DE1521553B2 - METHOD OF DEPOSITING LAYERS - Google Patents

METHOD OF DEPOSITING LAYERS

Info

Publication number
DE1521553B2
DE1521553B2 DE19651521553 DE1521553A DE1521553B2 DE 1521553 B2 DE1521553 B2 DE 1521553B2 DE 19651521553 DE19651521553 DE 19651521553 DE 1521553 A DE1521553 A DE 1521553A DE 1521553 B2 DE1521553 B2 DE 1521553B2
Authority
DE
Germany
Prior art keywords
layer
silicon
reaction chamber
frequency
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19651521553
Other languages
German (de)
Other versions
DE1521553A1 (en
Inventor
Henley Frank Harlow Essex Swarm Richard Charles George Bishops Stortford Herts Sterling, (Großbntan men)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority claimed from GB52993/65A external-priority patent/GB1136218A/en
Publication of DE1521553A1 publication Critical patent/DE1521553A1/en
Publication of DE1521553B2 publication Critical patent/DE1521553B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/04Decorating textiles by metallising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32752Means for moving the material to be treated for moving the material across the discharge
    • H01J37/32761Continuous moving
    • H01J37/3277Continuous moving of continuous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31616Deposition of Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/043Dual dielectric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/056Gallium arsenide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/114Nitrides of silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/118Oxide films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/148Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/158Sputtering

Description

Die Erfindung bezieht sich auf ein Verfahren zum Abscheiden einer zusammenhängenden, aus einem chemischen Element oder einer anorganischen Verbindung bestehenden festen Schicht auf der Oberfläche einer Unterlage, wobei bei Erzeugung der elementaren Schicht eine chemische Verbindung des Elementes und bei Erzeugung der Schicht einer anorganischen Verbindung alle Teilelemente der anorganischen Verbindung, davon mindestens eines in Form einer anderen chemischen Verbindung als die der Schicht, in gasförmigem Zustand einer Glimmentladung ausgesetzt werden. . . . . . ...The invention relates to a method for depositing a coherent, from one chemical element or an inorganic compound existing solid layer on the surface a base, with a chemical compound of the element and upon creation of the elementary layer when creating the layer of an inorganic compound, all sub-elements of the inorganic compound, at least one of them in the form of a different chemical compound than that of the layer, in gaseous form State of a glow discharge. . . . . . ...

Solche Abscheidungsverfahren sind bekannt (vgl. die schweizerische Patentschrift 374 780 und die deutsche Patentanmeldung D 8585). Bei diesen bekannten Verfahren wird auf eine leitfähige Unterlage abgeschieden, d. h., die Unterlage dient als die Elektrode des Entladungsraumes. Dies hat jedoch gewisse Nachteile, insbesondere, was ~die Auswahl der als Unterlage geeigneten Materialien angeht. Die Aufgabe der Erfindung besteht daher darin, ein Abscheideverfahren unter Verwendung einer Glimmentladung anzugeben, mit dem auf Unterlagen aus beliebigen Materialien abgeschieden werden kann. Dies wird erfindungsgemäß dadurch erreicht, daß eine Plasmaentladung durch induktiv oder kapazitiv in den Reaktionsraum eingekoppelte Hochfrequenzenergie erzeugt und daß durch magnetische Steuerung des Plasmas die abgeschiedene Schicht auf eine spezielle Zone der Unterlage konzentriert oder über die ganze Unterlage gleichmäßig verteilt wird.Such deposition processes are known (cf. Swiss Patent 374 780 and German Patent application D 8585). In these known processes, a conductive base is deposited, d. that is, the pad serves as the electrode of the discharge space. However, this has certain Disadvantages, especially with regard to ~ the selection of suitable materials as a base. The task of the invention therefore consists in a deposition method using a glow discharge indicate with which any material can be deposited on documents. this will according to the invention achieved in that a plasma discharge by inductively or capacitively in the Generated reaction chamber coupled high frequency energy and that by magnetic control of the Plasmas concentrate the deposited layer on a special zone of the substrate or over the whole Underlay is evenly distributed.

Als Plasma wird der Zustand eines Gases definiert, in dem eine gleiche Anzahl von positiv und negativ geladenen Teilchen vorhanden ist.Plasma is defined as the state of a gas in which an equal number of positive and negative charged particles is present.

Das Plasma kann auf verschiedene Weise erzeugt werden, jedoch wird hierzu vorzugsweise ein elektrisches Wechselspannungshochfrequenzfeld erzeugt.The plasma can be generated in various ways, but an electrical one is preferably used for this purpose Alternating voltage high frequency field generated.

Die Oberfläche der Unterlage, auf der die Schicht abgeschieden wird, kann Umgebungstemperatur haben. Es wird dabei eine zusammenhängende Schicht von gasförmiger und/oder amorpher Struktur erhalten.The surface of the substrate on which the layer is deposited can be at ambient temperature. A coherent layer of gaseous and / or amorphous structure is obtained.

In einigen Fällen ist es jedoch vorteilhaft oder wünschenswert, die Oberfläche zu erhitzen, um die innere Bindung der Schicht zu verbessern, um eine spezielle kristalline Form der Schicht zu erhalten, oder zu verhindern, daß Wasser oder OH-Gruppen in die Schicht eingebaut werden, beispielsweise wenn eine Schicht aus Siliciumdioxid erzeugt wird.In some cases, however, it is advantageous or desirable to heat the surface in order to remove the to improve the inner bond of the layer in order to obtain a special crystalline form of the layer, or to prevent water or OH groups from being incorporated into the layer, for example if a Layer of silicon dioxide is produced.

Die Oberfläche kann auch abgekühlt werden, um eine spezielle kristalline oder amorphe Form der Schicht zu erhalten.The surface can also be cooled to a special crystalline or amorphous form of the Layer to get.

Die Erzeugung einer Schicht auf einer Oberfläche durch Abscheiden aus der Gasphase unter Verwendung hoher Temperaturen, beispielsweise von 500 bis 1200° C unter Zuführung thermischer Energie zur Bildung der Schicht, ist bekannt, beispielsweise bei der epitaktischen Herstellung von Halbleiterschichten.The creation of a layer on a surface by vapor deposition using high temperatures, for example from 500 to 1200 ° C with the supply of thermal energy to form the Layer is known, for example in the epitaxial production of semiconductor layers.

Wenn bei dem Verfahren gemäß der Erfindung die Oberfläche erhitzt wird, auf der das Abscheiden erfolgt, reicht die Temperatur entweder nicht aus, um wesentliche thermische Energie für den Beginn des Abscheidens der Schicht aus der Gasphase beizusteuern, oder sie ist so, daß eine Schicht erhalten wird, die nicht die gleiche physikalische Struktur hat, wie sie zu Beginn des Gasplasmas erhalten wird.When in the method according to the invention the surface on which the deposit is heated is heated occurs, the temperature is either insufficient to generate significant thermal energy for the onset of the To contribute to the deposition of the layer from the gas phase, or it is such that a layer is obtained, which does not have the same physical structure as it is obtained at the beginning of the gas plasma.

Organische oder anorganische Verbindungen können als Ausgangsmaterial zur Erzeugung der Schicht verwendet werden. Vorzugsweise werden jedoch anorganische Verbindungen verwendet, insbesondere, wo eine große Reinheit der Schicht gefordert wird, weil sonst organische Radikale oder Kohlenstoff in die Schicht eingebaut werden könnten.Organic or inorganic compounds can be used as starting material for producing the layer will. Preferably, however, inorganic compounds are used, especially where a Great purity of the layer is required, because otherwise organic radicals or carbon will enter the layer could be built in.

Das Abscheiden kann bei jedem beliebigen Druck erfolgen, vorausgesetzt, daß die anderen Parameter, wie Spannung und Frequenz, entsprechend eingestellt werden, jedoch wird das Abscheiden vorzugsweise bei einem Druck kleiner als Normaldruck ausgeführt,The deposition can take place at any pressure, provided that the other parameters, such as voltage and frequency, can be adjusted accordingly, however, the deposition is preferred at executed at a pressure lower than normal pressure,

ίο z. B. im Bereich von 0,1 bis 1 Torr.ίο z. B. in the range of 0.1 to 1 torr.

