DE2319854A1 - PROCESS FOR DIRECTLY JOINING METALS WITH NON-METALLIC SUBSTRATES - Google Patents

PROCESS FOR DIRECTLY JOINING METALS WITH NON-METALLIC SUBSTRATES

Info

Publication number
DE2319854A1
DE2319854A1 DE2319854A DE2319854A DE2319854A1 DE 2319854 A1 DE2319854 A1 DE 2319854A1 DE 2319854 A DE2319854 A DE 2319854A DE 2319854 A DE2319854 A DE 2319854A DE 2319854 A1 DE2319854 A1 DE 2319854A1
Authority
DE
Germany
Prior art keywords
copper
metallic
metal part
eutectic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2319854A
Other languages
German (de)
Other versions
DE2319854C2 (en
Inventor
Guy Leo Babcock
Walter Merle Bryant
James Francis Burgess
Constantine Alois Neugebauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of DE2319854A1 publication Critical patent/DE2319854A1/en
Application granted granted Critical
Publication of DE2319854C2 publication Critical patent/DE2319854C2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/74Forming laminates or joined articles comprising at least two different interlayers separated by a substrate

Description

1 River Road
SCHENECTADY, N.Y./U.S.A.
1 River Road
SCHENECTADY, NY / USA

Verfahren zum direkten Verbinden von Metallen mit nichtmetallischen SubstratenProcess for joining metals directly to non-metallic ones Substrates

Die vorliegende Erfindung betrifft verbesserte Verfahren zum ,Verbinden von nichtmetallischen Teilen mit Metallteilen und nichtmetallischen Teilen mit anderen nichtmetallischen Teilen durch Erhitzen der Teile in einer·reaktiven Atmosphäre zur Herstellung eines Eutektikums mit dem metallischen Teil, wobei die Teile benetzt werden und anschliessendes Abkühlen der Teile, um das Verbinden zu erreichen, sowie die mit diesen Verfahren er,-hältlichen verbesserten Bindungen.The present invention relates to improved methods of joining non-metallic parts to metal parts and non-metallic parts with other non-metallic parts by heating the parts in a reactive atmosphere for manufacture a eutectic with the metallic part, the parts being wetted and subsequent cooling of the parts to to achieve the joining, as well as those available with these methods improved bindings.

Es sind verschiedene Verfahren zum- Verbinden nichtmetallischer Teile miteinander oder mit metallischen Teilen verwendet worden, um zu versuchenj beide Teile in zufriedenstellender Weise zuThere are several methods of joining non-metallic ones Parts with each other or with metallic parts have been used in order to try to achieve both parts in a satisfactory manner

309843/0975309843/0975

23188542318854

benetzen. Ein solches Verfahren verwendet eine Mischung aus Titanhydrid und einem Lötmetall, wie Kupfer, Silber oder Gold, das auf das Teil aufgebracht wird, das metallisiert oder verbunden werden soll und danach wird das Hydrid durch Anwendung von Wärme in
Gegenwart des Lötmetalles zersetzt. Bei diesem Verfahren wird
das Erwärmen vorzugsweise in einer nicht-öxydierenden Atmosphäre, wie reinem trockenem Wasserstoff .ausgeführt. Ein solches Verfahren ist z.B. in der US-Patentschrift 2 570 248 beschrieben.
wet. One such method uses a mixture of titanium hydride and a solder, such as copper, silver or gold, that is applied to the part that is to be metallized or bonded and then the hydride is turned into by the application of heat
The presence of the solder decomposes. In this procedure
the heating is preferably carried out in a non-oxidizing atmosphere such as pure dry hydrogen. Such a process is described, for example, in US Pat. No. 2,570,248.

Bei einem anderen Verfahren zum Verbinden von Metallen mit Keramiken werden Metalle mit geringer Affinität zu Sauerstoff unterAnother method of joining metals to ceramics are among metals with low affinity for oxygen

hohen Drucken, z.B. 1 kg/cm , auf eine Keramik" aufgebracht. Ver- ι wendet man Metalle mit Affinität zu Sauerstoff, dann sind aus- ;high pressure, e.g. 1 kg / cm, applied to a ceramic ". Ver ι If you turn metals with an affinity for oxygen, then you are off;

I reichend hohe Drucke erforderlich, um den Oxydfilm zu zerstören, j so dass der Metall-Keramik-Kontakt hergestellt werden kann. Ein ; solches Verfahren erfordert daher extrem hohe Drucke, um das Ver-! binden zu bewirken. Obwohl die bekannten Verfahren für viele An- \ Wendungen brauchbare Bindungen hervorbringen können, ist es doch j sehr erwünscht, eine direkte Bindung zwischen dem Kupfer und dem j keramischen Substrat ohne Anwendung hoher Drucke herstellen zu ] können. 'Sufficiently high pressures are required to destroy the oxide film so that the metal-ceramic contact can be established. A ; such a process therefore requires extremely high pressures in order to achieve the ! bind to effect. Although the known methods can produce useful compounds for many arrival \ turns, it is highly desirable but j may be produced without application of high pressures to] a direct bond between the copper and the ceramic substrate j. '

Ein anderes Verfahren zur Herstellung metallischer Bindungen ist · in der US-Patentschrift 2 857 663 beschrieben. Bei diesem Ver- j fahren werden ein legierendes Metall, wie ein Metall aus der Ti- ! tangruppe IVb des Periodischen Systems der Elemente und ein le- j gierendes Metallg wie Kupfer,-Nickel, Molybdän, Platin, Kobalt, j Chrom oder Eisen verwendet. Werden das legierende Metall und ein ', Metall aus der Titangruppe zwischen nichtmetallischen hitzebe- ; ständigen Materialien oder einem nicht-hitzebeständigen metalli-. j sehen Material und einem metallischen Material angeordnet und auf; eine Temperatur erhitzt, bei der eine eutektische Flüssigkeit ge-j bildet wird, dann bildet sich eine feste Bindung zwischen den be-j nachbarten Teilen. Obwohl dieses Verfahren für viele Anwendungen
zufriedenstellend arbeitet, hat jedoch der Wunsch;, die Integrität j der Bindung zu verbessern, die thermische Leitfähigkeit zwischen |
Another method of making metallic bonds is described in US Pat. No. 2,857,663. In this process, an alloying metal, such as a metal from the Ti! t group IVb of the Periodic Table of the Elements and an alloying metal such as copper, nickel, molybdenum, platinum, cobalt, chromium or iron are used. If the alloying metal and a 'metal from the titanium group between non-metallic heat-resisting; permanent materials or a non-heat-resistant metallic. j view material and a metallic material arranged and on ; heated to a temperature at which a eutectic liquid is formed, then a firm bond is formed between the neighboring parts. Although this procedure works for many uses
works satisfactorily but has a desire to improve the integrity of the bond, the thermal conductivity between

30 9843/097S30 9843 / 097S

: I: I.

; einem metallischen Teil und einem hitzebeständigen nichtmetall!- j; a metallic part and a heat-resistant non-metallic part! - j

j sehen Teil zu erhöhen, ebenso wie einen Leiter auf einem hitze- |j see part increase, as well as a ladder on a heat- |

j beständigen nichtmetallischen Teil zu schaffen, der einen hohen jj to create a durable non-metallic part that has a high j

j Strom führen kann, Veranlassung gegeben, nach weiteren Verfahren !j can conduct electricity, if there is an occasion, after further proceedings!

ι "1ι "1

ι zum Verbinden solcher Teile zu suchen.ι to look for connecting such parts.

• Ein Aspekt der vorliegenden Erfindung betrifft ein Verfahren zum ; Verbinden nichtmetallischer Materialien miteinander und von me-ί tallischen mit nichtmetallischen Teilen ohne Verwendung dazwi-] schenliegender Bindemittelschichten sowie die damit erhältlichen Bindungen.• One aspect of the present invention relates to a method for ; Joining non-metallic materials to each other and from me-ί metallic with non-metallic parts without the use of intermediate layers of binder and those obtainable therewith Ties.

Ein anderer Aspekt der vorliegenden Erfindung betrifft ein Verfahren zum Verbinden nichtmetallischer hitzebeständiger Materialien miteinander oder mit metallischen Teilen unter Anwendung einer einfachen Er war mungs stufe ohne die Notwendigkeit dazwischenjliegender benetzender Mittel sowie die damit herstellbaren Bindungen. Another aspect of the present invention relates to a method for joining non-metallic heat-resistant materials with one another or with metallic parts using a simple warming level without the need for intermediate ones wetting agents and the bonds that can be produced therewith.

Ein weiterer Aspekt der vorliegenden Erfindung ist eine feste Bindung sowie ein Verfahren zum Herstellen einer solchen Bindung zwischen einem hitzebeständigen nichtmetallischen Material und einem Metall, das für die Bildung integrierter Schaltungen brauch bar ist, sowie zur Herstellung elektrischer Leiter auf isolierenden Teilen, die einen hohen Strom führen können und eine große Wärmeleitfähigkeit aufweisende Pfade haben," um die Wärme abzuleiten und um hermetische Dichtungen zwischen zwei nichtmetallischen hitzebeständigen Materialien herzustellen.Another aspect of the present invention is a tight bond and a method for producing such a bond between a refractory non-metallic material and a metal that is used for the formation of integrated circuits bar, as well as for the production of electrical conductors on insulating parts, which can carry a high current and a large Have thermal conductivity paths "to dissipate the heat and to make hermetic seals between two non-metallic refractory materials.

Kurz gesagt betrifft die vorliegende Erfindung Bindungen und Verfahren zum Verbinden nichtmetallischer Teile mit metallischen Teilen. Beispielsweise wird eine Bindung zwischen metallischen und nichtmetallischen Teilen gebildet, indem man ein metallisches Teil in Kontakt mit einem nichtmetallischen Teil, das vorzugsweise hitzebeständige Eigenschaften aufweist, bringt und die Temperaturen der Teile in einer reaktiven Atmosphäre ausgewählterBriefly, the present invention relates to bonds and methods for connecting non-metallic parts with metallic parts. For example, a bond between metallic and non-metallic parts formed by placing a metallic part in contact with a non-metallic part, which is preferably Having heat-resistant properties, brings and selects the temperatures of the parts in a reactive atmosphere

309843/0975309843/0975

231985A231985A

Gase bei eingestellten Partia!drucken für eine ausreichende Zeit erhöht, um eine eutektische Zusammensetzung zu schaffen, die eine eutektische Schmelze aufweist. Diese eutektische Schmelze bildet sich bei einer Temperatur unterhalb des Schmelzpunktes des metallischen Teiles und benetzt sowohl das metallische Teil als auch das hitzebeständige nichtmetallische Teil, so dass beim Abkühlen eine bruchfeste Bindung zwischen dem metallischen und dem nichtmetallischen Teil gebildet wird. Brauchbare metallische Ma-' terialien umfassen z.B. Kupfer, Nickel, Kobalt und-Eisen. Brauchbare reaktive Gase schließen z.B. Sauerstoff, phosphorhaltige Verbindungen und schwefelhaltige Verbindungen ein. Im allgemeinen ist die Menge des reaktiven Gases, die zur Herstellung der bruchfesten Bindungen erforderlich ist, teilweise von den Dicken des metallischen und nichtmetallischen Teiles abhängig sowie von den Zeiten und Temperaturen, die für die Bildung der eutektischen Schmelze erforderlich sind.Print gases at set Partia! For a sufficient time increased to create a eutectic composition having a eutectic melt. This eutectic melt forms is at a temperature below the melting point of the metallic part and wets both the metallic part as also the heat-resistant non-metallic part, so that a break-proof bond between the metallic and the non-metallic part is formed. Useful metallic materials include, for example, copper, nickel, cobalt and iron. Useful reactive gases include, for example, oxygen, phosphorus-containing compounds, and sulfur-containing compounds. In general is the amount of reactive gas required to create the break-resistant bonds, in part depending on the thickness of the metallic and non-metallic part as well as the times and temperatures required for the formation of the eutectic Melt are required.

Nachfolgend wird die Erfindung unter Bezugnahme auf die Zeichnung näher erläutert. Im einzelnen zeigen:The invention is explained in more detail below with reference to the drawing. Show in detail:

Pig. 1 eine typische Bindung zwischen nichtmetallischen und me- jPig. 1 a typical bond between non-metallic and me- j

tallischen Materialien gemäss der vorliegenden Erfindung,metallic materials according to the present invention,

Fig. 2 eine Reihe schematischer Darstellungen des Verfahrens zur j Herstellung einer Bindung zwischen einem Metall und einem Nichtmetall gemäss einer Ausfuhrungsform der vorliegenden Erfindung,2 shows a series of schematic representations of the method for j Production of a bond between a metal and a non-metal according to an embodiment of the present invention Invention,

Fig. 3 ein Fliessbild, welches die Verfahrensschritte nach der Ausführungsform des Verfahrens der Fig. 2 wiedergibt, "Fig. 3 is a flow chart showing the process steps according to Embodiment of the method of Fig. 2 reproduces, "

Figuren 4 und 5 zeigen andere erfindungsgemäss hergestellte Bindungen, Figures 4 and 5 show other bindings produced according to the invention,

Fig. 6 illustriert schematisch einen horizontalen Ofen, wie er für die Durchführung der vorliegenden Erfindung brauchbar ist undFigure 6 schematically illustrates a horizontal oven useful in practicing the present invention is and

309843/0975309843/0975

. Pig. 7 zeigt schematisch einen. Vertikalofen» wie er für die Durchführung der vorliegenden Erfindung brauchbar ist.. Pig. 7 schematically shows a. Vertical furnace »as he did for the implementation of the present invention is useful.

! Fig. 1 zeigt beispielsweise eine typische Bindung 11 zwischen ! ! For example, Fig. 1 shows a typical bond 11 between!

j einem nichtmetallischen hitzebeständigen Teil 12 und einem Metall-j a non-metallic heat-resistant part 12 and a metal

; teil 13. Die Bindung 11 umfasst eine eutektische Zusammensetzung,; part 13. Bond 11 comprises a eutectic composition,

] die mit dem metallischen Teil und einem reaktiven Gas gemäss den i ] with the metallic part and a reactive gas according to i

; neuen Aspekten der vorliegenden Erfindung gebildet wurde.; novel aspects of the present invention.

j Ij I

; Der Begriff "nichtmetallisches Material", wie er in der vorlie- \ . genden Beschreibung verwendet wird, soll hitzebeständige Materia-1 ; The term "non-metallic material" as used in the present \ . The following description is used, heat-resistant materials 1

■ i■ i

I lien, wie Aluminiumoxyd AIpO,, Berylliumoxyd BeO, gesintertesI lien, such as aluminum oxide AIpO ,, beryllium oxide BeO, sintered

: Siliciumdioxyd und andere brauchbare Materialien, wie Titanate j: Silica and other useful materials such as titanates j

'. und Spinelle umfassen. Aluminiumoxyd und Berylliumoxyd sind bei ! '. and spinels. Aluminum oxide and beryllium oxide are included!

