DE20023844U1 - Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat - Google Patents

Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat Download PDF

Info

Publication number
DE20023844U1
DE20023844U1 DE20023844U DE20023844U DE20023844U1 DE 20023844 U1 DE20023844 U1 DE 20023844U1 DE 20023844 U DE20023844 U DE 20023844U DE 20023844 U DE20023844 U DE 20023844U DE 20023844 U1 DE20023844 U1 DE 20023844U1
Authority
DE
Germany
Prior art keywords
fibers
nonwoven fabric
conductive nonwoven
fabric according
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE20023844U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Priority to DE20023844U priority Critical patent/DE20023844U1/en
Priority claimed from DE10050512A external-priority patent/DE10050512A1/en
Publication of DE20023844U1 publication Critical patent/DE20023844U1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4366Phenol series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Electrically conductive fleece (A) is carbonized and/or graphitized and has the following properties: bending strength below 8 Taber; density 0.1-0.5 g/cm3>; thickness 80-500 mu m; electrical conductivity 10-300 S/cm in the machine direction and 30-220 S/cm2> normal to this.

Description

Die Erfindung betrifft einen leitfähigen Vliesstoff.The The invention relates to a conductive Nonwoven fabric.

Leitfähige Vliesstoffe werden als Gasdiffusionsschichten in Membrane Elektrode Assemblies (MEA's) für PEM-(proton exchange membrane)-Brennstoffzellen eingesetzt und müssen elektronenleitfähig und gasdurchlässig sein. Sie müssen weiterhin Kanalstrukturen zum Abtransport des während des Betriebs der Brennstoffzellen gebildeten Reaktionswassers aufweisen und eine Eigensteifigkeit bei limitierter Dichte besitzen. Weiterhin sollen Sie zumindest auf einer Seite eine hohe Oberflächenglätte aufweisen.Conductive nonwovens are used as gas diffusion layers in membrane electrode assemblies (MEA's) for PEM (proton exchange membrane) fuel cells used and must elektronenleitfähig and gas permeable be. You must continue Channel structures for the removal of during operation of the fuel cell have formed reaction water and an inherent rigidity with limited density. Furthermore you should at least have a high surface smoothness on one side.

Üblicherweise werden heute zweidimensionale textile Werkstoffe wie leitfähige Gewebe oder nassgelegte Vliesstoffe als Ausgangsstoffe für Gasdiffusionsschichten verwendet. Aus dem Dokument JP 06/123050 sind Vliesstoffe mit Dicken von 0,3 bis 0,5 mm bekannt, die aus carbonisierungsfähigen polymeren Faserstoffen wie Polyacrylnitril (PAN) oder oxidierten Polyacrylnitrilen mit Flächengewichten von 100 bis 200 g/m2 bestehen. Zum Erzielen der geforderten elektrischen Leitfähigkeit werden diese textilen Flächengebilde bei Temperaturen zwischen 1000 und 2100°C carbonisiert, wobei ein Kohlenstoffgehalt von ca. 90 bis 96 % erzielt wird und gegebenenfalls graphitisiert, wobei ein Kohlenstoffgehalt > 99 % erreicht wird. Mit dem Carbonisierungs- bzw. Graphitisierungsprozess ist eine Reduzierung des Flächengewichts um 30 bis 60 Gewichtsprozent verbunden. Üblicherweise sind diese nunmehr leitfähigen Flächenstoffe steif und weisen eine relativ offene Struktur auf. Es ist bekannt, zu Erzielung der geforderten Steifigkeit und zur Verbesserung der Leitfähigkeit in x, y und z-Richtung die Gewebe oder Vliesstoffe mit Dispersionen aus leitfähigen Partikeln wie Graphit oder Russ zu imprägnieren oder zu beschichten und zur Erzielung einer hohen Oberflächenglätte anschließend zu pressen.Conventionally, two-dimensional textile materials such as conductive fabrics or wet-laid nonwovens are currently used as starting materials for gas diffusion layers. Non-woven fabrics with thicknesses of 0.3 to 0.5 mm are known from document JP 06/123050, which consist of carbonizable polymer fiber materials such as polyacrylonitrile (PAN) or oxidized polyacrylonitriles with basis weights of 100 to 200 g / m 2 . To achieve the required electrical conductivity of these fabrics are carbonized at temperatures between 1000 and 2100 ° C, with a carbon content of about 90 to 96% is achieved and optionally graphitized, with a carbon content> 99% is achieved. The carbonization or graphitization process involves a 30 to 60 weight percent reduction in basis weight. Usually, these now conductive fabrics are stiff and have a relatively open structure. It is known, in order to achieve the required rigidity and to improve the conductivity in the x, y and z-direction, to impregnate or coat the fabrics or nonwovens with dispersions of conductive particles such as graphite or carbon black and subsequently to achieve a high surface smoothness.

