DE19817725A1 - Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten - Google Patents

Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten

Info

Publication number
DE19817725A1
DE19817725A1 DE19817725A DE19817725A DE19817725A1 DE 19817725 A1 DE19817725 A1 DE 19817725A1 DE 19817725 A DE19817725 A DE 19817725A DE 19817725 A DE19817725 A DE 19817725A DE 19817725 A1 DE19817725 A1 DE 19817725A1
Authority
DE
Germany
Prior art keywords
cyclopentadienyl
different
same
fluorine
dichloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19817725A
Other languages
English (en)
Inventor
Gerhard Erker
Johannes Ruwwe
Cornelia Fritze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Aventis Research and Technologies GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Research and Technologies GmbH and Co KG filed Critical Aventis Research and Technologies GmbH and Co KG
Priority to DE19817725A priority Critical patent/DE19817725A1/de
Priority to PCT/EP1999/002562 priority patent/WO1999054367A1/de
Priority to US09/673,147 priority patent/US6537943B1/en
Priority to JP2000544705A priority patent/JP2002512275A/ja
Priority to DE59910526T priority patent/DE59910526D1/de
Priority to EP99919244A priority patent/EP1084159B1/de
Publication of DE19817725A1 publication Critical patent/DE19817725A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Katalysatorsystemen, enthaltend Metallocene mit fluorhaltigen Substituenten, zur Herstellung von Polyolefinen, wobei Polypropylen ausgenommen ist, sowie ein Verfahren zur Herstellung von Polyolefinen - ausgenommen Polypropylen - unter Verwendung der besagten Metallocene.