: der Durchführung der vorliegenden Erfindung besonders geeignet, da:.: Particularly suitable for carrying out the present invention because :.

i sie eine grosse thermische Leitfähigkeit aufweisen, die sie für ji they have a high thermal conductivity, which is important for j

Anwendungen in integrierten Schaltungen auf Halbleiterbasis oderApplications in integrated circuits based on semiconductors or

, in elektrischen Schaltungen für hohe Energie besonders brauchbar, particularly useful in high energy electrical circuits

- machen. Es können, wenn es· gewünscht ist, jedoch auch andere- do. However, others can, if desired

i nichtmetallische hitzebeständige Materialien verwendet werden,i non-metallic heat-resistant materials are used,

I und die vorliegende Erfindung ist nicht auf die vorgenannten Ma-I terialien beschränkt.I and the present invention is not limited to the aforementioned Ma-I materials limited.

! Das Metallteil 13 kann z.B. solche Materialien, wie Kupfer, Eisen;, Nickel, Kobalt, Chrom und Silber umfassen. Auch Legierungen dieser Materialien, wie Kupfer-Nickel, Nickel-Kobalt, Kupfer-Chrom, Kupfer-Kobalt, Eisen-Nickel, Silber-Gold und ternäre Legierungen aus Eisen, Nickel und Kobalt sind im Rahmen der vorliegenden Erfindung brauchbar. Doch können, wie der nachfolgenden Beschrei- j bung noch entnommen werden kann, weitere metallische Materialien,! wie z.B. die Legierung Beryllium-Kupfer, vorteilhaft verwendet j werden, wenn dies erwünscht ist.! The metal part 13 can, for example, be such materials as copper, iron; Include nickel, cobalt, chromium, and silver. Alloys of these materials, such as copper-nickel, nickel-cobalt, copper-chromium, Copper-cobalt, iron-nickel, silver-gold and ternary alloys of iron, nickel and cobalt are within the scope of the present invention useful. However, as can be seen from the following description, other metallic materials! such as the beryllium-copper alloy, can be used to advantage if so desired.

Das neue Verfahren zur Herstellung einer bruchfesten Bindung zwischen dem Metallteil 13 und einem Substrat 12, wie einem nichtmetallischen hitzebeständigen Material, ist schematisch in Fig. 2 und als Fliessbild in Fig. 3 dargeste1It1-Die Pig._2 zeigt ein The new process for the preparation of an unbreakable bond between the metal part 13 and a substrate 12 as a non-metallic refractory material is illustrated schematically in Fig. 2 and as a flow diagram in Fig. 3 dargeste1It 1- Pig._2 shows a

30984*/097630984 * / 0976

I - 6 -I - 6 -

nichtmetallischea hitzebeständlges Material 12, wie Aluminiumoxyd oder Berylllumoxyd, mit einem auf dem nichtmetallischen
hitzebeständigen Substrat 12 liegenden Metallteil 13. Das Substrat 12 und das Metallteil 13 werden in einem geeigneten Ofen
angeordnet, welcher eine reaktive Atmosphäre enthält, die bei
erhöhten Temperaturen auf den Oberflächen des Metallteiles 13 ! eine eutektische Zusammensetzung 11 bildet. Die Bezeichnung i "eutektisch·!' oder "eutektische Zusammensetzung" umfasst eine Mi- i schung von Atomen des Metallteiles und des reaktiven Gases oder '! der Verbindung, die sich zwischen dem Metall und dem reaktiven j Gas gebildet hat. Wenn z.B. das Metallteil aus Kupfer besteht undj das reaktive Gas Sauerstoff ist, dann ist das Eutektikum eine Mi-j schung aus Kupfer und Kupferoxyd. Ist das Metall Nickel und das ; reaktive Gas Phosphor, dann ist das Eutektikum eine Mischung aus ; Nickel und Nickelphosphid. Wenn weiter das Metallteil Kobalt ist '. und das reaktive Gas ein schwefelhaltiges Gas, dann wird das \ Eutektikum aus Kobalt und Kobaltsulfid gebildet. j
non-metallic heat-resistant material 12, such as aluminum oxide or beryllium oxide, with one on top of the non-metallic
Heat-resistant substrate 12 lying metal part 13. The substrate 12 and the metal part 13 are in a suitable furnace
arranged, which contains a reactive atmosphere, which at
increased temperatures on the surfaces of the metal part 13! forms a eutectic composition 11. The designation i "eutectic ·! ' or "eutectic composition" comprises a mixture of atoms of the metal part and the reactive gas or the compound that has formed between the metal and the reactive gas, for example when the metal part is made of copper and the reactive gas is oxygen , then the eutectic is an Mi-j research of copper and copper oxide is the metal is nickel and the;. reactive gas phosphorus, then the eutectic is a mixture of, nickel and nickel phosphide further, when the metal part is cobalt 'and the reactive.. gas, a sulfur-containing gas, then the \ eutectic of cobalt and cobalt sulfide is formed. j

Die folgende Tabelle I ist eine repräsentative. Zusammenfassung
weiterer Eutektika, die im Rahmen der vorliegenden Erfindung ver-! wendet werden können. Diese Eutektika werden gebildet durch Um- I Setzung des zu vorbildenden Metallteiles mit einem reaktiven Gas, ! das gesteuert in den Ofen eingeführt wird. ;
The following Table I is a representative one. summary
further eutectics that are used in the context of the present invention! can be turned. These eutectics are formed by reacting the metal part to be modeled with a reactive gas! which is fed into the furnace in a controlled manner. ;

Tabelle ITable I.

Metall-GasMetal gas eutektischeeutectic EutektikumEutectic Temperatur, CTemperature, C Eisen-SauerstoffIron oxygen 1523°1523 ° Kupfer-SauerstoffCopper oxygen 1065°1065 ° Chrom-SauerstoffChromium-oxygen 1800°1800 ° Chrom-SchwefelChromium-sulfur 1550°1550 ° Kupfer-PhosphorCopper-phosphorus 711°711 ° Nickel-SauerstoffNickel-oxygen 1438°1438 ° Nickel-PhosphorNickel-phosphorus 880°880 ° Molybdän^SiliciumMolybdenum ^ silicon 2070°2070 °

Gew.-% des reaktiven Gases bei der eutektischen Temp. Wt -.% Of the reactive gas at the eutectic Temp.

0,160.16 °2° 2 0,390.39 °2° 2 0,60.6 °2° 2 2,22.2 SS. 8,48.4 PP. 0,240.24 °2° 2 11,011.0 PP. 5,55.5 SiSi

309843/0975309843/0975

906906 οο 878878 οο 10671067 οο 14511451 OO 577577 OO

1,81.8 SS. 1,01.0 PP. 0,770.77 SS. 0,230.23 °2° 2 11,711.7 SiSi

(Forts. Tabelle I) ' ΐ(Cont. Table I) 'ΐ

Metall-Gas eutektische Gew.-% des reaktiven Gases bei; Eutektikum Temperaturf C der eutektischen Temperatur Metal gas eutectic wt. % Of the reactive gas; Eutectic temperature f C the eutectic temperature

Silber-Schwefel Silber-Phosphor Kup fer-S chwe fe1 Kobalt-Sauerstoff Aluminium-SiliciumSilver-sulfur silver-phosphorus copper-sulfur1 Cobalt-Oxygen Aluminum-Silicon

Nach der vorliegenden Erfindung werden feste Bindungen durch Erhöhen der Temperatur des metallischen und nichtmetallischen. Teiles hergestellt, bis sieh die eutektische Zusammensetzung bildet. Diese eutektische Zusammensetzung benetzt die benachbarten metallischen und nichtmetallischen Teile, so dass nach dem Abkühlen das metallische und nichtmetallische Teil fest miteinander verbunden werden. Werden als Metallteile Legierungen verwendet, dann, so wird angenommen, bildet sich die eutektische Zusammensetzung mit einem der Metallelemente, im allgemeinen mit dem des geringeren Schmelzpunktes.According to the present invention, firm bonds are created by increasing the temperature of the metallic and non-metallic. Part produced until it forms the eutectic composition. This eutectic composition wets the neighboring metallic ones and non-metallic parts, so that after cooling, the metallic and non-metallic parts are firmly bonded together will. If alloys are used as metal parts, it is assumed that the eutectic composition is formed with one of the metal elements, generally with that of the lower melting point.

Ein Paktor, der die Festigkeit und Gleichmässigkeit der Bindung zu beeinflussen scheint, ist die Beziehung zwischen dem Schmelzpunkt des Metallteiles und der eutektischen Temperatur. Liegt die eutektische Temperatur z.B. innerhalb von· ungefähr 30 bis 50 C vom Schmelzpunkt des Metallteiles, dann neigt das Metallteil dazu sich plastisch an die Gestalt des Substratteiles anzupassen und auf diese Weise bessere Bindungen zu bilden als jene Eutektika, die bei Temperaturen Flüssigkeiten werden, die mehr als ungefähr 50 0C unterhalb des Schmelzpunktes des Metallteiles liegen. Die Gleichmässigkeit der Bindung scheint daher mit dem sogenannten "Kriechen" des Metalles in Beziehung zu stehen, das nur in der Nähe des Schmelzpunktes beachtliche Ausmasse annimmt. Der Tabelle I kann z.B. entnommen werden, dass die folgenden eutektischen Verbindungen dieses Erfordernis erfüllen: Kupfer-Kupferoxyd, Nickel-Nickeloxyd, Kobalt-Kobaltoxyd, Eisen-Eisenoxyd und Kupfer-Kupfersulfid.One factor that appears to affect the strength and evenness of the bond is the relationship between the melting point of the metal part and the eutectic temperature. If the eutectic temperature is, for example, within about 30 to 50 C from the melting point of the metal part, then the metal part tends to adapt itself plastically to the shape of the substrate part and in this way to form better bonds than those eutectics that become liquids at temperatures more than approximately 50 ° C. below the melting point of the metal part. The evenness of the bond therefore seems to be related to the so-called "creep" of the metal, which only takes on considerable proportions in the vicinity of the melting point. Table I shows, for example, that the following eutectic compounds meet this requirement: copper-copper oxide, nickel-nickel oxide, cobalt-cobalt oxide, iron-iron oxide and copper-copper sulfide.

309843/0975309843/0975

Pig. 4 zeigt eine andere Ausfuhrungsform der vorliegenden Erfindung, bei der mit einem nichtmetallischen hitzebeständigen Material 12 zwei Metallteile 13 auf den gegenüberliegenden Oberflächen durch Bindungen 11 verbunden sind.Pig. 4 shows another embodiment of the present invention, in the case of a non-metallic heat-resistant material 12, two metal parts 13 on the opposite surfaces are connected by ties 11.

Fig. 5 zeigt noch eine andere Ausführungsform der vorliegenden Erfindung, bei der zwei nichtmetallische Teile 12, wie aus Aluminiumoxyd oder Berylliumoxyd z.B., durch ein Metallteil 15 miteinander verbunden sind. In dieser Ausführungsform der Erfindung bildet sieh das Eutektikum in im wesentlichen der gleichen Weise wie oben beschrieben, wobei jedoch das Verbinden auf den beiden gegenüberliegenden Oberflächen des Metallteiles 15 stattfindet. Diese Ausführungsform der vorliegenden Erfindung ist besonders brauchbar für die Herstellung hermetischer Abdichtungen zwischen nichtmetallischen hitzebeständigen Materialien, z.B. für solche, wie sie bei der Herstellung von Vakuumröhren, wie Hochfrequenzröhren, verwendet werden.Fig. 5 shows yet another embodiment of the present Invention in which two non-metallic parts 12, such as aluminum oxide or beryllium oxide, for example, are joined by a metal part 15 are connected. In this embodiment of the invention forms the eutectic in essentially the same way as described above, but the joining takes place on the two opposite surfaces of the metal part 15. This embodiment of the present invention is particular useful for making hermetic seals between non-metallic heat-resistant materials, e.g. for those used in the manufacture of vacuum tubes, such as high-frequency tubes, be used.

Nach der Beschreibung einiger brauchbarer Ausführungsformen der vorliegenden Erfindung und des grundlegenden Verfahrens zur Herstellung von Met all-zu-Ni chtmet all- und Nichtmet all- zu-Nichtmetall-.j Bindungen, sollen im folgenden die Apparatur zur Durchführung ! der vorliegenden Erfindung sowie einige spezifische Details des J erfindungsgemässen Verfahrens unter Bezugnahme auf Fig. 6 näher erläutert werden. In Fig. 6 ist ein Horizontalofen dargestellt, der ein langgestrecktes Quarzrphr 22 mit einem Gaseinlass 23 an dem einen Endstück und einem Gasauslass 24 an dem anderen Endstück umfasst. Das Quarzrohr 22 weist auch eine öffnung oder Pforte 25 auf, durch welche die Materialien in den Ofen eingeführt und aus ihm herausgenommen werden. Die Materialien werden auf einem Halter 26 angeordnet, der einen Stab 27 aufweist, welcher sich durch das eine Endstück des Ofens nach aussen erstreckt so dass der Halter und die darauf angeordneten Materialien in den Ofen hineingeschoben und aus ihm herausgezogen werden können.After describing some useful embodiments of the present invention and the basic method for making metal-to-nonmetal and nonmetal-to-nonmetal .j Bindings, in the following the apparatus for carrying out! of the present invention as well as some specific details of the J. according to the invention with reference to FIG. 6 explained. 6 shows a horizontal furnace which has an elongated quartz tube 22 with a gas inlet 23 comprises one end piece and a gas outlet 24 on the other end piece. The quartz tube 22 also has an opening or Gate 25 through which the materials are introduced into the furnace and be taken out of it. The materials are placed on a holder 26 which has a rod 27 which extends outward through one end piece of the furnace so that the holder and the materials arranged on it in the oven can be pushed in and pulled out of it.

Der Ofen 21 ist auch mit geeigneten Heizelementen versehen, die in Fig. 6 als elektrisch leitende Heizdrähte 28 dargesteilt sind,The furnace 21 is also provided with suitable heating elements, which are shown in FIG. 6 as an electrically de Leite n H eizdrähte are dargesteilt 28

3 09 8A3/097S3 09 8A3 / 097S

welche das Quarzrohr in dem zu erhitzenden Bereich umgeben. Die ' Heizdrähte 28 können z.B. mit einer geeigneten Stromquelle verbunden sein, wie einer 220 V-Wechse1stromquelle. Die Drähte 28 ! können dann von einem geeigneten Isolationsmaterial 29 umgeben ; werden, um die von den Drähten erzeugte Wärme in dem Bereich ! innerhalb des Quarzrohres zu halten. Der Fachmann kann selbst- j verständlich ohne weiteres auch andere Heizvorrichtungen verwen- ; den, wenn dies gewünscht ist, und die Fig. 6 stellt lediglich i eine Ausfuhrungsform einer solchen Heizvorrichtung dar. Die Tem- j peratur des Ofens wird durch ein geeignetes Thermoelement 29a ί gemessen, welches sich durch eine öffnung im Quarzrohr erstreckt,! so dass die erforderlichen elektrischen Zuleitungen angebracht \ werden können. ' jwhich surround the quartz tube in the area to be heated. The heating wires 28 can, for example, be connected to a suitable power source, such as a 220 V alternating current source. The wires 28! can then be surrounded by a suitable insulating material 29; be to the heat generated by the wires in the area! to keep within the quartz tube. The person skilled in the art can of course also use other heating devices without further ado; if this is desired, and FIG. 6 merely represents an embodiment of such a heating device. The temperature of the furnace is measured by a suitable thermocouple 29a, which extends through an opening in the quartz tube! can \ be mounted so that the necessary electrical leads. 'j

In Fig. 6 ist auch ein Substrat 12, wie ein nichtmetallisches hitzebeständiges Material, dargestellt, das auf dem Halter 26 liegt und auf dem Substrat 12 befindet sich ein metallisches Material 13. Diese Materialien werden durch die öffnung 25 in das Quarzrohr eingeführt und die öffnung wird dann durch einen geeigneten Verschluss abgedichtet.Also shown in FIG. 6 is a substrate 12, such as a non-metallic refractory material, which is supported on the holder 26 lies and on the substrate 12 is a metallic material 13. These materials are through the opening 25 in the Quartz tube is inserted and the opening is then made through a suitable Closure sealed.