Weiterhin ist es aus den Dokumenten JP 10/77624 oder JP 10/77625 bekannt, Gasdiffusionsschichten direkt aus Kohlenstofffasern in einem Nasslegeverfahren herzustellen, um damit ein anschließendes Karbonisieren der Precurserfasern entbehrlich zu machen. Als Bindemittel für die Kohlenstofffasern werden dabei Polyvinylalkohol (PVA)-Lösungen oder Polyäthylenterephthalat (PET)-Substrate eingesetzt. Anschließend können die hydrophoben Eigenschaften der Gasdiffusionsschicht noch durch Ausrüsten mit einem Hydrophobierungsmittel wie Polytetrafluorethylen (PTFE)-Dispersionen und nachfolgendes Sintern eingestellt werden.Farther it is known from the documents JP 10/77624 or JP 10/77625, Gas diffusion layers directly from carbon fibers in a wet laying process to subsequently carbonize the precursor fibers dispensable. As a binder for the carbon fibers while polyvinyl alcohol (PVA) solutions or polyethylene terephthalate (PET) substrates used. Subsequently, the hydrophobic properties the gas diffusion layer still by equipping with a hydrophobing agent such as polytetrafluoroethylene (PTFE) dispersions and the following Sintering can be adjusted.

Die bekannten Verfahren zur Herstellung von Gasdiffusionsschichten für PEM-Brennstoffzellen besitzen den Nachteil, dass sie für den Transport und die Verarbeitung nicht aufgerollt werden können und dass sie zur Erzielung der geforderten Leitfähigkeiten mit leitfähigen Füllstoffen gefüllt werden müssen.The known methods for the production of gas diffusion layers for PEM fuel cells have the disadvantage of being for transportation and processing can not be rolled up and that they achieve the required conductivities with conductive fillers filled Need to become.

Der Erfindung liegt die Aufgabe zugrunde, einen leitfähigen Vliesstoff anzugeben, der die Nachteile des Standes der Technik überwindet.Of the Invention is based on the object, a conductive nonwoven fabric indicate that overcomes the disadvantages of the prior art.

Erfindungsgemäß wird die Aufgabe durch einen leitfähigen Vliesstoff gelöst, der karbonisiert und/oder graphitiert ist und eine Biegesteifigkeit < 8 Taber, eine Dichte von 0,1 g/cm3 bis 0,5 g/cm3, eine Dicke von 80 μm bis 500 μm und einer elektrischen Leitfähigkeit von 10 bis 300 S/cm in der Vliesstoffbahn und 30 bis 220 S/cm2 senkrecht zur Vliesstoffbahn besitzt.According to the invention, the object is achieved by a conductive nonwoven fabric which is carbonized and / or graphitized and has a flexural strength <8 Taber, a density of 0.1 g / cm 3 to 0.5 g / cm 3 , a thickness of 80 μm to 500 μm and an electrical conductivity of 10 to 300 S / cm in the nonwoven web and 30 to 220 S / cm 2 perpendicular to the nonwoven web.

Der erfindungsgemäße leitfähige Vliesstoff wird erhalten aus präoxidierten Fasern als Vorstufe für Carbonfasern, die gegebenenfalls mit bis zu 30 Gew.% einer als Bindefaser dienenden Precurser- sowie mit bis zu 30 Gew.% einer wasserlöslichen Faser mit Fasertitern von 0,5 bis 6,7 dtex gemischt, zu einem Faserflor mit einem Flächengewicht von 60 bis 300 g/m2 abgelegt, durch Hochdruck-Fluidstrahlen bei Drücken von 100 bis 300 bar des Faserflors verfestigt, durch Kalandrierung des verfestigten Faservlieses um 50 bis 90 % seiner Ausgangsdicke verdichtet und unter einer Schutzgasatmosphäre bei 800°C bis 2500°C karbonisiert und/oder graphitiert sind. Der so erhaltene leitfähige Vliesstoff weist eine Kanalstruktur in Richtung der Schichtdicke des Vliesstoffes auf. Die präoxidierten Fasern und gegebenenfalls Binde- sowie wasserlöslichen Fasern werden homogen gemischt und zu einem Faserflor abgelegt. Der Faserflor mit Flächengewichten von 30 bis 300 g/m2 wird einer Verfestigungseinheit zugeführt, bei der die Fasern mittels hochenergetischer Wasserstrahlen bei Drücken von 100 bis 300 bar verwirbelt und miteinander verschlungen werden. Ein Teil der Fasern weist nach dieser Behandlung eine Orientierung in Richtung der Z-Richtung (Dicke) des Vliesstoffes auf.The conductive nonwoven fabric according to the invention is obtained from preoxidized fibers as precursor for carbon fibers, optionally with up to 30% by weight of a precursor serving as binder fiber and with up to 30% by weight of a water-soluble fiber with fiber titers of 0.5 to 6.7 Dtex mixed, laid down to a batt with a basis weight of 60 to 300 g / m 2 , solidified by high-pressure fluid jets at pressures of 100 to 300 bar of the batt, compacted by calendering the consolidated batt by 50 to 90% of its original thickness and under a Inert gas atmosphere at 800 ° C to 2500 ° C carbonized and / or graphitized. The conductive nonwoven fabric thus obtained has a channel structure in the direction of the layer thickness of the nonwoven fabric. The pre-oxidized fibers and optionally binding and water-soluble fibers are homogeneously mixed and deposited into a batt. The batt with basis weights of 30 to 300 g / m 2 is fed to a solidification unit in which the fibers are entangled by means of high-energy water jets at pressures of 100 to 300 bar and intertwined with each other. A part of the fibers after this treatment has an orientation in the direction of the Z-direction (thickness) of the nonwoven fabric.