Description

Die vorliegende Erfindung betrifft die Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten.
Die Verwendung von Katalysatorsystemen enthaltend Metallocene zur Herstellung von Polyolefinen ist seit längerem bekannt (EP-A-0,129,368; EP-A-0,351,392; EP-A-0,416,815) und erlangt zunehmend wirtschaftliche Bedeutung. Aus diesem Grund besteht das Bedürfnis weitere Katalysatorsystemen enthaltend Metallocene bereitzustellen, mit deren Hilfe Polyolefine zugänglich sind.
Gegenstand der vorliegenden Erfindung ist daher die Verwendung von Katalysatorsystemen enthaltend
  • (a) mindestens einen Cokatalysator,
  • (b) mindestens eine metallorganische Verbindung der Formel (I)
    worin,
    M1 ein Metall der Gruppe 3, 4, 5 oder 6 des Periodensystems der Elemente sowie Lanthanide oder Actinide bedeutet,
    R1 gleich oder verschieden sind und ein Wasserstoffatom, eine C1-C30-koh­ lenstoffhaltige Gruppe wie C1-C25-Alkyl, z. B. Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C5-C24-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Arylalkyl, C7-C30-Alkylaryl, C1-C12-Alkoxy, SiR3,worin R3 gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe wie C1-C20-Al­ kyl, C1-C10-Fluoralkyl, C1-C10-Alkoxy, C6-C20-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
    R2 gleich oder verschieden sind und ein fluorhaltiges C1-C25-Alkyl, fluorhaltiges C1-C25-Alkenyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl bedeuten,
    r, n gleich oder verschieden sind und 1, 2, 3, 4 oder 5 bedeuten,
    m, q gleich oder verschieden sind und 0,1, 2, 3 oder 4 bedeuten,
    q+r gleich 5 für v = 0, und q+r gleich 4 für v = 1 ist,
    m+n gleich 5 für v = 0, und m+n gleich 4 für v = 1 ist,
    s, t gleich oder verschieden sind und eine ganze Zahl von 1 bis 20 bedeuten,
    L gleich oder verschieden sind und ein Halogenatom oder einen kohlenwasserstoffhaltigen Rest mit 1-20 Kohlenstoffatomen bedeuten, z. B. C1-C20-Alkyl, C2-C20-Alkenyl, C1-C20-Alkoxy, C6-C14-Aryloxy oder C6-C40-Aryl,
    x eine ganze Zahl von 1 bis 4 ist, wobei im Falle von M1 = Ti, Zr oder Hf x bevorzugt gleich 2 ist,
    Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet, und v ist 0 oder 1, bedeutet,
    sowie gegebenenfalls
  • (c) mindestens einen Träger,
zur Herstellung von Polyolefinen, wobei Polypropylen ausgenommen ist.
Besonders bevorzugt bedeutet Z eine Gruppe M2R4R5, worin M2 Kohlenstoff, Silizium, Germanium oder Zinn ist und R4 und R5 gleich oder verschieden eine C1-C20-Kohlenwasserstoffgruppe wie C1-C10-Alkyl oder C6-C14-Aryl bedeuten. Bevorzugt ist Z gleich CH2, CH2CH2, CH(CH3)CH2, CH(C4H9)C(CH3)2, C(CH3)2, (CH3)2Si, (CH3CH2)2Si, (CH3)((CH3)3C)Si,(CH3)2Ge, (CH3)2Sn, (C6H5)2Si, (C6H5)(CH3)Si, (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2, o-C6H4 oder 2,2'-(C6H4)2.
Z kann auch mit einem oder mehreren Resten R1 und/oder R2 ein mono- oder polycyclisches Ringsystem bilden.
Bevorzugt sind chirale verbrückte Metallocene der Formel I, insbesondere solche in denen v gleich 1 ist und einer oder beide Cyclopentadienylringe so substituiert sind, daß sie einen Indenylring darstellen. Der Indenylring ist bevorzugt substituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder 2,4,5,6-Stellung, mit C1-C20-koh­ lenstoffhaltigen Gruppen, wie C1-C10-Alkyl oder C6-C20-Aryl, wobei auch zwei oder mehrere Substituenten des Indenylrings zusammen ein Ringsystem bilden können.
Besonders bevorzugt sind in Formel (I)
M1 ein Metall der Gruppe 4 des Periodensystems der Elemente wie Ti, Zr, oder Hf,
R1 gleich oder verschieden sind und ein Wasserstoffatom, eine C1-C30-koh­ lenstoffhaltige Gruppe wie C1-C25-Alkyl, insbesondere Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder Octyl, C2-C25-Alkenyl, C3-C15-Alkylalkenyl, C6-C24-Aryl, C5-C24-Heteroaryl wie Pyridyl, Furyl oder Chinolyl, C7-C30-Aryl­ alkyl, C7-C30-Alkylaryl, oder C1-C12-Alkoxy ist, SiR3, worin R3 gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe wie C1-C20-Alkyl, C1-C10-Fluoralkyl, C1-C10-Alkoxy, C6-C20-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind, oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
R2 gleich oder verschieden sind und ein fluorhaltiges C1-C25-Alkyl fluorhaltiges C1-C25-Alkenyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl bedeuten,
r, n gleich oder verschieden sind und 1, 2, 3, 4 oder 5 bedeuten,
m, q gleich oder verschieden sind und 0, 1, 2, 3 oder 4 bedeuten,
q+r gleich 5 für v = 0, und q+r gleich 4 für v = 1 ist,
m+n gleich 5 für v = 0, und m+n gleich 4 für v = 1 ist,
s, t gleich oder verschieden sind und eine ganze Zahl von 1 bis 20 bedeuten,
L gleich oder verschieden sind und ein Halogenatom oder einen kohlenwasserstoffhaltigen Rest mit 1-20 Kohlenstoffatomen bedeuten, insbesondere C1-C20-Alkyl, C2-C20-Alkenyl, C1-C20-Alkoxy, C6-C14-Aryl­ oxy oder C6-C40-Aryl,
x eine ganze Zahl von 1 bis 4 ist, wobei im Falle von M1 = Ti, Zr oder Hf x bevorzugt gleich 2 ist,
Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet, und v ist 0 oder 1.
Exemplare aber nicht limitierende Beispiele für die erfindungsgemäße metallorganische Verbindung sind:
Bis(η5-2',2',2'-trifluorethyl)cyclopentadienyl)titandichlorid
Bis(η5-1'H,1'H,2'H,2'H-perfluoroctylcyclopentadienyl)titandichlorid
Bis(η5-1'H,1'H,2'H,2'H-perfluorhexylcyclopentadienyl)titandichlorid
Bis(η5-3'-(trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)titandichlorid
Bis(η5-2',2',2'-trifluorethyl)cyclopentadienyl)zirconiumdichlorid
Bis(η5-1'H,1'H,2'H,2'H-perfluoroctylcyclopentadienyl)zirconiumdichlorid
Bis(η5-1'H,1'H,2'H,2'H-perfluorhexylcyclopentadienyl)zirconiumdichlorid
Bis(η5-3'-(trifluormethyl)-3',4',4',4'-tetrafluorbutyl­ cyclopentadienyl)zirconiumdichlorid
Bis(η5-2',2',2'-trifluorethyl)cyclopentadienyl)hafniumdichlorid
Bis(η5-1'H,1'H,2'H,2'H-perfluoroctylcyclopentadienyl)hafniumdichlorid
Bis(η5-1'H,1'H,2'H,2'H-perfluorhexylcyclopentadienyl)hafniumdichlorid
Bis(η5-3'-(trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)haf­ niumdichlorid
5-2',2',2',-Trifluorethyl)cyclopentadienyl)(η5-cyclopentadienyl)titandichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-cyclopentadienyl)ti­ tandichlorid
5-1'H,1'H,2'H,2'H-Perfluorhexylcyclopentadienyl)(η5cyclopentadienyl)ti­ tandichlorid
5-3'-(Trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)(η5-cyclo­ pentadienyl)titandichlorid
5-2',2',2',-Trifluorethyl)cyclopentadienyl)(η5-cyclopentadienyl)zir­ coniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-cyclopentadienyl)zir­ coniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluorhexylcyclopentadienyl)(η5-cyclopentadienyl)zir­ coniumdichlorid
5-3'-(Trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)(η5-cyclo­ pentadienyl)zirconiumdichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-cyclopentadienyl)hafniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-cyclopentadienyl)haf­ niumdichlorid
5-1'H,1'H,2'H,2'H-Perfluorhexylcyclopentadienyl)(η5-cyclopentadienyl)haf­ niumdichlorid
5-3'-(Trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)(η5-cyclo­ pentadienyl)hafniumdichlorid
5-2,2',2'-Trifluorethyl)cyclopentadienyl)(η5-pentamethylcyclopentadienyl)ti­ tandichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-pentamethyl­ cyclopentadienyl)titandichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-pentamethylcyclopentadienyl)zir­ coniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-pentamethyl­ cyclopentadienyl)zirconiumdichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-pentamethylcyclopentadienyl)haf­ niumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-pentamethyl­ cyclopentadienyl)hafniumdichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-methylcyclopentadienyl)ti­ tandichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-methylcyclopentadienyl)ti­ tandichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-methylcyclopentadienyl)zir­ coniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-methylcyclopentadienyl)zir­ coniumdichlorid
5-2',2',2',-Trifluorethyl)cyclopentadienyl)(η5-methylcyclopentadienyl)haf­ niumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-methylcyclopentadienyl)haf­ niumdichlorid
Dimethylsilandiyl(η5-3-'(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)titandichlorid
Dimethylsilandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-me­ thylcyclopentadienyl)titandichlorid
Dimethylsilandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-me­ thylcyclopentadienyl)zirconiumdichlorid
Dimethylsilandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-me­ thylcyclopentadienyl)zirconiumdichlorid
Dimethylsilandiyl(η5-3-(2',2',2'-trifluorothyl)cyclopentadienyl)η5-3-me­ thylcyclopentadienyl)hafniumdichlorid
Dimethylsilandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-me­ thylcyclopentadienyl)hafniumdichlorid
Dimethylsilandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)titandichlorid