Das Quarzrohr 22 wird dann mit einem.Strom eines reaktiven Gases gespült, der eine Geschwindigkeit von z.B. etwa 0,11 m /Std. j (entsprechend *J US-Kubikfuss/Stunde) aufweist. Die in der vorliegenden Erfindung verwendete Strömung oder Atmosphäre eines reaktiven Gases besteht aus einer Mischung eines inerten Gases, wie Argon, Helium oder Stickstoff, mit einer bestimmten geringeren Menge eines reaktiven Gases, wie Sauerstoff, eines phosphorhaltigen Gases, wie Phosphin oder eines schwefelhaltigen Gases, wie Schwefelwasserstoff. Die Menge des reaktiven Gases in der Gesamtgasströmung hängt in einer noch näher zu beschreibenden Weise u.a. von den zu verbindenden Materialien und deren Dicke ab. Im allgemeinen muss der Partialdruck des reaktien Gases jedoch den Gleichgewichtspartialdruck de3 reaktiven Gases in dem Metall bei oder oberhalb der eutektischen Temperatur übersteigen Werden z.B. Kupferteile mit hitzebeständigen Teilen in einer The quartz tube 22 is then flushed with a stream of reactive gas which has a speed of, for example, about 0.11 m / hour. j (equivalent to * J US cubic feet / hour). The flow or atmosphere of a reactive gas used in the present invention consists of a mixture of an inert gas such as argon, helium or nitrogen with a certain minor amount of a reactive gas such as oxygen, a phosphorus-containing gas such as phosphine or a sulfur-containing gas, like hydrogen sulfide. The amount of reactive gas in the total gas flow depends in a manner to be described in more detail, inter alia, on the materials to be connected and their thickness. In general, however, the partial pressure of the reactive gas must exceed the equilibrium partial pressure of the reactive gas in the metal at or above the eutectic temperature

309843/0975'309843/0975 '

-. 10 --. 10 -

reaktiven Atmosphäre verbunden, die Sauerstoff enthält, dann muss der Partialdruck des Sauerstoffes oberhalb von 1,5 χ 10 atm bei der eutektischen Temperatur von 1065 0C liegen.connected reactive atmosphere containing oxygen, then the partial pressure of the oxygen must be above 1.5 χ 10 atm at the eutectic temperature of 1065 0 C.

Nach dem Spülen des Quarzrohres Wird der Ofen auf eine Temperatür gebracht, die ausreicht, eine eutektische Flüssigkeit oder Schmelze an der Berührungsfläche von Metall und Substrat zu bil den. Für eine Verbindung von Kupfer mit Aluminium/unter Verwendung von Sauerstoff als reaktivem Gas wird die Temperatur z.B. auf eine solche im Bereich von ungefähr 1065 bis 1075 °C eingestellt. Innerhalb dieses Temperaturbereiches bildet sich das Kupfer-Kupferoxyd-Eutektikum auf dem Kupferteil 13. Diese eutek tische Schmelze benetzt dann das Kupfer und das Aluminiumoxyd und bildet eine feste Bindung zwischen beiden.After rinsing the quartz tube, the furnace is placed on a temperature door brought, which is sufficient to bil a eutectic liquid or melt at the contact surface of metal and substrate the. For a connection of copper with aluminum / using of oxygen as the reactive gas, for example, the temperature is set to be in the range of about 1065 to 1075 ° C. Within this temperature range, the copper-copper oxide eutectic forms on the copper part 13. This eutek table melt then wets the copper and the aluminum oxide and forms a firm bond between the two.

Im allgemeinen liegen die für die Bildung dieser eutektischen 'In general, the for the formation of these eutectic '

Schmelze erforderlichen Zeiten im Bereich von ungefähr 10 Minu- jMelt required times in the range of approximately 10 minutes

ten für etwa 0,025 mm (entsprechend 1/1000 Zoll) dicke Kupfer- j teile und etwa 60 Minuten für etwa 6,4 mm (entsprechend 1/4 Zoll);ten for about 0.025 mm (equivalent to 1/1000 of an inch) thick copper parts and about 60 minutes for about 6.4 mm (equivalent to 1/4 inch);

dicke Kupferteile. Eine detailliertere Beziehung zwischen der jthick copper pieces. A more detailed relationship between the j

Kupferdicke und der Zeit bei der erhöhten Temperatur im Bereich ■■ Copper thickness and the time at the elevated temperature in the range ■■

von 1065 bis 1075 0C kann der folgenden Tabelle II für eine ifrom 1065 to 1075 0 C the following table II for an i

säuerstoffhaltige reaktive Atmosphäre entnommen werden. 'oxygen-containing reactive atmosphere can be removed. '

309843/0976309843/0976

TABELLE IITABLE II

Kupferdicke in mm
(Tausendstel Zoll)
Copper thickness in mm
(Thousandths of an inch)

0,025 (1)0.025 (1)

0,05 (2)0.05 (2)

0,125 (5)0.125 (5)

0,125 (5)0.125 (5)

0,25 (10)0.25 (10)

0,5 (20)0.5 (20)

0,125 (5)0.125 (5)

6,4 (250)6.4 (250)

Substrat und dessen Zeit bei der erhöhten Dicke in mm Temperatur,Substrate and its time at the increased thickness in mm temperature,

(Tausendstel Zoll)(Thousandths of an inch)

0,64 (25)
96 % Aluminiumoxyd
0.64 (25)
96 % aluminum oxide

0,64 (25)
96 % Aluminiumoxy.d
0.64 (25)
96 % aluminum oxy.d

0,64 (25)
99 % Aluminiumoxyd
0.64 (25)
99 % aluminum oxide

0,64 (25)
99 % Berrylliumoxyd
0.64 (25)
99 % beryllium oxide

0,64 (25)
96 % Aluminiumoxyd
0.64 (25)
96 % aluminum oxide

0,64 (25)
96 % Aluminiumoxyd
0.64 (25)
96 % aluminum oxide

3,75 (150) 99 % Aluminiumoxyd3.75 (150) 99 % alumina

0,64 (25) ' 96 % Aluminiumoxyd0.64 (25) '96 % alumina

MinutenMinutes

10 15 15 15 30 45 30 6010 15 15 15 30 45 30 60

Die Tabelle II gibt die Beziehung zwischen Kupferdicke, Dicke ! des nichtmetallischen hitzebeständigen Materials und Erhitzungszeit im Ofen wieder, d.h. die Zeit, welche das Material aus Metall und Nichtmetall im Ofen bleibt. Dieser Tabelle kann entnommen werden, dass die Erhitzungszeit mit der Metalldicke ansteigt, obwohl eine lineare Beziehung zwischen beiden nicht ersichtlich* ! ist. !Table II gives the relationship between copper thickness, thickness! of the non-metallic refractory material and heating time in the furnace again, i.e. the time that the material is made of metal and non-metal remains in the furnace. This table shows that the heating time increases with the metal thickness, although a linear relationship between the two is not evident *! is. !

Die Verbindung von Metallen mit nichtmetallischen hitzebeständigen Materialien kann nach der vorliegenden Erfindung z.B. auch dadurch erreicht werden, dass man einen Vertikalofen verwendet, wie er in Fig. 7 dargestellt ist. Dieser Ofen nach Fig. 7 ist ein Vertikalofen 31, der z.B. ein vertikal angeordnetes Quarzrohr 32 enthält, in welchem eine Kohlenstoffauflage 33 auf einemThe connection of metals with non-metallic heat-resistant Materials can also be obtained according to the present invention, for example, by using a vertical furnace, as shown in FIG. This furnace of Fig. 7 is a Vertical furnace 31, which contains, for example, a vertically arranged quartz tube 32 in which a carbon coating 33 is placed on a

309843/0 9 75309843/0 9 75

- 12 - ' 231985A- 12 - '231985A

Unterteil 34 aus gesintertem Siliciumdioxyd angeordnet ist.
Das Quarzrohr 32 ist mit R.F.-Heizwindungen 35 umgeben, die
von einem äusseren nicht dargestellten R.P.-Generator gespeist
werden* . "
Lower part 34 is arranged from sintered silicon dioxide.
The quartz tube 32 is surrounded with RF heating coils 35, the
fed by an external RP generator, not shown
will* . "

Fig. 7 zeigt auch ein Substrat 36, wie ein nichtmetallisches ; hitzbeständiges Material auf der Auflage 33 und ein Metallteil : 37 auf dem nichtmetallischen Teil. Inerte und oxydierende Gase
werden durch die Einlasse 38 bzw. 39 eingeführt. Das kombinierte
Gas strömt durch die Leitung 40 auf das metallische und nichtmetallische Teil und wird durch den Auslass 41 wieder herausgeleitet. Strömungsmessgeräte 42 und 43 zeigen bei jedem Einlass
die Strömungsgeschwindigkeit der Gase in dem Ofen an und steuern ; diese Geschwindigkeit. ·
Fig. 7 also shows a substrate 36, such as a non-metallic one; heat-resistant material on the support 33 and a metal part: 37 on the non-metallic part. Inert and oxidizing gases
are inserted through inlets 38 and 39, respectively. The combined
Gas flows through line 40 onto the metallic and non-metallic part and is passed out again through outlet 41. Flow meters 42 and 43 point at each inlet
to control the flow rate of the gases in the furnace; this speed. ·

Der Betrieb des Vertikalofens wird nachfolgend beispielsweise i im Hinblick auf die Herstellung einer Verbindung zwischen einem : etwa 0,125 mm (entsprechend 5/1000 Zoll) dicken Kupferteil und j einem ungefähr 1,75 mm (entsprechend 70/1000 Zoll) dicken . Berylliumoxydteil beschrieben. Die Strömungsmessgeräte 42 und 43 j sind so eingestellt, dass reines Argon durch den Einlass 38 . ' und Argon mit einem Gehalt von 2 % Sauerstoff durch den Ein- ' lass 39 eingeführt wird. Das Quarzrohr wird dann für etwa 10
Minuten mit einer Strömungsgeschwindigkeit von etwa 56 1/Std. j (entsprechend 2 ÜS-Kubikfuss/Stunde) Argon und ungefähr 28 1/Std.i (entsprechend 1 US-Kubikfuss/Stunde) argonhaltigem Sauerstoffgas ; gespült, wobei die kombinierten Gase einen Gesamtsauerstoffge- j halt von ungefähr 0,04MoI-Ji aufweisen. I
The operation of the vertical furnace will hereinafter be described, for example, with a view to establishing a connection between a copper part about 0.125 mm (corresponding to 5/1000 inch) thick and one about 1.75 mm (corresponding to 70/1000 inch) thick. Beryllium oxide part described. The flow meters 42 and 43 j are set so that pure argon through the inlet 38. 'and argon with a content of 2 % oxygen through the inlet 39 is introduced. The quartz tube will then last for about 10
Minutes with a flow rate of about 56 1 / hour. j (equivalent to 2 US cubic feet / hour) argon and approximately 28 liters / hour i (equivalent to 1 US cubic feet / hour) argon-containing oxygen gas; purged, the combined gases having a total oxygen content of approximately 0.04MoI-Ji. I.

Während der Spüldauer wird die Temperatur der Auflage 33» des
Berylliumoxyds und des Kupferteils bei Raumtemperatur gehalten.. \ Nach dem Spülen wird R.F,-Energie angewendet, bis die Temperatur
des Kupferteiles oberhalb von 1O65°C, aber unterhalb von i 1O83°C liegt, üblicherweise werden zur Erreichung dieser
Temperatur 2 bis 5 Minuten benötigt, wobei eine überwachung : z.B. optisch geschehen kann. Die optische überwachung der
Temperatur ist, an sich bekannt und in dem Maße, wie das ;
During the rinsing period, the temperature of the support 33 » des
Beryllium oxide and the copper part kept at room temperature. \ After rinsing, RF, energy is applied until the temperature
of the copper part is above 1065 ° C, but below 1083 ° C, usually to achieve this
Temperature required 2 to 5 minutes, with monitoring : for example, can be done optically. The optical monitoring of the
Temperature is known per se and to the extent that this is ;

309843/Q975309843 / Q975

Kupferteil von Zimmertemperatur aufgeheizt wird, erscheint eine rotbraune Oxydationsfarbe auf der Oberfläche des Cu -Teiles, die typisch für Kupferoxyd ist. Oberhalb von 600 C emittiert die Kupferoberfläche stark Licht. Bei einer Temperatur von IO65 C wird eine Flüssigkeitsschicht um das Kupferteil herum beobachtet. Diese flüssige Schicht benetzt sowohl das Berylliumoxydteil als auch das Kupferteil, wie einer deutlichen Farbänderung zu entnehmen ist. Das Benetzen findet zuerst an den äusseren Kanten des Kupferteiles statt, an denen eine schwarze Farbe erscheint, die sich dann in Richtung auf das Zentrum des Kupfers bewegt, bis das ganze Kupferteil dem Auge schwarz er- ; scheint. Unter diesen Bedingungen behält das Kupferteil seine strukturelle Integrität und zerfällt nicht in einzelne Flüssig- : keitstropfen. Ist der Benetzungsprozess über die gesamte Oberfläche vollständig, dann wird die R.F.-Energie abgeschaltet, und ; man lässt die Teile sich abkühlen. Nach dem Herausnehmen des \ Kupfers und Berylliumoxyds ist das Kupfer mit dem Beryllium- j oxyd fest verbunden, und es sind Bindungsfestigkeiten ober-If the copper part is heated from room temperature, a red-brown oxidation color appears on the surface of the Cu part, which is typical for copper oxide. Above 600 C the copper surface emits strong light. At a temperature of 1065 ° C, a layer of liquid is observed around the copper part. This liquid layer wets both the beryllium oxide part and the copper part, as can be seen from a clear change in color. The wetting takes place first on the outer edges of the copper part, on which a black color appears, which then moves in the direction of the center of the copper until the whole copper part appears black to the eye; appears. Under these conditions, the copper part retains its structural integrity and does not disintegrate into individual drops of liquid. When the wetting process over the entire surface is complete, the RF energy is switched off and ; the parts are allowed to cool. After removal of the \ Berylliumoxyds copper and the copper with beryllium oxide j is firmly connected, and there are bond strengths above

halb von etwa 1400 kg/cm (entspreche:
Pfund/Quadratzoll) beobachtet worden.
half of about 1400 kg / cm (corresponds to:
Pounds / square inch) has been observed.