Vorzugsweise ist der leitfähige Vliesstoff einer, bei dem 80 bis 90 Gew.% einer Mischung von Binde- und präoxidierten Faser im Gewichtsverhältnis von 0:1 bis 1:3 und 10 bis 20 Gew.% einer wasserlöslichen Faser mit Fasertitern von 0,8 bis 3,3 dtex eingesetzt werden. Diese Zusammensetzung der Fasern und deren Feinheiten führen zu leitfähigen Vliesstoffen mit Porositäten von 70 bis 95. Vorzugsweise ist der leitfähige Vliesstoff weiterhin einer, bei dem zwei unterschiedlich wasserlösliche Fasern verwendet werden, von denen eine bei Temperaturen von 10 bis 40°C wasserlöslich und die andere bei Temperaturen von 80 bis 120°C wasserlöslich ist. Durch die Verwendung von unterschiedlich wasserlöslichen Fasern werden die Fasern im Temperaturbereich von 10 bis 40 °C schon bei der Wasserstrahlverfestigung des Faserflores herausgelöst und definierte Kanäle in der Vliesschicht ausgebildet, die eine verbesserte Gasdurchlässigkeit und einen verbesserten Abtransport des entstehenden Reaktionswassers in der daraus hergestellten Gasdiffusionsschicht gestatten.Preferably, the conductive nonwoven fabric is one in which 80 to 90% by weight of a mixture of binder and pre-oxidized fiber in a weight ratio of 0: 1 to 1: 3 and 10 to 20 wt.% Of a water-soluble fiber with fiber titers of 0.8 to 3.3 dtex can be used. This composition of fibers and their fineness results in conductive nonwovens having porosities of 70 to 95. Preferably, the conductive nonwoven fabric is further one using two different water-soluble fibers, one of which is water-soluble at temperatures of 10 to 40 ° C and the other is water-soluble at temperatures of 80 to 120 ° C. Through the use of water-soluble fibers, the fibers in the temperature range of 10 to 40 ° C already in the hydroentanglement leached out of the batt and defined channels formed in the nonwoven layer, which allow improved gas permeability and improved removal of the resulting reaction water in the gas diffusion layer produced therefrom.

Die erst im Temperaturbereich von 80 bis 120 °C wasserlöslichen Fasern verbleiben im verfestigten Vlies und werden im feuchten Zustand bedingt durch ihre Klebrigkeit zu Bindefasern. Das Vlies wird dazu im noch feuchten Zustand durch einen Kalander geführt und verdichtet.The only in the temperature range of 80 to 120 ° C water-soluble fibers remain in the solidified fleece and are conditioned in the wet state their stickiness to binding fibers. The fleece is in the still moist Condition passed through a calender and condensed.

Vorzugsweise ist der leitfähige Vliesstoff einer, bei dem das Verhältnis der wasserlöslichen Fasern zueinander 3:1 bis 1:3 beträgt. Durch dieses Verhältnis ist die Steifigkeit der Gasdiffusionsschicht und deren Porosität einstellbar.Preferably is the conductive one Nonwoven fabric one in which the ratio of water-soluble Fibers to each other 3: 1 to 1: 3. By this ratio is the stiffness of the gas diffusion layer and its porosity adjustable.

Besonders bevorzugt ist ein leitfähiger Vliesstoff der aus mehreren Faserschichten mit unterschiedlichen Porengrößen aufgebaut ist, wobei die Fasern der einzelnen Schichten unterschiedliche Titer besitzen. Der progressive Aufbau des leitfähigen Vliesstoffes aus mehreren Faserschichten begünstigt die Transportreaktion zur Protonenaustauschermembran und den Abtransport des gebildeten Reaktionswassers.Especially preferred is a conductive Nonwoven made of several fiber layers with different Built up pore sizes is, wherein the fibers of the individual layers different titers have. The progressive structure of the conductive nonwoven fabric of several Fibrous layers favor the Transport reaction to the proton exchange membrane and the removal the reaction water formed.

Besonders bevorzugt sind leitfähige Vliesstoffe bei denen als Precurserfasern teilvernetzte Phenolharzfasern, Polyester- und/oder Polypropylenfasern als präoxidierte Fasern Homo-, Co- und/oder Terpolymere von PAN (Polyacrylnitril)-Fasern, Cellulosefaser und/oder Phenolharzfasern und als wasserlösliche Fasern PVA (Polyvinylalkohol)-Fasern eingesetzt werden. Die aus einem Vlies dieser Fasern erhaltene Gasdiffusionsfaserschicht lässt sich zum einen gut karbonisieren und zum anderen gut hinsichtlich ihrer Porenverteilung und ihrer Steifigkeit einstellen.Especially preferred are conductive Nonwovens in which as precursor fibers partially crosslinked phenolic resin fibers, Polyester and / or polypropylene fibers as pre-oxidized fibers homo-, co- and / or Terpolymers of PAN (polyacrylonitrile) fibers, cellulose fiber and / or Phenolic resin fibers and as water-soluble Fibers PVA (polyvinyl alcohol) fibers are used. From A nonwoven fabric of these fibers obtained gas diffusion fiber layer can be on the one hand carbonize well and on the other hand good in terms of their Adjust pore distribution and its rigidity.