Dimethylsilandiylη5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)titandichlorid
Dimethylsilandiyl(η5-3-(2',2',2',-trifluorethyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)zirconiumdichlorid
Dimethylsilandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)zirconiumdichlorid
Dimethylsilandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)hafniumdichlorid
Dimethylsilandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)zirconiumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)zirconiumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)zirconiumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)zirconiumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-methyl­ cyclopentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-cyclopentadienyl)ti­ tandichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-cyclopentadienyl)zir­ coniumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)zirconiumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-cyclopentadienyl)haf­ niumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-cyclo­ pentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-methyl-cyclo­ pentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)titandichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)zirconiumdichlorid
1,2-Ethendiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)zirconiumdichlorid
1,2-Ethandiyl(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)hafniumdichlorid
1,2-Ethandiyl(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(η5-3-butyl­ cyclopentadienyl)hafniumdichlorid
Dimethylsilandiylbis(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)zir­ coniumdichlorid
Dimethylsilandiylbis(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)titandichlorid
Dimethylsilandiylbis(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)ti­ tandichlorid
Dimethylsilandiylbis(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)zir­ coniumdichlorid
Dimethylsilandiylbis(η5-3-(2',2',2'-trifluorethyl)cyclopentadienyl)hafniumdichlorid
Dimethylsilandiylbis(η5-3-(1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)haf­ niumdichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-butylcyclopentadienyl)titandichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-butylcyclopentadienyl)ti­ tandichlorid
5-1'H,1'H,2'H,2'H-Perfluorhexylcyclopentadienyl)(η5-butylcyclopentadienyl)ti­ tandichlorid
5-3'-(Trifluormethyl )-3',4',4',4'-tetrafluorbutylcyclopentadienyl)(η5-butyl­ cyclopentadienyl)titandichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-butylcyclopentadienyl)zir­ coniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-butylcyclopentadienyl)zir­ noniumdichlorid
5-1'H,1'H,2'H,2'H-Perfluorhexylcyclopentadienyl)(η5-butylcyclopentadienyl)zir­ coniumdichlorid
5-3'-(Trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)(η5-butyl­ cyclopentadienyl)zirconiumdichlorid
5-2',2',2'-Trifluorethyl)cyclopentadienyl)(η5-butylcyclopentadienyl)haf­ niumdichlorid
5-1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(η5-butylcyclopentadienyl)haf­ niumdichlorid
5-1'H,1'H,2'H,2'H-Perfluorhexylcyclopentadienyl)(η5-butylcyclopentadienyl)haf­ niumdichlorid
5-3'-(Trifluormethyl)-3',4',4',4'-tetrafluorbutylcyclopentadienyl)(η5-butyl­ cyclopentadienyl)hafniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)benzoindenyl)zirkoniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)indenyl)zirkoniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)-4-(1-naphthyl)-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)-4-(2-naphthyl)-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)-4-phenyl-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)-4-phenyl-indenyl)zir­ koniumdichlorid
Dimethylsilandiy bis (η5-2-(2',2',2'-trifluorethyl)-4,5-benzo-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(2',2',2'-trifluorethyl)-4-(4'-tert.-butyl-phenyl)-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)benzoindenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)-4-(1-naphthyl)in­ denyl)zirkoniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)-4-(2-naphthyl)in­ denyl)zirkoniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)-4-phenyl-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)-4-phenyl-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)-4,5-benzo-indenyl)zir­ koniumdichlorid
Dimethylsilandiyl-bis-(η5-2-(1'H,1'H,2'H,2'H-perfluoroctyl)-4-(4'-tert.-butyl-phenyl)­ indenyl)zirkoniumdichlorid.
Neben den Dichlorid-Verbindungen sind auch die Dimethyl-Verbindungen von Bedeutung.
Die Herstellung der Verbindung nach Formel (I) erfolgt durch Umsetzung eines substituierten Cyclopentadienids (II), das aus der Umsetzung eines Metallocens mit einem fluor- und iodhaltigen Alkyl erhalten wird, mit Metallverbindung (III) und soll durch das nachfolgende Reaktionsschema beispielhaft veranschaulicht werden.
In diesem Schema haben M1, R1, R2, L, Z, m, n, q, r, s, t, v und x die gleiche Bedeutung wie oben in Formel (I) angegeben. y ist gleich 1 oder 2 und M ist ein Metall, insbesondere bevorzugt ist Nickel. Die Base ist eine starke Base wie beispielsweise Butyllithium oder Kaliumhydrid. Die Umsetzung erfolgt bei Temperaturen von -50°C bis +150°C, bevorzugt bei 0°C bis 100°C in organischen Lösemitteln, wie z. B. Toluol, Benzol, Methylenchlorid, Tetrachlorkohlenstoff, Tetrahydrofuran, Diethylether und Benzin. Die Umsetzung dauert von 1 min bis zu 20 Tagen. Die Verbindung der Formel (I) kann isoliert oder direkt für weitere Umsetzungen eingesetzt werden. Die Verbindung der Formel (I) kann auch ohne Isolierung von Zwischen- und Endstufen in einer Eintopfreaktion hergestellt werden.
Das Katalysatorsystem enthält neben mindestens einem Metallocen der Formel (I) zusätzlich mindestens einen Cokatalysator (Komponente a).
Die Cokatalysatorkomponente enthält ein Aluminoxan, eine Lewis-Säure oder eine ionische Verbindung, die durch Reaktion mit dem Metallocen dieses in eine kationische Verbindung überführt.
Als Aluminoxan wird bevorzugt eine Verbindung der allgemeinen Formel (IV)
(R AlO)p (IV)
verwendet. Aluminoxane können cyclisch wie in Formel (V)
oder linear wie in Formel (VI)
oder vom Cluster-Typ wie in Formel (VII) sein, wie sie in neuerer Literatur beschrieben werden, vgl. JACS 117 (1995), 6465-74, Organometallics 13 (1994), 2957-2969.
Die Reste R in den Formeln (V), (VI) und (VII) können gleich oder verschieden sein und eine C1-C20-Kohlenwasserstoffgruppe wie eine C1-C6-Alkylgruppe, eine C6-C18-Arylgruppe, Benzyl oder Wasserstoff bedeuten, und p eine ganze Zahl von 2 bis 50, bevorzugt 10 bis 35 bedeuten.
Bevorzugt sind die Reste R gleich und bedeuten Methyl, Isobutyl, n-Butyl, Phenyl oder Benzyl, besonders bevorzugt Methyl.
Sind die Reste R unterschiedlich, so sind sie bevorzugt Methyl und Wasserstoff, Methyl und Isobutyl oder Methyl und n-Butyl, wobei Wasserstoff oder Isobutyl oder n-Butyl bevorzugt zu 0,01 bis 40% (Zahl der Reste R) enthalten sind.
Die Herstellung von Aluminoxan erfolgt nach Literaturvorschriften (vgl. Polyhedron 9 (1990) 429 und EP-A-302 424).
Unabhängig von der Art der Herstellung ist allen Aluminoxanlösungen ein wechselnder Gehalt an nicht umgesetzter Aluminiumausgangsverbindung, die in freier Form oder als Addukt vorliegt, gemeinsam.
Als Lewis-Säure werden bevorzugt mindestens eine bor- oder aluminiumorganische Verbindung eingesetzt, die C1-C20-kohlenstoffhaltige Gruppen enthalten, wie verzweigte oder unverzweigte Alkyl- oder Halogenalkyl, wie Methyl, Propyl, Isopropyl, Isobutyl, Trifluormethyl, ungesättigte Gruppen, wie Aryl oder Halogenaryl, wie Phenyl, Tolyl, Benzylgruppen, p-Fluorophenyl, 3,5-Difluorophenyl, Pentachlorophenyl, Pentafluorophenyl, 3,4,5-Trifluorophenyl und 3,5-Di(tri­ fluoromethyl)phenyl.
Beispiele für Lewis-Säuren sind Trifluoroboran, Tris(4-fluorophenyl)boran, Tris(3,5-difluorophenyl)boran, Tris(4-fluoromethylphenyl)boran, Tris(pentafluorophenyl)boran, Tris(3,5-difluorophenyl)boran und/oder Tris(3,4,5-tri­ fluorophenyl)boran, Di(bis(pentafluorophenyl)boroxy)methylalan, Di(bisphenylboroxy)methylalan, Di(bis(pentafluorophenyl)boroxy)isopropylalan.
Als ionische Cokatalysatoren werden bevorzugt Verbindungen eingesetzt, die ein nicht koordinierendes Anion enthalten, wie Tetrakis(pentafluorophenyl)borate, Tetraphenylborate, SbF6-, CF3SO3- oder ClO4-. Als kationisches Gegenion werden Lewis-Basen, wie Metyhlamin, Anilin, Dimethylamin, Diethylamin, N-Methylanilin, Diphenylamin, N,N-Dimethylanilin, Trimethylamin, Triethylamin, Tri-n-butylamin, Methyldiphenylamin, Pyridin, p-Bromo-N,N-dimethylanilin, p-Nitro-N,N-di­ methylanilin, Triethylphosphin, Triphenylphosphin, Diphenylphosphin, Tetrahydrothiophen und Triphenylcarbenium eingesetzt.
Beispiele für solche erfindungsgemäßen ionischen Verbindungen sind
Tributylammoniumtetra(pentafluorophenyl)borat,