P
halb von etwa 1400 kg/cm (entsprechend mehr als 20 000 US-
P.
half of about 1400 kg / cm (corresponding to more than 20,000 US

Die Gestalt des verbundenen Kupferteiles ist im wesentlichen die S gleiche wie dfe des ursprünglich nichtverbundenen Kupfers. Es J gibt jedoch einige Anzeichen der Oxydation und Ausfällung von Kupferoxyd in dem verbundenen Teil. Es ist auch etwas Rekristallisation der Kornstruktur innerhalb des Kupferteiles wahrnehmbar. The shape of the connected copper part is essentially the S same as dfe of the originally unconnected copper. However, there are some signs of oxidation and precipitation of Copper oxide in the connected part. There is also some recrystallization of the grain structure within the copper part.

Ohne die vorliegende Erfindung auf eine spezielle Theorie der Wirkungsweise begrenzen zu wollen, wird doch angenommen, dass sich die erfindungsgemäss hergestellten festen Bindungen auf Grund der Umsetzung des Metalles mit dem reaktiven Gas während des Erhitzens vor der Bildung der eutektischen Schmelze bilden. Während dieser Zeit löst sich eine geringe Menge des reaktiven Gases in dem Metall, das meiste reagiert jedoch damit unter Bildung einer eutektischen Schmelze auf den Oberflächen, Bei der Without wishing to limit the present invention to a specific theory of the mode of action, it is assumed that the solid bonds produced according to the invention are formed due to the reaction of the metal with the reactive gas during heating before the formation of the eutectic melt. During this time a small amount of the reactive gas dissolves in the metal, but most of it reacts with it to form a eutectic melt on the surfaces

3098A3/097S; 3098A3 / 097S ;

eutektischen Temperatur, z.B. für Kupfer-Kupferoxyd, von
1O65°C bildet sich eine flüssige Phase von oder benachbart der
eutektischen Zusammensetzung, die eine Haut um das Metall bildet. Die Dicke dieser geschmolzenen Haut hängt vom Partialdruck.des
reaktiven Gases und der Dauer bei der erhöhten Temperatur ab.
Für Kupfer-Sauerstoff-Systerne z.B. mit einem Sauerstoffpartialdruck von weniger als 1,5 x 10 atm (dem Gleichgewichts_partialdruck über CUpO bei 1O65°C) bildet sich das Kupfer-Sauerstoff-Eutektikum nicht. Es werden daher Partialdrucke oberhalb dieses
Wertes benötigt, um das gewünschte Eutektikum zu bilden.
eutectic temperature, e.g. for copper-copper oxide, of
At 1065 ° C, a liquid phase forms at or near the
eutectic composition that forms a skin around the metal. The thickness of this melted skin depends on the partial pressure
reactive gas and the duration at the elevated temperature.
For copper-oxygen systems, for example, with an oxygen partial pressure of less than 1.5 x 10 atm (the equilibrium partial pressure above CUpO at 1065 ° C), the copper-oxygen eutectic does not form. There are therefore partial pressures above this
Value needed to form the desired eutectic.

Unter den Bedingungen, welche die Bildung des Eutektikums gestatten, scheint das Eutektj-kum das Metall und das nichtmetallische hitzebeständige Material in einer solchen Weise zu benetzen,
dass sich nach dem Abkühlen eine feste Bindung zwischen den
beiden Materialien bildet. Es ist auch eine feste Bindung bei
Verwendung von reinem Kupfer bei seinem Schmelzpunkt von IO83 C
in Abwesenheit eines reagierenden Gases (und sogar in einer reduzierenden Atmosphäre) festgestellt worden, doch verliert das ; Kupferteil seine strukturelle Integrität und bildet flüssige
Tropfen, welche sich mit dem nichtmetallischen hitzebeständigen ; Material verbinden.
Under the conditions which permit the formation of the eutectic, the eutectic appears to wet the metal and the non-metallic refractory material in such a way that
that after cooling there is a firm bond between the
forms both materials. There is also a firm bond with
Use of pure copper at its melting point of IO83 C.
has been found in the absence of a reacting gas (and even in a reducing atmosphere), but that loses; Copper part maintains its structural integrity and forms fluid
Drops, which deal with the non-metallic heat-resistant; Connect material.

Wenn der Partialdruck des reaktiven Gases zu gross ist, dann
reagiert das gesamte Metall mit dem reaktiven Gas und büdet z.B. > ein Oxyd, Sulfid, Phosphid usw., was die Bildung der eutektischen Schmelze verhindert. Es ist daher ein Partialdruck des reaktiven ' Gases erforderlich, bei dem sowohl die Phase der eutektischen
Schmelze als auch die metallische Phase vorhanden sind. Versuche haben gezeigt, dass extrem feste Bindungen erhalten werden, wenn beide Phasen vorhanden sind. Zur Durchführung der vorliegenden Erfindung ist daher ein Partialdruck des reaktiven Gases erforderlich, der gross genug ist, um die Bildung eines Eutektikums mit dem Metall zu gestatten, der jedoch nicht so gross ist, um j. während der Reaktionszeit das gesamte Metall in das Oxyd, '
If the partial pressure of the reactive gas is too high, then
the entire metal reacts with the reactive gas and forms, for example, an oxide, sulfide, phosphide, etc., which prevents the formation of the eutectic melt. It is therefore necessary a partial pressure of the reactive 'gas, at which both the phase of the eutectic
Melt and the metallic phase are present. Experiments have shown that extremely strong bonds are obtained when both phases are present. To carry out the present invention, therefore, a partial pressure of the reactive gas is required which is high enough to allow the formation of a eutectic with the metal, but which is not so high as to j. during the reaction time all of the metal in the oxide, '

309843/0975309843/0975

- 15 Sulfid, Phosphid usw. umzuwandeln.- 15 to convert sulphide, phosphide, etc.

In der Erfindung ist ferner festgestellt worden,'dass durchweg
gute Bindungen zwischen Metallen und nichtmetallischen Materialien , wie Kupfer und Aluminiumoxyd oder Berylliumoxyd z.B. in Gegenwart von Sauerstoff erhalten werden können, solange der Prozent- i gehalt des Sauerstoffes im Inertgas im Bereich zwischen unge- : fähr 0,03 und 0,1 Vol.-% liegt. Eine Bindung wird nicht erhalten, wenn der Prozentgehalt des Sauerstoffes weniger als ungefähr
0,01 Vol.-Jt beträgt, weil dann nur eine unzureichende Oxydbildung stattfindet. Es tritt auch keine Bindung auf, wenn der Prozentgehalt des Sauerstoffes mehr als 0,5 Vol.-% der Gesamtgasströmung beträgt, da dann das Metall vollständig oxydiert wird. In dem : Zwischenbereich, d.h. von 0,01 bis 0,03 und von 0,1 bis 0,5 VoI,-Jf Sauerstoff tritt lediglich eine Randbindung ein. um durchweg gute Bindungen zwischen Kupfer und Aluminiumoxyd oder Berylliumr · oxyd zu erhalten, ist also ein Arbeiten innerhalb des Bereiches j von ungefähr 0,03 bis 0,1 Vol.-J Sauerstoff bevorzugt. j
In the invention it has also been found that throughout
good bonds between metals and non-metallic materials such as copper and aluminum oxide or beryllium oxide for example can be obtained in the presence of oxygen, as long as the percentage i content of oxygen in the inert gas in the range between un-. ferry 0.03 and 0.1 vol - % is. A bond is not obtained if the percentage of oxygen is less than approximately
0.01 Vol.-Jt, because then only insufficient oxide formation takes place. There is also no binding if the percentage of oxygen is more than 0.5 % by volume of the total gas flow, since the metal is then completely oxidized. In the: intermediate range, ie from 0.01 to 0.03 and from 0.1 to 0.5 vol. 1 of oxygen, only an edge bond occurs. to consistently good bonds between copper and aluminum oxide or Berylliumr · to obtain oxide, that is a work within the range j of about 0.03 to 0.1 vol J oxygen preferred. j

Die folgende Tabelle III gibt die Partialdruckbereiche der
reaktiven Gase wieder, bei denen gute Bindungen für andere Me- j talle und Gase erhalten werden. Es sind nur solche Eutektika aufgeführt, die eine eutektische Temperatur im Bereich innerhalb
von 500C vom Schmelzpunkt des Metalles aufweisen.
The following Table III gives the partial pressure ranges of the
reactive gases, in which good bonds for other metals and gases are obtained . Only those eutectics are listed which have a eutectic temperature within the range
of 50 0 C from the melting point of the metal.

309843/097S309843 / 097S

TABELLE IIITABLE III

Eutektische Ver- Vol.-# reaktives
bindung Gas
Eutectic vol .- # reactive
binding gas

Cu - CuO 0,01-0,5Cu - CuO 0.01-0.5

Cu - CuS 0,01 - 0,5Cu - CuS 0.01-0.5

Ni - NiO 0,01 - 0,3Ni - NiO 0.01-0.3

Co - CoO 0,01 - 0,4 . jCo - CoO 0.01-0.4 . j

Fe - PeO 0,01 - 0,3 [ Fe - PeO 0.01-0.3 [

Diese ausgewählten Metalle, Nichtmetalle und reaktiven GaseThese selected metals, non-metals and reactive gases

sind lediglich beispielsweise angegeben und sollen keine Be- ;are only given by way of example and are not intended to be any;

grenzung der Erfindung darstellen. Dem Fachmann sind weitere ;represent limitation of the invention. The person skilled in the art is further;

Beispiele geeigneter Materialien und reaktiver Gase auf Grund ' ιExamples of suitable materials and reactive gases due to 'ι

seines Fachwissens zugänglich. iaccessible to his / her expertise. i

Brauchbare Bindungen werden z.B. gebildet, mit der vorgenannten ·Useful bonds are formed, for example, with the aforementioned

binären metallischen Zusammensetzung, wie Kupfer-Nickel, Nickel·· ibinary metallic composition, such as copper-nickel, nickel · · i

Kobalt, Kupfer-Chrom, Kupfer-Kobalt, Eisen-Nickel und Beryllium- . Kupfer in einer reaktiven Atmosphäre, die Sauerstoff enthält.Cobalt, copper-chromium, copper-cobalt, iron-nickel and beryllium. Copper in a reactive atmosphere containing oxygen.

Ternäre Zusammensetzungen aus Eisen, Nickel und Kobalt führen \ Ternary compositions of iron, nickel and cobalt lead to \

auch zu brauchbaren Bindungen in einer reaktiven Atmosphäre von , Sauerstoff. Auch Silber-Gold-Zusammensetzungen lassen sich mit
nichtmetallischen hitzebeständigen Teilen in einer reaktiven
also to useful bonds in a reactive atmosphere of, oxygen. Silver-gold compositions can also be used
non-metallic heat-resistant parts in a reactive

Atmosphäre, die ein schwefelhaltiges Gas enthält, wie Schwefel- :',Atmosphere containing a gas containing sulfur, such as sulfur: ',

wasserstoff, verbinden. . :hydrogen, connect. . :

Der Fachmann kann die mit einem.nichtmetallischen hitzebeständigen Material verbundenen Metallteile durch fotolithographische
Maskier- und Ätztechniken zu einem bestimmten Muster gestalten,
nachdem die gewünschte Bindung hergestellt ist. Dieses Verfahren
zur Bildung von Leitermustern wird bei der Herstellung von
integrierten Schaltkreisen auf Halbleiterbasis bevorzugt, bei
The person skilled in the art can process the metal parts connected to a non-metallic, heat-resistant material by photolithographic
Design masking and etching techniques to a specific pattern,
after the desired bond is made. This method
for the formation of conductor patterns is used in the manufacture of
semiconductor-based integrated circuits are preferred

3Q98U/Ö97S3Q98U / Ö97S

- 1T_ 231985V- 1T _ 231985V

denen die Grosse der Leiter, würde man diese schon vor dem Verbinden handhaben müssen, grosse Probleme aufwerfen würde.those the size of the ladder, one would do this before connecting would have to manage big problems.

Mikrowellen-Untersuchungen an elektrischen Schaltungen, die aus mit Aluminiumoxyd verbundenen Kupfermustern gebildet waren, wiesen Q'-Werte auf, die vergleichbar solchen waren, die durch Dünnfilmtechniken erhalten wurden. So wurden z.B. Q'-Werte von mehr als : 450 beobachtet.Microwave studies on electrical circuits formed from copper patterns bonded with aluminum oxide showed Q 'values comparable to those obtained by thin film techniques. For example, Q 'values of more than: 450 observed.

Die Gesamtgasströmungsgeschwindigkeit kann innerhalb weiter Grenzen variiert'werden, ohne dass die Bindung dadurch wesentlich beeinflusst wird, und es sind im allgemeinen ökonomische Erwägungen, die zur Einstellung einer annehmbaren Gas-Strömungsgeschwindigkeit führen. Auch der Partialdruck des reaktiven Gases in dem Inertgas kann .variiert werden in Abhängigkeit von z.B. den relativen Grossen der Materialien, die zu verbinden sind, der Gas-Strömungsgeschwindigkeit, der Anwesenheit reaktiver ' Elemente in dem Strömungssystem, wie Kohlenstoffauflagen im ! Falle eines Sauerstoffsystems, der Erhitzungsgeschwindigkeit vor dem Verbinden und der Anwesenheit von restlichem Sauerstoff oder Wasser in dem zu verbindenden System und der Zeit zum Ver- j binden. IThe total gas flow rate can be varied within wide limits without significantly affecting the bond, and it is generally economic considerations that lead to the establishment of an acceptable gas flow rate. The partial pressure of the reactive gas in the inert gas can also be varied depending on, for example, the relative size of the materials to be bonded, the gas flow rate, the presence of reactive elements in the flow system, such as carbon deposits in the ! Case an oxygen system, the rate of heating prior to bonding and the presence of residual oxygen or water in the j to be connected to the system and the time for locking tie. I.

