DK141746B - Process for converting a gas mixture containing carbon monoxide and steam into hydrogen and carbon dioxide. - Google Patents

Process for converting a gas mixture containing carbon monoxide and steam into hydrogen and carbon dioxide. Download PDF

Info

Publication number
DK141746B
DK141746B DK327969AA DK327969A DK141746B DK 141746 B DK141746 B DK 141746B DK 327969A A DK327969A A DK 327969AA DK 327969 A DK327969 A DK 327969A DK 141746 B DK141746 B DK 141746B
Authority
DK
Denmark
Prior art keywords
catalyst
hydrogen
alkali metal
steam
carbon monoxide
Prior art date
Application number
DK327969AA
Other languages
Danish (da)
Other versions
DK141746C (en
Inventor
Clyde Lee Aldridge
Original Assignee
Exxon Research Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research Engineering Co filed Critical Exxon Research Engineering Co
Publication of DK141746B publication Critical patent/DK141746B/en
Application granted granted Critical
Publication of DK141746C publication Critical patent/DK141746C/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

141746141746

Den foreliggende opfindelse angår en fremgangsmåde til omdannelse af en gasblanding indeholdende carbonmonoxid og damp til hydrogen og carbondioxid, hvorved gasblandingen bringes i kontakt med en katalysator ved en temperatur på mellem ca. 150° og 370°C og 2 et tryk på mellem atmosfæretryk og 212 kg/cm .The present invention relates to a process for converting a gas mixture containing carbon monoxide and steam into hydrogen and carbon dioxide, thereby contacting the gas mixture with a catalyst at a temperature of between 150 ° and 370 ° C and 2 a pressure of between atmospheric pressure and 212 kg / cm.

Den foreliggende opfindelse angår fremstillingen af hydrogen ud fra carbonholdige materialer i overensstemmelse med ligningerne C + h2o < > CO + h2 CO + h2o rf:_ > co2 + h2The present invention relates to the production of hydrogen from carbonaceous materials in accordance with equations C + h 2 O <> CO + h 2 CO + h 2 o rf:> co 2 + h 2

Det er velkendt at fremstille hydrogen ved at bringe carbonholdige materialer, såsom carbonhydrider, til at reagere med damp ved forhøjet temperatur på 649-760°C eller bringe kul eller koks til at reagere med damp ved temperaturer på op til 1371°C og derefter at bringe den resulterende blanding af CO og H2 til at reagere med mere damp ved lavere temperatur, f.eks. ved 427-482°C i nærværelse af egnede katalysatorer for at omdanne det carbonmonoxid, der er fremstillet i det første trin, til carbondioxid og yderligere hydrogen. Det andet trin, der er kendt som vandgasshift-reaktionen, er begrænset af ligevægtsforholdene, og fuldstændig omdannelse af CO til C02 opnås ikke. Imidlertid er koncentrationen af CO i produktet, når ligevægtstilstanden er opnået, i høj grad afhængig af temperaturen.It is well known to produce hydrogen by causing hydrocarbon materials such as hydrocarbons to react with steam at elevated temperature of 649-760 ° C or causing coal or coke to react with steam at temperatures up to 1371 ° C and then causing the resulting mixture of CO and H2 to react with more steam at lower temperature, e.g. at 427-482 ° C in the presence of suitable catalysts to convert the carbon monoxide produced in the first step to carbon dioxide and additional hydrogen. The second step, known as the water gas shift reaction, is limited by the equilibrium conditions and complete conversion of CO to CO 2 is not achieved. However, when the equilibrium state is reached, the concentration of CO in the product is highly dependent on the temperature.

Som følge heraf kan omdannelsesgraden forøges ved enten at flerne carbondioxidet og igen bringe carbonmonoxidet I kontakt med damp i nærværelse af katalysatoren I det samme eller efterfølgende trin eller ved at formindske temperaturen.As a result, the degree of conversion can be increased by either multiplying the carbon dioxide and again contacting the carbon monoxide with steam in the presence of the catalyst in the same or subsequent step or by decreasing the temperature.

Temperaturens indflydelse pi ligevægtskonstanten (C0?)(H?0) K = * * (C0)(H20) er vist i nedenstående tabel.The influence of temperature on the equilibrium constant (C0?) (H? 0) K = * * (C0) (H2 O) is shown in the table below.

141746 2141746 2

Koncentration af CO i ligevægtstilstanden (tør basis).Concentration of CO in the equilibrium state (dry basis).

Udgangsmateriale xStarting material x

°C K AB° C K AB

482 5,61 427 9,03 5,19 371 15,89 3,30 1,12 316 31,44 1,77 0,56 260 72,75 204 206,8 0,29 x A: 50% af en 1/1 H2/CO blanding + 50% H20 (damp) B: 30% af en 1/1 H2/CO blanding + 70% H^O (damp)482 5.61 427 9.03 5.19 371 15.89 3.30 1.12 316 31.44 1.77 0.56 260 72.75 204 206.8 0.29 x A: 50% of a 1 / 1 H2 / CO mixture + 50% H 2 O (steam) B: 30% of a 1/1 H2 / CO mixture + 70% H 2 O (steam)

Det er således klart, at en mindre mængde CO vil forblive uomdannet, og kostbare driftsmetoder kan undgås ved at anvende så lave temperaturer som muligt, f.eks. 149-371°C, fortrinsvis 204-316°C.Thus, it is clear that a smaller amount of CO will remain unchanged and costly operating methods can be avoided by using as low temperatures as possible, e.g. 149-371 ° C, preferably 204-316 ° C.

Sådanne lave temperaturer kan benyttes ved anvendelse af en katalysator, der består af kobber udfældet på zinkoxid. Uheldigvis tolererer denne katalysator imidlertid ikke selv spor af svovl i udgangsmaterialet. Da kul og koks og svære carbonhydridudgangsmaterialer, der er egnet til omdannelse til hydrogen, indeholder væsentlige mængder svovl, f.eks. op til 5 til 10 vægtprocent, der omdannes til hydrogen-sulfid, og endog små mængder af carbondisulfid og carbonylsulfid, er disse udgangsmaterialer udelukket fra anvendelse i forbindelse med Cu-ZnO-katalysatoren og er begrænset til shift-temperaturer på 399-482°C, idet der anvendes en svovlmodstandsdygtig katalysator, såsom Fe2Og aktiveret med CrgOg. Det er også kendt at anvende KrjCOg udfældet på aktiveret carbon som lavtemperaturkatalysator (se Erdoll und Kohle V 6:195, 1953 og V 9:19, 1956).Such low temperatures can be employed using a catalyst consisting of copper precipitated on zinc oxide. Unfortunately, however, this catalyst does not tolerate traces of sulfur itself in the starting material. Since coal and coke and heavy hydrocarbon starting materials suitable for conversion to hydrogen contain substantial amounts of sulfur, e.g. up to 5 to 10% by weight converted to hydrogen sulfide, and even small amounts of carbon disulfide and carbonyl sulfide, these starting materials are excluded from use in conjunction with the Cu-ZnO catalyst and are limited to shift temperatures of 399-482 ° C , using a sulfur resistant catalyst such as Fe2Og activated with CrgOg. It is also known to use KrjCOg precipitated on activated carbon as a low temperature catalyst (see Erdoll und Kohle V 6: 195, 1953 and V 9:19, 1956).

