were used for testing with an average wall thickness of approx. 3.5, 2.3 and 2.4 mm and weighing 27.8 g, 21.2 g and 21.6 g respectively, each hose withstood two falls from a height of 0.3, 0.6, 1 , 5 and 2.40 m without any visible damage to the hose, and in addition, each hose withstood the weight of 2.27 kg, which fell two 35 times on the hose from a height of 0.3 m.

0 15 1430600 15 143060

Flasker med laminerede vægge kan fremstilles ved fremgangsmåden ifølge opfindelsen ved anvendelse af en hul cylinderslange med laminat-vægge, som kan fås ved coaksial laminering af to eller flere slanger af ens eller forskellige mate-5 rialer. Eksempler på i praksis anvendelige kombinationer er polyethylenterephthalat på indersiden coaksialt lamineret til polyvinylidenchlorid-copolymer eller hydrolyseret ethylenvi-nylacetat-copolymer på ydersiden. Slanger af flere polymermaterialer kan ekstruderes samtidigt i to eller flere lag, dvs.Bottles with laminated walls can be made by the method of the invention using a hollow cylinder hose with laminate walls which can be obtained by coaxial lamination of two or more tubes of identical or different materials. Examples of practically useful combinations are polyethylene terephthalate on the inside coaxially laminated to polyvinylidene chloride copolymer or hydrolyzed ethylene vinyl acetate copolymer on the outside. Hoses of multiple polymeric materials can be extruded simultaneously in two or more layers, viz.

10 fortrinsvis i tre lag, med den yderligere polymere indlagt mellem polymer-basis- eller -flaskedannelseslagene. Ved anvendelse af en sådan slange er det muligt at fremstille flasker af basisharpikser med et udvalgt laminat, der kan anvendes som (1) gasspærrer, (2) farvende lag eller (3) degraderingskataly-15 sator.10, preferably in three layers, with the additional polymer interposed between the polymer base or bottle formation layers. Using such a hose, it is possible to make bottles of base resins with a selected laminate which can be used as (1) gas barriers, (2) staining layers or (3) degradation catalyst.

Den ekstruderede slange må have en temperatur inden for området for biaksial orientering, dvs. det temperaturqmråde for den anvendte polymere, hvor der kan ske en orientering uden linietrækning. Den under ekstrusionen dannede varme er almindelig-20 vis tilstrækkelig til dette formål, således at slangen kan ekstruderes ved stuetemperatur, men orienteringstemperaturområdet varierer fra polymer til polymer, afhængende af sådanne faktorer som krystallinitet og glasovergangstemperaturen for den polymere, og hvis orienteringsområdet for polymeren er så højt, 25 at ekstrusionsvarmen ikke er tilstrækkelig til at have polymerens temperatur til orienteringsområdet, kan slangen forvarmes før ekstrusionen.The extruded tube must have a temperature within the range of biaxial orientation, i.e. the temperature range of the polymer used, in which a non-line orientation can occur. The heat generated during the extrusion is generally sufficient for this purpose so that the tubing can be extruded at room temperature, but the orientation temperature range varies from polymer to polymer depending on such factors as crystallinity and the glass transition temperature of the polymer and if the orientation range of the polymer is so high, that the extrusion heat is not sufficient to have the polymer temperature to the orientation region, the hose can be preheated before the extrusion.

Den dannede plastflaske er biaksialt orienteret og vil have fysiske egenskaber i overensstemmelse med den anvendte 30 type slange.The plastic bottle formed is biaxially oriented and will have physical properties in accordance with the type of hose used.

De følgende eksempler skal tjene til nærmere illustrering af opfindelsen.The following examples are intended to further illustrate the invention.