309843/0976309843/0976

Claims (11)

PatentansprücheClaims 1. Verfahren zum direkten Verbindungen eines Metallteils mit einem aus nichtmetallischem hitzebeständigem Material bestehenden Substrat, gekennzeichnet durch die folgenden Stufen:1. Method for the direct connection of a metal part with one made of non-metallic heat-resistant material Substrate characterized by the following stages: Inkontaktbringen eines Metallteils mit einem aus nichtmetallischem Material bestehenden Substrat, Erhitzen des Teiles und des Substrates in ejiner reaktiven Atmosphäre, um ein Eutektikum mit dem Metallteil zu bilden, welches das7 Teil und das Substrat benetzt, und Abkühlen des Substrates und des damit verbundenen Teiles.To form contacting a metal part with an existing non-metallic material substrate, heating the part and the substrate in ejiner reactive atmosphere to form a eutectic with the metal part, which wets the 7 part and the substrate, and cooling the substrate and the associated part. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , dass das Metallteil ausgewählt ist aus Kupfer, Nickel, Kobalt, Eisen, Chrom und den Legierungen Kupfer-Nickel, Nickel-Kobalt, Kupfer-Chrom, Kupfer-Kobalt, Eisen-Nickel, Silber-Gold und Beryllium-Kupfer.2. The method according to claim 1, characterized in that the metal part is selected from Copper, nickel, cobalt, iron, chromium and the alloys copper-nickel, nickel-cobalt, copper-chromium, copper-cobalt, Iron-nickel, silver-gold and beryllium-copper. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet , dass das reaktive Gas ausgewählt ist aus Sauerstoff, einem schwefelhaltigen Gas und einem phosphorhaltigen Gas.3. The method according to claim 1 or 2, characterized that the reactive gas is selected from oxygen, a sulfur-containing gas and a gas containing phosphorus. 4. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet , dass das Substrat ausgewählt ist aus Aluminiumoxyd, Berylliumoxyd,4. The method according to any one of the preceding claims, characterized in that the Substrate is selected from aluminum oxide, beryllium oxide, " gesintertem Siliciumdioxyd, Titanaten und Spinellen."sintered silica, titanates and spinels. 5. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet , dass das Metallteil eine Dicke im Bereich von etwa 0,025 mm bis 6,4 mm (1/1000 bis 1/4 Zoll) aufweist.5. The method according to any one of the preceding claims, characterized in that the metal part has a thickness in the range of about 0.025 mm to 6.4 mm (1/1000 to 1/4 inch). 309343/0975309343/0975 - I9 -- I 9 - 6. Verfahren nach einem der vorgenannten Ansprüche,6. The method according to any one of the preceding claims, dadurch gekennzeichnet , dass incharacterized in that in der reaktiven Atmosphäre ein reaktives Gas mit einem Partialdruck vorhanden ist, der grosser ist als der Gleichgewichtspartialdruck des reaktiven Gases in dem Metall bei oder oberhalb der eutektischen Temperatur.In the reactive atmosphere there is a reactive gas with a partial pressure which is greater than the equilibrium partial pressure of the reactive gas in the metal at or above the eutectic temperature. 7· Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass ein zweites nichtmetallisches Material in Kontakt mit dem Metallteil angeordnet wird, um die beiden nichtmetallischen Materialien miteinander zu verbinden.7 · Method according to one of the preceding claims, characterized in that a second non-metallic material is placed in contact with the metal part to form the two non-metallic Joining materials together. 8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , dass ein zweites Metallteil in Kontakt mit dem nichtmetallischen Material angeordnet wird, um Bindungen auf den gegenüberliegenden Oberflächen des nichtmetallischen Materials zu schaffen.8. The method according to any one of claims 1 to 6, characterized characterized in that a second metal part is arranged in contact with the non-metallic material is used to create bonds on the opposing surfaces of the non-metallic material. 9. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet , dass das Eutektikum bei einer Temperatur unterhalb des Schmelzpunktes des Metallteiles gebildet wird.9. The method according to any one of the preceding claims, characterized in that the Eutectic is formed at a temperature below the melting point of the metal part. 10. Verfahren nach einem der Ansprüche 1 bis 6 und 8 bis 9, dadurch gekenn ze ich η et , dass nach dem Abkühlen aus dem Metallteil ein bestimmtes Muster herausgearbeitet wird.10. The method according to any one of claims 1 to 6 and 8 to 9, characterized in that I ze η et that after A certain pattern is carved out of the metal part as it cools. 11. Verfahren nach einem der Ansprüche 1 bis 6 und 8 bis 10, dadurch gekennzeichnet , dass nach dem Abkühlen ein Halbleiterelement mit dem Metallteil verbunden wird.11. The method according to any one of claims 1 to 6 and 8 to 10, characterized in that according to a semiconductor element is connected to the metal part after cooling. 309843/0975309843/0975 12, Verfahren nach einem der vorgenannten Ansprüche,12, method according to one of the preceding claims, dad urch gekennzeichnet , dass beicharacterized by that at der Bildung eines Eutektikums eine Mischung aus einem im wesentlichen inerten Gas mit einem Gehalt von ungefähr 0,01 bis 0,5 VoI,-% eines reaktiven Gases über das Metallteil und das nichtmetallische Teil geleitet wird.the formation of a eutectic, a mixture of a substantially inert gas with a content of approximately 0.01 to 0.5 vol % of a reactive gas is passed over the metal part and the non-metallic part. 13, Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet , - dass das reaktive Gas Sauerstoff in einer Menge von etwa 0,03 bis 0,1 Vol.-Jf der reaktiven Atmosphäre ist.13, the method according to any one of the preceding claims, characterized in - that the reactive gas is oxygen in an amount from about 0.03 to 0.1 vol. 14, Verfahren nach den Ansprüchen 12 oder 13, dadurch gekennzeichnet, dass das Eutektikum Kupfer-Kupferoxyd ist, welches bei einer Temperatur von etwa 1065 C gebildet wird.14, method according to claims 12 or 13, thereby characterized in that the eutectic is copper-copper oxide, which occurs at a temperature of around 1065 C is formed. 309843/0975309843/0975 LeerseiteBlank page
DE2319854A 1972-04-20 1973-04-19 Method for connecting a metal part directly to a substrate made of non-metallic material Expired DE2319854C2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24588972A 1972-04-20 1972-04-20

Publications (2)

Publication Number Publication Date
DE2319854A1 true DE2319854A1 (en) 1973-10-25
DE2319854C2 DE2319854C2 (en) 1983-12-29

Family

ID=22928519

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2319854A Expired DE2319854C2 (en) 1972-04-20 1973-04-19 Method for connecting a metal part directly to a substrate made of non-metallic material

Country Status (6)

Country Link
US (1) US3766634A (en)
JP (1) JPS5713515B2 (en)
DE (1) DE2319854C2 (en)
FR (1) FR2181049B1 (en)
GB (1) GB1394322A (en)
IT (1) IT983841B (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049007A1 (en) * 1980-09-25 1982-04-07 BBC Aktiengesellschaft Brown, Boveri & Cie. Method for the direct bonding of copper foils to oxide-ceramic substrates
DE3223948A1 (en) * 1982-06-26 1983-12-29 Tigra Verschleiß- und Werkzeugtechnik GmbH, 7240 Horb Method of soldering ceramic and metallic materials to one another
DE3241926A1 (en) * 1982-11-12 1984-05-17 MTU Motoren- und Turbinen-Union München GmbH, 8000 München CONNECTION OF A CERAMIC ROTATION COMPONENT TO A METAL ROTATION COMPONENT FOR FLOW MACHINES, IN PARTICULAR GAS TURBINE ENGINES
US4483810A (en) * 1982-02-06 1984-11-20 Brown, Boveri And Cie Ag Method for directly joining metal pieces to oxide-ceramic substrates
DE3930859A1 (en) * 1988-09-20 1990-04-05 Peter H Maier Brazing copper and/or ceramic elements - using oxide-coated copper (alloy) foil
EP1227353A2 (en) 2001-01-16 2002-07-31 Curamik Electronics GmbH Laser mirror and method for manufacturing the same
WO2004002204A1 (en) 2002-06-20 2003-12-31 Curamik Electronics Gmbh Metal-ceramic substrate for electric circuits or modules, method for producing one such substrate and module comprising one such substrate
DE10229711A1 (en) * 2002-07-02 2004-01-15 Curamik Electronics Gmbh Semiconductor module comprises a semiconductor component provided on a region of a multiple layer substrate which is formed in a partial region as a micro-cooler through which coolant passes
EP1435505A2 (en) 2002-12-30 2004-07-07 Jürgen Dr.-Ing. Schulz-Harder Watersink as heat pipe and method of fabricating such a watersink
DE10320838A1 (en) * 2003-05-08 2004-12-02 Electrovac Gesmbh Composite material as well as electrical circuit or electrical module
WO2004113041A2 (en) 2003-06-16 2004-12-29 Curamik Electronics Gmbh Method for producing a ceramic/metal substrate
WO2006005281A1 (en) * 2004-07-08 2006-01-19 Electrovac Ag Method for the production of a metal-ceramic substrate
WO2007016886A1 (en) 2005-08-10 2007-02-15 Curamik Electronics Gmbh Metal-ceramic substrate
DE10148550B4 (en) * 2001-10-01 2007-03-29 Electrovac Ag Process for producing metal-ceramic composite materials, in particular metal-ceramic substrates
EP1959528A2 (en) 2007-02-13 2008-08-20 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Diode laser assembly and method for producing such an assembly
DE102007008027A1 (en) 2007-02-13 2008-08-21 Curamik Electronics Gmbh Diode laser arrangement and method for producing such an arrangement
DE102007030389A1 (en) 2007-03-30 2008-10-02 Electrovac Ag Heat sink and building or module unit with a heat sink
DE10229712B4 (en) * 2002-07-02 2009-06-25 Jenoptik Laserdiode Gmbh Semiconductor module
DE102009041574A1 (en) 2008-10-29 2010-05-12 Electrovac Ag Composite material, method of making a composite, and adhesive or bonding material
DE102009015520A1 (en) 2009-04-02 2010-10-07 Electrovac Ag Metal-ceramic substrate
DE102009022877A1 (en) 2009-04-29 2010-11-11 Electrovac Ag Electrical assembly comprises cooler structure and electrical component on metal-ceramic substrate having electrical module, where electrical module comprises two metal-ceramic substrates
WO2010136017A1 (en) 2009-05-27 2010-12-02 Electrovac Ag Cooled electric unit
DE102009033029A1 (en) 2009-07-02 2011-01-05 Electrovac Ag Electronic device
DE202010009472U1 (en) 2010-04-07 2011-02-10 Electrovac Ag Packaging for metal-ceramic substrates
WO2011098071A1 (en) 2010-02-12 2011-08-18 Curamik Electronics Gmbh Method for producing metal-ceramic composite materials, in particular metal-ceramic substrates, and ceramic composite material, in particular metal-ceramic substrate, produced according to said method
WO2011124205A2 (en) 2010-04-07 2011-10-13 Curamik Electronics Gmbh Package for metal-ceramic substrate, and method for packaging such substrates
DE102010024520A1 (en) 2010-06-21 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for increasing thermal mechanical resistance of ceramic substrate for mounting electrical components, involves covering edges of metallization layer by applying electrical isolation fill material between edges and substrate
DE102010025311A1 (en) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Formation of metallic layer on ceramic substrate or ceramic layer, involves melting interfacial layer formed from eutectic mixture formed using oxide of metallic material and alumina, on ceramic substrate or ceramic layer
DE102010025313A1 (en) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Producing structured electrically conductive layer on substrate or layer made of ceramic material, comprises e.g. providing mixture of metallic material and oxide of it, applying mixture on substrate or layer, and structuring
EP2447235A1 (en) 2010-10-27 2012-05-02 Curamik Electronics GmbH Metal-ceramic substrate and method for manufacturing such a substrate
US8342384B2 (en) 2002-03-13 2013-01-01 Curamik Electronics Gmbh Method for the production of a metal-ceramic substrate, preferably a copper ceramic substrate
DE102012106087A1 (en) 2011-07-29 2013-01-31 Curamik Electronics Gmbh Packaging for substrates and packaging unit with such a packaging
DE102012110382A1 (en) 2011-12-21 2013-06-27 Curamik Electronics Gmbh Substrate i.e. printed circuit board, for electrical circuits and/or modules, has stop structure extending up to level of adjacent exposed outer surface of metallization regions or surface of end layer projects above level
DE102012101057A1 (en) 2011-12-27 2013-06-27 Curamik Electronics Gmbh Process for the preparation of DCB substrates
DE102012102090A1 (en) 2012-01-31 2013-08-01 Curamik Electronics Gmbh Thermoelectric generator module, metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102012102611A1 (en) 2012-02-15 2013-08-22 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013102797A1 (en) 2012-03-30 2013-10-02 Curamik Electronics Gmbh Tunnel furnace for heat treatment of material to be treated, has transport element lubricants and turnable and/or transferable stocks or supporting items or rolling elements are provided between carrier and furnace main portion
DE102012102787A1 (en) 2012-03-30 2013-10-02 Curamik Electronics Gmbh Method for producing metal-ceramic substrates
WO2013143534A1 (en) 2012-03-30 2013-10-03 Curamik Electronics Gmbh Tunnel furnace
DE102012103786A1 (en) 2012-04-30 2013-10-31 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102012104903A1 (en) 2012-05-10 2013-11-14 Curamik Electronics Gmbh Process for producing metal-ceramic substrates and metal-ceramic substrate produced by this process
WO2014008891A2 (en) 2012-07-11 2014-01-16 Curamik Electronics Gmbh Metal-ceramic substrate
WO2014008889A1 (en) 2012-07-10 2014-01-16 Curamik Electronics Gmbh Method for producing metal-ceramic substrates and metal-ceramic substrate
DE102012107570A1 (en) 2012-08-17 2014-02-20 Curamik Electronics Gmbh Process for the production of hollow bodies, in particular of coolers, hollow bodies and coolers containing electrical or electronic assemblies
DE102012110322A1 (en) 2012-10-29 2014-04-30 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2014127764A1 (en) 2013-02-22 2014-08-28 Curamik Electronics Gmbh Metal-ceramic substrate, module arrangement, and method for producing a metal-ceramic substrate
WO2014139519A2 (en) 2013-03-14 2014-09-18 Rogers Germany Gmbh Metal ceramic substrate and method for producing a metal ceramic substrate
DE102013104739A1 (en) 2013-03-14 2014-09-18 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013104055A1 (en) 2013-04-22 2014-10-23 Rogers Germany Gmbh A base substrate, a metal-ceramic substrate made of a base substrate and a method for producing a base substrate
WO2014190968A1 (en) 2013-05-29 2014-12-04 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2015018397A2 (en) 2013-08-06 2015-02-12 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2015024541A1 (en) 2013-08-20 2015-02-26 Rogers Germany Gmbh Method for producing metal-ceramic substrates, and metal-ceramic substrate
DE102013113736A1 (en) 2013-12-10 2015-06-11 Rogers Germany Gmbh Method for producing a metal-ceramic substrate and metal-ceramic substrate
WO2015085991A1 (en) 2013-12-10 2015-06-18 Rogers Germany Gmbh Method for producing a metal-ceramic substrate
WO2016020207A1 (en) 2014-08-05 2016-02-11 Heraeus Deutschland GmbH & Co. KG Method for producing double-sided metallised ceramic substrates
DE102014224588A1 (en) 2014-12-02 2016-06-02 Heraeus Deutschland GmbH & Co. KG Method for producing metallized ceramic substrates
DE102014119386A1 (en) 2014-12-22 2016-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal-ceramic substrate and associated metal-ceramic substrate
DE202016008286U1 (en) 2016-02-26 2017-06-21 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008287U1 (en) 2016-02-26 2017-06-21 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
EP3184501A2 (en) 2015-12-22 2017-06-28 Heraeus Deutschland GmbH & Co. KG Enhanced direct-bonded copper substrates by means of thick-film paste
DE202016008307U1 (en) 2016-02-26 2017-07-10 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
EP3210957A1 (en) 2016-02-26 2017-08-30 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
EP3210956A1 (en) 2016-02-26 2017-08-30 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
EP3210951A1 (en) 2016-02-26 2017-08-30 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
WO2017144329A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144333A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144331A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144332A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008371U1 (en) 2016-02-26 2017-09-11 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008370U1 (en) 2016-02-26 2017-09-11 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
EP3301082A1 (en) 2016-09-30 2018-04-04 Infineon Technologies AG Method for producing a metal-ceramic substrate, and a metal-ceramic substrate
DE102005025921B4 (en) 2004-06-07 2018-04-26 Denso Corporation Metal / ceramic bonding article
EP3326986A1 (en) 2016-11-28 2018-05-30 Infineon Technologies AG Process for the manufacture of a metal-ceramic substrate
DE102016125348A1 (en) 2016-12-22 2018-06-28 Rogers Germany Gmbh Carrier substrate for electrical components and method for producing a carrier substrate
WO2019008004A1 (en) 2017-07-04 2019-01-10 Rogers Germany Gmbh Method for producing a via in a carrier layer produced from a ceramic and carrier layer having a via
DE102017121015A1 (en) 2017-09-12 2019-03-14 Rogers Germany Gmbh Adapter element for connecting a component such as a laser diode to a heat sink, a system of a laser diode, a heat sink and an adapter element and method for producing an adapter element
DE102017128308A1 (en) 2017-11-29 2019-05-29 Rogers Germany Gmbh Method for producing a metal-ceramic substrate, method for producing a metal semi-finished product and metal-ceramic substrate
DE102017128316A1 (en) 2017-11-29 2019-05-29 Rogers Germany Gmbh Method for producing a metal semi-finished product, method for producing a metal-ceramic substrate and metal-ceramic substrate
WO2019141733A1 (en) * 2018-01-19 2019-07-25 Osram Opto Semiconductors Gmbh Method for producing a housing cover for a laser component and housing cover for a laser component and laser component
DE102018207955B4 (en) 2018-05-22 2023-05-17 Schweizer Electronic Ag Printed circuit board module with integrated power electronic metal-ceramic module and method for its production