Eine Anwendung der vorliegenden Erfindung besteht darin, daß besonders gute Schichten für Dünnfilm- und Festkörperanordnungen unter möglichst geringer Verwendung von Wärme hergestellt werden können.One application of the present invention is that particularly good layers for thin-film and solid-state assemblies can be fabricated with as little use of heat as possible.

Dabei werden vergleichbare oder bessere Ergebnisse erhalten als bei chemischen Verfahren, bei denen hohe Temperaturen verwendet werden.This results in comparable or better results than with chemical processes, in which high Temperatures are used.

Eine andere Anwendung besteht in der Ausnutzung der mechanischen Eigenschaften gewisser Schichten, wie z. B. hohe Kratzfestigkeit und Undurchlässigkeit, bei der Bildung von mechanischen Schutzschichten in einem großen Bereich der Technik, wie dies später beschrieben wird.Another application is to take advantage of the mechanical properties of certain layers, such as B. high scratch resistance and impermeability, in the formation of mechanical protective layers in a wide range of engineering as will be described later.

Ausführungsformen der Erfindung sollen nun an Hand der Figuren näher erläutert werden.Embodiments of the invention will now be explained in more detail with reference to the figures.

F i g. 1 zeigt eine Vorrichtung zur Erzeugung von Siliciumschichten oder ähnlichen Schichten;F i g. 1 shows an apparatus for producing silicon layers or similar layers;

F i g. 2 zeigt eine Vorrichtung zur Herstellung von Schichten aus Siliciumdioxid oder ähnlichen Schichten.F i g. Figure 2 shows an apparatus for producing layers of silicon dioxide or similar layers.

Die Vorrichtung nach F i g. 1 besteht aus einem Vorratszylinder 1, der mit einer Reaktionskammer 2 aus dielektrischem Material über einen Durchflußmesser 3 verbunden ist. Die Reaktionskammer 2 wird von einer Vakuumpumpe 4 evakuiert. Der Druckregler 5 und das Manometer 6 dienen zur Steuerung des Kammerdruckes. Eine hochohmige Hochfrequenzquelle ist an die Spule 8 angeschlossen, die die Reaktionskammer 2 umgibt. In dieser ist die Unterlage 9 angeordnet, auf der die Schicht abgeschieden werden soll.The device according to FIG. 1 consists of a storage cylinder 1, which is connected to a reaction chamber 2 of dielectric material is connected via a flow meter 3. The reaction chamber 2 is evacuated by a vacuum pump 4. The pressure regulator 5 and the pressure gauge 6 are used for Control of the chamber pressure. A high-resistance high-frequency source is connected to the coil 8, which surrounds the reaction chamber 2. In this the base 9 is arranged, on which the layer is deposited shall be.

Die Unterlage 9 kann aus den verschiedenstenThe pad 9 can consist of the most varied

Materialien bestehen, beispielsweise einem Glasplättchen (Mikroskopierglas), einem Streifen oder einem Plättchen aus Kunststoff, einer flüssigen Quecksilber-Oberfläche, einem optischen Element, z. B. einer Linse oder einem Prisma, der Oberfläche einer Halbleiteranordnung, einer Metallplatte oder einem Metallkörper, ζ. B. aus Molybdän, einem Siliciumplättchen oder einem Kunststoffkörper.Materials exist, for example a glass plate (microscope glass), a strip or a Plastic platelets, a liquid mercury surface, an optical element, e.g. B. a lens or a prism, the surface of a semiconductor device, a metal plate or a metal body, ζ. B. made of molybdenum, a silicon wafer or a plastic body.

Die Unterlage 9 kann unerhitzt sein, so daß sie sich auf Umgebungstemperatur, z.B. 180C, befindet, oder sie wird auf niedrigerer oder höherer Temperatur gehalten. Die höhere Temperatur hängt von der Art des Materials der Unterlage ab und liegt unterhalb der Temperatur, die erforderlich ist, um eine merkliche thermische Dissoziation des Inhaltes des Zylinders 1 zu bewirken. Die Temperatur der Unterlage bestimmt die physikalischen Eigenschaften der abgeschiedenen Schicht, beispielsweise, ob die Schicht amorph oder kristallin ist.The base 9 can be unheated, so that it is at ambient temperature, for example 18 0 C, or it is kept at a lower or higher temperature. The higher temperature depends on the type of material of the base and is below the temperature which is required in order to bring about a noticeable thermal dissociation of the contents of the cylinder 1. The temperature of the substrate determines the physical properties of the deposited layer, for example whether the layer is amorphous or crystalline.

Auf kalten Unterlagen werden ankommende Atome eingefroren und können sich fast nicht mehr bewegen. Auf diese Weise kann ein Material in metastabiler Form mittels dieser »Dampfabschreckung« abgeschieden werden. Dies kann mit gleichzeitiger Verdampfung von Legierungskomponenten im Vakuum zur Herstellung von Legierungen in einer Form, die dem Phasendiagrammgleichgewicht widerspricht, verglichen werden.Incoming atoms are frozen on cold surfaces and can almost no longer move. In this way, a material can be deposited in a metastable form by means of this "vapor quenching" will. This can be done with simultaneous evaporation of alloy components in a vacuum for production of alloys in a form that corresponds to the phase diagram equilibrium contradicts, be compared.

Der Zylinder 1 oder ein anderer geeigneter Behälter oder eine andere Quelle enthält eine chemische Verbindung des Materials zur Herstellung der Schicht. Diese chemische Verbindung ist entweder ein Gas oder ein flüchtiger fester Körper, der einen geeigneten Dampfdruck hat, damit er bei dem beim Verfahren herrschenden Druck in Dampfform vorliegt. Der Druck liegt im allgemeinen, jedoch nicht notwendig, unter Atmosphärendruck. Der Dampf des festen Körpers kann mit einem geeigneten Trägergas in die Reaktionskammer gebracht werden. The cylinder 1 or some other suitable container or other source contains a chemical compound the material used to make the layer. This chemical compound is either a gas or a volatile solid that has a suitable vapor pressure to be used in the process Pressure is in vapor form. The pressure is generally, but not necessarily, below Atmospheric pressure. The vapor of the solid body can be brought into the reaction chamber with a suitable carrier gas.

Wenn die abgeschiedene Schicht aus dem einzelnen chemischen Element, wie z. B. Silicium, Molybdän, Zinn oder Germanium, bestehen soll, besteht die chemische Verbindung, die als Ausgangsmaterial verwendet wird, vorzugsweise aus einem Hydrid des Elementes. Wenn die niedergeschlagene Schicht aus einer chemischen Verbindung, wie beispielsweise Siliciumkarbid, bestehen soll, wird als Ausgangsmaterial eine andere chemische Verbindung verwendet, die alle Bestandteile der niederzuschlagenden Schicht enthält. Für eine Siliciumkarbidschicht ist Methylsilan ein geeignetes Ausgangsmaterial.When the deposited layer of the single chemical element, such as. B. silicon, molybdenum, Tin, or germanium, is made up of the chemical compound that is used as the starting material is, preferably from a hydride of the element. When the dejected layer of a chemical compound, such as silicon carbide, is used as a starting material Another chemical compound is used which contains all the components of the layer to be deposited. Methylsilane is a suitable starting material for a silicon carbide layer.

Beim Anschließen der Spule 8 an die Hochfrequenzquelle wird das Gas niedrigen Druckes in der Reaktionskammer 2 zu einem Plasma erregt, und die Energie, die bei der Einleitung der chemischen Reaktion zur Dissoziation des Ausgangsmaterials nötig ist, wird von dem elektrischen Feld der Spule 8 geliefert. Das Plasma wird am Anfang durch die kapazitive Wirkung zwischen der Spule 8 und einer Erdung erzeugt, die beispielsweise durch das Metall des Rahmens der Vorrichtung oder den Träger der Kammer gebildet wird. Nachdem einmal ein Plasma erzeugt ist, wird die Energie auf induktivem Wege zugeführt. Die Einschaltung eines Faradayschirmes unterbricht die Reaktion.When connecting the coil 8 to the high frequency source the low pressure gas in the reaction chamber 2 is excited to a plasma, and the Energy that is required to dissociate the starting material when initiating the chemical reaction, is supplied by the electric field of the coil 8. The plasma is initially through the capacitive Effect produced between the coil 8 and an earth, for example by the metal of the frame the device or the carrier of the chamber is formed. Once a plasma is generated, the Energy supplied by inductive means. The activation a Faraday screen interrupts the reaction.