Tributylammoniumtetra(pentafluorophenyl)aluminat,
Tributylammoniumtetra(trifluoromethylphenyl)borat,
Tributylammoniumtetra(4-fluorophenyl)borat,
N,N-Dimethylaniliniumtetrakis(pentafluorophenyl)borate,
N,N-Dimethylaniliniumtetrakis(pentafluorophenyl)aluminat,
Di(propyl)ammoniumtetrakis(pentafluorophenyl)borat,
Di(cyclohexyl)ammoniumtetrakis(pentafluorophenyl)borat,
Triphenylcarbeniumtetrakis(pentafluorophenyl)borat,
Triphenylcarbeniumtetrnkis(pentafluorophenyl)aluminat,
Ferroceniumtetrakis(pentafluorophenyl)borat und/oder
Ferroceniumtetrakis(pentafluorophenyl)aluminat.
Bevorzugt sind Triphenylcarbeniumtetrakis(pentafluorophenyl)borat und/oder
N,N-Dimethylaniliniumtetrakis(pentafluorophenyl)borat.
Es können auch Gemische mindestens einer Lewis-Säure und mindestens einer ionischen Verbindung eingesetzt werden.
Das erfindungsgemäße Katalysatorsystem kann zusätzlich einen Träger (Komponente c) enthalten. Der Träger kann ein beliebiger organischer oder anorganischer, inerter Feststoff sein, insbesondere ein poröser Träger wie Talk, anorganische Oxide und feinteilige Polymerpulver, wie Polyolefine.
Geeignete anorganische Oxide sind beispielsweise Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der,beiden Elemente und entsprechende Oxid-Mischungen.
Die verwendeten Trägermaterialien weisen eine spezifische Oberfläche im Bereich von 10 m2/g bis 1000 m2/g, ein Porenvolumen im Bereich von 0,1 ml/g bis 5 ml/g und eine mittlere Partikelgröße von 1 µm bis 500 µm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 µm bis 500 µm, einem Porenvolumen im Bereich zwischen 0,5 ml/g und 3,5 ml/g und einer mittleren Partikelgröße im Bereich von 5 µm bis 350 µm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 m2/g bis 400 m2/g, einem Porenvolumen im Bereich zwischen 0,8 ml/g bis 3,0 ml/g und einer mittleren Partikelgröße von 10 µm bis 200 µm.
Wenn das verwendete Trägermaterial von Natur aus einen geringen Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine Dehydratisierung oder Trocknung vor der Verwendung unterbleiben. Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Der Gewichtsverlust beim Glühen (LOI = Loss on ignition) sollte 1% oder weniger betragen. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und gleichzeitiger Inertgasüberlagerung, wie Stickstoff, erfolgen. Die Trocknungstemperatur liegt im Bereich zwischen 100°C und 1000°C, vorzugsweise zwischen 200°C und 800°C. Der Parameter Druck ist in diesem Fall nicht entscheidend. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden betragen. Kürzere oder längere Trocknungsdauern sind möglich, vorausgesetzt, daß unter den gewählten Bedingungen die Gleichgewichtseinstellung mit den Hydroxylgruppen auf der Trägeroberfläche erfolgen kann, was normalerweise zwischen 4 und 8 Stunden erfordert.
Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Oberfläche mit geeigneten Modifizierungsmitteln zur Reaktion gebracht werden. Durch die Umsetzung mit dem Modifizierungsmittel können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner negativen Wechselwirkung mit den katalytisch aktiven Zentren führen. Geeignete Modifizierungsmittel sind beispielsweise Siliciumhalogenide und Silane, wie Silane, wie Siliciumtetrachlorid, Chlortrimethylsilan, Dimethylaminotrichlorsilan, Amine wie Phenyldimethylamin, Pyridin oder metallorganische Verbindungen von Aluminium-, Bor und Magnesium wie Trimethylaluminium, Triethylaluminium, Trisobutylaluminium, Triethylboran, Dibutylmagnesium. Die chemische Dehydratisierung oder Inertisierung des Trägermaterials kann dadurch erfolgen, daß man unter Luft- und Feuchtigkeitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösemittel mit dem Inertisierungsreagenz in reiner Form oder gelöst in einem geeigneten Lösemittel zur Reaktion bringt. Geeignete Lösemittel sind aliphatische oder aromatische Kohlenwasserstoffe, wie Pentan, Hexan, Heptan, Toluol oder Xylol. Die Inertisierung erfolgt bei Temperaturen zwischen 25°C und 120°C, bevorzugt zwischen 50°C und 70°C. Höhere und niedrigere Temperaturen sind möglich. Die Dauer der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevorzugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemischen Dehydratisierung wird das Trägermaterial durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigneten inerten Lösemitteln wie sie bereits zuvor beschrieben worden sind gewaschen und anschließend im Inertgasstrom oder am Vakuum getrocknet.
Organische Trägermaterialien wie feinteilige Polyolefinpulver, wie Polyethylen, Polypropylen oder Polystyrol, können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösemittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden.
Zur Darstellung des geträgerten Katalysatorsystems wird mindestens eine der oben beschriebenen Metallocenkomponenten, mindestens eine Cokatalysatorkomponente und mindestens ein Trägermaterial in einem geeigneten Lösemittel in beliebiger Reihenfolge in Kontakt gebracht. Das Lösemittel wird entfernt und das resultierende geträgerte Metallocen-Katalysatorsystem getrocknet, um sicherzustellen, daß das Lösemittel vollständig oder zum größten Teil aus den Poren des Trägermaterials entfernt wird. Der geträgerte Katalysator wird als frei fließendes Pulver erhalten.
Beispiele für geeignete Lösemittel umfassen Alkane wie Pentan, Isopentan, Hexan, Heptan, Octan, und Nonan, Cycloalkane wie Cyclopentan und Cyclohexan, und Aromaten wie Benzol, Toluol. Ethylbenzol und Diethylbenzol. Ganz besonders bevorzugt ist Toluol.
Die bei der Präparation des geträgerten Katalysatorsystems eingesetzten Mengen an Cokatalysator und Metallocen können über einen weiten Bereich variiert werden. Bevorzugt wird ein molares Verhältnis von Cokatalysator zum Übergangsmetall im Metallocen von 1 : 1 bis 1000 : 1 eingestellt, ganz besonders bevorzugt ein Verhältnis von 1 : 1 bis 400 : 1.
Das dargestellte geträgerte Katalysatorsystem kann entweder direkt zur Polymerisation eingesetzt oder vor seiner Verwendung in einem Polymerisationsprozeß mit einem oder mehreren olefinischen Monomeren vorpolymerisiert werden. Die Ausführung der Vorpolymerisation von geträgerten Katalysatorsystemen ist in WO 94/28034 beschrieben.
Als Additiv kann während oder nach der Herstellung des geträgerten Katalysatorsystems eine geringe Menge eines α-Olefins, wie Styrol, als aktivitätssteigernde Komponente oder eines Antistatikums, wie in US Serial No. 08/365280 beschrieben, zugesetzt werden.
Zudem wird ein Verfahren zur Herstellung von Polyolefinen - ausgenommen Polypropylen - durch Polymerisation von Olefinen in Gegenwart des erfindungsgemäßen Katalysators beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.
Polyolefine in Sinne der vorliegenden Erfindung sind Polymerisate auf Basis von Olefinen der Formel Rα-CH=CH-Rβ, worin Rα und Rβ gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonyl-, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonyl-, Carbonsäure- oder Carbonsäureestergruppe substituiert sein kann, oder Rα und Rβ mit den sie verbindenden Atomen einen oder mehrere Ringe bilden, wobei Propylen ausgenommen ist.
Beispiele für solche Olefine sind 1-Olefine wie Ethen, 1-Buten, 1-Penten, 1-Hexen, 4-Methyl-1-penten oder 1-Octen, Styrol, Diene wie 1,3-Butadien, 1,4-Hexadien, Vinylnorbornen, Norbornadien, Ethylnorbornadien und cyclische Olefine wie Norbornen, Tetracyclododecen oder Methylnorbornen. Darüber hinaus können auch Gemische der vorstehenden Olefine copolymerisiert werden.
Die Polymerisation wird bevorzugt bei einer Temperatur von -60 bis 300°C, besonders bevorzugt 30 bis 250°C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar.
Die Polymerisation kann kontinuierlich oder diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.
Das geträgerte System kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das Polymerisationssystem eindosiert werden.
Mit Hilfe des Katalysators kann eine Vorpolymerisation erfolgen. Zur Vorpolymerisation wird bevorzugt das in der Polymerisation eingesetzte Olefin verwendet.
Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Dabei wird die Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10-3 bis 10-8, vorzugsweise 10-4 bis 10-7 mol Übergangsmetall pro dm3 Lösemittel bzw. pro dm3 Reaktorvolumen angewendet.
Vor Zugabe des Katalysatorsystems (enthaltend mindestens ein erfindungsgemäßes Metallocen) kann zusätzlich eine andere Alkylaluminiumverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener Katalysatorgifte im Propylen) in den Reaktor oder zum Katalysatorsystem gegeben werden. Diese wird in einer Konzentration von 100 bis 0,01 mmol Al pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt. Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 10 bis 01 mmol Al pro kg Reaktorinhalt eingesetzt. Dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M-Verhältnis klein gewählt werden.