Families Citing this family (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911570A (en) * 1973-08-21 1975-10-14 Electro Oxide Corp Electrical connector and method of making
US3911553A (en) * 1974-03-04 1975-10-14 Gen Electric Method for bonding metal to ceramic
US4129243A (en) * 1975-07-30 1978-12-12 General Electric Company Double side cooled, pressure mounted semiconductor package and process for the manufacture thereof
JPS54157277A (en) * 1978-06-01 1979-12-12 Nippon Electric Co Method of printed board for microwave
CH633391A5 (en) * 1978-11-22 1982-11-30 Bbc Brown Boveri & Cie DISC ROTOR FOR AN ELECTRICAL MACHINE.
JPS55104979A (en) * 1979-02-02 1980-08-11 Kogyo Gijutsuin Adhesion of ceramic molded body to transition metal
JPS599510B2 (en) * 1979-10-15 1984-03-02 昭栄化学工業株式会社 Manufacturing method of ceramic piezoelectric material for spark plugs
US4323483A (en) * 1979-11-08 1982-04-06 E. I. Du Pont De Nemours And Company Mixed oxide bonded copper conductor compositions
US4245488A (en) * 1980-01-04 1981-01-20 General Electric Company Use of motor power control circuit losses in a clothes washing machine
JPS57152147A (en) * 1981-03-16 1982-09-20 Matsushita Electric Ind Co Ltd Formation of metal projection on metal lead
US4413766A (en) * 1981-04-03 1983-11-08 General Electric Company Method of forming a conductor pattern including fine conductor runs on a ceramic substrate
US4409278A (en) * 1981-04-16 1983-10-11 General Electric Company Blister-free direct bonding of metals to ceramics and metals
JPS58102532A (en) * 1981-12-15 1983-06-18 Toshiba Corp Semiconductor device
US4500029A (en) * 1982-06-11 1985-02-19 General Electric Company Electrical assembly including a conductor pattern bonded to a non-metallic substrate and method of fabricating such assembly
DE3376829D1 (en) * 1982-06-29 1988-07-07 Toshiba Kk Method for directly bonding ceramic and metal members and laminated body of the same
DE3233022A1 (en) * 1982-09-06 1984-03-08 BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau Method for the direct bonding of a body to a ceramic substrate
JPS59150453A (en) * 1982-12-23 1984-08-28 Toshiba Corp Manufacture of substrate for seiconductor module
JPS59121860A (en) * 1982-12-28 1984-07-14 Toshiba Corp Substrate for semiconductor
US4538170A (en) * 1983-01-03 1985-08-27 General Electric Company Power chip package
GB8305366D0 (en) * 1983-02-25 1983-03-30 Secr Defence Cathode ray tube
JPS59190279A (en) * 1983-04-13 1984-10-29 株式会社東芝 Ceramic structure and manufacture
EP0127801B1 (en) * 1983-06-03 1986-10-22 Asea Brown Boveri Ag Commutator for an electric machine and method of making it
US4604299A (en) * 1983-06-09 1986-08-05 Kollmorgen Technologies Corporation Metallization of ceramics
US4574094A (en) * 1983-06-09 1986-03-04 Kollmorgen Technologies Corporation Metallization of ceramics
DE3324661A1 (en) * 1983-07-08 1985-01-17 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD FOR DIRECTLY CONNECTING METAL TO CERAMIC
JPS60107845A (en) * 1983-11-17 1985-06-13 Toshiba Corp Circuit substrate for semiconductor
US4582240A (en) * 1984-02-08 1986-04-15 Gould Inc. Method for low temperature, low pressure metallic diffusion bonding of piezoelectric components
US4563383A (en) * 1984-03-30 1986-01-07 General Electric Company Direct bond copper ceramic substrate for electronic applications
US4647477A (en) * 1984-12-07 1987-03-03 Kollmorgen Technologies Corporation Surface preparation of ceramic substrates for metallization
EP0185967A3 (en) * 1984-12-10 1988-08-03 Kollmorgen Corporation Process for avoiding blister formation in electroless metallization of ceramic substrates
US4602731A (en) * 1984-12-24 1986-07-29 Borg-Warner Corporation Direct liquid phase bonding of ceramics to metals
US4631099A (en) * 1985-01-04 1986-12-23 Agency Of Industrial Science & Technology Method for adhesion of oxide type ceramics with copper or alloy thereof
DE3633907A1 (en) * 1986-08-02 1988-02-04 Altan Akyuerek Method for firmly bonding a copper body to a substrate
DE3639021A1 (en) * 1986-11-14 1988-05-26 Philips Patentverwaltung METHOD FOR SOLDERING CERAMIC COMPONENTS
EP0273227A3 (en) * 1986-12-22 1989-01-25 Kalman F. Zsamboky A method of improving bond strength between a metal layer and a non-metallic substrate
FR2615049B1 (en) * 1987-05-04 1989-06-16 Alsthom MANIFOLD FOR ROTATING ELECTRIC MACHINE AND MANUFACTURING METHOD THEREOF
FR2623046B1 (en) * 1987-11-10 1990-03-23 Telemecanique Electrique METHOD FOR BINDING A COPPER SHEET TO A SUBSTRATE OF ELECTRICALLY INSULATING MATERIAL
US4788765A (en) * 1987-11-13 1988-12-06 Gentron Corporation Method of making circuit assembly with hardened direct bond lead frame
JP2755594B2 (en) * 1988-03-30 1998-05-20 株式会社 東芝 Ceramic circuit board
US4924292A (en) * 1988-04-12 1990-05-08 Kaufman Lance R Direct bond circuit assembly with crimped lead frame
US4879633A (en) * 1988-04-12 1989-11-07 Kaufman Lance R Direct bond circuit assembly with ground plane
US5070602A (en) * 1988-04-12 1991-12-10 Lance R. Kaufman Method of making a circuit assembly
US4902854A (en) * 1988-04-12 1990-02-20 Kaufman Lance R Hermetic direct bond circuit assembly
US5032691A (en) * 1988-04-12 1991-07-16 Kaufman Lance R Electric circuit assembly with voltage isolation
US4831723A (en) * 1988-04-12 1989-05-23 Kaufman Lance R Direct bond circuit assembly with crimped lead frame
US4990720A (en) * 1988-04-12 1991-02-05 Kaufman Lance R Circuit assembly and method with direct bonded terminal pin
US4860164A (en) * 1988-09-01 1989-08-22 Kaufman Lance R Heat sink apparatus with electrically insulative intermediate conduit portion for coolant flow
DE3930858C2 (en) * 1988-09-20 2002-01-03 Peter H Maier module Design
US5027255A (en) * 1988-10-22 1991-06-25 Westinghouse Electric Co. High performance, high current miniaturized low voltage power supply
DE3931551C2 (en) * 1989-09-22 1993-11-18 Schulz Harder Juergen Method of making a substrate
US5100740A (en) * 1989-09-25 1992-03-31 General Electric Company Direct bonded symmetric-metallic-laminate/substrate structures
US5653379A (en) * 1989-12-18 1997-08-05 Texas Instruments Incorporated Clad metal substrate
US5273203A (en) * 1989-12-21 1993-12-28 General Electric Company Ceramic-to-conducting-lead hermetic seal
US5241216A (en) * 1989-12-21 1993-08-31 General Electric Company Ceramic-to-conducting-lead hermetic seal
US4996116A (en) * 1989-12-21 1991-02-26 General Electric Company Enhanced direct bond structure
US5164359A (en) * 1990-04-20 1992-11-17 Eaton Corporation Monolithic integrated circuit having compound semiconductor layer epitaxially grown on ceramic substrate
JP3011433B2 (en) * 1990-05-25 2000-02-21 株式会社東芝 Manufacturing method of ceramic circuit board
US5418002A (en) * 1990-12-24 1995-05-23 Harris Corporation Direct bonding of copper to aluminum nitride substrates
DE4103294C2 (en) * 1991-02-04 2000-12-28 Altan Akyuerek Process for the production of ceramic printed circuit boards with vias
JPH05219690A (en) * 1991-02-28 1993-08-27 Hitachi Ltd Ceramic sliding collector
DE4222973A1 (en) * 1992-07-13 1994-01-20 Asea Brown Boveri Bi-directional semiconductor switch
JP2791216B2 (en) 1992-07-17 1998-08-27 ヴィエルティー コーポレーション Package for electrical component, method for mounting power loss generating component, and method for connecting conductor terminal pin to circuit board
DE4318061C2 (en) * 1993-06-01 1998-06-10 Schulz Harder Juergen Method of manufacturing a metal-ceramic substrate
DE4319848C2 (en) * 1993-06-03 1995-12-21 Schulz Harder Juergen Method of manufacturing a metal-ceramic substrate
EP0667640A3 (en) * 1994-01-14 1997-05-14 Brush Wellman Multilayer laminate product and process.
US5777259A (en) * 1994-01-14 1998-07-07 Brush Wellman Inc. Heat exchanger assembly and method for making the same
US5490627A (en) * 1994-06-30 1996-02-13 Hughes Aircraft Company Direct bonding of copper composites to ceramics
US5586714A (en) * 1994-10-06 1996-12-24 Board Of Regents Of The University Of Nebraska Method of bonding metal to a non-metal substrate
US5644103A (en) 1994-11-10 1997-07-01 Vlt Corporation Packaging electrical components having a scallop formed in an edge of a circuit board
US6484585B1 (en) 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US5637802A (en) * 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US6022426A (en) * 1995-05-31 2000-02-08 Brush Wellman Inc. Multilayer laminate process
WO1998032312A1 (en) * 1997-01-17 1998-07-23 California Institute Of Technology Microwave technique for brazing materials
DE19715540C2 (en) * 1997-04-15 2002-02-07 Curamik Electronics Gmbh Method of manufacturing a domed metal-ceramic substrate
DE19729677B4 (en) * 1997-07-11 2006-05-18 Curamik Electronics Gmbh Housing for semiconductor devices, in particular for power semiconductor components
DE19749987B4 (en) * 1997-07-11 2008-09-25 Curamik Electronics Gmbh Housing for semiconductor devices, in particular for power semiconductor components
DE19753149C2 (en) * 1997-11-12 1999-09-30 Curamik Electronics Gmbh Method of manufacturing a ceramic-metal substrate
JP3690278B2 (en) 1998-12-07 2005-08-31 株式会社日立製作所 Composite materials and their uses
DE19927046B4 (en) * 1999-06-14 2007-01-25 Electrovac Ag Ceramic-metal substrate as a multi-substrate
DE19930207C2 (en) * 1999-06-22 2001-12-06 Schulz Harder Juergen Process for the production of substrates with structured metallizations and holding and fixing element for use in this process
DE19945794C2 (en) * 1999-09-15 2002-12-19 Curamik Electronics Gmbh Method for producing a metal-ceramic circuit board with through contacts
JP2001156196A (en) 1999-09-17 2001-06-08 Toshiba Corp High-frequency package and method for manufacturing the same
AU2629901A (en) 2000-01-06 2001-07-16 Rosemount Inc. Grain growth of electrical interconnection for microelectromechanical systems (mems)
US6520020B1 (en) 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
US6508129B1 (en) 2000-01-06 2003-01-21 Rosemount Inc. Pressure sensor capsule with improved isolation
US6505516B1 (en) 2000-01-06 2003-01-14 Rosemount Inc. Capacitive pressure sensing with moving dielectric
US6561038B2 (en) 2000-01-06 2003-05-13 Rosemount Inc. Sensor with fluid isolation barrier
DE10047525B4 (en) * 2000-09-22 2005-06-30 Curamik Electronics Gmbh A method of producing a shaped article using a raw material containing silicon carbide in powder or particulate form and copper, and shaped articles thus produced
US6888232B2 (en) * 2001-08-15 2005-05-03 Micron Technology Semiconductor package having a heat-activated source of releasable hydrogen
JP3969987B2 (en) * 2001-10-01 2007-09-05 Dowaホールディングス株式会社 Ceramic / alloy joints
US6833617B2 (en) * 2001-12-18 2004-12-21 Hitachi, Ltd. Composite material including copper and cuprous oxide and application thereof
US7754976B2 (en) 2002-04-15 2010-07-13 Hamilton Sundstrand Corporation Compact circuit carrier package
US6848316B2 (en) 2002-05-08 2005-02-01 Rosemount Inc. Pressure sensor assembly
JP3868854B2 (en) * 2002-06-14 2007-01-17 Dowaホールディングス株式会社 Metal-ceramic bonded body and manufacturing method thereof
US7159757B2 (en) * 2002-09-26 2007-01-09 Dowa Mining Co., Ltd. Metal/ceramic bonding article and method for producing same
DE102004012232B4 (en) * 2004-02-20 2006-11-16 Electrovac Ag Method for producing plate stacks, in particular for producing condenser consisting of at least one plate stack
US20070231590A1 (en) * 2006-03-31 2007-10-04 Stellar Industries Corp. Method of Bonding Metals to Ceramics
DE102009007625A1 (en) * 2008-11-14 2010-05-20 Osram Opto Semiconductors Gmbh Composite substrate for a semiconductor chip
US8448842B1 (en) 2011-12-22 2013-05-28 Vaclong Vacuum Technology Co., Ltd. Advanced copper bonding (ACB) with ceramic substrate technology
DE102014106694B3 (en) * 2014-05-13 2015-04-02 Rogers Germany Gmbh Method for metallizing at least one plate-shaped ceramic substrate and metal-ceramic substrate
DE102015102657B4 (en) 2015-02-25 2018-07-19 Rogers Germany Gmbh Method for producing a copper-ceramic composite substrate
DE102016118784A1 (en) 2016-10-04 2018-04-05 Infineon Technologies Ag Chip carrier, configured for delamination-free encapsulation and stable sintering
DE102018104521B4 (en) 2018-02-28 2022-11-17 Rogers Germany Gmbh metal-ceramic substrates
DE102018104532B4 (en) 2018-02-28 2023-06-29 Rogers Germany Gmbh Metal-ceramic substrate and method of manufacturing a metal-ceramic substrate
DE102018123681A1 (en) 2018-09-26 2020-03-26 Rogers Germany Gmbh Carrier substrate for electrical, in particular electronic components and method for producing a carrier substrate
DE102019110106A1 (en) 2019-04-17 2020-10-22 Rogers Germany Gmbh Method for producing a composite ceramic and composite ceramic produced using such a method
DE102019113308A1 (en) 2019-05-20 2020-11-26 Rogers Germany Gmbh A method for producing a metal-ceramic substrate and a metal-ceramic substrate produced by such a method
DE102019113714A1 (en) 2019-05-23 2020-11-26 Rogers Germany Gmbh Adapter element for connecting an electronic component to a heat sink element, system with such an adapter element and method for producing such an adapter element
JP6782996B1 (en) 2019-07-08 2020-11-11 株式会社ワールドメタル Bonded base material and metal layer
DE102019125124A1 (en) 2019-09-18 2021-03-18 Rogers Germany Gmbh Process for processing a metal-ceramic substrate, system for such a process and metal-ceramic substrates produced with such a process
TWI761734B (en) 2019-11-26 2022-04-21 財團法人工業技術研究院 Direct bonded copper ceramic substrate
DE102019134004A1 (en) 2019-12-11 2021-06-17 Rogers Germany Gmbh Process for processing a metal-ceramic substrate, system for such a process and metal-ceramic substrates produced with such a process
DE102019135146B4 (en) 2019-12-19 2022-11-24 Rogers Germany Gmbh metal-ceramic substrate
DE102019135097A1 (en) 2019-12-19 2021-06-24 Rogers Germany Gmbh A method for producing a metal-ceramic substrate and a metal-ceramic substrate produced by such a method
DE102019135099A1 (en) 2019-12-19 2021-06-24 Rogers Germany Gmbh A method for producing a metal-ceramic substrate and a metal-ceramic substrate produced by such a method
DE102020106521A1 (en) 2020-03-10 2021-09-16 Rogers Germany Gmbh Electronic module and method for manufacturing an electronic module
DE102020119209A1 (en) 2020-07-21 2022-01-27 Rogers Germany Gmbh Power module and method of manufacturing a power module
DE102020119208A1 (en) 2020-07-21 2022-01-27 Rogers Germany Gmbh Method for producing a metal-ceramic substrate and metal-ceramic substrate produced by such a method
DE102021100463A1 (en) 2021-01-13 2022-07-14 Rogers Germany Gmbh Method of making a metal-ceramic substrate and metal-ceramic substrate made by such a method
EP4032870A1 (en) 2021-01-22 2022-07-27 Heraeus Deutschland GmbH & Co. KG Structured metal / ceramic substrate and method for structuring metal-ceramic substrates
DE102021105109A1 (en) 2021-03-03 2022-09-08 Rogers Germany Gmbh Method for processing a metal-ceramic substrate and metal-ceramic substrate
DE102021105520B4 (en) 2021-03-08 2022-10-27 Rogers Germany Gmbh Metal-ceramic substrate and method of manufacturing a metal-ceramic substrate
DE102021107690A1 (en) 2021-03-26 2022-09-29 Rogers Germany Gmbh Method for producing a metal-ceramic substrate and metal-ceramic substrate produced by such a method
DE102021107872A1 (en) 2021-03-29 2022-09-29 Rogers Germany Gmbh Carrier substrate for electrical, in particular electronic, components and method for producing a carrier substrate
EP4112587A1 (en) 2021-06-29 2023-01-04 Heraeus Deutschland GmbH & Co. KG Method for producing a metal-ceramic substrate though rapid heating
EP4112586A1 (en) 2021-06-29 2023-01-04 Heraeus Deutschland GmbH & Co. KG Method for producing a metal/ceramic substrate using a continuous furnace
DE102021125557A1 (en) 2021-10-01 2023-04-06 Rogers Germany Gmbh Metal-ceramic substrate and method of manufacturing a metal-ceramic substrate
DE102021126529A1 (en) 2021-10-13 2023-04-13 Rogers Germany Gmbh Process for producing metal-ceramic substrates and metal-ceramic substrate produced by such a process
EP4186880A1 (en) 2021-11-26 2023-05-31 Heraeus Deutschland GmbH & Co. KG Metal-ceramic substrate, method for producing the same and module
EP4311818A1 (en) 2022-07-29 2024-01-31 Heraeus Electronics GmbH & Co. KG Metal-ceramic substrate with contact area
EP4311819A1 (en) 2022-07-29 2024-01-31 Heraeus Electronics GmbH & Co. KG Metal-ceramic substrate with contact area
EP4332267A1 (en) 2022-09-05 2024-03-06 Heraeus Electronics GmbH & Co. KG Method for producing a metal-ceramic substrate and metal-ceramic substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2057471A1 (en) * 1969-11-25 1971-06-24 Western Electric Co Process for creating tight connections between glass and metal