Die Steuerung des Plasmas geschieht durch das magnetische Feld der Magnete 10, die permanente Magnete oder Elektromagnete sein können. Das magnetische Feld ist so ausgebildet, daß das Abscheiden in einer speziellen Zone konzentriert oder auf die ganze Unterlage gleichmäßig verteilt wird.The plasma is controlled by the magnetic field of the magnets 10, which is permanent Can be magnets or electromagnets. The magnetic field is designed so that the deposition concentrated in a special zone or evenly distributed over the entire surface.

Das Plasma kann die charakteristische Glimment- J ladung zeigen. Manchmal sind jedoch die besten Verfahrensbedingungen zum Abscheiden solche, daß im Dunkeln keine Glimmentladung mit unbewaffnetem Auge sichtbar ist. Es ist zwar bekannt, daß ein gewisser Effekt stets vorhanden ist, jedoch tritt ein Abscheiden nur auf, wenn die Spule an die Hochfrequenzquelle angeschlossen ist.The plasma can the characteristic Glimment- J charge show. Sometimes, however, the best process conditions for deposition are such that no glow discharge is visible to the naked eye in the dark. While it is known that some effect is always present, deposition only occurs when the coil is connected to the high frequency source.

Bei der Verwendung der in Fig. 1 dargestellten Apparatur mit einer Hochfrequenzquelle 7 von 1 kW Leistung und einer Spannung im Bereich von 2 bis 5 kV werden die in den Ausführungsbeispielen 1 bis 3 beschriebenen Schichten erhalten.When using the one shown in FIG Apparatus with a high frequency source 7 of 1 kW power and a voltage in the range from 2 to 5 kV are those in exemplary embodiments 1 to 3 layers described.

1. Beispiel'1st example '

Das Schichtmaterial ist Silicium. Als Ausgangsmaterial ist in dem Zylinder 1 reines Silan vorhanden. Der Druck in der Apparatur ist auf 0,2 Torr vermindert, und das Silan fließt mit einer Menge von 2 ml/Min, durch die Reaktionskammer, die aus einem Rohr aus geschmolzenem Quarz mit einem Durchmesser von etwa 25 mm besteht. Die Hochfrequenzquelle hat eine Frequenz von 0,5 MHz, und das Silicium wird als zusammenhängende amorphe Schicht auf der kalten Unterlage 9 mit einer Wachstumsgeschwindigkeit von 3 μΐη/h abgeschieden.The layer material is silicon. Pure silane is present in the cylinder 1 as the starting material. The pressure in the apparatus is reduced to 0.2 Torr, and the silane flows at a rate of 2 ml / min, through the reaction chamber, which consists of a tube of fused quartz with a diameter of consists of about 25 mm. The high frequency source has a frequency of 0.5 MHz, and the silicon is a continuous amorphous layer on top of the cold Pad 9 deposited with a growth rate of 3 μΐη / h.

2. B e i s ρ i e 12. B e i s ρ i e 1

Das Schichtmaterial ist Silicium. Als Ausgangsmaterial ist im Zylinder 1 Silan vorhanden. Der Druck in der Apparatur beträgt 0,3 Torr, und das Silan fließt in einer Menge von 4,5 ml/Min, durch die Reaktionskammer, die aus einer Glasglocke mit 75 mm Durchmesser besteht und dicht auf einer Metallunterlage befestigt ist. Die Frequenz der Hochfrequenzquelle beträgt 4 MHz, und die Siliciumschicht wächst als zusammenhängende amorphe Schicht auf der kalten Unterlage mit einer Geschwindigkeit von 3 μΐη/h.The layer material is silicon. The cylinder contains 1 silane as the starting material. The pressure in the apparatus is 0.3 Torr, and the silane flows in an amount of 4.5 ml / min, through the reaction chamber, which consists of a bell jar with a diameter of 75 mm and is tightly attached to a metal base. The frequency of the high frequency source is 4 MHz, and the silicon layer grows as a continuous amorphous layer on top of the cold one Pad at a speed of 3 μΐη / h.

Die nach diesen beiden Beispielen hergestellten Siliciumschichten zeigen normale Interferenzfarben, wenn sie dünn sind. Bei fortschreitendem Schichtwachstum werden die Schichten dunkler, da sich ihre Transparenz vermindert. Bei weiterem Abscheiden nimmt die Schicht den Metallglanz des massiven Siliciums an. Die Haftfestigkeit der Schicht an der Unterlage ist ausgezeichnet.The silicon layers produced according to these two examples show normal interference colors, when they are thin. As the layers grow, the layers become darker because their Transparency decreased. With further deposition, the layer removes the metallic luster of the solid silicon at. The adhesion of the layer to the substrate is excellent.

Wenn die Siliciumschicht auf einer unerhitzten Unterlage abgeschieden wird, hat sie eine amorphe oder glasige Form, isoliert sehr gut und hat einen Widerstand, der mit dem von reinem Silicium verglichen werden kann. Solche Schichten lassen sich gut für Isolierzwecke verwenden. Andere Anwendungen sind Oberflächenpassivierung, Filter und Oberflächenschutz. Bei dieser letzteren Anwendung kann sich die Unterlage auf einer erniedrigten oder erhöhten Temperatur befinden, um die physikalischen Eigenschaften der Siliciumschicht zu verändern.If the silicon layer is deposited on an unheated substrate, it is amorphous or glassy form, insulates very well and has a resistance compared to that of pure silicon can be. Such layers can be used well for insulation purposes. Other uses are surface passivation, filters and surface protection. In this latter application, the Pad located at a decreased or increased temperature in order to maintain the physical properties to change the silicon layer.

Beim epitaktischen Abscheiden von Silicium durch die bekannten thermischen Verfahren ist die untere Grenztemperatur etwa 8500C, unterhalb der ein epitaktisches Wachstum (Einkristall) nicht mehr auftritt. Durch Kombination des Plasmaverfahrens und des thermischen Verfahrens kann jedoch die Grenztemperatur für die Unterlage auf etwa 65O0C herabgesetzt werden, wobei die zusätzliche ^Energie, die von demDuring the epitaxial deposition of silicon by the known thermal processes, the lower limit temperature is approximately 850 ° C., below which epitaxial growth (single crystal) no longer occurs. By combining the plasma process and the thermal process, however, the limit temperature for the base can be reduced to about 650 0 C, with the additional ^ energy that is generated by the

Plasma herrührt, die nötigen Änderungen der physikalischen und chemischen Eigenschaften bewirkt.Plasma originates, causing the necessary changes in physical and chemical properties.

3. B ei s ρ i el3. B ei s ρ i el

Das Schichtmaterial ist Molybdän. Als Ausgangsmaterial wird Molybdänkarbonyl verwendet, das ein fester Stoff ist und in einem Glasbehälter auf 250C gehalten wird. Wenn der Dampfdruck des Molybdänkarbonyls 0,1 Torr beträgt, wird Wasserdampf als Trägergas über das Molybdänkarbonyl und durch die Apparatur geleitet, und zwar mit einer solchen Geschwindigkeit, daß der Druck auf 8 Torr gebracht wird. Die Reaktionskammer besteht aus einer Glas-Petrischale, die oben durch eine Metallplatte dicht abgeschlossen ist, durch die eine Zuleitung und eine Ableitung führt. Ein spiralförmig gewundener Leiter oder eine kreisförmige Platte oberhalb der Schale und die Metallplatte bilden die Mittel zur Energiezuführung bei einer Frequenz von 4 MHz. Auf der inneren Oberfläche der Schale wird Molybdän abgeschieden.The layer material is molybdenum. Molybdenum carbonyl, which is a solid substance and is kept at 25 ° C. in a glass container, is used as the starting material. When the vapor pressure of the molybdenum carbonyl is 0.1 torr, water vapor is passed as a carrier gas over the molybdenum carbonyl and through the apparatus at such a rate that the pressure is brought to 8 torr. The reaction chamber consists of a glass Petri dish which is sealed at the top by a metal plate through which a supply line and a discharge line lead. A helically wound conductor or a circular plate above the shell and the metal plate form the means for supplying energy at a frequency of 4 MHz. Molybdenum is deposited on the inner surface of the shell.