Det er nu blevet konstateret, at gasblandinger, der indeholder carbonmonoxid, der er forurenet med forholdsvis store mængder svovl, kan omdannes til hydrogen på økonomisk måde ved reaktion med damp ved en temperatur på mellem 150° og 370°C og et tryk på 2 mellem atmosfæretryk og 212 kg/cm ved anvendelse af en speciel katalysator.It has now been found that gas mixtures containing carbon monoxide contaminated with relatively large amounts of sulfur can be economically converted to hydrogen by reaction with steam at a temperature between 150 ° and 370 ° C and a pressure of 2 between atmospheric pressure and 212 kg / cm using a special catalyst.

141746 3141746 3

Fremgangsmåden ifølge opfindelsen er således ejendommelig ved, at katalysatoren omfatter (1) en alkalimetalforbindel'se, der er fremstillet ud fra en syre med en dissociationskonstant, der er mindre -3 end 1 x 10 , og (2) en hydrogenerings-dehydrogeneringsbestanddel, der er udvalgt blandt (a) ædelmetalmaterialer omfattende ruthenium, palladium, osmium, iridium eller platin, (b) ikke-ædelmetalforbindelser omfattende vanadium-, molybdæn-, wolfram- og koboltmaterialer og (c) blandinger af ikke-ædelmetalmatenaler omfattende et vanadium-, molybdæn-, wolfram- eller koboltmateriale blandet med et nikkel-, jern- eller chrommateriale, hvorhos i det mindste en del af katalysatorens ikke-ædelmetalmateriale er pi sulfidform og vægtforholdet mellem hydrogenerings-dehydrogeneringsbestanddelen, beregnet som oxid, og alkalimetalforbindelsen, beregnet som oxid, ligger mellem 0,001:1 og 10:1.Thus, the process of the invention is characterized in that the catalyst comprises (1) an alkali metal compound produced from an acid having a dissociation constant less than 3 x 1 x 10, and (2) a hydrogenation dehydrogenation component which are selected from (a) precious metal materials comprising ruthenium, palladium, osmium, iridium or platinum, (b) non-precious metal compounds comprising vanadium, molybdenum, tungsten and cobalt materials and (c) mixtures of non-precious metal materials comprising a vanadium, molybdenum - tungsten or cobalt material mixed with a nickel, iron or chromium material, wherein at least part of the catalyst's non-precious metal material is in sulfide form and the weight ratio of the hydrogenation dehydrogenation component, calculated as oxide, to the alkali metal compound, calculated as oxide, is between 0.001: 1 and 10: 1.

Alkalimetalforbindelsen og hydrogerierings-dehydrogenerings-bestanddelen kan sammen eller hver for sig være anbragt pi en bærer. Endvidere kan alkalimetalforbindelsen være imprægneret på hydrogenerings-dehydrogeneringsbestanddelen.The alkali metal compound and the hydrogenation dehydrogenation component may be disposed together or separately on a carrier. Furthermore, the alkali metal compound may be impregnated on the hydrogenation dehydrogenation component.

De nævnte katalysatorer har særlig god aktivitet, hvis de er sulfideret forud for anvendelsen og er siledes særligt egnede til anvendelse i forbindelse med udgangsmaterialer, der indeholder svovl.Said catalysts have particularly good activity if they are sulfided prior to use and are screened particularly suitable for use in connection with starting materials containing sulfur.

Disse katalysatorsammensætninger kan imidlertid også anvendes i forbindelse med svovlfrie udgangsmaterialer. Når svovlholdige udgangsmaterialer anvendes, kan katalysatoren sulfideres in situ ved at lede udgangsmaterialet hen over oxidet eller anden forbindelse, der derefter omdannes til sulfidet. Mængden af gruppe VB-, VIB- eller VIII-metalbestanddelen er fortrinsvis fra 0,001 til 10 vægtdele af alkalimetalforbindelsen.However, these catalyst compositions can also be used in conjunction with sulfur-free starting materials. When sulfur-containing starting materials are used, the catalyst can be sulfided in situ by passing the starting material over the oxide or other compound which is then converted to the sulfide. The amount of the group VB, VIB or VIII metal component is preferably from 0.001 to 10 parts by weight of the alkali metal compound.

Det første reaktionstrin ved fremstilling af hydrogen består i at bringe kul, koks eller svære udgangsmaterialer i kontakt med damp ved 538-1371°C under eller uden tilstedeværelse af hydrogen eller at omsætte naturgas eller andre carbonhydrider med damp i nærværelse af reformer katalysatorer, der indeholder nikkel, kobolt o.s.v., der er aktiveret med magnesiumoxid, aluminiumoxid, thoriumoxid og lignende oxider og eventuelt anbragt på en inaktivt bæremateriale ved temperaturer på 649-871°C. Der opnås hydrogen, carbondioxid og carbonmonoxid med et stort forhold mellem CO og CO,,.The first reaction step in the production of hydrogen consists in contacting coal, coke or heavy starting materials with steam at 538-1371 ° C under or without the presence of hydrogen or reacting natural gas or other hydrocarbons with steam in the presence of reforming catalysts containing nickel, cobalt, etc., activated with magnesium oxide, alumina, thorium oxide and similar oxides and optionally placed on an inert carrier at temperatures of 649-871 ° C. Hydrogen, carbon dioxide and carbon monoxide are obtained with a high CO to CO ratio.

Den foreliggende opfindelse gør det ikke alene muligt at overvinde svovls indvirkning på alkalimetalforbindelserne men gør det 4 um 6 også muligt at opnå stort set fuldstændig omdannelse af carbonmonoxid til carbondioxid i et trin ved lav temperatur, et resultat, der hidtil har været umuligt at opnå ved tilstedeværelse af svovl. Disse resultater opnås som nævnt ved at gennemføre reaktionen i nærværelse af 0,001 til 10 vægtdele af ovennævnte hydrogenerings-dehydrogenerings-katalysatorbestanddel i forhold til alkalimetallets vægt. Anvendelsen af disse katalysatorer i forbindelse med alkalimetalsaltet muliggør som nævnt en mere fuldstændig omdannelse af carbonmonoxidet til carbondioxid endog i nærværelse af svovl og frembyder således meget store økonomiske besparelser, da der undgås et kostbart trin til fjernelse af carbondioxidet. Selv om man ikke ønsker at begrænse sig til nogen speciel teori vedrørende reaktionsmekanismen, antages det, at alkali-metalbestanddelen i nærværelse af vanddamp eksisterer som en væskeformig fase i kontakt med hydrogenerings-dehydrogeneringsbestandde-lens overflade. Det antages, at den vandige alkalimetalfase omdanner carbonmonoxidet til formiat, og at hydrogenerings-dehydrogenerings-katalysatoroverfladen omdanner formiatet til CC>2 og l·^· Således tilvejebringer vekselvirkningen mellem de to katalysatortyper en meget stor synergistisk virkning på den katalytiske aktivitet.The present invention not only makes it possible to overcome the effect of sulfur on the alkali metal compounds, but also enables 4 µm to achieve substantially complete conversion of carbon monoxide to carbon dioxide in a low temperature step, a result which has hitherto been impossible to achieve by presence of sulfur. These results are obtained as mentioned by conducting the reaction in the presence of 0.001 to 10 parts by weight of the above hydrogenation-dehydrogenation catalyst component relative to the weight of the alkali metal. The use of these catalysts in connection with the alkali metal salt, as mentioned, allows for a more complete conversion of the carbon monoxide to carbon dioxide even in the presence of sulfur and thus offers very great economic savings as avoiding a costly step of removing the carbon dioxide. While not wishing to limit itself to any particular theory of the reaction mechanism, it is believed that in the presence of water vapor, the alkali metal component exists as a liquid phase in contact with the surface of the hydrogenation dehydrogenation component. It is believed that the aqueous alkali metal phase converts the carbon monoxide to formate and that the hydrogenation-dehydrogenation catalyst surface converts the formate to CC> 2 and · Thus, the interaction between the two catalyst types provides a very large synergistic effect on the catalytic activity.