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB784931A (en) *
US2482178A (en) * 1944-02-29 1949-09-20 Western Electric Co Composite structure for forming a seal with glass
US2564738A (en) * 1947-02-25 1951-08-21 Foerderung Forschung Gmbh Method of forming a vacuum-tight bond between ceramics and metals
GB761045A (en) * 1952-08-29 1956-11-07 Lodge Plugs Ltd Improvements in or relating to the bonding of ceramics with copper
NL83997C (en) * 1953-05-12
US3030704A (en) * 1957-08-16 1962-04-24 Gen Electric Method of making non-rectifying contacts to silicon carbide
US3128545A (en) * 1959-09-30 1964-04-14 Hughes Aircraft Co Bonding oxidized materials
US3366409A (en) * 1965-06-10 1968-01-30 Philips Corp Ceramic-to-metal seal
NL153508B (en) * 1966-11-30 1977-06-15 Philips Nv PROCEDURE FOR VACUUM-TIGHT CONNECTION OF A CERAMIC OBJECT TO A METAL OBJECT AND ELECTRIC DISCHARGE TUBE EQUIPPED WITH A POWER SUPPLY CONDUCTOR OBTAINED IN ACCORDANCE WITH THIS PROCEDURE.
US3517432A (en) * 1968-05-02 1970-06-30 Atomic Energy Commission Diffusion bonding of ceramics
US3717926A (en) * 1970-01-29 1973-02-27 G Kravetsky Method of joining graphite articles
US3676292A (en) * 1970-10-07 1972-07-11 Olin Corp Composites of glass-ceramic-to-metal,seals and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2057471A1 (en) * 1969-11-25 1971-06-24 Western Electric Co Process for creating tight connections between glass and metal