16 143060 α16 143060 α

Eksempel 1Example 1

Af en polyethylenterephthalat-polymer med et logaritmisk viskositetstal på ca. 0,96 fremstilles en hul, cylindrisk, amorf, •‘formet slange, der har en længde på 11,4 cm, en udvendig diame-5 ter (u.d.) på 1,73 cm og en indvendig diameter (i.d.) på 0,95 cm, og som vejer ca. 22,6 g. Denne slange forvarmes til ca. 92°C og ekstruderes gennem en åbning "T" på ca. 0,84 mm ved en cylindertemperatur på ca. 85°C i det ovenfor beskrevne apparat. Hastigheden for ekstrusionsstemplet 15 er ca. 9,1 cm/sek., og hastig- 10 heden for formen 6 er ca. 13,Q cm/sek. Luft med et overtryk på 2 ca. 17,85 kg/cm indføres gennem åbningerne 9 og 10, og den indvendige diameter for formen er ca. 6,4 cm.Of a polyethylene terephthalate polymer having a logarithmic viscosity number of approx. 0.96, a hollow, cylindrical, amorphous shaped tubing having a length of 11.4 cm, an outside diameter (out) of 1.73 cm and an inside diameter (id) of 0 is produced. 95 cm and weighing approx. 22.6 g. This hose is preheated to approx. 92 ° C and extruded through an opening "T" of approx. 0.84 mm at a cylinder temperature of approx. 85 ° C in the apparatus described above. The speed of the extrusion piston 15 is approx. 9.1 cm / sec and the speed of the mold 6 is approx. 13, Q cm / sec. Air with an overpressure of 2 approx. 17.85 kg / cm is introduced through the openings 9 and 10 and the internal diameter of the mold is approx. 6.4 cm.

Der fremstilles en flaske med en vægtykkelse på ca.A bottle with a wall thickness of approx.

2 0,30 mm, og dens aksiale trækstyrke er ca. 1.155 kg/cm , medens 2 15 den perifere trækstyrke er ca. 1.869 kg/cm .2 0.30 mm and its axial tensile strength is approx. 1,155 kg / cm, while the peripheral tensile strength is approx. 1,869 kg / cm.

Eksempel 2Example 2

Eksempel 1 gentages med følgende data.Example 1 is repeated with the following data.

20 Viskositetstal, log 1,0Viscosity number, log 1.0

Slangelængde 16,5 cmHose length 16.5 cm

Slangediameter, udvendig 17,3 mmHose diameter, outside 17.3 mm

Slangediameter, indvendig 12,1 mmHose diameter, inside 12.1 mm

Slangevægt 23,5 gSnake weight 23.5 g

25 Forvarmningstemp. 100°C25 Preheat temp. 100 ° C

Cylindertemp. 90-100°CCylinder temp. 90-100 ° C

Åbning "T" 0,89 mmOpening "T" 0.89 mm

Stempelhastighed 12,7 cm/sek.Piston speed 12.7 cm / sec.

Formhastighed 14,7 cm/sek.Mold speed 14.7 cm / sec.

2 30 Lufttryk 245 kg/cm 22 30 Air pressure 245 kg / cm 2

Trækstyrke, aksial 560 kg/cm 2Tensile strength, axial 560 kg / cm 2

Trækstyrke, perifer 2.121 kg/cm Vægtykkelse 0,43 mm 0 17 143060Tensile strength, peripheral 2.121 kg / cm Wall thickness 0.43 mm 0 17 143060

Eksempel 3Example 3

En plastflaske fremstilles på samme måde som i eksempel 1 ved ekstrudering og blæsestøbning af en hul cylindrisk formet slange, der har en længde på 11,4 cm, en udvendig dia-5 meter på 17,3 mm og en indvendig diameter på 9,5 mm, og som vejer ca. 22,6 g. Slangen fremstilles ud fra en polyethylen-terephthalat med et logaritmisk viskositetstal på 0,91, og slangen har en massefylde ved den udvendige overflade på 1,332 og ved den indvendige overflade på 1,334, samt en kry-10 stallinitet på ca. 5%.A plastic bottle is prepared in the same manner as in Example 1 by extrusion and blow molding a hollow cylindrical shaped tube having a length of 11.4 cm, an outside diameter of 5 meters of 17.3 mm and an internal diameter of 9.5 mm and weighing approx. 22.6 g. The tube is made from a polyethylene terephthalate having a logarithmic viscosity number of 0.91, and the tube has a density at the outer surface of 1.332 and at the inner surface of 1.334, and a crystallinity of approx. 5%.