Beispiele für geeignete Lösemittelmischungen umfassen Alkane wie Pentan, Isopentan, Hexan, Heptan, Octan, und Nonan, Cycloalkane wie Cyclopentan und Cyclohexan, und Aromaten wie Benzol, Toluol. Ethylbenzol und Diethylbenzol gemischt mit fluorierten Alkanen, wie Perfluorheptan und Perfluorisohexan, fluorierte Cycloalkane wie Perfluor(methylcyclohexan). Ganz besonders bevorzugt ist die Mischung Toluol mit Perfluor(methylcyclohexan). Das Mischungsverhältnis ist 1 : 1 bis 100 : 1, besonders bevorzugt 1 : 1 bis 10 : 1, insbesondere bevorzugt 1 : 1.
Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Metallocene gemäß Formel I enthalten.
Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl; beispielsweise Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisationssystem selbst erfolgen, oder das Olefin wird vor der Zugabe in das Polymerisationssystem mit der Al-Verbindung in Kontakt gebracht und anschließend wieder getrennt.
Die mit dem erfindungsgemäßen Katalysatorsystem hergestellten Polymere zeigen eine gleichmäßige Kornmorphologie und weisen keine Feinkornanteile auf. Bei der Polymerisation mit dem erfindungsgemäßen Katalysatorsystem treten keine Beläge oder Verbackungen auf.
Die nach dem erfindungsgemäßen Verfahren hergestellten Polymere sind insbesondere zur Herstellung reißfester, harter und steifer Formkörper wie Fasern, Filamente; Spritzgußteile, Folien, Platten oder Großhohlkörpern, wie Rohre, geeignet.
Beispiele
Allgemeine Angaben: Die Herstellung und Handhabung der metallorganischen Verbindungen erfolgte unter Ausschluß von Luft und Feuchtigkeit unter Ar­ gon-Schutz (Schlenk-Technik). Alle benötigten Lösungsmittel wurden vor Gebrauch durch mehrstündiges Sieden über einem geeigneten Trockenmittel und anschließende Destillation unter Argon absolutiert.
Die Verbindungen wurden mit 1H-HMR, 19F-NMR, DSC-Analyse charakterisiert.
Beispiel 1 Synthese von Bis(2',2',2'-trifluorethyl)cyclopentadienyl)titandichlorid Synthese von Nickelocen
29.4 g Nickelpulver werden in 400 ml Dimethoxyethan suspendiert und unter Rühren mit 27.3 ml Brom versetzt. Man läßt 1 Stunde (h) rühren und entfernt das Lösemittel im Ölpumpenvakuum. Der erhaltene braune Rückstand wird unter Eiskühlung mit 400 ml Diethylamin aufgenommen und mit 98 ml frisch destilliertem Cyclopentadien versetzt. Die Suspension färbt sich grün. Nach 12 h Rühren bei Raumtemperatur werden Lösemittelreste im Ölpumpenvakuum entfernt und das Produkt mittels Soxhlet-Extraktion mit 700 ml Petrolether isoliert.
Ausbeute: 74 g (78%)
Schmelzpunkt: 173.0°C.
Synthese von 2',2',2'-Trifluorcyclopentadien
6,87 g Nickelocen und 9.51 g Triphenylphosphin werden in 60 ml Diethylether gelöst und mit 3,56 ml 2,2,2-Trifluorethyliodid versetzt. Die Lösung färbt sich violett und wird 48 h gerührt. Danach kondensiert man den Inhalt des Schlenkgefäßes in eine auf -196°C gekühlte Vorlage und destilliert aus dieser solange den Diethylether bei einer Badtemperatur von 45°C ab, bis die Temperatur des Destillats nicht mehr bei 35°C liegt und bestimmt mittels 1H-NMR den Anteil an verbliebenem Diethylether (1.95 eq).
Ausbeute: 8.95 g (81%).
1H-NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.46 (m, 6H, =CH); 3.15 (m, 4H, CH2); 3.00 (m, 4H, CH2 (Ring), (Das Produkt besteht aus zwei Doppelbindungsisomeren)) ppm.
(Zusätzlich treten die Resonanzen des enthaltenen Diethylethers auf: 3.45 (q); 1.18 (t) ppm).
19F-NMR: ([D]-Chloroform; 282,4 MHz; 300K): d = -65,7 (t, 3JHF = 11.4 Hz); -65.9 (t, 3JHF = 11.5 Hz) ppm.
Synthese von Bis(2',2',2'-trifluorethyl)cyclopentadienyl)titandichlorid
14.6 mmol 2',2',2'-Trifluorethylcyclopentadien werden in Tetrahydrofuran bei -78°C mit 8.8 ml 1.65M Butyllithium-Lösung versetzt. Parallel dazu werden 0.72 ml Titantetrachlorid in 50 ml Toluol gelöst und bei -78°C langsam mit 40 ml Tetrahydrofuran versetzt. Die erhaltene Suspension wird bei -78°C zu obiger Lösung gegeben. Man läßt langsam auf Raumtemperatur erwärmen, entfernt das Lösemittel im Ölpumpenvakuum und extrahiert das Produkt mit Methylenchlorid aus dem Rückstand.
Ausbeute: 1 g (37%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.91 (pt, 4H, RCpH); 5.28 (pt, 4H, RCpH); 3.52 (q, 3JFH = 11.0 Hz, 4H, 1'-H) ppm.
19F-NMR: ([D6]-Benzol; 284.1 MHz; 300K): d = -65.17 (s (1H-entkoppelt)); (t, 3JHF = 11.5 Hz) (nicht entkoppelt)) ppm.
Beispiel 2 Synthese von Bis(2',2,2'-trifluorethyl)cyclopentadienyl)zirconiumdichlorid
11.7 mmol 2',2',2'-Trifluorethylcyclopentadien aus Beispiel 1 werden in 80 ml Tetrahydrofuran bei -78°C mit 7.1 ml 1.65M Butyllithium-Lösung in Hexan versetzt. Zu der erhaltenen Lösung gibt man bei -78°C 2.22 g Zirconiumtetrachlo­ rid-THF-Addukt, gelöst in 30 ml Tetrahydrofuran. Man läßt langsam auf Raumtemperatur erwärmen, entfernt das Lösemittel im Ölpumpenvakuum und extrahiert das Produkt mit Methylenchlorid aus dem Rückstand. Ausbeute: 1.89 g (70%).
1H-NMR: ([D6]-Benzol; 300.1 MHz; 300 K): d = 5.82 (pt, 4H, RCpH); 5.39 (pt, 4H, RCpH); 3.24 (q, 3JFH = 12.5 Hz, 4H, 1'-H) ppm.
19F-NMR: ([D6]-Benzol; 284.1 MHz; 300K): d = -65.14 (s (1H-entkoppelt)); (t, 3JHF = 115 Hz) (nicht entkoppelt)) ppm.
Beispiel 3 Synthese von (2',2',2'-trifluorethyl)cyclopentadienyl)(cyclopentadienyl)zir­ coniumdichlorid
1.8 mmol 2',2',2'-Trifluorethylcyclopentadien aus Beispiel 1 werden in Tetrahydrofuran bei -78°C mit 1.05 ml 1.65M Butyllithium-Lösung versetzt. Dazu gibt man eine gekühlte Suspension von 0,46 g Cyclopentadienylzirconiumtrichlorid in 50 ml Tetrahydrofuran. Man läßt langsam auf Raumtemperatur erwärmen, entfernt das Lösemittel im Ölpumpenvakuum und extrahiert das Produkt mit Methylenchlorid aus dem Rückstand.
Ausbeute: 0. 47 g (70%).
1H:NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.49 (s, 5H, CpH); 6.38 (m, 4H, RCpH); 3.46 (q, 3JFH = 10.8 Hz, 2H, 1'-H) ppm.
19F-NMR: ([D]-Chloroform; 282.4 MHz; 300K): d = -66.03 (s (1H-entkoppelt)); (t, 3JHF = 11.5 Hz) (nicht entkoppelt)) ppm.
Beispiel 4 Synthese von Bis(2',2',2'-trifluorethyl)cyclopentadienyl)hafniumdichlorid
5.18 mmol 2',2',2'-Trifluorethylcyclopentadien aus Beispiel 1 werden bei -78°C mit 3.14 ml 1.65 M Butyllithium-Lösung in Hexan versetzt. Zu der erhaltenen Lösung gibt man bei -78°C 0,8 g Hafniumtetrachlorid. Man läßt langsam auf Raumtemperatur erwärmen, entfernt das Lösemittel im Ölpumpenvakuum und extrahiert das Produkt mit Methylenchlorid aus dem Rückstand. Ausbeute: 1.79 g (64%).
1H-NMR: ([D6]-Benzol; 300.1 MHz; 300 K): d = 5.73 (pt, 4H, RCpH); 5.31 (pt, 4H, RCpH); 3.24 (q, 3JFH = 10.8 Hz, 4H, 1'-H) ppm.
19F-NMR: ([D6]-Benzol; 282.4 MHz; 300K): d = -65.8 (s (1H-entkoppelt)); (t, 3JHF = 11.5 Hz) (nicht entkoppelt)) ppm.
Beispiel 5 Synthese von Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)titandichlorid Synthese von 1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadien
2.29 g Nickelocen aus Beispiel 1 und 3.17 g Triphenylphosphin werden in 5 ml Diethylether gelöst und mit 3.0 ml 1H, 1H, 2H, 2H-Perfluoroctyliodid versetzt. Die Lösung färbt sich violett und wird 48 h gerührt. Anschließend wird die überstehende Lösung filtriert, der Niederschlag sorgfältig nachgewaschen und dann das Lösemittel entfernt. Der Rückstand wird mit Pentan über eine kurze Säule chromatographiert und das Lösemittel im Ölpumpenvakuum entfernt.
Ausbeute: 3.67 g (74%).
1H-NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.45; 6.39; 6.28; 6.22; 6.05 (je m, 3H, RCpH); 2.97 (pq, (1-Isomer), 2.91 (psext, (2-Isomer), zusammen 4 H, CH2); 2.67 (m, 4H, 1'-H); 2.31 (m, 4H, 2'-H) ppm.
19F-NMR: ([D]-Chloroform; 282,4 MHz; 300K): d = -81.24 (m, 3F, 8'-F); -114.77 (m, 2F, 3'-F); -122.07 (m, 2F, 4'-F); -123.06 (m, 2F, 7'-F); -123.67 (m, 2F, 6'-F) -126.37 (m, 2F, 5'F) ppm.
Synthese von Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)titandichlorid
Eine Lösung von 0,75 g 1'H, 1'H, 2'H, 2'H-Perfluoroctylcyclopentadien in 40 ml Tetrahydrofuran wird bei -78°C mit 1.04 ml 1.65M Butyllithium-Lösung versetzt und mit einer gekühlten Suspension von 0,168 g Titantetrachlorid-THF-Addukt in 45 ml Tetrahydrofuran versetzt. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Vakuum. Das Produkt wird mittels Extraktion mit Methylenchlorid isoliert.
Ausbeute: 0,1 g (12%).
1H-NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.39 (pt, 4H, RCpH); 6.28 (pt, 4H, RCpH); 3.12 (m, 4H, 1'-H); 2.48 (m, 4H, 2'-H) ppm.
19F-NMR: ([D]-Chloroform; 282.4 MHz; 300K): d = -81.0 (m, 6F, 8'-F); -114.3 (m, 4F, 3'-F); -122.1 (m, 4F, 4'-F); -123.1 (m, 4F, 7'-F); -123.6 (m, 4F, 6'-F); -126.3 (m, 4F, 5'-F) ppm.
Beispiel 6 Synthese von Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)zir­ coniumdichlorid
Eine Lösung von 0,98 g 1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadien aus Beispiel 5 in 60 ml Tetrahydrofuran wird bei -78°C mit 1.49 ml 1.65M Butyllithium-Lösung versetzt und mit einer gekühlten Suspension von 0,426 g Zirconiumtetrachlorid-THF-Ad­ dukt in 40 ml Tetrahydrofuran versetzt. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Vakuum. Das Produkt wird mittels Extraktion mit Methylenchlorid isoliert.