Egnede alkalimetalforbindelser omfatter f.eks. carbonatet, hydrogencarbonatet, hydrogenphosphatet, sulfidet, hydrogensulfidet, silikatet, hydrogensulfitet, aluminatet, hydroxidet, acetatet og wolfra-matet af natrium, kalium, lithium, rubidium og caesium. Desuden er alkalimetalsaltene af organiske syrer, såsom acetat, ligeledes egnede.Suitable alkali metal compounds include e.g. the carbonate, hydrogen carbonate, hydrogen phosphate, sulfide, hydrogen sulfide, silicate, hydrogen sulfite, aluminate, hydroxide, acetate and tungsten of sodium, potassium, lithium, rubidium and cesium. In addition, the alkali metal salts of organic acids such as acetate are also suitable.

I virkeligheden kan alkalimetalsaltet af en hvilken som helst syre, der -3 har en dissociationskonstant, der er mindre end 1 x 10 , anvendes.In fact, the alkali metal salt of any acid having -3 having a dissociation constant of less than 1 x 10 may be used.

Kalium- og caesiumsaltene foretrækkes især.The potassium and cesium salts are particularly preferred.

Katalysatorens hydrogenerings-dehydrogeneringsbestanddel omfatter som nævnt et eller flere af grundstofferne i det periodiske systems gruppe VB, VIB og VIII (opstillet af Henry D. Hubbard og revideret 1956 af William F. Meggers fra National Bureau of Standards).As mentioned, the hydrogenation dehydrogenation component of the catalyst comprises one or more of the elements of the Periodic Table of Groups VB, VIB and VIII (compiled by Henry D. Hubbard and revised 1956 by William F. Meggers of the National Bureau of Standards).

Hvis metallerne fra det periodiske systems gruppe VB, VIB og VIII anvendes i forbindelse med svovlholdige udgangsmaterialer, kan de anvendes i form af oxidet eller anden forbindelse, der let sulfideres. Disse forbindelser sulfideres derefter in situ ved at føre det svovlholdige udgangsmateriale hen over dem. Caesium- eller kaliumcar-bonat eller -acetat i forbindelse med kobolt-molybdæn er en særligt effektiv katalysator. Jern-, kobolt- og nikkelsulfidet (gruppe VIII me- 141746 5 tal) eller vanadiumsulfidet (gruppe VB) eller chrom-, molybdæn- og wolframsulfidet (gruppe VIB) kan hver for sig anvendes Sammen med aikalimetallet, hvis dette ønskes. I det følgende vil disse katalysatorer blive betegnet "metallet" uden henvisning til, hvorledes det er sammensat, da den faktiske sammensætning før shift-reaktionen f.eks. er koboltoxid-molybdænoxid-aluminiumoxid og tilsvarende. Ved reaktionsbetingelserne eksisterer katalysatoren almindeligvis i en delvis reduceret og suifideret tilstand, der er vanskelig at definere støkiometrisk, og en beskrivelse, der anvender de aktive metaibestanddele, er således lige så nøjagtig som en hvilken som helst anden.If the metals of Group VB, VIB and VIII of the Periodic Table are used in conjunction with sulfur-containing starting materials, they may be used in the form of the oxide or other compound which is easily sulfidated. These compounds are then sulfated in situ by passing the sulfur-containing starting material over them. Caesium or potassium carbonate or acetate in conjunction with cobalt molybdenum is a particularly effective catalyst. The iron, cobalt and nickel sulphide (group VIII metal) or the vanadium sulphide (group VB) or the chromium, molybdenum and tungsten sulphide (group VIB) can be used separately together with the alkali metal if desired. In the following, these catalysts will be referred to as the "metal" without reference to its composition, since the actual composition prior to the shift reaction, e.g. is cobalt oxide-molybdenum oxide alumina and the like. Under the reaction conditions, the catalyst generally exists in a partially reduced and sufided state which is difficult to define stoichiometric, and thus a description employing the active meta constituents is as accurate as any other.

De katalytisk aktive metaibestanddele kan anvendes enten anbragt pi et bæremateriale eller ikke, og i det første tilfælde er beskaffenheden af bærematerialet ikke kritisk. Egnede bærematerialer omfatter aluminiumoxid med et meget stort spillerum med hensyn til overfladearealer, såsom y- og a-aluminiumoxid. Andre egnede bærematerialer er siliciumoxid, siliciumoxid-alumintumoxid, f.eks. silicium-oxid-aluminiumoxidcogelkrakningskatalysatorer; zeolitter, såsom fauja-sit, erionit og lignende; aktiveret carbon, kokosnødtrækul, Columbia L carbon, magnesiumoxid, titanoxid, zirconoxid og lignende. Særligt egnede y- og a-aluminiumoxid katalysatorbærematerialer er kommercielt tilgængelige. Sådanne bærematerialer kan fremstilles ved hjælp af en lang række fremgangsmåder. F.eks. kan de fremstilles ved at hydrolysere aluminiumalkoholat, der kan være fremstillet i overensstemmelse med den fremgangsmåde, der er omtalt i beskrivelsen til U.S.A. patent nr. 2.636.865. De kan også fremstilles ved at udfælde vandholdigt aluminiumoxid fra en vandig opløsning af et aluminiumsalt, fortrinsvis AlCIg. En tredie fremgangsmåde til fremstilling består i at opløse metallisk aluminium i vand, der er gjort svag surt, fortrinsvis ved hjælp af en organisk syre, såsom eddikesyre, i nærværelse af kviksølv eller en forbindelse af dette, og derefter danne en gel af den således dannede aluminiumoxidsol. Det vandholdige aluminiumoxid fremstillet ved en af de ovennævnte fremgangsmåder, tørres og kalci-neres ved temperaturer på mellem 316-649°C, fortrinsvis mellem 482 og 538°C.The catalytically active meta components can be used either disposed on a carrier or not, and in the first case the nature of the carrier is not critical. Suitable carriers include alumina with a very large clearance in surface areas, such as γ- and α-alumina. Other suitable carriers are silica, silica-alumina, e.g. silicon-oxide-aluminiumoxidcogelkrakningskatalysatorer; zeolites such as faujaite, erionite and the like; activated carbon, coconut charcoal, Columbia L carbon, magnesium oxide, titanium oxide, zirconium oxide and the like. Particularly suitable γ- and α-alumina catalyst supports are commercially available. Such support materials can be prepared by a variety of methods. Eg. they can be prepared by hydrolyzing aluminum alcohol which may be prepared in accordance with the process disclosed in the specification to U.S.A. Patent No. 2,636,865. They can also be prepared by precipitating aqueous alumina from an aqueous solution of an aluminum salt, preferably AlCl 3. A third method of preparation consists of dissolving metallic aluminum in slightly acidified water, preferably by an organic acid, such as acetic acid, in the presence of mercury or a compound thereof, and then forming a gel of the thus formed alumina. The aqueous alumina prepared by one of the above processes is dried and calcined at temperatures of between 316-649 ° C, preferably between 482 and 538 ° C.