Zur Herstellung einer Germaniumschicht wird als Ausgangsverbindung Germaniumhydrid (German) und zur Herstellung einer Zinnschicht Zinnhydrid (Stannan) verwendet. Der Druck in der Apparatur, die Durchflußgeschwindigkeit und die Frequenz der Hochfrequenzquelle sind die gleichen wie oben beschrieben. Die Germaniumschicht kann auf einer kalten Unterlage oder auf einer Unterlage, die sich auf niedrigerer oder höherer Temperatur (bis zu 4000C) befindet, er-Germanium hydride (German) is used as the starting compound to produce a germanium layer and tin hydride (stannane) is used to produce a tin layer. The pressure in the apparatus, the flow rate and the frequency of the high frequency source are the same as described above. The germanium layer can be placed on a cold surface or on a surface that is at a lower or higher temperature (up to 400 0 C).

zeugt werden. Die Anwendungen sind die gleichen wie die für Siliciumschichten.be procreated. The applications are the same as those for silicon films.

Zinnschichten können auf einer kalten Unterlage oder einer Unterlage niedrigerer oder höherer Temperatur erzeugt werden. Oberhalb 15O0C tritt in gewissem Maße eine thermische Zersetzung ein. Solche Zinnschichten können für Kontakte und leitende Verbindungen bei Mikroschaltungen verwendet werden.Tin layers can be produced on a cold surface or a surface with a lower or higher temperature. Above 15O 0 C occurs a thermal decomposition to some extent. Such tin layers can be used for contacts and conductive connections in microcircuits.

Metallschichten aus metallorganischen Verbindungen, wie bei der Herstellung von Molybdän aus Molybdänkarbonyl, können z. B. als Dekor, gedruckte Schaltung oder Kontaktschicht verwendet werden.Metal layers made of organometallic compounds, such as in the production of molybdenum from molybdenum carbonyl, can e.g. B. can be used as a decoration, printed circuit or contact layer.

Ein weiteres Material, das nach dem Plasmaverfahren niedergeschlagen werden kann, ist Siliciumkarbid. Als Ausgangsmaterial wird Methylsilan verwendet. Ein weiteres Material ist Selen, für das als Ausgangsverbindung Selenhydrid (H2Se) verwendet wird. Tellur wird aus Tellurhydrid (H2Te) erzeugt.Another material that can be deposited using the plasma process is silicon carbide. Methylsilane is used as the starting material. Another material is selenium, for which selenium hydride (H 2 Se) is used as the starting compound. Tellurium is produced from tellurium hydride (H 2 Te).

In F i g. 2 ist eine Apparatur -dargestellt, die aus einem ersten Vorratszylinder 11 besteht, der mit der aus dielektrischem Material bestehenden Reaktionskammer 12 über einen Durchflußmesser 13 verbunden ist, und einem zweiten Vorratszylinder 14, der mit der Reaktionskammer 12 über den Durchflußmesser 15 verbunden ist. Die Reaktionskammer 12 wird mit der Vakuumpumpe 16 evakuiert, und der Druckregler 17 sowie das Manometer 18 dienen zur Einstellung des Druckes in der Reaktionskammer. Die hochohmige Hochfrequenzquelle 19 ist an die Platten 20 angeschlossen, die aus einer Aluminiumfolie bestehen können, die an der Außenseite der Kammerwand befestigt ist. Eine kapazitive Zuführung der Energie kann mit einem zylindrischen Metallgitter vorgenommen werden, das um die Kammer angeordnet ist und das die eine Elektrode bildet, während die andere vom Metallfuß der Vorrichtung gebildet wird. In der Kammer ist die Unterlage 21 angeordnet, auf der die Schicht abgeschieden werden soll. Mit den Magneten 22 wird ein Feld zur Steuerung des Plasmas erzeugt.In Fig. Fig. 2 shows an apparatus consisting of a first supply cylinder 11, which is connected to the reaction chamber 12 made of dielectric material via a flow meter 13 is, and a second storage cylinder 14, which is connected to the reaction chamber 12 via the flow meter 15 connected is. The reaction chamber 12 is evacuated with the vacuum pump 16, and the pressure regulator 17 and the manometer 18 are used to adjust the pressure in the reaction chamber. The high resistance High-frequency source 19 is connected to the plates 20, which consist of an aluminum foil that is attached to the outside of the chamber wall. A capacitive supply of energy can can be made with a cylindrical metal grid placed around the chamber and the one electrode, while the other is formed by the metal base of the device. In the chamber the base 21 is arranged on which the layer is to be deposited. With the magnet 22 is a field for controlling the plasma is generated.

Der Zylinder 11 oder ein anderer geeigneter Behälter enthält eine chemische Verbindung des einen der Elemente, das die Schicht bilden soll, während der Zylinder 14 eine chemische Verbindung der anderen Elemente enthält, die die Schicht bilden. Jede chemische Verbindung ist entweder ein Gas oder ein flüchtiger Festkörper mit geeignetem Dampfdruck, so daß er beim Betriebsdruck in Dampfform vorliegt. Der Betriebsdruck ist im allgemeinen, aber nicht notwendigerweise, niedriger als Atmosphärendruck. Der Dampf des Festkörpers wird mit einem geeigneten Trägergas in die Reaktionskammer gebracht.The cylinder 11 or other suitable container contains a chemical compound of one of the elements, that is to form the layer, while the cylinder 14 is a chemical compound of the other Contains elements that make up the layer. Every chemical compound is either a gas or a volatile one Solid body with a suitable vapor pressure so that it is in vapor form at the operating pressure. The operating pressure is generally, but not necessarily, lower than atmospheric pressure. The steam of the solid is brought into the reaction chamber with a suitable carrier gas.

Die Unterlage 21 kann aus den verschiedensten Stoffen bestehen, wie sie schon teilweise bei der Beschreibung von F i g. 1 genannt wurden.The base 21 can consist of a wide variety of substances, as already partially described in the description from F i g. 1 were named.

Bei der Verwendung einer Hochfrequenzquelle mit einer Leistung von 1 kW und der Apparatur von F i g. 2 können Schichten erhalten werden, wie sie in den folgenden Beispielen beschrieben sind.When using a high-frequency source with a power of 1 kW and the apparatus of F i g. 2 layers can be obtained as described in the following examples.

4. Beispiel4th example

Das Schichtmaterial ist Siliciumdioxid. Im Zylinder 11 befindet sich reines Silan und im Zylinder 14 reines Stickoxydul. Der Druck in der Apparatur beträgt 0,4 Torr und die Durchflußgeschwindigkeit des Silans 1 ml/Min, und die des Stickoxyduls 3 ml/Min.The layer material is silicon dioxide. There is pure silane in cylinder 11 and cylinder 14 pure nitrogen oxide. The pressure in the apparatus is 0.4 Torr and the flow rate of the Silane 1 ml / min, and that of nitrogen oxide 3 ml / min.

Die Reaktionskammer beseht aus geschmolzenem Quarzglas, und zwar aus einem Rohr von etwa 25 mm Durchmesser. Die Frequenz der Hochfrequenzquelle beträgt 0,5 MHz. Das Siliciumdioxid wird mit einer Geschwindigkeit von 4 μΐη/h abgeschieden.The reaction chamber consists of fused quartz glass, namely a tube of about 25 mm Diameter. The frequency of the high frequency source is 0.5 MHz. The silica is with a Speed of 4 μΐη / h deposited.

Die Unterlage 21 kann kalt sein oder sich auf erhöhter Temperatur, beispielsweise 200 oder 25O0C, befinden, so daß kein Wasser von der abgeschiedenen Siliciumdioxidschicht eingeschlossen wird. An Stelle des Stickoxyduls kann Kohlendioxid oder Wasserdampf als Sauerstoffquelle verwendet werden.
Das Siliciumdioxid wird in guthaftendem, glasigem
The backing 21 can be cold or be located at an elevated temperature, for example 200 or 25O 0 C, so that no water is trapped by the deposited silicon dioxide layer. Instead of the nitrogen oxide, carbon dioxide or water vapor can be used as the oxygen source.
The silica is in a well adhering, glassy

ίο Zustand abgeschieden und ist sehr hart und kratzfest. Geeignete Anwendungen für die Siliciumdioxidschicht sind die Oberflächenpassivierung, der Oberflächenschutz, insbesondere der Schutz von optischen Elementen, wie Glaslinsen oder Glasprismen oder von anderen Materialien und von Spezialgläsern.ίο Condition deposited and is very hard and scratch-resistant. Suitable applications for the silicon dioxide layer are surface passivation, surface protection, in particular the protection of optical elements such as glass lenses or glass prisms or of other materials and special glasses.