Ausbeute: 0,56 g (50%).
1H-NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.33 (pt, 4H, RCpH); 6.24 (pt, 4H, RCpH); 2.98 (m, 4H, 1'-H); 2.09 (m, 4H, 2'-H) ppm.
19F-NMR: ([D]-Chloroform; 282.4 MHz; 300K): d = -81.0 (m, 6F, 8'-F); -114.5 (m, 4F, 3'-F); -122.0 (m, 4F, 4'-F); -123.0 (m, 4F, 7'-F); -123.6 (m, 4F, 6'-F); -126.3 (m, 4F, 5'-F) ppm.
Beispiel 7 Synthese von Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)haf­ niumdichlorid
Eine Lösung von 0,87 g 1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadien aus Beispiel 5 in 60 ml Tetrahydrofuran wird bei -78°C mit 1.21 ml 1.65M Butyllithium-Lösung versetzt und mit einer gekühlten Suspension von 0,305 g Hafniumtetrachlorid in 40 ml Tetrahydrofuran versetzt. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Vakuum. Das Produkt wird mittels Extraktion mit Methylenchlorid isoliert.
Ausbeute: 0,38 g (38%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.57 (pt, 4H, RCpH); 5.47 (pt, 4H, RCpH); 2.86 (m, 4H, 1'-H); 2.10 (m, 4H, 2'-H) ppm.
19F-NMR: ([D6]-Benzol; 282.4 MHz; 300K): d = -81.2 (m, 6F, 8'-F); -114.5 (m, 4F, 3'-F); -121.9 (m, 4F, 4)F); -122.9 (m, 4F, 7'-F); -123.4 (m, 4F, 6'-F); -126.2 (m, 4F, 5'-F)ppm.
Beispiel 8 Synthese von ((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)(cyclo­ pentadienyl)zirconiumdichlorid
Eine Lösung von 1.31 g 1'H,1'H,2'H,2'H-Perfiuoroctylcyclopentadien aus Beispiel 5 in 25 ml Tetrahydrofuran wird bei -78°C mit 2 ml 1.65M Butyllithium-Lösung versetzt und mit einer gekühlten Suspension von 1.28 g Cyclopentadienylzirconiumtrichlorid-THF-Addukt in 40 ml Tetrahydrofuran versetzt. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Vakuum. Das Produkt wird mittels Extraktion mit Methylenchlorid und Pentan isoliert.
Ausbeute: 1.73 g (86%).
1H-NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.47 (s, 5H, CpH); 6.32 (pt, 2H, RCpH); 6.23 (pt, 2H, RCpH); 2.98 (m, 2H, 1'H); 2.38 (m, 2H, 2'H) ppm.
19F-NMR: ([D]-Chloroform; 282.4 MHz; 300K): d = -81.0 (m, 3F, 8'-F); -114.5 (m, 2F, 3'-F); -122.0 (m, 2F, 4'-F); -123.0 (m, 2F, 7'-F); -123.6 (m, 2F, 6'-F); -126.3 (m, 2F, 5'-F) ppm.
Beispiel 9 Synthese von (1'H, 1'H, 2'H, 2'H-perfluoroctylcyclopentadienyl)(pen­ tamethylcyclopentadienyl)zirconiumdichlorid
Eine Lösung von 1.39 g 1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadien aus Beispiel 5 in 50 ml Tetrahydrofuran wird bei -78°C mit 2.1 ml 1.65M Butyllithium-Lösung versetzt und mit einer gekühlten Suspension von 1.11 g Pentamethylcyclopentadienylzirconiumtrichlorid in 30 ml Tetrahydrofuran versetzt. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Vakuum. Das Produkt wird mittels Extraktion mit Methylenchlorid und Pentan isoliert.
Ausbeute: 1.9 g (81%).
1H-NMR: ([D]-Chloroform; 200.1 MHz; 300 K): d = 6.06 (pt, 2H, RCpH); 5.94 (pt, 2H, RCpH); 3.72 (m, 2H, 1-H); 2.97 (m, 2H, 2'-H); 2.02 (s, 15H, Cp(CH3)5) ppm.
19F-NMR: ([D]-Chloroform; 282.4 MHz; 300K): d = -80.9 (m, 3F, 8'-F); -114.5 (m, 2F, 3'-F); -122.2 (m, 2F, 4'-F); -123.0 (m, 2F, 7'-F); -123.6 (m, 2F, 6'-F); -126.3 (m, 2F, 5'-F) ppm.
Beispiel 10 Synthese von Bis(2',2',2'-trifluorethyl)cyclopentadienyl)zirconiumdimethyl
Zu einer Suspension von 1.05 g Bis(2',2',2'- trifluorethyl)cyclopentadienyl)zirkoniumdichlorid aus Beispiel 2 in 40 ml Diethylether gibt man bei -78°C langsam 2.79 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert.
Ausbeute: 0,614 g (73%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.62 (pt, 4H, RCpH); 5.21 (pt, 4H, RCpH); 2.87 (q, 3JFH = 10.6 Hz, 4H, 1'-H); -0.52 (s, 6H, Zr-CH3) ppm.
Beispiel 11 Synthese von (2',2',2'-Trifluorethylcyclopentadienyl)(cyclopentadienyl)zir­ coniumdimethyl
Zu einer Suspension von 0,252 g (2',2',2'-Trifluorethyl)cyclopentadienyl)­ (cyclopentadienyl)zirkoniumdichlorid aus Beispiel 3 in 25 ml Diethylether gibt man bei -78°C langsam 0,8 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert. Ausbeute: 0,162 g (73%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.64 (s, 5H, CpH); 5.63 (pt, 2H, RCpH); 5.27 (pt, 2H, RCpH); 2.87 (q, 3JFH = 10.8 Hz, 2H, 1'-H); -0.32 (s, 6H, Zr- (CH3) ppm.
Beispiel 12 Synthese von Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)zir­ coniumdimethyl
Zu einer Suspension von 0,51 g Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclo­ pentadienyl)titandichlorid aus Beispiel 5 in 50 ml Diethylether gibt man bei -78°C langsam 1,04 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert. Ausbeute: 0,302 g (65%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.46 (pt, 4H, RCpH); 5.37 (pt, 4H, RCpH); 2.60 (m, 4H, 1'-H); 2.05 (m, 4H, 2'H); -0.29 (s, 6H, Zr-CH3) ppm.
Beispiel 13 Synthese von (1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(cyclo­ pentadienyl)zirconiumdimethyl
Zu einer Suspension von 0,525 g (1'H,1'H,2'H,2'H-Perfluoroctyl­ cyclopentadienyl)(cyclopentadienyl)zirconiumdichlorid aus Beispiel 8 in 40 ml Diethylether gibt man bei -78°C langsam 1,03 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert.
Ausbeute: 0,257 g (55%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.70 (s, 5H, CpH); 5.45 pt, 2H, RCpH); 5.36 (pt, 2H, RCpH); 2.60 (m, 2H, 1'-H); 2.09 (m, 2H, 2'H); -0.21 (s, 6H, Zr- (CH3)2) ppm.
Beispiel 14 (1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)(pentamethylcyclopentadienyl)zir­ coniumdimethyl
Zu einer Suspension von 1,9 g (1'H,1'H,2'H,2'H-Perfluoroctylcyclopentadienyl)­ (pentamethylcyclopentadlenyl)zirconiumdichlorid aus Beispiel 9 in 40 ml Diethylether gibt man bei -78°C langsam 2,7 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert.
Ausbeute: 1,33 g (74%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.51 (pt, 2H, RCpH); 5.28 (pt, 2H, RCpH); 2.74 (m, 2H, 1'-H); 2.13 (m, 2H, 2'-H); 1.67 (s, 15H, Cp(CH3)5); -0.44 (s, 6H, Zr-CH3) ppm.
Beispiel 15 Synthese von Bis((2,2',2'-trifluorethyl)cyclopentadienyl)hafniumdimethyl
Zu einer Suspension von 0,5 g Bis((2,2',2',trifluorethyl)cyclopentadienyl)haf­ niumdichlorid aus Beispiel 4 in 50 ml Diethylether gibt man bei -78°C langsam 1,1 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert.
Ausbeute: 0,358 g (83%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5.52 (pt, 4H, RCpH); 5.16 (pt, 4H, RCpH); 2.87 (q, 3JFH = 10.7 Hz, 4H, 1'-H); -0.71 (s, 6H, Hf-CH3)ppm.
Beispiel 16 Synthese von Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclopentadienyl)haf­ niumdimethyl
Zu einer Suspension von 0,222 g Bis((1'H,1'H,2'H,2'H-perfluoroctyl)cyclo­ pentadienyl)hafniumdichlorid aus Beispiel 7 in 40 ml Diethylether gibt man bei -78°C langsam 0,25 ml 1.68M Methyllithium-Lösung in Diethylether. Man läßt auf Raumtemperatur erwärmen und entfernt das Lösemittel im Ölpumpenvakuum. Das Produkt wird mittels Extraktion mit Pentan isoliert.
Ausbeute: 0,197 g (91%).
1H-NMR: ([D6]-Benzol; 200.1 MHz; 300 K): d = 5,38 (pt, 4H, RCpH); 5.31 (pt, 4H, RCpH); 2.59 (m, 4H, 1'-H); 2.08 (m. 4H, 2'-H); -0.47 (s, 6H, Hf-CH3) ppm.
Beispiel 17 Polymerisation von Ethen
In einem 1-l-Glasautoklaven werden 200 ml Toluol und 19 ml 10,5%ige Methylaluminoxanlösung in Toluol vorgelegt. Dazu wird eine Lösung von 1 ml 10,5%ige Methylaluminoxanlösung in Toluol und 16 mg Bis(2',2',2'-tri­ fluorethyl)cyclopentadienyl)zirconiumdichlorid gegeben. Anschließend wird die Polymerisationstemperatur von 10°C eingestellt und 2 bar Ethen aufgedrückt und im Verlauf der Polymerisation mittels Nachdosieren gehalten. Die Poylmerisation wird gestoppt durch Zugabe 20 ml Methanol/2N-Salzsäure (1 : 1). Das erhaltene Polyethylen wird abfiltriert und im Ölpumpenvakuum getrocknet.
Aktivität: 857 g/(mmol.bar.h).
Beispiel 18 Polymerisation von Ethen
In einem 1-l-Glasautoklaven werden 200 ml Toluol und 19 ml 10,5%ige Methylaluminoxanlösung in Toluol vorgelegt. Dazu wird eine Lösung von 1 ml 10,5%ige Methylaluminoxanlösung in Toluol und 15 mg Bis((1'H,1'H,2'H,2'H-per­ fluoroctyl)cyclopentadienyl)zirconiumdichlorid gegeben. Anschließend wird die Polymerisationstemperatur von 10°C eingestellt und 2 bar Ethen aufgedrückt und im Verlauf der Polymerisation mittels Nachdosieren gehalten. Die Poylmerisation wird gestoppt durch Zugabe 20 ml Methanol/2N-Salzsäure (1 : 1). Das erhaltene Polyethylen wird abfiltriert und im Ölpumpenvakuum getrocknet.
Aktivität: 600 g/(mmol.bar.h).
Beispiel 19 Polymerisation von Methylvinylketon
Zu einer auf 0°C gekühlten Lösung von 18 mg Bis(2',2',2'-tri­ fluorethyl)cyclopentadienyl)zirconiumdimethyl und 82 mg Tris(pentafluorphenyl)boran in 20 ml Methylenchlorid werden 2 ml Methylvinylketon gegeben. Man läßt 1 h rühren und quentscht mittels Zugabe von 1 ml Methanol und entfernt dann überschüssiges Monomer im Ölpumpenvakuum.
Aktivität: 3,8 g/(mmol.h)