Besonders bevorzugt ist ein leitfähiger Vliesstoff, der durch Aufbringen eines Hydrophobierungsmittels wie PTFE (Polytetrafluorethylen) hydrophobiert ist.Especially preferred is a conductive Nonwoven fabric obtained by applying a hydrophobing agent such as PTFE (polytetrafluoroethylene) is hydrophobicized.

Durch die Hydrophobierung können die Transportvorgänge an den Phasengrenzflächen weiter verbessert werden.By the hydrophobization can the transport operations at the phase interfaces be further improved.

Erfindungsgemäß wird der leitfähige Vliesstoff in der Weise hergestellt, dass

  • a) präoxidierte Fasern gegebenenfalls im Gemisch mit bis zu 30 Gew.% als Bindefasern dienenden carbonisierfähigen Precurserfasern und bis zu 30 Gew.% wasserlöslicher Fasern gemischt,
  • b) auf trockenem Wege mittels Krempel- und/oder Kardiermaschinen zu einem Faserflor mit einem Flächengewicht von 60 bis 300 g/m2 gelegt,
  • c) durch Hochdruck-Fluidstrahlen bei Drücken von 100 bis 300 bar verfestigt,
  • d) bis zu einer Restfeuchte von 10 bis 50 % vorgetrocknet,
  • e) bei Anpreßdrücken von 20 bis 1000 N/cm2 und Temperaturen von 100 bis 400°C kalandriert und
  • f) bei Temperaturen zwischen 800 und 2500°C carbonisiert und/oder graphitierf werden.
According to the invention, the conductive nonwoven fabric is produced in such a way that
  • a) pre-oxidized fibers optionally mixed in a mixture with up to 30% by weight of carboniserable precursor fibers serving as binder fibers and up to 30% by weight of water-soluble fibers,
  • b) laid dry by means of carding and / or carding machines to form a batt with a basis weight of 60 to 300 g / m 2 ,
  • c) solidified by high-pressure fluid jets at pressures of 100 to 300 bar,
  • d) predried to a residual moisture of 10 to 50%,
  • e) calendered at contact pressures of 20 to 1000 N / cm 2 and temperatures of 100 to 400 ° C and
  • f) be carbonized and / or graphitized at temperatures between 800 and 2500 ° C.

Vorzugsweise erfolgt die Herstellung dadurch, dass im Schritt

  • a) Fasern mit einem Fasertiter von 0,8 bis 3,3 dtex und einer Faserlänge von 30 bis 70 mm eingesetzt werden,
  • b) Faserflore mit einem Flächengewicht von 30 bis 180 g/m2 gelegt werden und
  • e) bei Anpreßdrücken von 40 bis 700 N/cm2 und Temperaturen von 180 bis 300°C kalandriert und
  • f) bei Temperaturen zwischen 1000 und 1800°C karbonisiert sowie graphitiert wird.
Preferably, the preparation is characterized in that in step
  • a) fibers with a fiber titer of 0.8 to 3.3 dtex and a fiber length of 30 to 70 mm are used,
  • b) fibrous webs with a basis weight of 30 to 180 g / m 2 are laid and
  • e) calendered at contact pressures of 40 to 700 N / cm 2 and temperatures of 180 to 300 ° C and
  • f) carbonized and graphitized at temperatures between 1000 and 1800 ° C.

Besonders bevorzugt ist, dass im Schritt

  • e) mindestens 2 Vliesstofflagen zusammen kalandriert werden.
It is particularly preferred that in step
  • e) at least 2 nonwoven layers are calendered together.

Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert.The Invention will be explained in more detail by way of examples.