5. B e i s ρ i e 15. B e i s ρ i e 1

Das Schichtmaterial ist Siliciumnitrid. Der Zylinder 11 enthält reines Silan und der Zylinder 14 wasserfreies Ammoniak. Die Reaktionskammer besteht aus einem Rohr aus geschmolzenem Quarzglas und hat einen Durchmesser von etwa 25 mm. Die Durchflußgeschwindigkeit des Silans beträgt 0,25 ml/Min, und die des Ammoniaks 0,75 ml/Min. Der Druck in der Apparatur beträgt 0,3 Torr, und die Hochfrequenzquelle hat eine Frequenz von 1 MHz. Auf einer Unterlage einer Temperatur von 3000C wird die Schicht mit einer Geschwindigkeit von 1 μΐη/h abgeschieden.The layer material is silicon nitride. The cylinder 11 contains pure silane and the cylinder 14 contains anhydrous ammonia. The reaction chamber consists of a tube made of fused quartz glass and has a diameter of about 25 mm. The flow rate of the silane is 0.25 ml / min and that of the ammonia 0.75 ml / min. The pressure in the apparatus is 0.3 Torr and the high frequency source has a frequency of 1 MHz. On a base of a temperature of 300 0 C, the layer is deposited at a rate of 1 h μΐη /.

6. Beispiel6th example

Das Schichtmaterial ist Siliciumnitrid. Der Zylinder 11 enthält reines Silan und der Zylinder 14 wasserfreies Ammoniak. Die Reaktionskammer besteht aus einer Glasglocke von etwa 75 mm Durchmesser, die auf einer Metallplatte dicht befestigt ist. Die Durchflußgeschwindigkeit des Silans beträgt 4,5 ml/Min, und die des Ammoniaks 12 ml/Min. Der Druck in der Apparatur beträgt 0,3 Torr, und die Unterlage hat eine Temperatur von 200° C. Die Frequenz der Hochfrequenzquelle beträgt 4 MHz und die Abscheidegeschwindigkeit 3 μΐη/h.The layer material is silicon nitride. The cylinder 11 contains pure silane and the cylinder 14 contains anhydrous Ammonia. The reaction chamber consists of a bell jar about 75 mm in diameter, which is tightly fastened on a metal plate. The flow rate of the silane is 4.5 ml / min, and that of ammonia 12 ml / min. The pressure in the apparatus is 0.3 Torr and the pad has a temperature of 200 ° C. The frequency of the high-frequency source is 4 MHz and the deposition rate 3 μΐη / h.

Die so erzeugten Schichten aus Siliciumnitrid, die anschließend einer Wärmebehandlung bei 700 bis 9000C unterworfen werden, oder die bei diesen Temperaturen erzeugt werden, sind gegen chemische Angriffe äußerst widerstandsfähig. Die Siliciumnitridschichten sind sehr hart sowie kratz- und säurefest, wenn sie bei Temperaturen von über 300° C erzeugt werden und sind daher sehr vorteilhaft für den Oberflächenschutz. Die Eigenschaften der Schichten wurden sowohl chemisch als auch physikalisch untersucht.The layers of silicon nitride produced in this way, which are then subjected to a heat treatment at 700 to 900 ° C., or which are produced at these temperatures, are extremely resistant to chemical attack. The silicon nitride layers are very hard as well as scratch and acid-resistant when they are produced at temperatures above 300 ° C and are therefore very advantageous for surface protection. The properties of the layers were examined both chemically and physically.

Die relative Dielektrizitätskonstante einer solchen Schicht liegt zwischen 7,0 und 10,0. Die elektrische Festigkeit einer 1 μ starken Schicht ist größer als 5 · 106 V/cm.The relative dielectric constant of such a layer is between 7.0 and 10.0. The electrical strength of a 1 μ thick layer is greater than 5 · 10 6 V / cm.

Die so hergestellten Siliciumnitridschichten eignen sich ausgezeichnet als dielektrisches Material von Kondensatoren. Die Kondensatorbelegungen werden durch Aufdampfen von Metall oder nach einem anderen Verfahren erzeugt.The silicon nitride layers produced in this way are excellent as dielectric material for capacitors. The capacitor coverings are made by vapor deposition of metal or another process generated.

Der Brechungsindex des Siliciumnitrids wurde mit einem Eilipsometer zu 2,1 bestimmt.The refractive index of the silicon nitride was determined to be 2.1 with an ellipsometer.

Die Siliciumnitridschichten (Si3N4), die nach dem Plasmaverfahren bei Zimmertemperatur (der Unterlage) hergestellt sind, werden von einer HF/HNO3-Mischung chemisch etwas angegriffen. Sie sind jedoch ausgezeichnet widerstandsfähig gegen alkalische und saure Ätzmittel einschließlich einer HF/HNO3-Mischung,The silicon nitride layers (Si 3 N 4 ), which are produced using the plasma process at room temperature (of the substrate), are somewhat chemically attacked by an HF / HNO 3 mixture. However, they are extremely resistant to alkaline and acidic caustic agents including an HF / HNO 3 mixture,

wenn sie bei höheren Temperaturen abgeschieden oder anschließend auf höhere Temperaturen erhitzt werden. Die Schichten sind undurchlässig für Gase und Wasserdampf. if they are deposited at higher temperatures or subsequently heated to higher temperatures. The layers are impermeable to gases and water vapor.

Das Siliciumnitrid wird durch eine Reaktion auf Grund der Entladung bei Hochfrequenz in einer Mischung von Silan (Siliciumhydrid) und Ammoniak gebildet. Bei diesen Gasen tritt normalerweise bis 1000° C keine thermische Bildung von Siliciumnitrid ein, so daß frühere Versuche zur Herstellung von Siliciumnitridschichten keinen Erfolg hatten.The silicon nitride is formed in a reaction due to the high frequency discharge Formed mixture of silane (silicon hydride) and ammonia. With these gases normally occurs up 1000 ° C no thermal formation of silicon nitride, so that earlier attempts to produce silicon nitride layers were unsuccessful.

Die Siliciuninitridschichten werden als Schutzschichten für Körper oder Teile aus relativ weichem oder relativ leicht zerstörbarem Material verwendet.The silicon nitride layers are used as protective layers used for bodies or parts made of relatively soft or relatively easily destructible material.

Eine Gruppe solcher Teile sind Kunststoffteile, beispielsweise der große Bereich der Kunststoffteile für den Haushalt, bei denen dünne, gut haftende Schutzschichten vorteilhaft sind.One group of such parts are plastic parts, for example the wide range of plastic parts for the household, where thin, well-adhering protective layers are advantageous.

Eine andere Gruppe solcher Teile sind Halbleiteranordnungen, wie Transistoren, wo ein Oberflächenschutz erforderlich ist. .Another group of such parts are semiconductor devices, such as transistors, where surface protection is required is required. .

Auf der Oberfläche von optischen Elementen kann die Siliciumnitridschicht als Schutzschicht oder als Überzug (Vergütung) verwendet werden.On the surface of optical elements, the silicon nitride layer can be used as a protective layer or as a Coating (remuneration) can be used.

In der folgenden Liste werden Beispiele für weitere Schichten angegeben, die mittels der Vorrichtung von F i g. 2 erzeugt werden können. Die Durchflußgeschwindigkeit des Gases, der Druck in der Apparatur und die Frequenz der Hochfrequenzquelle sind ähnlich wie bei den bisher beschriebenen Beispielen.The following list gives examples of further layers which can be produced by means of the device of F i g. 2 can be generated. The flow rate of the gas, the pressure in the apparatus and the frequencies of the high frequency source are similar to the examples described so far.

Schichtmaterial AusgangsmaterialLayer material starting material

Siliciummonoxid Silan + Stickoxydul oder Kohlendioxid (N2O oder CO2, Durchflußgeschwindigkeit
eingestellt für genaues stöchiometrisches Verhältnis von SiO).
Silicon monoxide silane + nitrogen oxide or carbon dioxide (N 2 O or CO 2 , flow rate
set for exact stoichiometric ratio of SiO).

Siliciumkarbid Silan + Methan oder ÄthylenSilicon carbide silane + methane or ethylene

usw.etc.