Katalysatorbestanddelen kan anbringes på bærematerialet på en hvilken som helst kendt måde. Fortrinsvis anbringes hydrogehe-rings-dehydrogeneringsbestanddelene først på bærematerialet, og denne sammensætning kalcineres derefter, f.eks. véd 538-649°C, for at omdanne metallerne til de stabile oxidformer. Derefter imprægneres 14T746 6 bærematerialet med alkalimetallet, f.eks. caesium- eller kaliumcarbona-tet, og katalysatoren tørres blot. Almindeligvis imprægneres bærematerialet med en opløsning, der indeholder den ønskede forbindelse.The catalyst component may be applied to the support material in any known manner. Preferably, the hydrogenation dehydrogenation ingredients are first applied to the support material and this composition is then calcined, e.g. at 538-649 ° C to convert the metals into the stable oxide forms. Then the carrier material is impregnated with the alkali metal, e.g. the cesium or potassium carbonate and the catalyst is simply dried. Generally, the carrier material is impregnated with a solution containing the desired compound.

Den færdige katalysator sulfideres derefter pi kendt mide, f.eks. ved at lede en blanding af hydrogen og hydrogensulfid, carbondisul-fid, butylmercaptan og lignende hen over katalysatoren. Imidlertid kan den sulfideres in situ som omtalt ovenfor.The finished catalyst is then sulfated in known mite, e.g. by passing a mixture of hydrogen and hydrogen sulfide, carbon disulphide, butyl mercaptan and the like over the catalyst. However, it can be sulfided in situ as discussed above.

Som en anden mulighed kan de forskellige bestanddele blandes mekanisk, f.eks. ved tørblanding. Der kan opnås gode katalysatorer ved fin formaling af en kobolt-molybdæn katalysator på et alumi-niumoxidbæremateriale og blanding af det fremstillede pulver med en pulverformet alkalimetalforbindelse, såsom caesiumcarbonat. Den resulterende blanding sammenpresses efter tilsætning af et smøremiddel, såsom stearinsyre eller grafit tit pellets, der kan kalcineres og sulfideres.As another option, the various components can be mixed mechanically, e.g. by dry mixing. Good catalysts can be obtained by fine grinding a cobalt-molybdenum catalyst on an alumina support material and mixing the powder produced with a powdery alkali metal compound such as cesium carbonate. The resulting mixture is compressed after the addition of a lubricant such as stearic acid or graphite to pellets which can be calcined and sulfated.

Hydrogenerings-dehydrogeneringsbestanddelen anvendes som nævnt i mængder, der varierer fra 0,001 til 10 vægtdele baseret på alkalimetalforbindelsen, fortrinsvis fra 0,01 til 5,0 vægtdele, og specielt 0,1 til 3,0 vægtdele, exclusive en eventuel bærer for den ene eller begge bestanddele. Alle bestanddele beregnes på basis af oxidet.The hydrogenation dehydrogenation component is used, as mentioned, in amounts ranging from 0.001 to 10 parts by weight based on the alkali metal compound, preferably from 0.01 to 5.0 parts by weight, and in particular 0.1 to 3.0 parts by weight, excluding an optional carrier for one or the other. both constituents. All components are calculated on the basis of the oxide.

Når der anvendes en bærer er forholdet mellem katalysator-bestanddele og bæremateriale ikke kritisk men kan variere fra 90 vægtprocent til 0,5 vægtprocent; det er imidlertid fundet mest hensigtsmæssigt at anvende mængder på fra 50 til 1 vægtprocent baseret på den samlede katalysator, inclusive bærematerialet. Hydrogenerings-dehydrogeneringskatalysatorer, der er fundet særligt effektive, indeholder koboltoxid og molybdænoxid pi γ-aluminiumoxid forud for sulfidering. Særligt egnede mængder af katalysatorbestanddele er fra 0,1 til 10 vægtprocent koboltoxid og fra 1 til 25 vægtprocent molybdænoxid. Hensigtsmæssigt er hydrogenerings-dehydrogeneringsbe-standdelene til stede i en mængde på fra 1 til 5 vægtprocent koboltoxid og fra 5 til 15 vægtprocent molybdænoxid. Denne katalysatorbe-standdel kan derefter være imprægneret med fra 5 til 80 vægtprocent alkalimetalforbindelse og sulfideret til opnåelse af den færdige katalysator. Som en anden mulighed kan alkalimetalforbindelsen selv være understøttet uafhængig af hydrogenerings-dehydrogeneringsbestandde-len, hvilke begge kan være sammenblandet og derefter sulfideret til opnåelse af katalysatorsammensætningen.When a carrier is used, the ratio of catalyst components to carrier is not critical but can range from 90% to 0.5% by weight; however, it is found most appropriate to use amounts of from 50 to 1% by weight based on the total catalyst, including the carrier material. Hydrogenation dehydrogenation catalysts found to be particularly effective contain cobalt oxide and molybdenum oxide pi-γ alumina prior to sulfidation. Particularly suitable amounts of catalyst components are from 0.1 to 10% by weight of cobalt oxide and from 1 to 25% by weight of molybdenum oxide. Suitably, the hydrogenation dehydrogenation components are present in an amount of from 1 to 5 weight percent cobalt oxide and from 5 to 15 weight percent molybdenum oxide. This catalyst component can then be impregnated with from 5 to 80% by weight of alkali metal compound and sulfided to obtain the final catalyst. As another option, the alkali metal compound itself may be supported independently of the hydrogenation dehydrogenation component, both of which may be admixed and then sulfided to obtain the catalyst composition.