Beispiel 1example 1

Eine präoxidierte PAN-Faser (oxidized PAN fiber – OPF) mit einem Fasertiter von 0,8 dtex und Faserlängen von 60 mm wird zu einem Faserflor mit einem Flächengewicht von 100 g/m2 auf einer Kadieranlage abgelegt. Der Faserflor wird einer Verfestigungseinheit zugeführt, bei der die Fasern mittels hochenergetischer Wasserstrahlen beidseitig bei Drücken von jeweils ca. 100 bar in der ersten Stufe und jeweils ca. 170 bar in einer zweiten Stufe verwirbelt und miteinander verschlungen werden. Der Vliesstoff wird bis zu einer Restfeuchte von 15 bis 20% vorgetrocknet. Im noch feuchten Zustand wird der Vliesstoff einem Filzbandkalander zugeführt und bei einer Temperatur von ca. 220°C und 20 bar verdichtet. Durch den Kalandrierprozeß wird die Dicke des wasserstrahlverfestigten Vliesstoffes von 0,8 mm auf eine Dicke von 0,4 bis 0,5 mm reduziert. Anschließend wird der Vliesstoff einer Karbonisierungseinheit zugeführt in der unter einer Stickstoffatmosphäre bei etwa 1000 bis 1400°C die Karbonisierung erfolgt. Der erhaltene leitfähige Vliesstoff weist bei einer Biegesteifigkeit < 1 Taber und einer Luftdurchlässigkeit von 6,0 l/m2sPa eine Querleitfähigkeit, d.h. in der Schichtebene von 12 S/cm in Maschinenrichtung, 18 S/cm quer zur Maschinenrichtung auf und seine Durchgangsleitfähigkeit, d.h. senkrecht zur Schichtebene beträgt 90 S/cm2, wobei dieser Wert bei einer Flächenpressung von 4,07 bar ermittelt wurde. Seine Dichte beträgt 0,16 g/cm3, die Porosität 91% und der mittlere Porendurchmesser 25 μm.A pre-oxidized PAN fiber (OPF) with a fiber titer of 0.8 dtex and fiber lengths of 60 mm is deposited on a batt with a surface weight of 100 g / m 2 on a kadieranlage. The batt is fed to a solidification unit, in which the fibers are vortexed on both sides by means of high-energy water jets at pressures of approximately 100 bar in the first stage and approximately 170 bar in a second stage and intertwined with each other. The nonwoven fabric is pre-dried to a residual moisture of 15 to 20%. While still wet, the nonwoven fabric is fed to a felt belt calender and compressed at a temperature of about 220 ° C and 20 bar. The calendering process reduces the thickness of the hydroentangled nonwoven fabric from 0.8 mm to a thickness of 0.4 to 0.5 mm. Subsequently, the nonwoven fabric is fed to a Karbonisierungseinheit in which under a nitrogen atmosphere at about 1000 to 1400 ° C, the carbonization takes place. The conductive nonwoven fabric obtained has a transverse conductivity, ie, 12 S / cm in the machine direction, 18 S / cm transversely to the machine direction, and its through conductivity, with a flexural strength <1 Taber and an air permeability of 6.0 l / m 2 sPa. ie perpendicular to the layer plane is 90 S / cm 2 , this value was determined at a surface pressure of 4.07 bar. Its density is 0.16 g / cm 3 , the porosity 91% and the average pore diameter 25 μm.

Beispiel 2Example 2

Ein zweischichtiger Faserflor bestehend aus einer ersten Florlage mit einem Flächengewicht von 50 g/m2 aus 80 Gew.% OPF mit einem Fasertiter von 1,2 dtex und einer Faserlänge von 60 mm sowie 20 Gew.% einer TTP-Faser (textile tow precurser) mit einem Fasertiter von 1,7 dtex und einer Faserlänge von 40 mm und einer zweiten Florlage mit einem Flächengewicht von 50 g/m2 aus 80 Gew.% OPF mit einem Fasertiter von 0,8 dtex und einer Faserlänge von 60 mm sowie 20 Gew.% einer TTP-Faser mit einem Fasertiter von 0,8 dtex und einer Faserlänge von 40 mm, die auf einer Kardieranlage quergelegt wurden, werden einer Verfestigungseinheit zugeführt, bei der die Fasern mittels hochenergetischer Wasserstrahlen beidseitig bei Drücken von jeweils ca. 120 bar in der ersten Stufe und jeweils ca. 190 bar in einer zweiten Stufe verwirbelt und miteinander verschlungen werden. Der Vliesstoff wird bis zu einer Restfeuchte von ca. 10% vorgetrocknet. Im noch feuchten Zustand wird der Vliesstoff einem Walzenkalander mit einer Stahlwalze und einer Baumwolle beschichteten Walze zugeführt, wobei die Temperatur der Stahlwalze ca. 210°C und die der Baumwolle beschichteten Walze ca. 150°C betrug und mit einem Liniendruck von 80 kp/cm2 verdichtet wird. Durch den Kalandrierprozeß wird die Dicke des wasserstrahlverfestigten Vliesstoffes von 0,8 mm auf eine Dicke von 0,16 mm reduziert. Anschließend wird der Vliesstoff einer Karbonisierungseinheit zugeführt in der unter einer Stickstoffatmosphäre bei etwa 1000 bis 1400°C die Karbonisierung erfolgt. Der erhaltene leitfähige Vliesstoff weist bei einer Biegesteifigkeit von 1 Taber und einer Luftdurchlässigkeit von 2 l/m2sPa eine Querleitfähigkeit, d.h. in der Schichtebene von 54 S/cm in Maschinenrichtung, 54 S/cm quer zur Maschinenrichtung auf und seine Durchgangsleitfähigkeit, d.h. senkrecht zur Schichtebene beträgt 120 S/cm2, wobei dieser Wert bei einer Flächenpressung von 4,07 bar ermittelt wurde. Seine Dichte beträgt 0,32 g/cm3, die Porosität 82 % und der mittlere Porendurchmesser 15 μm.A two-layer fibrous web consisting of a first pile layer with a basis weight of 50 g / m 2 of 80 wt.% OPF with a fiber titer of 1.2 dtex and a fiber length of 60 mm and 20 wt.% Of a TTP fiber (textile tow precurser ) with a fiber denier of 1.7 dtex and a fiber length of 40 mm and a second pile layer with a basis weight of 50 g / m 2 of 80 wt.% OPF with a fiber titer of 0.8 dtex and a fiber length of 60 mm and 20 % By weight of a TTP fiber with a fiber denier of 0.8 dtex and a fiber length of 40 mm, which were transversely laid on a carding machine, are fed to a solidification unit in which the fibers by means of high-energy water jets on both sides at pressures of about 120 bar in the first stage and each about 190 bar in a second stage swirled and entwined with each other. The nonwoven fabric is pre-dried to a residual moisture content of about 10%. When still wet, the nonwoven fabric is fed to a roll calender with a steel roll and a cotton coated roll, wherein the temperature of the steel roll about 210 ° C and the cotton coated roll was about 150 ° C and with a line pressure of 80 kgf / cm 2 is compressed. The calendering process reduces the thickness of the hydroentangled nonwoven fabric from 0.8 mm to a thickness of 0.16 mm. Subsequently, the nonwoven fabric is fed to a Karbonisierungseinheit in which under a nitrogen atmosphere at about 1000 to 1400 ° C, the carbonization takes place. The conductive nonwoven fabric obtained, with a flexural strength of 1 Taber and an air permeability of 2 l / m 2 sPa, has a transverse conductivity, ie in the layer plane of 54 S / cm in the machine direction, 54 S / cm transversely to the machine direction and its transmission conductivity, ie perpendicular to the layer plane is 120 S / cm 2 , this value being determined at a surface pressure of 4.07 bar. Its density is 0.32 g / cm 3 , the porosity 82% and the average pore diameter 15 microns.