Den således fremstillede flaske udviser følgende egenskaber: I Massefylde og krystallinitet for polymer fra forskellige 15 steder på flaskenThe bottle thus produced exhibits the following properties: In Density and crystallinity of polymer from various 15 locations on the bottle

Masse- Krystallinitet fylde__%_Mass Crystallinity fullness __% _

Halsen 1,332 ONeck 1,332 o

Det øverste af cylinderdelen 1,345 6 20 Midten af cylinderdelen 1,356 17The top of the cylinder part 1,345 6 20 The middle of the cylinder part 1,356 17

Det nederste af cylinderdelen 1,361 22The bottom of the cylinder part 1,361 22

Flaskebunden 1,332 OBottle bound 1,332 o

II Styrkeegenskaber (den rette cylinderdel) 25 Aksialt Perifert 2II Strength properties (the right cylinder part) 25 Axial Peripheral 2

Trækstyrke, kg/cm 546 1.666Tensile strength, kg / cm 546 1,666

Forlængelse, % 59 17Extension,% 59 17

Trækmodul, kg/cm^ 17.220 47.810 2Tensile module, kg / cm ^ 17,220 47,810 2

Flydespænding, kg/cm 532 700 163060 18Flow stress, kg / cm 532 700 163060 18

OISLAND

III Biaksial orientering Røntgenstråleorienteringsvinkler efter de artikler, der tidligere er henvist til 2Θ spids Rotationsretning Orienterings- Spids 5 X(chi) Ø(phi) vinkel max.III Biaxial orientation X-ray orientation angles according to the articles previously referred to 2Θ point. Direction of rotation.

17,0 Plan vinkelret på strålen 83 (aksial) 0°X Plan parallel med strålen17.0 Plan perpendicular to beam 83 (axial) 0 ° X Plan parallel to beam

Scan 90 52 (perif.) 0°XScan 90 52 (peripheral) 0 ° X

0 Scan 66 (perif.) 0°X0 Scan 66 (peripheral) 0 ° X

10 27,0 Plan vinkelret på strålen10 27.0 Plan perpendicular to the beam

Scan O — —Scan O - -

Plan parallel med strålenPlan parallel to the beam

Scan 90 32 (perif.) 5°XScan 90 32 (peripheral) 5 ° X

O Scan 40 (perif.) 87°0 15 Af de ovenfor anførte røntgenstråleorienteringsvinkler og styrkeegenskaber ses det, at flasken udviser et effektivt strækningsforhold på ca. 3,5 gange i periferiretningen og ca. 1,25 gange i aksialretningen.O Scan 40 (peripheral) 87 ° 0 15 From the above-mentioned x-ray orientation angles and strength characteristics, it is seen that the bottle exhibits an effective stretching ratio of approx. 3.5 times in the circumferential direction and approx. 1.25 times in the axial direction.

20 IV Gennemtrængelighed (den rette cylinderdel) Vægtykkelse 0,46 mm20 IV Permeability (the right cylinder part) Wall thickness 0.46 mm

Vandtab 0,6 mg/time (Flasken fyldt med vand og opbevaret ved en relativ fugtighed på 17,5% 25 og 25°C i 13 døgn) 3Water loss 0.6 mg / hour (Bottle filled with water and stored at a relative humidity of 17.5% 25 and 25 ° C for 13 days) 3

Carbondioxidtab 1,5 cm /døgn (Flasken sat under tryk med carbon- (standardtemperatur dioxid til et overtryk på og -tryk) 2,8 kg/cm^ ved 25°C. Flasken vi-30 ste ingen permanent deformation) V KrybningCarbon dioxide loss 1.5 cm / day (The bottle is pressurized with carbon (standard temperature dioxide for an overpressure and pressure) 2.8 kg / cm 2 at 25 ° C. The bottle shows no permanent deformation) V Creep

Omkredsstrimler fra den rette cylinderdel af en ofret flaske modstår ved 50°C en perifer trækspænding på 350 kg/cm^ med en krybning på 100 timer af en værdi på mindre end 2% og en 35 langtidskrybning på 90 døgn på mindre end 5%, hvilket svarer til en deformationskonstant på ca. 1,5.Circumference strips from the right cylinder portion of a sacrificed bottle withstand at 50 ° C a circumferential tensile stress of 350 kg / cm 2 with a creep of 100 hours of a value of less than 2% and a long-term creep of 90 days of less than 5%. which corresponds to a deformation constant of approx. 1.5.