Fremgangsmåden gennemføres fortrinsvis kontinuerligt. Gas- 7 141748 rumhastigheden kan variere indenfor vide grænser. Gasrumhastigheder på mellem 300 og 30.000 rumfang udgangsmateriale pr. rumfang katalysator på bæremateriale pr. time (rumfang/rumfang/time) bestemt pi basis af tør gas under standardbetingelser er særligt egnet til de fleste anvendelser. Fremgangsmåden kan gennemføres ved større gasrumhastigheder, hvis dette ønskes.The process is preferably carried out continuously. The gas velocity may vary within wide limits. Gas space velocities of between 300 and 30,000 volumes of starting material per volume of catalyst on support material per The hour (volume / volume / hour) determined on the basis of dry gas under standard conditions is particularly suitable for most applications. The process can be carried out at greater gas space velocities if desired.

Vandgasshift-reaktioner er velkendte. Carbonmonoxid eifer en gas, der indeholder 0,1 rumfangsprocent eller mere carbonmonoxid og damp i en mængde på 1-100 rumfang pr. rumfang carbonmonoxid, indføres i en shift-reaktor og føres over alkalimetal og hydrogene- rings-dehydrogeneringskatalysatoren ved en temperatur på mellem 149 og 371°C. Trykket er fortrinsvis i området fra 15,1 til 106,5 kg/cm2, 2 selv om det kan variere fra atmosfæretryk til 212 kg/cm eller højere. Imidlertid skal det eksakte tryk og temperaturbetingelser holdes Over dugpunktet for dampen i blandingen. Fremgangsmåden ifølge opfindelsen er ved sådanne reaktioner særlig effektiv, når udgangsmaterialet indeholder svovl. I virkeligheden resulterer tilstedeværelsen af svovl i udgangsmaterialet ligefrem i forøget omdannelse i mange tilfælde. Om nødvendigt kan katalysatoren regenereres ved oxidation og gensulfide-ring.Water gas shift reactions are well known. Carbon monoxide emits a gas containing 0.1% by volume or more carbon monoxide and steam in an amount of 1-100 volumes per liter. volume of carbon monoxide, is introduced into a shift reactor and passed over the alkali metal and hydrogenation dehydrogenation catalyst at a temperature between 149 and 371 ° C. The pressure is preferably in the range of 15.1 to 106.5 kg / cm 2, although it may vary from atmospheric pressure to 212 kg / cm 2 or higher. However, the exact pressure and temperature conditions must be kept above the dew point of the vapor in the mixture. The process of the invention is particularly effective in such reactions when the starting material contains sulfur. In fact, the presence of sulfur in the starting material even results in increased conversion in many cases. If necessary, the catalyst can be regenerated by oxidation and gene sulfide ring.

Typiske resultater af operationer 1 overensstemmelse med fremgangsmåden ifølge den foreliggende opfindelse er anført i de efterfølgende eksempler. I alle de heri anførte tilfælde er analyserne af hydrogenerings-dehydrogeneringsbestanddelen beregnet på basis af metallerne udtrykt som oxiderne og alkalimetalbestanddelen udtrykt som oxidet.Typical results of operations in accordance with the method of the present invention are set forth in the following examples. In all the cases cited herein, the analyzes of the hydrogenation dehydrogenation component are calculated on the basis of the metals expressed as the oxides and the alkali metal component expressed as the oxide.

EKSEMPEL 1EXAMPLE 1

En gasblanding bestående af tilnærmelsesvis 46% hydrogen, 53% carbonmonoxid og omkring 1% H,,S anvendes som udgangsmateriale.A gas mixture consisting of approximately 46% hydrogen, 53% carbon monoxide and about 1% H 2, S is used as starting material.

Dette gasudgangsmateriale førtes gennem en reaktor indeholdende en katalysator ved et tryk på 39,7 kg/cm med en sådan hastighed, at der opretholdes en afgang størgas produkthastighed pi 2700 rumfang/ rumfang/time målt ved stuetemperatur og 1 atmosfære tryk, og sammen med udgangsmaterialegassen tilførtes damp i et molforhold på 1 mol pr. mol tørproduktgas. Katalysatoren bestod af kobolt-molybdæn dispergeret på γ-aluminiumoxid, der har et overfladeareal på 200-400 m /g og et porerumfang på 0,60-0,70 cm pr. g, idet koboltindholdet svarer til 3,5 vægtprocent CoO, og molybdænindholdet svarer til 13 8 um 6 vægtprocent MoO~, og som var imprægneret med 44-48 vægtprocent J -3 3 caesiumacetat i en vandig opløsning (1,7 x 10 mol pr. cm katalysatorrumfang) og tørret ved ca. 150°C. Katalysatoren sulfideredes derefter in situ ved at lede udgangsmaterialet over katalysatoren i omkring 1 time ved en temperatur på 329°C. Der opnåedes følgende resultater: TABEL 1This gas starting material was passed through a reactor containing a catalyst at a pressure of 39.7 kg / cm at such a rate as to maintain a waste gas product velocity of 2700 rpm / h measured at room temperature and 1 atmospheric pressure, and together with the starting material gas. steam was added at a molar ratio of 1 mol per moles of dry product gas. The catalyst consisted of cobalt-molybdenum dispersed on γ-alumina having a surface area of 200-400 m / g and a pore volume of 0.60-0.70 cm. g, the cobalt content being 3.5 wt% CoO and the molybdenum content corresponding to 13 8 µm 6 wt% MoO ~ and impregnated with 44-48 wt% J -3 cesium acetate in an aqueous solution (1.7 x 10 mole per catalyst volume) and dried at approx. 150 ° C. The catalyst was then sulfated in situ by passing the starting material over the catalyst for about 1 hour at a temperature of 329 ° C. The following results were obtained: TABLE 1

Forsøg nr. 123Experiment # 123

Metaller CoMo CoMo IntetMetals CoMo CoMo Nothing

Alkalimetalforbindelse Cs-acetat Cs-acetat Cs-acetat y-alumimumoxidbære-Alkali metal compound Cs-acetate Cs-acetate Cs-acetate γ-alumina support

materiale type A type B type Bmaterial type A type B type B

% CO i produktet% CO in the product

Temperatur Tryk Forsøg nr.Temperature Pressure Test no.

°C kg/cm2 1 2 3 329 39,7 1,16 1,17 48,61 274 39,7 0,53 0,54 246 39,7 0,43 218 39,7 0,32 0,40 218 15,1 0,31 0,23 177 15,1 20,57 177 1 45,54 41,35° C kg / cm2 1 2 3 329 39.7 1.16 1.17 48.61 274 39.7 0.53 0.54 246 39.7 0.43 218 39.7 0.32 0.40 218 15 , 1 0.31 0.23 177 15.1 20.57 177 1 45.54 41.35

Ovenstående resultater viser, at en blanding af caesiumacetat og kobolt-molybdæn er en overordentlig effektiv og ydedygtig katalysator til katalysering af vandgasshift-reaktionen ned til temperaturer så lave som 177°C. De sammenlignes meget hensigtsmæssigt med de resultater, der er opnået med caesiumacetat alene under de samme betingelser, hvor 48,61% carbonmonoxid forblev i produktet ved 329°C. Udgangsmaterialegas og produktgasanalyser er udtrykt i molprocent.The above results show that a mixture of cesium acetate and cobalt molybdenum is an extremely effective and efficient catalyst for catalyzing the water gas shift reaction down to temperatures as low as 177 ° C. They are very conveniently compared to the results obtained with cesium acetate alone under the same conditions where 48.61% carbon monoxide remained in the product at 329 ° C. Starting material gas and product gas analyzes are expressed in mole percent.