Beispiel 3Example 3

Eine präoxidierte PAN-Faser (oxidized PAN fiber – OPF) mit einem Fasertiter von 0,8 dtex und Faserlängen von 60 mm wird zu einem Faserflor mit einem Flächengewicht von 100 g/m2 auf einer Kadieranlage abgelegt. Der Faserflor wird einer Verfestigungseinheit zugeführt, bei der die Fasern mittels hochenergetischer Wasserstrahlen beidseitig bei Drücken von jeweils ca. 100 bar in der ersten Stufe und jeweils ca. 170 bar in einer zweiten Stufe verwirbelt und miteinander verschlungen werden. Der Vliesstoff wird bis zu einer Restfeuchte von 15 bis 20% vorgetrocknet. Im noch feuchten Zustand wird der Vliesstoff einem Kalander bestehend aus einer Stahl- und einer Kunststoffwalze zugeführt und bei einer Temperatur von ca. 300°C und 250 kp/cm2 verdichtet. Durch den Kalandrierprozeß wird die Dicke des wasserstrahlverfestigten Vliesstoffes von 0,9 mm auf eine Dicke von 0,14 mm reduziert. Anschließend wird der Vliesstoff einer Carbonisierungseinheit zugeführt in der unter einer Stickstoffatmosphäre bei etwa 1000 bis 1400°C die Carbonisierung erfolgt. Der erhaltene leitfähige Vliesstoff weist bei einer Biegesteifigkeit < 1 Taber und einer Luftdurchlässigkeit von 1,0 l/m2sPa eine Querleitfähigkeit, d.h. in der Schichtebene von 93,7 S/cm in Maschinenrichtung, 73 S/cm quer zur Maschinenrichtung auf und seine Durchgangsleitfähigkeit, d.h. senkrecht zur Schichtebene beträgt 195 S/cm2, wobei dieser Wert bei einer Flächenpressung von 4,07 bar ermittelt wurde. Seine Dichte beträgt 0,43 g/cm3, die Porosität 78% und der mittlere Porendurchmesser 7 μm.A pre-oxidized PAN fiber (OPF) with a fiber titer of 0.8 dtex and fiber lengths of 60 mm is deposited on a batt with a surface weight of 100 g / m 2 on a kadieranlage. The batt is fed to a solidification unit, in which the fibers are vortexed on both sides by means of high-energy water jets at pressures of approximately 100 bar in the first stage and approximately 170 bar in a second stage and intertwined with each other. The nonwoven fabric is pre-dried to a residual moisture of 15 to 20%. When still wet, the nonwoven fabric is fed to a calender consisting of a steel and a plastic roller and compressed at a temperature of about 300 ° C and 250 kp / cm2. The calendering process reduces the thickness of the hydroentangled nonwoven fabric from 0.9 mm to a thickness of 0.14 mm. Subsequently, the nonwoven fabric is fed to a carbonization unit in which under a nitrogen atmosphere at about 1000 to 1400 ° C, the carbonization takes place. The conductive nonwoven fabric obtained has a transverse conductivity, ie, in the layer plane of 93.7 S / cm in the machine direction, 73 S / cm transversely to the machine direction at a bending stiffness <1 Taber and an air permeability of 1.0 l / m 2 sPa and its Through conductivity, ie perpendicular to the layer plane, is 195 S / cm 2 , this value being determined at a surface pressure of 4.07 bar. Its density is 0.43 g / cm 3 , the porosity 78% and the average pore diameter 7 microns.