Claims (6)

1. Verwendung eines Katalysatorsystem enthaltend
  • (a) mindestens einen Cokatalysator,
  • (b) mindestens eine metallorganische Verbindung der Formel (I)
    worin,
    M1 ein Metall der Gruppe 3, 4, 5 oder 6 des Periodensystems der Elemente sowie Lanthanide oder Actinide bedeutet,
    R1 gleich oder verschieden sind und ein Wasserstoffatom, eine C1-C30-koh­ lenstoffhaltige Gruppe, SiR3,worin R3 gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe sind, oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
    R2 gleich oder verschieden sind und ein fluorhaltiges C1-C25-Alkyl, fluorhaltiges C1-C25-Alkenyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl bedeuten,
    r, n gleich oder verschieden sind und 1, 2, 3, 4 oder 5 bedeuten,
    m, q gleich oder verschieden sind und 0, 1, 2, 3 oder 4 bedeuten,
    q+r gleich 5 für v = 0, und q+r gleich 4 für v = 1 ist,
    m+n gleich 5 für v = 0, und m+n gleich 4 für v = 1 ist,
    s, t gleich oder verschieden sind und eine ganze Zahl von 1 bis 20 bedeuten,
    L gleich oder verschieden sind und ein Halogenatom oder einen kohlenwasserstoffhaltigen Rest mit 1-20 Kohlenstoffatomen bedeuten,
    x eine ganze Zahl von 1 bis 4 ist, wobei im Falle von M1 = Ti, Zr oder Hf x bevorzugt gleich 2 ist,
    Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet, und v ist 0 oder 1,
    sowie gegebenenfalls
  • (c) mindestens einen Träger,
zur Herstellung von Polyolefinen, wobei Polypropylen ausgenommen ist.
2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel (I)
M1 gleich Titan, Zirkonium oder Hafnium,
R1 gleich oder verschieden sind und C1-C25-Alkyl, C2-C25-Alkenyl, C3-C15-Al­ kylalkenyl, C6-C24-Aryl, C5-C24-Heteroaryl, C7-C30-Arylalkyl, C7-C30-Al­ kylaryl, C1-C12-Alkoxy, SiR3, worin R3 gleich oder verschieden C1-C20-Al­ kyl, C1-C10-Fluoralkyl, C1-C10-Alkoxy, C6-C20-Aryl, C6-C10-Fluoraryl, C6-C10-Aryloxy, C2-C10-Alkenyl, C7-C40-Arylalkyl, C7-C40-Alkylaryl oder C8-C40-Arylalkenyl sind,
L gleich oder verschieden sind und C1-C20-Alkyl, C2-C20-Alkenyl, C1-C20-Al­ koxy, C6-C14-Aryloxy oder C6-C40-Aryl, bedeuten.
3. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel (I) R1 gleich oder verschieden sind und Methyl, Ethyl, tert.-Butyl, Cyclohexyl, Octyl, Pyridyl, Furyl oder Chinolyl, bedeuten.
4. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel (I)
Z gleich M2R4R5, worin M2 Kohlenstoff, Silizium, Germanium oder Zinn ist und
R4 und R5 gleich oder verschieden eine C1-C20-Kohlenwasserstoffgruppe wie C1-C10-Alkyl oder C6-C14-Aryl bedeuten.
5. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß in Formel (I) Z gleich CH2, CH2CH2, CH(CH3)CH2, CH(C4H9)C(CH3)2, C(CH3)2, (CH3)2Si, (CH3CH2)2Si, (CH3)((CH3)3C)Si,(CH3)2Ge, (CH3)2Sn, (C6H5)2Si, (C6H5)(CH3)Si, (C6H5)2Ge, (C6H5)2Sn, (CH2)4Si, CH2Si(CH3)2, o-C6H4 oder 2,2'-(C6H4)2 ist.
6. Verfahren zur Herstellung von Polyolefinen durch Polymerisation von Olefinen in Gegenwart einer Verbindung der Formel (I)
worin,
M1 ein Metall der Gruppe 3, 4, 5 oder 6 des Periodensystems der Elemente sowie Lanthanide oder Actinide bedeutet,
R1 gleich oder verschieden sind und ein Wasserstoffatom, eine C1-C30-koh­ lenstoffhaltige Gruppe, SiR3,worin R3 gleich oder verschieden ein Wasserstoffatom oder eine C1-C40-kohlenstoffhaltige Gruppe sind, oder zwei oder mehrere Reste R1 können so miteinander verbunden sein, daß die Reste R1 und die sie verbindenden Atome des Cyclopentadienylringes ein C4-C24-Ringsystem bilden, welches seinerseits substituiert sein kann,
R2 gleich oder verschieden sind und ein fluorhaltiges C1-C25-Alkyl, fluorhaltiges C1-C25-Alkenyl, fluorhaltiges C6-C24-Aryl, fluorhaltiges C7-C30-Arylalkyl, fluorhaltiges C7-C30-Alkylaryl bedeuten,
r, n gleich oder verschieden sind und 1, 2, 3, 4 oder 5 bedeuten,
m, q gleich oder verschieden sind und 0, 1, 2, 3 oder 4 bedeuten,
q+r gleich 5 für v = 0, und q+r gleich 4 für v = 1 ist,
m+n gleich 5 für v = 0, und m+n gleich 4 für v = 1 ist,
s, t gleich oder verschieden sind und eine ganze Zahl von 1 bis 20 bedeuten,
L gleich oder verschieden sind und ein Halogenatom oder einen kohlenwasserstoffhaltigen Rest mit 1-20 Kohlenstoffatomen bedeuten,
x eine ganze Zahl von 1 bis 4 ist, wobei im Falle von M1 = Ti, Zr oder Hf x bevorzugt gleich 2 ist,
Z ein verbrückendes Strukturelement zwischen den beiden Cyclopentadienylringen bezeichnet, und v ist 0 oder 1,
wobei das Olefin Propylen ausgenommen ist.
DE19817725A 1998-04-21 1998-04-21 Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten Withdrawn DE19817725A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19817725A DE19817725A1 (de) 1998-04-21 1998-04-21 Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten
PCT/EP1999/002562 WO1999054367A1 (de) 1998-04-21 1999-04-16 Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten
US09/673,147 US6537943B1 (en) 1998-04-21 1999-04-16 Catalyst system composed of metallocenes comprising substituents containing fluorine
JP2000544705A JP2002512275A (ja) 1998-04-21 1999-04-16 フッ素含有置換基を持つメタロセンを含んだ触媒組成物
DE59910526T DE59910526D1 (de) 1998-04-21 1999-04-16 Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten
EP99919244A EP1084159B1 (de) 1998-04-21 1999-04-16 Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19817725A DE19817725A1 (de) 1998-04-21 1998-04-21 Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten

Publications (1)

Publication Number Publication Date
DE19817725A1 true DE19817725A1 (de) 1999-10-28

Family

ID=7865281

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19817725A Withdrawn DE19817725A1 (de) 1998-04-21 1998-04-21 Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten

Country Status (1)

Country Link
DE (1) DE19817725A1 (de)

Similar Documents

Publication Publication Date Title
EP1250363B1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystemen zur herstellung von polyolefinen
EP0942938B1 (de) Geträgertes katalysatorsystem, verfahren zu seiner herstellung und seine verwendung zur polymerisation von olefinen
EP1175262B1 (de) Katalysatorsystem
EP1133504B1 (de) Verfahren zur herstellung von monoaryloxy-ansa-metallocenen
EP0743317B1 (de) Metallocene mit einem heterocyclischen Ring und Katalysatoren, die sie enthalten
WO1999033881A1 (de) Geträgertes katalysatorsystem zur polymerisation von olefinen
EP1074557A2 (de) Übergangsmetallverbindung, Ligandensystem, Katalysatorsystem und seine Verwendung zur Polymerisation von Olefinen
EP1082363A1 (de) Organometallverbindung, katalysatorsystem enthaltend diese organometallverbindung und seine verwendung
DE19808253A1 (de) Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE4417542A1 (de) Metallocene und deren Einsatz für die Olefinpolymerisation
EP0836608B1 (de) Metallocene mit silylsubstituierten brücken und deren einsatz für die olefinpolymerisation
EP1000073B1 (de) Verfahren zur herstellung von metallocenen
EP1003757B1 (de) Verfahren zur herstellung von metallocenen
DE19622481A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP1084159B1 (de) Katalysatorsystem mit metallocenen mit fluorhaltigen substituenten
EP1052263A2 (de) Übergangsmetallverbindung, Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE102004035308A1 (de) Verfahren zur Herstellung von ultrahochmolekularen Polymeren unter Verwendung von unverbrückten Metallocen-Katalysatoren
EP1175424A1 (de) Chemische verbindung, verfahren zu deren herstellung und deren verwendung in katalysatorsystem zur herstellung von polyolefinen
DE19817725A1 (de) Verwendung von Katalysatorsystemen enthaltend Metallocene mit fluorhaltigen Substituenten
EP0868441A2 (de) Übergangsmetallverbindung
EP1073665A1 (de) Metallocene mit fluorhaltigen substituenten
DE19817726A1 (de) Katalysatorsystem mit Metallocenen mit fluorhaltigen Substituenten
DE19817727A1 (de) Verwendung von Metallocenen mit fluorhaltigen Substituenten
DE19817723A1 (de) Verfahren zur Herstellung von Polyolefinen mit speziellen Metallocenen
WO1999015536A1 (de) Übergangsmetallverbindung

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: TARGOR GMBH, 55116 MAINZ, DE

8127 New person/name/address of the applicant

Owner name: BASELL POLYOLEFINE GMBH, 77694 KEHL, DE

8139 Disposal/non-payment of the annual fee