EKSEMPEL 2EXAMPLE 2

Forsøget i eksempel 1 blev gentaget med den undtagelse, at kobolt og molybdæn anvendtes hver for sig. Resultaterne er vist i tabel 11.The experiment in Example 1 was repeated with the exception that cobalt and molybdenum were used separately. The results are shown in Table 11.

141746 9141746 9

TABEL IITABLE II

Forsøg nr. 4 5Experiment # 4 5

Metaller Co (4,4 vægt- Mo (11 vægtpro- p rocent CoO) cent MoOg)Metals Co (4.4% by weight Mo (11% by weight CoO) cent MoOg)

Alkalimetalforbindelse Cs-acetat Cs-acetat % CO i produktetAlkali metal compound Cs-acetate Cs-acetate% CO in the product

Temperatur Tryk °C kg/cm^ 329 39,7 4,10 1,53 274 39,7 32,83 11,56Temperature Pressure ° C kg / cm 2 329 39.7 4.10 1.53 274 39.7 32.83 11.56

Disse to eksempler viser den forøgede effektivitet af kobolt-molybdænkombinationen i modsætning til hver bestanddel alene, selv om alle disse systemer er effektive katalysatorer ifølge opfindelsen.These two examples show the increased efficiency of the cobalt-molybdenum combination as opposed to each component alone, although all of these systems are effective catalysts of the invention.

EKSEMPEL 3EXAMPLE 3

Forsøget i eksempel 1 blev gentaget for at vise virkningen af at variere alkalimetalbestanddelen, når der anvendes kobolt-molybdæn. Resultaterne er anført i tabel Ilf.The experiment of Example 1 was repeated to show the effect of varying the alkali metal component when cobalt molybdenum is used. The results are given in Table Ilf.

10 U17A610 U17A6

TABEL IIITABLE III

Forsøg nr. 6 7Experiment # 6 7

Metaller CoMo CoMoMetals CoMo CoMo

Alkalimetalforbindelse K-acetat Cs9CO, (8,7 x 10 ^ -3 *· 3 (1,7 x 10 mol/cm katalysator) 3 mol/cm katalysator) % CO i produktet T empe- ratur Tryk °C kg/cm2 329 39,7 1,19 1,28 274 39,7 0,59 246 39,7 218 39,7 0,39 0,37 218 15,1 0,77 0,35 177 15,1 177 1 43,67Alkali Metal Compound K-Acetate Cs9CO, (8.7 x 10 3 -3 · · 3 (1.7 x 10 mol / cm catalyst) 3 mol / cm catalyst)% CO in the product T temperature Pressure ° C kg / cm2 39.7 1.19 1.28 274 39.7 0.59 246 39.7 218 39.7 0.39 0.37 218 15.1 0.77 0.35 177 15.1 177 1 43.67

Ovenstående resultater viser, at kaliumacetat er stort set lige så effektivt som caesiumacetat ned til temperaturer på 218°C, og at caesiumcarbonat er lige så effektivt.The above results show that potassium acetate is almost as effective as cesium acetate down to temperatures of 218 ° C and that cesium carbonate is just as effective.

EKSEMPEL 4EXAMPLE 4

Forsøget i eksempel 1 blev igen gentaget for at vise virkningen af at variere gruppe VIIl-metallet. Resultaterne er vist i nedenstående tabel IV.The experiment of Example 1 was repeated again to show the effect of varying the Group VII metal. The results are shown in Table IV below.

o 141746 11o 141746 11

TABEL IVTABLE IV

Forsøg nr. 9 10Experiment # 9 10

Metaller FeMo NiMoMetals FeMo NiMo

Almalimetalforbindelse Cs-acetat Cs-acetat % CO i produktetAlmalimetal compound Cs-acetate Cs-acetate% CO in the product

Tempe- ratur Tryk °C kg/cm2 329 39,7 1,15 1,26 274 39,7 11,32 0,87 246 39,7 218 39,7 35,07Temperature Pressure ° C kg / cm2 329 39.7 1.15 1.26 274 39.7 11.32 0.87 246 39.7 218 39.7 35.07

Ovenstående resultater viser, at nikkel-molybdæn og jernmolybdæn også er effektive katalysatorer ved carbonmonox id reaktionen.The above results show that nickel molybdenum and iron molybdenum are also effective catalysts in the carbon monoxide reaction.

EKSEMPEL 5EXAMPLE 5

Forsøget i eksempel 1 blev igen gentaget for at vise virkningen af at variere gruppe VB- og VIB-metallerne. Resultaterne er anført i nedenstående tabel V.The experiment in Example 1 was repeated again to show the effect of varying the group VB and VIB metals. The results are given in Table V below.

TABEL VTABLE V

Forsøg nr. 12 13 14Experiment No. 12 13 14

Metaller CoV CoCf . CoWMetals CoV CoCf. CoW

Alkalimetalforbindelse Cs-acetat Cs-acetat Cs-acetat % CO i produktetAlkali metal compound Cs-acetate Cs-acetate Cs-acetate% CO in the product

Tempe- ratur Tryk °C kg/cm2 329 39,7 7,18 17,24 22,93 274 39,7 46,08 42,41Temperature Pressure ° C kg / cm2 329 39.7 7.18 17.24 22.93 274 39.7 46.08 42.41

Ovenstående resultater viser effektiviteten for vanadium, chrom og wolfram som katalysatorer, når de anvendes i forbindelse 141746 12 med kobolt.The above results show the efficacy of vanadium, chromium and tungsten as catalysts when used in conjunction with cobalt.

EKSEMPEL 6EXAMPLE 6

Forsøg 1 i eksempel 1 blev gentaget for at bestemme virkningen af sulfidering på katalysatorens effektivitet overfor udgangsmaterialer, der indeholder svovl, såsom som overfor svovlfrie udgangsmaterialer. Nedenstående resultater opnåedes ved 329°C.Experiment 1 of Example 1 was repeated to determine the effect of sulfidation on the catalyst efficiency against sulfur-containing starting materials such as sulfur-free starting materials. The following results were obtained at 329 ° C.