Claims (12)

Leitfähiger Vliesstoff, dadurch gekennzeichnet, dass er karbonisiert und/oder graphitiert ist und eine Biegesteifigkeit < 8 Taber, eine Dichte von 0,1 g/cm3 bis 0,5 g/cm3, eine Dicke von 80 μm bis 500 μm und eine elektrische Leitfähigkeit von 10 bis 300 S/cm in der Vliesstoffbahn und 30 bis 220 S/cm2 senkrecht zur Vliesstoffbahn besitzt.Conductive nonwoven fabric, characterized in that it is carbonized and / or graphitized and has a flexural strength <8 Taber, a density of 0.1 g / cm 3 to 0.5 g / cm 3 , a thickness of 80 microns to 500 microns and a has electrical conductivity of 10 to 300 S / cm in the nonwoven web and 30 to 220 S / cm 2 perpendicular to the nonwoven web. Leitfähiger Vliesstoff nach Anspruch 1 erhalten aus präoxidierten Fasern für Karbonfasern, die gegebenenfalls mit bis zu 30 Gew.% einer als Bindefaser dienenden Precurser- sowie bis zu 30 Gew.% einer wasserlöslichen Faser mit Fasertitern von 0,5 bis 6,7 dtex gemischt sind, Ablage zu einem Faserflor mit einem Flächengewicht von 30 bis 300 g/m2, Verfestigung des Faserflors durch Hochdruck-Fluidstrahlen bei Drücken von 100 bis 300 bar, Verdichtung des verfestigten Faservlieses durch Kalandrierung um 50 bis 90 % seiner Ausgangsdicke sowie Karbonisierung und/oder Graphitierung unter einer Schutzgasatmosphäre bei 800°C bis 2500°C.Conductive nonwoven fabric according to claim 1 obtained from pre-oxidized fibers for carbon fibers, which are optionally mixed with up to 30 wt.% Of serving as a binder precursor and up to 30 wt.% Of a water-soluble fiber with fiber titers of 0.5 to 6.7 dtex , Storage to a batt with a basis weight of 30 to 300 g / m 2 , solidification of the batt by high-pressure fluid jets at pressures of 100 to 300 bar, densification of the consolidated fibrous web by calendering by 50 to 90% of its initial thickness and carbonization and / or Graphitization under a protective gas atmosphere at 800 ° C to 2500 ° C. Leitfähiger Vliesstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass 80 bis 90 Gew.% einer Mischung von Precurser- und präoxidierten Fasern im Gewichtsverhältnis von 0:1 bis 1:3 und 10 bis 20 Gew.% einer wasserlöslichen Faser mit Fasertitern von 0,8 bis 3,3 dtex eingesetzt werden.conductive Nonwoven fabric according to claim 1 or 2, characterized in that 80 to 90 wt.% Of a mixture of precursor and preoxidized Fibers in weight ratio from 0: 1 to 1: 3 and 10 to 20% by weight of a water-soluble Fiber can be used with fiber titer from 0.8 to 3.3 dtex. Leitfähiger Vliesstoff einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwei unterschiedlich wasserlösliche Fasern verwendet werden, von denen eine bei Temperaturen von 10 bis 40°C wasserlöslich und die andere bei Temperaturen von 80 bis 120°C wasserlöslich ist.conductive Nonwoven fabric of any of the claims 1 to 3, characterized in that two different water-soluble fibers of which one is water soluble at temperatures of 10 to 40 ° C and the other is water-soluble at temperatures of 80 to 120 ° C. Leitfähiger Vliesstoff nach Anspruch 4, dadurch gekennzeichnet, dass das Verhältnis der wasserlöslichen Fasern zueinander 3:1 bis 1:3 beträgt.Conductive nonwoven fabric according to claim 4, characterized in that the ratio of what serlöslichen fibers to each other 3: 1 to 1: 3. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er aus mehreren Faserschichten mit unterschiedlichen Porengrößen aufgebaut ist, wobei die Fasern der einzelnen Schichten unterschiedliche Titer besitzen.conductive Nonwoven fabric according to one of the claims 1 to 5, characterized in that it consists of several fiber layers constructed with different pore sizes is, wherein the fibers of the individual layers different titers have. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens zwei durch Hochdruck-Fluidstrahlen verfestigte Faservliesschichten durch Kalandrierung verbunden sind.conductive Nonwoven fabric according to one of the claims 1 to 6, characterized in that at least two by high-pressure fluid jets solidified nonwoven layers are bonded by calendering. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Precurserfasern teilvernetzte Phenolharzfasern, Polyester- und/oder Polypropylenfasern als präoxidierte Fasern Homo-, Co- und/oder Terpolymere von PAN (Polyacrylnitril)-Fasern, Cellulosefasern und/oder Phenolharzfasern und als wasserlösliche Fasern PVA (Polyvinylalkohol)-Fasern eingesetzt werden.conductive Nonwoven fabric according to one of the claims 1 to 7, characterized in that partially crosslinked as precursor fibers Phenolic resin fibers, polyester and / or polypropylene fibers as preoxidized Fibers homo-, co- and / or Terpolymers of PAN (polyacrylonitrile) fibers, cellulose fibers and / or Phenolic resin fibers and as water-soluble Fibers PVA (polyvinyl alcohol) fibers are used. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er durch Aufbringen eines Hydrophobierungsmittel wie PTFE (Polytetrafluorethylen) hydrophobiert ist.conductive Nonwoven fabric according to one of the claims 1 to 8, characterized in that it by applying a Hydrophobing agent such as PTFE (polytetrafluoroethylene) hydrophobic is. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass er mit einer Dichte von 0,1 g/cm3 bis 0,25 g/cm3 als Basismaterial für Elektroden und Gasdiffusionsschichten eingesetzt wird.Conductive nonwoven fabric according to one of claims 1 to 9, characterized in that it is used with a density of 0.1 g / cm 3 to 0.25 g / cm 3 as a base material for electrodes and gas diffusion layers. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass er mit einer Dichte von 0,25 g/cm3 bis 0,40 g/cm3 als Gasdiffusionsschicht in Polymerelektrolyt-Brennstoffzellen eingesetzt wird.Conductive nonwoven fabric according to one of claims 1 to 9, characterized in that it is used with a density of 0.25 g / cm 3 to 0.40 g / cm 3 as a gas diffusion layer in polymer electrolyte fuel cells. Leitfähiger Vliesstoff nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass er mit einer Dichte von 0,40 g/cm3 bis 0,50 g/cm3 als Elektrode in Superkondensatoren eingesetzt wird.Conductive nonwoven fabric according to one of claims 1 to 9, characterized in that it is used with a density of 0.40 g / cm 3 to 0.50 g / cm 3 as an electrode in supercapacitors.
DE20023844U 2000-10-11 2000-10-11 Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat Expired - Lifetime DE20023844U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE20023844U DE20023844U1 (en) 2000-10-11 2000-10-11 Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20023844U DE20023844U1 (en) 2000-10-11 2000-10-11 Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat
DE10050512A DE10050512A1 (en) 2000-10-11 2000-10-11 Conductive nonwoven