Siliciumsulfid Silan + SchwefelwasserstoffSilicon sulfide silane + hydrogen sulfide

Germaniumnitrid..... Germaniumhydrid + Ammoniak Germanium nitride ..... germanium hydride + ammonia

Bornitrid Diboran oder DekaboranBoron nitride diborane or decaborane

+ Ammoniak+ Ammonia

Galliumnitrid Digallan + AmmoniakGallium Nitride Digallan + Ammonia

Galliumarsenid Digallan + ArsinGallium arsenide digallane + arsine

Aluminiumoxid Aluminiumtrimethyl oder AIu-Aluminum oxide aluminum trimethyl or aluminum

miniumäthoxid + Stickoxydul oder Wasserdampfminiumethoxid + nitric oxide or water vapor

Andere Herstellung der folgenden vier Oxide:Other manufacture of the following four oxides:

Tantaloxid "i Ein flüchtiges Halogenid des Me-Tantalum oxide "i A volatile halide of the

Titanoxid I tails wie TitantetrachloridTitanium oxide I tails like titanium tetrachloride

Zirkoniumoxid · · f + Wasserdampf oder Stick-Nioboxid J oxydulZirconium oxide · · f + water vapor or nitric niobium oxide J oxydul

Wenn die Schicht aus drei chemischen Elementen gebildet werden soll, entspricht die Apparatur derjenigen von F i g. 1 und 2, ausgenommen daß drei getrennte Vorratszylinder oder Behälter für die einzelnen Ausgangsverbindungen vorgesehen sind, von denen jede eines der für die Schicht benötigten Elemente enthält.If the layer is to be formed from three chemical elements, the apparatus corresponds to that from F i g. 1 and 2, except that there are three separate supply cylinders or containers for each Output connections are provided, each of which is one of the elements required for the layer contains.

Beispiele von Schichten aus drei Elementen sind Siliciumoxynitrid (beispielsweise Si2N2O), hergestellt aus Silan und einem Hydrid von Stickstoff und Kohlendioxid, und Borsilikatglas, hergestellt aus Diboran, Silan und Stickoxydul.Examples of three element layers are silicon oxynitride (e.g., Si 2 N 2 O) made from silane and a hydride of nitrogen and carbon dioxide, and borosilicate glass made from diborane, silane and nitrogen oxide.

Typische Anwendungen für die Schichten aus Borsilikatglas schließen die Bildung von isolierenden Schichten auf metallischen Oberflächen ein, beispielsweise bei der Herstellung von Mikroschaltungen, zur Verwendung als dielektrisches Material für Kondensatoren und zum Oberflächenschutz von Halbleiteranordnungen. Typical uses for the layers of borosilicate glass include the formation of insulating Layers on metallic surfaces, for example in the production of microcircuits, for Use as a dielectric material for capacitors and for surface protection of semiconductor arrangements.

Obwohl alle oben beschriebenen Schichten unter Verwendung einer Hochfrequenzquelle hergestellt werden, d. h. die Frequenz liegt über 10 kHz, wurden auch Frequenzen bis herab zu 50 Hz verwendet. In der Theorie ist es sogar möglich, bis auf die Frequenz Null herunterzugehen, d. h. Gleichstrom zu verwenden. Bei niedrigeren Frequenzen als 50 Hz werden Elektroden in Kontakt mit der Gasatmosphäre verwendet, um das elektrische Feld zur Erzeugung des Plasmas anzukoppeln. Although all of the layers described above are made using a high frequency source be, d. H. the frequency is above 10 kHz, frequencies down to 50 Hz have also been used. In the In theory it is even possible to go down to frequency zero, i.e. H. To use direct current. at Lower frequencies than 50 Hz, electrodes in contact with the gas atmosphere are used to control the to couple electric field to generate the plasma.

Die angewendete Spannung, die Frequenz, der Druck und die Durchflußgeschwindigkeit des Gases sind alle voneinander abhängig, können jedoch über einen weiten Bereich, je nach den Erfordernissen zur Herstellung des Plasmas, verändert werden. So muß für einen höheren Druck die Spannung und/oder die Frequenz erhöht werden. Umgekehrt muß für niedrigere Drücke die Spannung und/oder Frequenz vermindert werden.The applied voltage, frequency, pressure and flow rate of the gas are all interdependent, but can vary over a wide range, depending on the manufacturing requirements of the plasma. For a higher pressure, the voltage and / or the frequency increase. Conversely, the voltage and / or frequency must be reduced for lower pressures will.

Ein selektives Abscheiden einer dieser Schichten kann durch Verwendung geeigneter Kontaktmasken erzielt werden. Obwohl die Gasatmosphäre die Tendenz hat, zwischen die Unterseite der Maske und die Oberfläche der Unterlage zu kriechen, tritt keine Abscheidung unter der Maske auf. Die Metallmaske hat die Wirkung, daß sie die Wirkung des Plasmas und ein Abscheiden unter den Masken verhindert.A selective deposition of one of these layers can be achieved by using suitable contact masks be achieved. Although the gas atmosphere has a tendency to get between the underside of the mask and the As the surface of the substrate creeps, no deposition occurs under the mask. The metal mask has the effect of preventing the action of the plasma and deposition under the masks.

Claims (13)