TABEL VITABLE VI

Forsøg nr. 16 17 18Trial # 16 17 18

Katalysator ikke sul- sulfi- forsul- fideret deret fideret in situCatalyst not sulfosulfilized therein fused in situ

Udgangsmateriale, H2 45,9 46,44 45,9 CO 54,1 52,51 54,1 H2S 0 1,4 0Starting material, H2 45.9 46.44 45.9 CO 54.1 52.51 54.1 H2S 0 1.4 0

Produkt, CO 17,32 1,19 1,18 CO omdannelses- procent 57,9 96,5 96,7Product, CO 17.32 1.19 1.18 CO conversion rate 57.9 96.5 96.7

Ovenstående resultater viser, at den sulf iderede katalysator, hvad enten den er sulfideret in situ (forsøg nr. 17) eller forsul-frderet med intet svovl i udgangsmaterialet (forsøg nr. 18), giver ligevægtsomdannelsesgrader for carbonmonoxid, medens den ikke-sulfi-derede katalysator med intet svovl i udgangsmaterialet (forsøg nr. 16) giver en meget dårligere omdannelsesgrad.The above results show that the sulfated catalyst, whether sulphided in situ (Experiment # 17) or soldered with no sulfur in the starting material (Experiment # 18), gives equilibrium conversion rates for carbon monoxide, while the non-sulphated The catalyst with no sulfur in the starting material (experiment # 16) gives a much poorer conversion rate.

EKSEMPEL 7EXAMPLE 7

Betingelserne i eksempel 1 blev gentaget med forskellige katalysatorer for at vise virkningen af at variere bærematerialetype, idet der anvendes a-AI^O^ med lille overfladeareal, faujasit og carbon sammenlignet med γ-aluminiumoxidet med stort overfladeareal som i forsøg 2 (eksempel 1).The conditions of Example 1 were repeated with various catalysts to show the effect of varying the carrier type using a-Al 2 O 2 with small surface area, faujasite and carbon compared to the γ-alumina of large surface area as in Experiment 2 (Example 1) .

141746 13141746 13

TABEL VIIITABLE VIII

Forsøg nr. 2 19 20 21 Bæremateriale γ-Α^Ο^ faujasit y-AlgOg Akti veret carbonTest No. 2 19 20 21 Carrier γ-Α ^ Ο ^ faujasite y-AlgOg Activated carbon

Metaller CoMo CoMo CoMo Mo (3,5% (3,7% 1,6% 12%Metals CoMo CoMo CoMo Mo (3.5% (3.7% 1.6% 12%

CoO CoO CoO Mo03) 13% Mo03) 13,8% Mo03) 6,0% MoQg)CoO CoO CoO Mo03) 13% Mo03) 13.8% Mo03) 6.0% MoQg)

Alkalimetalfor- Cs-acetat Cs-acetat Cs-acetat Cs- bindelse acetat % CO i produktetAlkali metal for-Cs-acetate Cs-acetate Cs-acetate Cs-binding acetate% CO in the product

Temperatur Tryk _ °C kg/cn? 329 39,7 1,17 1,15 1,18 1,42 274 39,7 0,54 0,62 0,51 34 246 39,7 (<1,03) 218 39,7 0,40 218 15,1 0,23 32,3 177 15,1 177 1 41,35 EKSEMPEL 8Temperature Pressure _ ° C kg / cn? 329 39.7 1.17 1.15 1.18 1.42 274 39.7 0.54 0.62 0.51 34 246 39.7 (<1.03) 218 39.7 0.40 218 15, Example 0.23 32.3 177 15.1 177 1 41.35 Example 8

Nar en katalysator, der indeholder natriumcarbonat og en koboltmolybdæn på aluminiumoxid-hydrogenerings-dehydrogeneringska-talysator, anvendes i overensstemmelse med eksempel 1 ved 316°C, omdannes CO næsten fuldstændigt til den termodynamiske ligevægtskoncentration af CO£.When a catalyst containing sodium carbonate and a cobalt molybdenum on alumina hydrogenation dehydrogenation catalyst is used in accordance with Example 1 at 316 ° C, CO is almost completely converted to the thermodynamic equilibrium concentration of CO 2.

EKSEMPEL 9EXAMPLE 9

En gasblanding, der består af tilnærmelsesvis 46% hydrogen, 53% carbonmonoxid og omkring 1% HgS, anvendtes som udgangsmaterialegas. Dette gasudgangsmateriale førtes gennem en reaktor indeholden-de en katalysator ved et tryk på 39,7 kg/cm med en sådan hastighed, at der opretholdes en afgangstørgasprodukthastighed på 2700 rum- 141746 14 fang/rumfang/time ved stuetemperatur og 1 atmosfære tryk, og sammen med udgangsmaterialegassen tilførtes damp i molforholdet 1 mol pr. mol tør produktgas. Kobolt-molybdænet, der blev anvendt ved dette forsøg, fremstilledes på den samme måde og havde den samme procentvise sammensætning som det, der er anvendt i eksempel 1.A gas mixture consisting of approximately 46% hydrogen, 53% carbon monoxide and about 1% HgS was used as starting material gas. This gas starting material was passed through a reactor containing a catalyst at a pressure of 39.7 kg / cm at such a rate as to maintain an exhaust gas product rate of 2700 room / volume / hour at room temperature and 1 atmospheric pressure, and together with the starting material gas, vapor in the molar ratio was added 1 mol. moles of dry product gas. The cobalt molybdenum used in this experiment was prepared in the same manner and had the same percentage composition as that used in Example 1.

Denne kobolt-molybdænbestanddel imprægneredes med en vandig opløsning af kaliumcarbonat (K_CO-) i en mængde, der er ækvivalent -4 3 ^ 0 med 8,7 x 10 mol pr. cm katalysatorrumfang og tørredes ved ca.This cobalt-molybdenum component was impregnated with an aqueous solution of potassium carbonate (K_CO-) in an amount equivalent to -4 3 catalyst volume and dried at approx.

150°C. Baseret på den samlede katalysatorsammensætning var der 13,6 vægtprocent kaliumcarbonat. Katalysatoren sulfideredes derefter ved hjælp af en standardfremgangsmåde. Der opnåedes følgende resultater:150 ° C. Based on the total catalyst composition, there was 13.6% by weight potassium carbonate. The catalyst was then sulfidated by a standard procedure. The following results were obtained:

TABEL VIIITABLE VIII

% CO i produktet% CO in the product

Reaktions- Reaktions- Fundet Termodynamisk temperatur tryk ligevægt °C kg/cm^ 288 39,7 0,64 0,63 218 15,1 0,20 0,22Reaction Reaction Found Thermodynamic temperature pressure equilibrium ° C kg / cm 2 288 39.7 0.64 0.63 218 15.1 0.20 0.20

Ovenstående resultater viser klart fordelen af at anvende kaliumcarbonat på hydrogenerings-dehydrogeneringsbestanddelen.The above results clearly show the advantage of using potassium carbonate on the hydrogenation dehydrogenation component.

EKSEMPEL 10 Når eksempel 9 gentages, idet der i stedet for koboltmolybdænet anvendes en hydrogenerings-dehydrogeneringsbestanddel, der omfatter 2,30 vægtprocent CoO, 0,45 vægtprocent NiO og 15,0 vægtprocent MoOg på aluminiumoxid, opnåedes et stort set tilsvarende fordelagtigt resultat.EXAMPLE 10 When Example 9 is repeated, substituting a hydrogenation dehydrogenation component comprising 2.30 wt% CoO, 0.45 wt% NiO and 15.0 wt% MoOg on alumina instead of the cobalt molybdenum, a substantially similar result was obtained.