Publications (1)

Publication Number Publication Date
DE20023844U1 true DE20023844U1 (en) 2006-10-12

Family

ID=37295689

Family Applications (1)

Application Number Title Priority Date Filing Date
DE20023844U Expired - Lifetime DE20023844U1 (en) 2000-10-11 2000-10-11 Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat

Country Status (1)

Country Link
DE (1) DE20023844U1 (en)

Similar Documents

Publication Publication Date Title
EP1328947B1 (en) Conductive nonwoven
JP6008000B2 (en) Precursor sheet
US20070123132A1 (en) Nonwoven mat, method for production thereof and fibre composite
KR101578985B1 (en) Porous electrode base material, method for manufacturing same, membrane-electrode assembly, solid polymer fuel cell, precursor sheet, and fibrillar fibers
CA2927098A1 (en) Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precurser fibers
DE102005061814A1 (en) Carbon fiber paper and process for its production
US20060166075A1 (en) Flame-resistant acrylic fiber nonwoven fabric, carbon fiber nonwoven fabric, and method for production thereof
WO2008080454A1 (en) Stable temperature plasma treated formation, and method for the production thereof
EP4016667B1 (en) Method for producing a gas diffusion layer
EP2637239A1 (en) Porous electrode base material and process for production thereof, porous electrode base material precursor sheet, membrane-electrode assembly, and solid polymer fuel cell
DE60309331T2 (en) PECH-BASED GRAPHITE SUBSTANCES AND GENOBELED FELTS FOR FUEL CELL GAS DISPERSION SUBSTRATES AND THERMALLY HIGH-LEADING COMPOSITE MATERIALS
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
WO2022090196A1 (en) Electrode material
WO2002034989A1 (en) Multilayered, flexible paper containing carbon, with good flexural strength
DE20023844U1 (en) Electrically conductive fleece, useful as electrodes, gas-diffusion layers in fuel cells and in supercondensers, is prepared by carbonization and graphitization of compressed fiber mat
JP5394469B2 (en) Porous electrode substrate manufacturing method and porous electrode substrate
KR20170121256A (en) Porous electrode substrate and method for manufacturing the same
CH696075A5 (en) A process for preparing an ion-permeable and electrically conductive, sheet material, as well as material obtainable by the process, and the fuel cell.
DE3435640A1 (en) Nonwoven
JP6115756B2 (en) Porous electrode substrate precursor sheet, method for producing the same, porous electrode substrate, membrane-electrode assembly, and solid polymer fuel cell
JP2020087826A (en) Gas diffusion layer substrate and manufacturing method thereof

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20061116

R151 Utility model maintained after payment of second maintenance fee after six years

Effective date: 20061012

R152 Utility model maintained after payment of third maintenance fee after eight years

Effective date: 20081111

R071 Expiry of right