DK639470AA 1969-12-17 1970-12-16 Plastic bottle for liquids under gas pressure and practically resistant to deformation caused by pressure and to the penetration of gases and liquids, as well as to its process DK143060C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88585369A 1969-12-17 1969-12-17
US88585369 1969-12-17
US9357170A 1970-11-30 1970-11-30
US9357170 1970-11-30

Publications (2)

Publication Number Publication Date
DK143060B true DK143060B (en) 1981-03-23
DK143060C DK143060C (en) 1990-06-25

Family

ID=26787693

Family Applications (1)

Application Number Title Priority Date Filing Date
DK639470AA DK143060C (en) 1969-12-17 1970-12-16 Plastic bottle for liquids under gas pressure and practically resistant to deformation caused by pressure and to the penetration of gases and liquids, as well as to its process

Country Status (10)

Country Link
JP (4) JPS493073B1 (en)
AR (1) AR207328A1 (en)
BE (1) BE760398A (en)
CA (1) CA957624A (en)
CH (1) CH584144A5 (en)
DE (1) DE2062283A1 (en)
DK (1) DK143060C (en)
GB (1) GB1341845A (en)
NL (1) NL154702B (en)
SE (1) SE7409139L (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7411960L (en) * 1974-09-24 1976-03-25 Fabriker As Haustrups METHOD OF MANUFACTURING CONTAINERS LIKE POLYESTER BOTTLES OR CANS
SE412355B (en) * 1976-05-10 1980-03-03 Plm Ab STABILIZING DEVICE FOR CONTAINERS PREFERRED INTENDED FOR LIQUID UNDER PRESSURE
JPS53165540U (en) * 1977-05-31 1978-12-25
SE417592B (en) * 1978-03-13 1981-03-30 Plm Ab CONTAINER OF THERMO-PLASTIC PLASTIC MATERIAL WITH STRENGTHS INSIDE THE CONTAINER WALL, AND PROCEDURE FOR THE PREPARATION OF SUCH A CONTAINER
JPS6128736Y2 (en) * 1978-07-10 1986-08-26
GB2066767B (en) * 1979-08-03 1983-11-09 Yoshino Kogyosho Co Ltd Coated bottle made of saturated polyester resin
JPS5881131A (en) * 1981-11-10 1983-05-16 Mitsubishi Plastics Ind Ltd Plastic bottle and manufacture thereof
SE428775B (en) * 1981-11-26 1983-07-25 Plm Ab CONTAINERS AND SETS AND APPARATUS FOR MAKING A SUGAR
EP0653982B2 (en) * 1992-07-07 2001-01-03 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-clystallinity base
US5281387A (en) * 1992-07-07 1994-01-25 Continental Pet Technologies, Inc. Method of forming a container having a low crystallinity
US5474735A (en) * 1993-09-24 1995-12-12 Continental Pet Technologies, Inc. Pulse blow method for forming container with enhanced thermal stability
DE19515516C2 (en) * 1995-04-27 1999-03-25 Continental Pet De Gmbh Process for blow molding a plastic container and device for carrying out the process
FR2850899B1 (en) * 2003-02-07 2007-01-19 Eurofeu Sa METHOD FOR MANUFACTURING A HOLLOW BODY BY EXTRUSION AND BLOWING A THERMOPLASTIC RESIN
EP2192043A1 (en) * 2008-11-28 2010-06-02 Alliance for business solutions A4BS Induced polymer segregation for injection blow molding process
DE102011007280A1 (en) 2011-04-13 2012-10-18 Krones Aktiengesellschaft Container treatment machine and method for container treatment
DE102011079076A1 (en) * 2011-07-13 2013-01-17 Krones Aktiengesellschaft Transport means for containers and method for transporting containers
DE102011079078A1 (en) 2011-07-13 2013-01-17 Krones Ag Aster feeder for treatment machines
DE102011079077A1 (en) 2011-07-13 2013-01-17 Krones Aktiengesellschaft Blowing machine for plastic containers
CA2953887C (en) * 2014-08-01 2023-10-03 The Coca-Cola Company Lightweight base for carbonated beverage packaging
JP6661366B2 (en) * 2015-12-17 2020-03-11 株式会社吉野工業所 Container manufacturing method
CN109296781B (en) * 2018-10-30 2023-09-22 世格流体控制(上海)有限公司 Novel bottle blowing combined valve
CN111142586B (en) * 2020-01-03 2023-06-27 湖南农业大学 Control system of aeroponic planting device
CN114801124B (en) * 2022-03-17 2024-04-02 德玛克(长兴)注塑***有限公司 Full-automatic bottle blowing method for high-capacity PP (Polypropylene) bottle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038235A (en) * 1956-12-06 1962-06-12 Du Pont Textile fibers and their manufacture
NL237380A (en) * 1958-03-28
US3294885A (en) * 1963-05-09 1966-12-27 Phillips Petroleum Co Method for blow molding thermoplastic
BE655731A (en) * 1963-11-13
NL6504912A (en) * 1964-04-16 1965-07-26
US3470282A (en) * 1964-05-20 1969-09-30 Owens Illinois Inc Method of making a blown article
US3231642A (en) * 1964-07-09 1966-01-25 Du Pont Extrusion and stretching of thermoplastic film
DK120505B (en) * 1964-12-03 1971-06-07 Glanzstoff Ag Process for the preparation by the vacuum deep drawing method of moldings of polyethylene terephthalate.
DE1479801B2 (en) * 1964-12-03 1974-08-08 Enka Glanzstoff Ag, 5600 Wuppertal Process for the production of molded articles from polyethylene terephthalate
GB1140034A (en) * 1965-02-22 1969-01-15 Harry Dudley Wright An improved method of forming articles from thermoelastically deformable materials