Patentansprüche:Patent claims: 1. Verfahren zum Abscheiden einer zusammenhängenden, aus einem chemischen Element oder einer anorganischen Verbindung bestehenden festen Schicht auf der Oberfläche einer Unterlage, wobei bei Erzeugung der elementaren Schicht eine chemische Verbindung des Elements und bei Erzeugung der Schicht einer anorganischen Verbindung alle Teilelemente der anorganischen Verbindung, davon mindestens eines in Form einer anderen chemischen Verbindung als die der Schicht, in gasförmigem Zustand einer Glimmentladung ausgesetzt werden, dadurch gekennzeichnet, daß eine Plasmaentladung durch induktiv oder kapazitiv in den Reaktionsraum eingekoppelte Hochfrequenzenergie erzeugt und daß durch magnetische Steuerung des Plasmas die abgeschiedene Schicht auf eine spezielle Zone der Unterlage konzentriert oder über die ganze Unterlage gleichmäßig verteilt wird.1. Process for the deposition of a coherent, from a chemical element or a solid layer consisting of an inorganic compound on the surface of a support, wherein a chemical compound of the element when the elementary layer is produced and when it is produced the layer of an inorganic compound all sub-elements of the inorganic compound, at least one of them in the form of a different chemical compound than that of the layer, in gaseous form State of being exposed to a glow discharge, characterized in that that a plasma discharge coupled inductively or capacitively into the reaction chamber Generated high frequency energy and that the deposited by magnetic control of the plasma Layer concentrated on a special zone of the substrate or evenly over the entire substrate is distributed. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Plasma durch ein angelegtes elektrisches Feld erzeugt wird.2. The method according to claim 1, characterized in that the plasma by an applied electrical Field is generated. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das elektrische Feld durch Anlegen einer Wechselspannung erzeugt wird.3. The method according to claim 2, characterized in that the electric field by application an alternating voltage is generated. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß eine hochfrequente Wechselspannung verwendet wird.4. The method according to claim 3, characterized in that a high-frequency alternating voltage is used. 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das elektrische Feld mit kapazitiven Mitteln angelegt wird.5. The method according to claim 4, characterized in that the electric field with capacitive Funds is invested. 6. Verfahren nach den Ansprüchen 3 und 4, dadurch gekennzeichnet, daß das elektrische Feld zwischen Elektroden gebildet wird, die in Kontakt mit der gasförmigen Verbindung bzw. dem gasförmigen Element stehen.6. The method according to claims 3 and 4, characterized in that the electric field is formed between electrodes that are in contact with the gaseous compound or the gaseous Element stand. 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Oberfläche der Unterlage nicht erhitzt wird.7. The method according to any one of claims 1 to 6, characterized in that the surface of the Is not heated. 8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Oberfläche der Unterlage auf eine Temperatur erhitzt wird, die unter derjenigen Temperatur liegt, bei der eine merkliche thermische Zersetzung in der Gasatmosphäre auftritt.8. The method according to any one of claims 1 to 6, characterized in that the surface of the Pad is heated to a temperature which is below that temperature at which a noticeable thermal decomposition occurs in the gas atmosphere. 9. Verfahren nach einem der Ansprüche 1 bis 8 zum Abscheiden einer Siliciumschicht aus einer ein Siliciumhydrid enthaltenden Atmosphäre, dadurch gekennzeichnet, daß vorzugsweise epitaktisch auf eine Siliciumunterläge bei 65O0C abgeschieden wird.9. A method according to any one of claims 1 to 8 for depositing a silicon layer of a silicon hydride-containing atmosphere, characterized in that is preferably deposited epitaxially on a silicon would be subject at 65O 0 C. 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß Silan durch ein als Reaktionskammer dienendes Rohr aus dielektrischem Material von etwa 25 bis 75 mm Durchmesser geleitet wird, daß die Fließgeschwindigkeit 2 bzw. 4,0 ml/Min, bei einem Druck von 0,2 bzw. 0,3 Torr und daß die Frequenz der eingekoppelten Hochfrequenzenergie 0,5 bzw. 4 MHz beträgt.10. The method according to claim 9, characterized in that the silane is used as a reaction chamber Serving tube of dielectric material of about 25 to 75 mm diameter is passed that the flow rate 2 and 4.0 ml / min, at a pressure of 0.2 and 0.3 Torr and that the The frequency of the coupled-in high-frequency energy is 0.5 or 4 MHz. 11. Verfahren nach einem der Ansprüche 1 bis 811. The method according to any one of claims 1 to 8 zum Abscheiden einer Siliciumdioxidschicht aus einer ein Siliciumhydrid und entweder Stickoxydul oder Kohlendioxid oder Wasserdampf enthaltenden Atmosphäre, dadurch gekennzeichnet, daß Silan und Stickoxydul durch ein als Reaktionskammer dienendes Rohr aus dielektrischem Material von etwa 25 mm Durchmesser geleitet werden, daß die Strömungsgeschwindigkeit 2 bzw. 3 ml/Min, bei einem Druck von 0,4 Torr und daß die Frequenz der eingekoppelten Hochfrequenzenergie 0,5 MHz beträgt.for depositing a silicon dioxide layer from a silicon hydride and either nitrogen oxide or atmosphere containing carbon dioxide or water vapor, characterized in that silane and nitrogen oxide through a tube of dielectric material serving as a reaction chamber about 25 mm diameter are passed that the flow rate 2 or 3 ml / min, at a pressure of 0.4 Torr and that the frequency of the coupled radio frequency energy 0.5 MHz amounts to. 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Oberfläche der Unterlage auf eine Temperatur von 200 bis 250 0C erhitzt wird.12. The method according to claim 11, characterized in that the surface of the substrate is heated to a temperature of 200 to 250 0 C. 13. Verfahren nach einem der Ansprüche 1 bis 8 zum Abscheiden einer Siliciumnitridschicht aus einer ein Siliciumhydrid und Ammoniak enthaltenden Atmosphäre, vorzugsweise auf ein optisches Element, einen Halbleiterkörper oder den Metallbelag eines Kondensators, dadurch gekennzeichnet, daß die Oberfläche der Unterlage auf eine Temperatur von über 3200C5 vorzugsweise auf 700 bis 9000C, erhitzt wird und daß Silan und wasserfreies Ammoniak durch ein als Reaktionskammer dienendes Rohr aus dielektrischem Material von etwa 25 bzw. 75 mm Durchmesser geleitet wird, daß die Strömungsgeschwindigkeit 0,25 oder 0,75 bzw. 4,5 oder 12 ml/Min, bei einem Druck von 0,4 bzw. 0,3 Torr und daß die Frequenz der eingekoppelten Hochfrequenzenergie 1 bzw. 4 MHz beträgt. 13. The method according to any one of claims 1 to 8 for depositing a silicon nitride layer from an atmosphere containing a silicon hydride and ammonia, preferably on an optical element, a semiconductor body or the metal coating of a capacitor, characterized in that the surface of the substrate is at a temperature of about 320 0 C 5 is preferably heated to 700 to 900 0 C, and that silane and anhydrous ammonia are passed through a tube of dielectric material serving as a reaction chamber and having a diameter of about 25 or 75 mm, so that the flow rate is 0.25 or 0.75 or 4.5 or 12 ml / min, at a pressure of 0.4 or 0.3 Torr and that the frequency of the coupled high-frequency energy is 1 or 4 MHz. Hierzu 1 Blatt Zeichnungen1 sheet of drawings
DE19651521553 1964-05-08 1965-05-06 METHOD OF DEPOSITING LAYERS Pending DE1521553B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GB19219/64A GB1104935A (en) 1964-05-08 1964-05-08 Improvements in or relating to a method of forming a layer of an inorganic compound
GB2342164 1964-06-05
GB4896464 1964-12-02
GB40065 1965-01-05
GB46289/65A GB1149052A (en) 1964-05-08 1965-11-02 Method of altering the surface properties of polymer material
GB52993/65A GB1136218A (en) 1965-12-14 1965-12-14 Improvements in or relating to the manufacture of semiconductor optical devices

Publications (2)

Publication Number Publication Date
DE1521553A1 DE1521553A1 (en) 1969-07-24
DE1521553B2 true DE1521553B2 (en) 1971-05-13

Family

ID=27546444

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19651521553 Pending DE1521553B2 (en) 1964-05-08 1965-05-06 METHOD OF DEPOSITING LAYERS
DE1966D0051706 Pending DE1521216A1 (en) 1964-05-08 1966-12-03 Method for depositing an anti-reflective coating on optical components

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE1966D0051706 Pending DE1521216A1 (en) 1964-05-08 1966-12-03 Method for depositing an anti-reflective coating on optical components

Country Status (6)

Country Link
US (1) US3485666A (en)
BE (2) BE663511A (en)
DE (2) DE1521553B2 (en)
GB (2) GB1104935A (en)
NL (2) NL6505915A (en)
SE (1) SE322391B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941559A1 (en) * 1979-10-13 1981-04-23 Messerschmitt-Bölkow-Blohm GmbH, 8000 München METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS FROM AMORPHEMIC SILICON FOR CONVERTING LIGHT TO ELECTRICAL ENERGY AND DEVICE FOR CARRYING OUT THE METHOD
DE3442208A1 (en) * 1984-11-19 1986-05-28 Leybold-Heraeus GmbH, 5000 Köln Process and apparatus for producing hard carbon layers