DK327969AA 1968-06-18 1969-06-18 Process for converting a gas mixture containing carbon monoxide and steam into hydrogen and carbon dioxide. DK141746B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US73785068A 1968-06-18 1968-06-18
US73785068 1968-06-18
US82145269A 1969-05-02 1969-05-02
US82145269 1969-05-02

Publications (2)

Publication Number Publication Date
DK141746B true DK141746B (en) 1980-06-09
DK141746C DK141746C (en) 1980-11-03

Family

ID=27113267

Family Applications (1)

Application Number Title Priority Date Filing Date
DK327969AA DK141746B (en) 1968-06-18 1969-06-18 Process for converting a gas mixture containing carbon monoxide and steam into hydrogen and carbon dioxide.

Country Status (13)

Country Link
JP (1) JPS5010279B1 (en)
AT (1) AT292626B (en)
BE (1) BE734760A (en)
CH (1) CH547228A (en)
DE (1) DE1928389C3 (en)
DK (1) DK141746B (en)
ES (1) ES368438A1 (en)
FI (1) FI54435C (en)
FR (1) FR2011150A1 (en)
GB (1) GB1281051A (en)
IE (1) IE33456B1 (en)
NL (1) NL144553B (en)
SE (1) SE349014B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758677A (en) * 1969-11-10 1971-05-10 Exxon Research Engineering Co NEW CATALYST FOR THE PRODUCTION OF HYDROGEN BY DISPLACING GAS TO WATER
DK148915C (en) * 1980-03-21 1986-06-02 Haldor Topsoe As METHOD FOR PREPARING HYDROGEN OR AMMONIA SYNTHESIC GAS
DE3520832A1 (en) * 1985-06-11 1986-12-11 Basf Ag, 6700 Ludwigshafen COPPER CONTAINERS FOR THE PRODUCTION OF HYDROGEN
GB201109376D0 (en) * 2011-06-06 2011-07-20 Johnson Matthey Plc Water-gas shift catalyst
JPWO2014103074A1 (en) * 2012-12-28 2017-01-12 三菱重工業株式会社 CO shift catalyst, CO shift reaction apparatus, and purification method of gasification gas
FR3048965B1 (en) 2016-03-17 2023-06-09 Arkema France PROCESS FOR THE PRODUCTION OF SYNTHESIS GAS ENRICHED WITH HYDROGEN
CN114425315B (en) * 2020-09-28 2023-10-31 中国石油化工股份有限公司 Normal temperature CS 2 Hydrolysis agent and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE292615C (en) *
GB352864A (en) * 1929-11-07 1931-07-16 Hugo Cohn Improvements in and relating to the production of non-poisonous town gas
DE868596C (en) * 1950-05-18 1953-02-26 Ruhrchemie Ag Process for the production of hydrogen by catalytic conversion of gases containing carbon dioxide
DE1250792B (en) * 1959-11-25 1967-09-28 Badische Anilin- &. Soda-Fabrik Aktiengesellschaft, Ludwigshafen/Rhein Process for the catalytic conversion of carbon dioxide with water vapor to hydrogen and carbon dioxide
DE1470716A1 (en) * 1963-07-19 1969-10-09 Metallgesellschaft Ag Process for carrying out exothermic catalytic gas reactions
GB961860A (en) * 1960-07-20 1964-06-24 Metallgesellschaft Ag Improvements in or relating to the catalytic conversion of carbon monoxide with steam
DK123586B (en) * 1963-01-15 1972-07-10 H Topsoe Process for the production of gas mixtures containing H2 and also CO and / or CO2 and possibly N2 by reforming in the gas phase hydrocarbons or hydrocarbon mixtures, as well as catalyst for use in carrying out the process.
GB1010574A (en) * 1963-04-23 1965-11-17 British Petroleum Co Production of hydrogen-containing gases
FR1386663A (en) * 1964-02-04 1965-01-22 Socony Mobil Oil Co Improved Catalytic Hydrogenation Cracking Process
NL131801C (en) * 1964-02-10
DE1235866B (en) * 1964-08-13 1967-03-09 Basf Ag Process for the production of catalysts containing iron-chromium oxide
DE1667386C3 (en) * 1967-04-15 1975-12-11 Basf Ag, 6700 Ludwigshafen Process for the production of hydrogen and carbon dioxide by the catalytic conversion of carbon monoxide with water vapor

Also Published As

Publication number Publication date
NL144553B (en) 1975-01-15
NL6909145A (en) 1969-12-22
DE1928389B2 (en) 1980-08-14
FI54435B (en) 1978-08-31
DE1928389C3 (en) 1983-12-01
AT292626B (en) 1971-09-10
ES368438A1 (en) 1971-05-01
FR2011150A1 (en) 1970-02-27
JPS5010279B1 (en) 1975-04-19
IE33456B1 (en) 1974-07-10
FI54435C (en) 1978-12-11
IE33456L (en) 1970-12-18
CH547228A (en) 1974-03-29
DE1928389A1 (en) 1970-05-06
GB1281051A (en) 1972-07-12
DK141746C (en) 1980-11-03
SE349014B (en) 1972-09-18
BE734760A (en) 1969-12-18

Similar Documents

Publication Publication Date Title
Rhodes et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
US3850840A (en) Water gas shift process
ZA200904643B (en) Chromium-free water gas shift catalyst
US3850841A (en) Shift process for new catalyst
US3068303A (en) Low surface area alpha alumina catalyst support for the selective hydrogenation of hydrocarbons
KR101572644B1 (en) Titania-Supported Hydrotreating Catalysts
US4937221A (en) Mixed-solid solution tri-metallic oxide/sulfide catalyst and process for its preparation
WO2015054755A1 (en) Catalyst for producing synthesis gas and method for producing same
US3755556A (en) Low temperature shift reaction involving an alkali metal compound anda hydrogenation dehydrogenation component
DK141746B (en) Process for converting a gas mixture containing carbon monoxide and steam into hydrogen and carbon dioxide.
US7169376B2 (en) Method for making hydrogen using a gold containing water-gas shift catalyst
AU2014353383B2 (en) Catalyst materials useful for sour gas shift reactions and methods for using them
Yamamuro et al. Hydrogen production by water gas shift reaction over Pd–K impregnated Co oxide catalyst
US9545619B2 (en) Catalyst materials for hydrogenating olefins and shifting carbon monoxide
JPS6012905B2 (en) Methanation method
US4079072A (en) Methanation process
US4489048A (en) Process for producing hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide using a heteropolyanionic metal complex catalyst
US4168276A (en) Methanation
KR20190135799A (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JPS62186946A (en) Catalyst and usage thereof
US11000843B2 (en) Catalyst composition for conversion of alkanes to alkenes and method of preparation thereof
Sepehrian et al. SO2 dry-based catalytic removal from flue gas leading to elemental sulfur production: A comprehensive review
US4929585A (en) Mixed-solid solution tri-metallic oxide/sulfide catalyst and process for its preparation
US4238371A (en) Methanation catalyst

Legal Events

Date Code Title Description
PBP Patent lapsed