Also Published As

Publication number Publication date
DE2062283B2 (en) 1973-10-11
NL7018361A (en) 1971-06-21
CA957624A (en) 1974-11-12
BE760398A (en) 1971-06-16
JPS493073B1 (en) 1974-01-24
AR207328A1 (en) 1976-09-30
JPS5750178B1 (en) 1982-10-26
JPS5750179B1 (en) 1982-10-26
DE2062283A1 (en) 1971-08-19
NL154702B (en) 1977-10-17
SE7409139L (en) 1974-07-11
DK143060C (en) 1990-06-25
GB1341845A (en) 1973-12-25
JPS5211334B1 (en) 1977-03-30
CH584144A5 (en) 1977-01-31

Similar Documents

Publication Publication Date Title
DK143060C (en) Plastic bottle for liquids under gas pressure and practically resistant to deformation caused by pressure and to the penetration of gases and liquids, as well as to its process
JP7280130B2 (en) Furano Polymer Preforms, Containers and Processing
EP0494098B2 (en) Method of blow moulding container
US5759656A (en) Method of forming multilayer preform and container with low crystallizing interior layer
RU2319649C2 (en) Polyethyleneterephthalate copolymer composition having improved mechanical properties and draw-down rating
US4803036A (en) Process for blow-molding and heat setting of polyester hollow formed body
JPS62221538A (en) Heat-set multilayer article
NZ211845A (en) Hollow, shaped articles formed from hexamethylene terephthalamide and - isophthalamide copolymer
JPS6357312B2 (en)
JPH03122116A (en) Copolymer polyethylene terephthalate and use thereof
JPH0126940B2 (en)
JPS5935333B2 (en) Method for manufacturing polyester containers
JP2001072033A (en) Pressure-proof polyester bottle and packaging member using the same
JP2023526001A (en) Multilayer preforms and containers
JPH01153444A (en) Hollow container
JPS5850177B2 (en) Method for manufacturing biaxially oriented bottles
NO159779B (en) PROCEDURE FOR THE MANUFACTURE OF BIAXALLY ORIENTED BODIES OF THERMOPLASTIC MATERIAL.
JPH07309319A (en) One-piece type pressure-resistant or thermal-pressure-resistant polyester bottle and manufacture thereof
JPH04156323A (en) Manufacture of saturated polyester bottle
IE69387B1 (en) Preform for blow moulding refillable polyester beverage bottle

Legal Events

Date Code Title Description
PUP Patent expired