Cited By (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0049007A1 (en) * 1980-09-25 1982-04-07 BBC Aktiengesellschaft Brown, Boveri & Cie. Method for the direct bonding of copper foils to oxide-ceramic substrates
US4483810A (en) * 1982-02-06 1984-11-20 Brown, Boveri And Cie Ag Method for directly joining metal pieces to oxide-ceramic substrates
DE3223948A1 (en) * 1982-06-26 1983-12-29 Tigra Verschleiß- und Werkzeugtechnik GmbH, 7240 Horb Method of soldering ceramic and metallic materials to one another
DE3241926A1 (en) * 1982-11-12 1984-05-17 MTU Motoren- und Turbinen-Union München GmbH, 8000 München CONNECTION OF A CERAMIC ROTATION COMPONENT TO A METAL ROTATION COMPONENT FOR FLOW MACHINES, IN PARTICULAR GAS TURBINE ENGINES
DE3930859A1 (en) * 1988-09-20 1990-04-05 Peter H Maier Brazing copper and/or ceramic elements - using oxide-coated copper (alloy) foil
EP1227353A2 (en) 2001-01-16 2002-07-31 Curamik Electronics GmbH Laser mirror and method for manufacturing the same
DE10148550B4 (en) * 2001-10-01 2007-03-29 Electrovac Ag Process for producing metal-ceramic composite materials, in particular metal-ceramic substrates
US8342384B2 (en) 2002-03-13 2013-01-01 Curamik Electronics Gmbh Method for the production of a metal-ceramic substrate, preferably a copper ceramic substrate
WO2004002204A1 (en) 2002-06-20 2003-12-31 Curamik Electronics Gmbh Metal-ceramic substrate for electric circuits or modules, method for producing one such substrate and module comprising one such substrate
EP2170026A1 (en) 2002-06-20 2010-03-31 Curamik Electronics GmbH Metal ceramic substrate for electric components or modules, method for producing such a substrate and module with such a substrate
DE10229711A1 (en) * 2002-07-02 2004-01-15 Curamik Electronics Gmbh Semiconductor module comprises a semiconductor component provided on a region of a multiple layer substrate which is formed in a partial region as a micro-cooler through which coolant passes
DE10229711B4 (en) * 2002-07-02 2009-09-03 Curamik Electronics Gmbh Semiconductor module with microcooler
DE10229712B4 (en) * 2002-07-02 2009-06-25 Jenoptik Laserdiode Gmbh Semiconductor module
EP1435505A2 (en) 2002-12-30 2004-07-07 Jürgen Dr.-Ing. Schulz-Harder Watersink as heat pipe and method of fabricating such a watersink
DE10320838A1 (en) * 2003-05-08 2004-12-02 Electrovac Gesmbh Composite material as well as electrical circuit or electrical module
DE10320838B4 (en) * 2003-05-08 2014-11-06 Rogers Germany Gmbh Fiber-reinforced metal-ceramic / glass composite material as a substrate for electrical applications, method for producing such a composite material and use of this composite material
WO2004113041A2 (en) 2003-06-16 2004-12-29 Curamik Electronics Gmbh Method for producing a ceramic/metal substrate
DE102005025921B4 (en) 2004-06-07 2018-04-26 Denso Corporation Metal / ceramic bonding article
WO2006005281A1 (en) * 2004-07-08 2006-01-19 Electrovac Ag Method for the production of a metal-ceramic substrate
US8683682B2 (en) 2004-07-08 2014-04-01 Curamik Electronics Gmbh Method for the production of a metal-ceramic substrate
US20090232972A1 (en) * 2004-07-08 2009-09-17 Jurgen Schulz-Harder Method for the production of a metal-ceramic substrate
US8435640B2 (en) 2005-08-10 2013-05-07 Curamik Electronics Gmbh Metal-ceramic substrate
WO2007016886A1 (en) 2005-08-10 2007-02-15 Curamik Electronics Gmbh Metal-ceramic substrate
DE102007008027A1 (en) 2007-02-13 2008-08-21 Curamik Electronics Gmbh Diode laser arrangement and method for producing such an arrangement
EP1959528A2 (en) 2007-02-13 2008-08-20 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Diode laser assembly and method for producing such an assembly
DE102007030389A1 (en) 2007-03-30 2008-10-02 Electrovac Ag Heat sink and building or module unit with a heat sink
WO2008119309A2 (en) 2007-03-30 2008-10-09 Electrovac Ag Heat sink, and assembly or module unit comprising a heat sink
US8559475B2 (en) 2007-03-30 2013-10-15 Curamik Electronics Gmbh Heat sink and assembly or module unit
DE102009041574A1 (en) 2008-10-29 2010-05-12 Electrovac Ag Composite material, method of making a composite, and adhesive or bonding material
DE102009015520A1 (en) 2009-04-02 2010-10-07 Electrovac Ag Metal-ceramic substrate
WO2010112000A1 (en) 2009-04-02 2010-10-07 Electrovac Ag Metal/ceramic substrate
DE102009022877A1 (en) 2009-04-29 2010-11-11 Electrovac Ag Electrical assembly comprises cooler structure and electrical component on metal-ceramic substrate having electrical module, where electrical module comprises two metal-ceramic substrates
WO2010136017A1 (en) 2009-05-27 2010-12-02 Electrovac Ag Cooled electric unit
WO2011000360A2 (en) 2009-07-02 2011-01-06 Electrovac Ag Electronic device
DE102009033029A1 (en) 2009-07-02 2011-01-05 Electrovac Ag Electronic device
DE102010007919A1 (en) 2010-02-12 2011-08-18 curamik electronics GmbH, 92676 Process for producing metal-ceramic composite materials, in particular metal-ceramic substrates, and ceramic composite material produced by this process, in particular metal-ceramic substrate
DE102010007919B4 (en) 2010-02-12 2022-03-03 Rogers Germany Gmbh Process for producing metal-ceramic substrates and metal-ceramic substrate produced by this process
WO2011098071A1 (en) 2010-02-12 2011-08-18 Curamik Electronics Gmbh Method for producing metal-ceramic composite materials, in particular metal-ceramic substrates, and ceramic composite material, in particular metal-ceramic substrate, produced according to said method
DE102010018668A1 (en) 2010-04-07 2012-01-19 Curamik Electronics Gmbh Packaging for metal-ceramic substrates and method for packaging such substrates
DE202010009472U1 (en) 2010-04-07 2011-02-10 Electrovac Ag Packaging for metal-ceramic substrates
WO2011124205A2 (en) 2010-04-07 2011-10-13 Curamik Electronics Gmbh Package for metal-ceramic substrate, and method for packaging such substrates
DE102010024520B4 (en) * 2010-06-21 2017-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for increasing the thermo-mechanical resistance of a metal-ceramic substrate
DE102010024520A1 (en) 2010-06-21 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for increasing thermal mechanical resistance of ceramic substrate for mounting electrical components, involves covering edges of metallization layer by applying electrical isolation fill material between edges and substrate
DE102010024520A9 (en) 2010-06-21 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for increasing the thermo-mechanical resistance of a metal-ceramic substrate
DE102010025311A1 (en) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Formation of metallic layer on ceramic substrate or ceramic layer, involves melting interfacial layer formed from eutectic mixture formed using oxide of metallic material and alumina, on ceramic substrate or ceramic layer
DE102010025313A1 (en) 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Producing structured electrically conductive layer on substrate or layer made of ceramic material, comprises e.g. providing mixture of metallic material and oxide of it, applying mixture on substrate or layer, and structuring
EP2447235A1 (en) 2010-10-27 2012-05-02 Curamik Electronics GmbH Metal-ceramic substrate and method for manufacturing such a substrate
DE102010049499A1 (en) 2010-10-27 2012-05-03 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing such a substrate
DE102012106087B4 (en) * 2011-07-29 2015-10-22 Rogers Germany Gmbh Packaging unit for substrates
DE102012106087A1 (en) 2011-07-29 2013-01-31 Curamik Electronics Gmbh Packaging for substrates and packaging unit with such a packaging
WO2013017124A1 (en) 2011-07-29 2013-02-07 Curamik Electronics Gmbh Packaging for substrates and packaging unit having such packaging
DE102012110382B4 (en) * 2011-12-21 2021-02-18 Rogers Germany Gmbh Substrate and method for manufacturing a substrate
DE102012110382A1 (en) 2011-12-21 2013-06-27 Curamik Electronics Gmbh Substrate i.e. printed circuit board, for electrical circuits and/or modules, has stop structure extending up to level of adjacent exposed outer surface of metallization regions or surface of end layer projects above level
WO2013097845A1 (en) 2011-12-27 2013-07-04 Curamik Electronics Gmbh Process for producing dcb substrates
DE102012101057A1 (en) 2011-12-27 2013-06-27 Curamik Electronics Gmbh Process for the preparation of DCB substrates
DE102012102090A1 (en) 2012-01-31 2013-08-01 Curamik Electronics Gmbh Thermoelectric generator module, metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2013113311A2 (en) 2012-01-31 2013-08-08 Curamik Electronics Gmbh Thermoelectric generator module, metal-ceramic substrate and method for producing such a metal-ceramic substrate
DE102012102611B4 (en) * 2012-02-15 2017-07-27 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102012102611A1 (en) 2012-02-15 2013-08-22 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2013120486A1 (en) 2012-02-15 2013-08-22 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing such a metal-ceramic substrate
WO2013143534A1 (en) 2012-03-30 2013-10-03 Curamik Electronics Gmbh Tunnel furnace
DE102012102787B4 (en) * 2012-03-30 2015-04-16 Rogers Germany Gmbh Method for producing metal-ceramic substrates
DE102013102797A1 (en) 2012-03-30 2013-10-02 Curamik Electronics Gmbh Tunnel furnace for heat treatment of material to be treated, has transport element lubricants and turnable and/or transferable stocks or supporting items or rolling elements are provided between carrier and furnace main portion
WO2013143530A1 (en) 2012-03-30 2013-10-03 Curamik Electronics Gmbh Method for producing metal/ceramic substrates
DE102012102787A1 (en) 2012-03-30 2013-10-02 Curamik Electronics Gmbh Method for producing metal-ceramic substrates
DE102012103786A1 (en) 2012-04-30 2013-10-31 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102012104903A1 (en) 2012-05-10 2013-11-14 Curamik Electronics Gmbh Process for producing metal-ceramic substrates and metal-ceramic substrate produced by this process
WO2014008889A1 (en) 2012-07-10 2014-01-16 Curamik Electronics Gmbh Method for producing metal-ceramic substrates and metal-ceramic substrate
DE102012107399A1 (en) 2012-07-10 2014-01-16 Curamik Electronics Gmbh Process for producing metal-ceramic substrates and metal-ceramic substrate
WO2014008891A2 (en) 2012-07-11 2014-01-16 Curamik Electronics Gmbh Metal-ceramic substrate
DE102012106244A1 (en) 2012-07-11 2014-05-28 Curamik Electronics Gmbh Metal-ceramic substrate
DE102012106244B4 (en) * 2012-07-11 2020-02-20 Rogers Germany Gmbh Metal-ceramic substrate
WO2014026675A2 (en) 2012-08-17 2014-02-20 Curamik Electronics Gmbh Method for producing hollow bodies, particularly for coolers, hollow body and cooler containing electrical and/or electronic components
DE102012107570A1 (en) 2012-08-17 2014-02-20 Curamik Electronics Gmbh Process for the production of hollow bodies, in particular of coolers, hollow bodies and coolers containing electrical or electronic assemblies
DE202013012790U1 (en) 2012-10-29 2019-08-23 Rogers Germany Gmbh Metal-ceramic substrate and electrical or electronic circuit or circuit modules
WO2014067511A1 (en) 2012-10-29 2014-05-08 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102012110322A1 (en) 2012-10-29 2014-04-30 Curamik Electronics Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013102540A1 (en) 2013-02-22 2014-08-28 Curamik Electronics Gmbh Metal-ceramic substrate, module arrangement and method for producing a metal-ceramic substrate
WO2014127764A1 (en) 2013-02-22 2014-08-28 Curamik Electronics Gmbh Metal-ceramic substrate, module arrangement, and method for producing a metal-ceramic substrate
DE102013102540B4 (en) 2013-02-22 2019-07-04 Rogers Germany Gmbh Metal-ceramic substrate, module arrangement and method for producing a metal-ceramic substrate
DE102013104739A1 (en) 2013-03-14 2014-09-18 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013102637A1 (en) 2013-03-14 2014-09-18 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2014139519A2 (en) 2013-03-14 2014-09-18 Rogers Germany Gmbh Metal ceramic substrate and method for producing a metal ceramic substrate
DE102013104739B4 (en) 2013-03-14 2022-10-27 Rogers Germany Gmbh Metal-ceramic substrates and method for producing a metal-ceramic substrate
DE102013104055A1 (en) 2013-04-22 2014-10-23 Rogers Germany Gmbh A base substrate, a metal-ceramic substrate made of a base substrate and a method for producing a base substrate
WO2014173391A1 (en) 2013-04-22 2014-10-30 Rogers Germany Gmbh Base substrate, metal-ceramic substrate produced from a base substrate and process for producing a base substrate
WO2014190968A1 (en) 2013-05-29 2014-12-04 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013105528A1 (en) 2013-05-29 2014-12-18 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013105528B4 (en) 2013-05-29 2021-09-02 Rogers Germany Gmbh Metal-ceramic substrate and a method for producing a metal-ceramic substrate
DE102013108610A1 (en) 2013-08-06 2015-02-12 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
WO2015018397A2 (en) 2013-08-06 2015-02-12 Rogers Germany Gmbh Metal-ceramic substrate and method for producing a metal-ceramic substrate
DE102013013842A1 (en) 2013-08-20 2015-02-26 Rogers Germany Gmbh Process for producing metal-ceramic substrates and metal-ceramic substrate
WO2015024541A1 (en) 2013-08-20 2015-02-26 Rogers Germany Gmbh Method for producing metal-ceramic substrates, and metal-ceramic substrate
DE102013113736A1 (en) 2013-12-10 2015-06-11 Rogers Germany Gmbh Method for producing a metal-ceramic substrate and metal-ceramic substrate
WO2015085991A1 (en) 2013-12-10 2015-06-18 Rogers Germany Gmbh Method for producing a metal-ceramic substrate
DE102014215377A1 (en) 2014-08-05 2016-02-11 Heraeus Deutschland GmbH & Co. KG Method for producing double-sided metallized ceramic substrates
WO2016020207A1 (en) 2014-08-05 2016-02-11 Heraeus Deutschland GmbH & Co. KG Method for producing double-sided metallised ceramic substrates
DE102014224588A1 (en) 2014-12-02 2016-06-02 Heraeus Deutschland GmbH & Co. KG Method for producing metallized ceramic substrates
DE102014224588B4 (en) 2014-12-02 2019-08-01 Heraeus Deutschland GmbH & Co. KG Method for producing a plate-shaped metallized ceramic substrate, carrier for producing the substrate and use of the carrier
DE102014119386A1 (en) 2014-12-22 2016-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal-ceramic substrate and associated metal-ceramic substrate
DE102014119386B4 (en) 2014-12-22 2019-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal-ceramic substrate and associated metal-ceramic substrate
EP3184501A2 (en) 2015-12-22 2017-06-28 Heraeus Deutschland GmbH & Co. KG Enhanced direct-bonded copper substrates by means of thick-film paste
DE202016008371U1 (en) 2016-02-26 2017-09-11 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008287U1 (en) 2016-02-26 2017-06-21 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE102016203030A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144332A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144330A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008370U1 (en) 2016-02-26 2017-09-11 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
EP3210956A1 (en) 2016-02-26 2017-08-30 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
EP3210956B1 (en) 2016-02-26 2018-04-11 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
WO2017144334A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper/ceramic composite
EP3210957A1 (en) 2016-02-26 2017-08-30 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
EP3210951A1 (en) 2016-02-26 2017-08-30 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
EP3210957B1 (en) 2016-02-26 2019-01-02 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
WO2017144329A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008307U1 (en) 2016-02-26 2017-07-10 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144333A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE202016008286U1 (en) 2016-02-26 2017-06-21 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE102016203112A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2017144331A1 (en) 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
US10759714B2 (en) 2016-09-30 2020-09-01 Infineon Technologies Ag Method for producing a metal-ceramic substrate
EP3301082A1 (en) 2016-09-30 2018-04-04 Infineon Technologies AG Method for producing a metal-ceramic substrate, and a metal-ceramic substrate
EP3326986A1 (en) 2016-11-28 2018-05-30 Infineon Technologies AG Process for the manufacture of a metal-ceramic substrate
DE102016125348A1 (en) 2016-12-22 2018-06-28 Rogers Germany Gmbh Carrier substrate for electrical components and method for producing a carrier substrate
DE102017114891A1 (en) 2017-07-04 2019-01-10 Rogers Germany Gmbh Process for producing a via in a carrier layer made of a ceramic and carrier layer with plated through hole
WO2019008004A1 (en) 2017-07-04 2019-01-10 Rogers Germany Gmbh Method for producing a via in a carrier layer produced from a ceramic and carrier layer having a via
WO2019052924A1 (en) 2017-09-12 2019-03-21 Rogers Germany Gmbh Adapter element for connecting a component, such as a laser diode, to a heat sink, a system comprising a laser diode, a heat sink and an adapter element and method for producing an adapter element
DE102017121015A1 (en) 2017-09-12 2019-03-14 Rogers Germany Gmbh Adapter element for connecting a component such as a laser diode to a heat sink, a system of a laser diode, a heat sink and an adapter element and method for producing an adapter element
DE202018006215U1 (en) 2017-09-12 2019-08-19 Rogers Germany Gmbh Adapter element for a composite for connecting a component such as a laser diode to a heat sink and a composite of a plurality of adapter elements
DE102017128308A1 (en) 2017-11-29 2019-05-29 Rogers Germany Gmbh Method for producing a metal-ceramic substrate, method for producing a metal semi-finished product and metal-ceramic substrate
DE102017128308B4 (en) 2017-11-29 2020-04-23 Rogers Germany Gmbh Process for the production of a metal-ceramic substrate
DE102017128316B4 (en) 2017-11-29 2019-12-05 Rogers Germany Gmbh Method for producing a metal-ceramic substrate and metal-ceramic substrate
WO2019105814A1 (en) 2017-11-29 2019-06-06 Rogers Germany Gmbh Method for producing a semi-finished metal product, method for producing a metal-ceramic substrate, and metal-ceramic substrate
DE102017128316A1 (en) 2017-11-29 2019-05-29 Rogers Germany Gmbh Method for producing a metal semi-finished product, method for producing a metal-ceramic substrate and metal-ceramic substrate
WO2019141733A1 (en) * 2018-01-19 2019-07-25 Osram Opto Semiconductors Gmbh Method for producing a housing cover for a laser component and housing cover for a laser component and laser component
US11652331B2 (en) 2018-01-19 2023-05-16 Osram Oled Gmbh Method for producing a housing cover for a laser component and housing cover for a laser component and laser component
DE102018207955B4 (en) 2018-05-22 2023-05-17 Schweizer Electronic Ag Printed circuit board module with integrated power electronic metal-ceramic module and method for its production

Also Published As

Publication number Publication date
JPS4917381A (en) 1974-02-15
FR2181049A1 (en) 1973-11-30
JPS5713515B2 (en) 1982-03-17
FR2181049B1 (en) 1980-04-11
IT983841B (en) 1974-11-11
DE2319854C2 (en) 1983-12-29
GB1394322A (en) 1975-05-14
US3766634A (en) 1973-10-23

Similar Documents

Publication Publication Date Title
DE2319854A1 (en) PROCESS FOR DIRECTLY JOINING METALS WITH NON-METALLIC SUBSTRATES
DE69731740T2 (en) ELECTRIC HEATING ELEMENT AND THIS VERSION OF TENSIONING DEVICE
DE2633869C2 (en) Method of bonding copper to a substrate made of ceramic material
DE69817648T2 (en) A method of manufacturing a ceramic-metal composite substrate and brazing material for use in this method
DE3332482C2 (en)
DE965988C (en) Process for applying a vacuum-tight, solderable metal layer to ceramic bodies
CH645208A5 (en) PROCESS FOR MAKING ELECTRICAL CONTACTS ON SEMICONDUCTOR COMPONENTS.
DE2215353A1 (en) Diffusion bonding process for superalloys
DE3542889A1 (en) METHOD FOR DEVELOPING EXCEPTIONALLY STRONG CONNECTIONS BETWEEN METALS AND CERAMIC MATERIALS BY HARD SOLDERING AT TEMPERATURES THAT DO NOT EXCEED 750 (DEGREE) C.
DE1927454A1 (en) Superconducting connection between two superconductors and the process for their production
DE3837788C2 (en) Process for the direct connection of a copper foil to a substrate made of electrically insulating material
CH674521A5 (en)
DE2340018C2 (en) Method for connecting sintered permanent magnets made of rare earth cobalt compounds
CH660176A5 (en) METAL-CERAMIC COMPOSITE ELEMENT AND METHOD FOR THE PRODUCTION THEREOF.
DE2235376C3 (en) Use of a solder alloy for soldering parts made of difficult-to-solder material to one another or to a metal part that is difficult to solder
EP0342545A1 (en) Fe-Cr-Ni-B-SiC solder foil
EP1412307B1 (en) Method for the production of metal-ceramic composite materials, especially metal-ceramic substrates
DE1252035B (en)
DE60217601T2 (en) Metal-ceramic composite article and method of making the same
AT202056B (en) Method of joining ceramic objects to one another or to metal objects
DE2263116A1 (en) METHOD OF SPLICE OF CONNECTING SUPRAL CONDUCERS
DE968557C (en) Method for joining ceramic objects with one another or with metal objects
AT223114B (en) Method of joining ceramic material to metal by soldering and soldering material
EP1241148B1 (en) Aluminium nitride substrate and method of preparing this substrate for joining with a copper foil
EP0267648A1 (en) Method of brazing ceramic parts

Legal Events

Date Code Title Description
OD Request for examination
D2 Grant after examination
8363 Opposition against the patent
8365 Fully valid after opposition proceedings