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3698071A (en) * 1968-02-19 1972-10-17 Texas Instruments Inc Method and device employing high resistivity aluminum oxide film
US3629088A (en) * 1968-07-11 1971-12-21 Sperry Rand Corp Sputtering method for deposition of silicon oxynitride
US3637423A (en) * 1969-02-10 1972-01-25 Westinghouse Electric Corp Pyrolytic deposition of silicon nitride films
DE1954366C2 (en) * 1969-10-29 1972-02-03 Heraeus Gmbh W C Method and device for the production of hard coatings from titanium and / or tantalum compounds
DE2025779C3 (en) * 1970-05-26 1980-11-06 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for depositing a layer of a binary compound on the surface of a semiconductor crystal
GB1315479A (en) * 1970-06-24 1973-05-02 Licentia Gmbh Method for manufacturing diodes
DE2058931A1 (en) * 1970-12-01 1972-06-08 Licentia Gmbh Method for contacting semiconductor zones Evaluation
US3669863A (en) * 1970-12-28 1972-06-13 Bell Telephone Labor Inc Technique for the preparation of iron oxide films by cathodic sputtering
US3761327A (en) * 1971-03-19 1973-09-25 Itt Planar silicon gate mos process
US3757733A (en) * 1971-10-27 1973-09-11 Texas Instruments Inc Radial flow reactor
FR2196296B1 (en) * 1972-08-21 1976-07-23 Hennequin Franc Is
US3984587A (en) * 1973-07-23 1976-10-05 Rca Corporation Chemical vapor deposition of luminescent films
JPS5193874A (en) * 1975-02-15 1976-08-17 Handotaisochino seizohoho
US4003770A (en) * 1975-03-24 1977-01-18 Monsanto Research Corporation Plasma spraying process for preparing polycrystalline solar cells
US4317844A (en) * 1975-07-28 1982-03-02 Rca Corporation Semiconductor device having a body of amorphous silicon and method of making the same
US3974003A (en) * 1975-08-25 1976-08-10 Ibm Chemical vapor deposition of dielectric films containing Al, N, and Si
DE2658304C2 (en) * 1975-12-24 1984-12-20 Tokyo Shibaura Electric Co., Ltd., Kawasaki, Kanagawa Semiconductor device
US4142004A (en) * 1976-01-22 1979-02-27 Bell Telephone Laboratories, Incorporated Method of coating semiconductor substrates
GB1548520A (en) * 1976-08-27 1979-07-18 Tokyo Shibaura Electric Co Method of manufacturing a semiconductor device
JPS5329076A (en) * 1976-08-31 1978-03-17 Toshiba Corp Plasma treating apparatus of semiconductor substrates
CA1080562A (en) * 1977-02-10 1980-07-01 Frederick D. King Method of and apparatus for manufacturing an optical fibre with plasma activated deposition in a tube
US4161743A (en) * 1977-03-28 1979-07-17 Tokyo Shibaura Electric Co., Ltd. Semiconductor device with silicon carbide-glass-silicon carbide passivating overcoat
US4217375A (en) * 1977-08-30 1980-08-12 Bell Telephone Laboratories, Incorporated Deposition of doped silicon oxide films
US4265991A (en) 1977-12-22 1981-05-05 Canon Kabushiki Kaisha Electrophotographic photosensitive member and process for production thereof
GB1603949A (en) * 1978-05-30 1981-12-02 Standard Telephones Cables Ltd Plasma deposit
US4202928A (en) * 1978-07-24 1980-05-13 Rca Corporation Updateable optical storage medium
US4319803A (en) * 1978-11-24 1982-03-16 Hewlett-Packard Company Optical fiber coating
US4328646A (en) * 1978-11-27 1982-05-11 Rca Corporation Method for preparing an abrasive coating
DE2904171A1 (en) * 1979-02-05 1980-08-14 Siemens Ag METHOD FOR PRODUCING SEMICONDUCTOR BODIES MADE OF AMORPHOUS SILICON BY GLIMMER DISCHARGE
US4232057A (en) * 1979-03-01 1980-11-04 International Business Machines Corporation Semiconductor plasma oxidation
US4234622A (en) * 1979-04-11 1980-11-18 The United States Of American As Represented By The Secretary Of The Army Vacuum deposition method
US4268711A (en) * 1979-04-26 1981-05-19 Optical Coating Laboratory, Inc. Method and apparatus for forming films from vapors using a contained plasma source
US4289797A (en) * 1979-10-11 1981-09-15 Western Electric Co., Incorporated Method of depositing uniform films of Six Ny or Six Oy in a plasma reactor
JPS5664441A (en) * 1979-10-30 1981-06-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5693344A (en) * 1979-12-26 1981-07-28 Fujitsu Ltd Manufacture of semiconductor device
EP0032788B2 (en) * 1980-01-16 1989-12-06 National Research Development Corporation Method for depositing coatings in a glow discharge
US4330930A (en) * 1980-02-12 1982-05-25 General Instrument Corp. Electrically alterable read only memory semiconductor device made by low pressure chemical vapor deposition process
US4456978A (en) * 1980-02-12 1984-06-26 General Instrument Corp. Electrically alterable read only memory semiconductor device made by low pressure chemical vapor deposition process
US4487162A (en) * 1980-11-25 1984-12-11 Cann Gordon L Magnetoplasmadynamic apparatus for the separation and deposition of materials
US4471003A (en) * 1980-11-25 1984-09-11 Cann Gordon L Magnetoplasmadynamic apparatus and process for the separation and deposition of materials
US4379181A (en) * 1981-03-16 1983-04-05 Energy Conversion Devices, Inc. Method for plasma deposition of amorphous materials
JPS57201527A (en) * 1981-06-01 1982-12-10 Toshiba Corp Ion implantation method
US4574733A (en) * 1982-09-16 1986-03-11 Energy Conversion Devices, Inc. Substrate shield for preventing the deposition of nonhomogeneous films
CA1208162A (en) * 1982-10-14 1986-07-22 Dilip K. Nath Plasma processed sinterable ceramics
JPS59119733A (en) * 1982-12-24 1984-07-11 Toshiba Corp Semiconductor device
US4430361A (en) 1983-02-02 1984-02-07 Rca Corporation Apparatus and method for preparing an abrasive coated substrate
JPH06105779B2 (en) * 1983-02-28 1994-12-21 双葉電子工業株式会社 Semiconductor device and manufacturing method thereof
JPS59179152A (en) * 1983-03-31 1984-10-11 Agency Of Ind Science & Technol Production of thin film
US6784033B1 (en) 1984-02-15 2004-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for the manufacture of an insulated gate field effect semiconductor device
US5780313A (en) 1985-02-14 1998-07-14 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
JPS60191269A (en) * 1984-03-13 1985-09-28 Sharp Corp Manufacturing device for electrophotographic sensitive body
DE3413019A1 (en) * 1984-04-06 1985-10-17 Robert Bosch Gmbh, 7000 Stuttgart METHOD FOR APPLYING A THIN, TRANSPARENT LAYER TO THE SURFACE OF OPTICAL ELEMENTS
US4579609A (en) * 1984-06-08 1986-04-01 Massachusetts Institute Of Technology Growth of epitaxial films by chemical vapor deposition utilizing a surface cleaning step immediately before deposition
US4568614A (en) * 1984-06-27 1986-02-04 Energy Conversion Devices, Inc. Steel article having a disordered silicon oxide coating thereon and method of preparing the coating
JPS61117841A (en) * 1984-11-14 1986-06-05 Hitachi Ltd Formation of silicon nitride film
JPH0752718B2 (en) * 1984-11-26 1995-06-05 株式会社半導体エネルギー研究所 Thin film formation method
US6786997B1 (en) 1984-11-26 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus
FR2580864B1 (en) * 1984-12-18 1987-05-22 Thomson Csf ION BOMBING BARRIER LAYER FOR VACUUM TUBE
GB2175016B (en) * 1985-05-11 1990-01-24 Barr & Stroud Ltd Optical coating
US4659401A (en) * 1985-06-10 1987-04-21 Massachusetts Institute Of Technology Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
US6230650B1 (en) 1985-10-14 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
US6673722B1 (en) 1985-10-14 2004-01-06 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
US5427824A (en) * 1986-09-09 1995-06-27 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
KR910003742B1 (en) * 1986-09-09 1991-06-10 세미콘덕터 에너지 라보라터리 캄파니 리미티드 Cvd apparatus
GB8814922D0 (en) * 1988-06-23 1988-07-27 Pilkington Plc Coatings on glass
DE3902628A1 (en) * 1989-01-30 1990-08-02 Hauni Elektronik Gmbh THICK FILM MATERIAL FOR SENSORS OR ACTUATORS AND METHOD FOR THE PRODUCTION THEREOF
US5204138A (en) * 1991-12-24 1993-04-20 International Business Machines Corporation Plasma enhanced CVD process for fluorinated silicon nitride films
FR2704558B1 (en) * 1993-04-29 1995-06-23 Air Liquide METHOD AND DEVICE FOR CREATING A DEPOSIT OF SILICON OXIDE ON A SOLID TRAVELING SUBSTRATE.
US5680663A (en) * 1994-02-07 1997-10-28 Mitchell; Wesley Wayne Method and apparatus for cooking and dispensing starch
CA2443129A1 (en) * 2001-04-12 2002-10-24 Emilia Anderson High index-contrast fiber waveguides and applications
US20040141702A1 (en) 2002-11-22 2004-07-22 Vladimir Fuflyigin Dielectric waveguide and method of making the same
JP4052155B2 (en) * 2003-03-17 2008-02-27 ウシオ電機株式会社 Extreme ultraviolet radiation source and semiconductor exposure apparatus
WO2006133730A1 (en) * 2005-06-16 2006-12-21 Innovative Systems & Technologies Method for producing coated polymer
US9677817B1 (en) * 2012-02-29 2017-06-13 The United States Of America As Represented By The Secretary Of The Air Force Method for thermal management through use of ammonium carbamate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE657903C (en) * 1935-11-05 1938-03-16 Bernhard Berghaus Process for the cast or metallic coating of objects of a metallic or non-metallic nature by means of an electric arc
US2960594A (en) * 1958-06-30 1960-11-15 Plasma Flame Corp Plasma flame generator
GB915771A (en) * 1959-01-12 1963-01-16 Ici Ltd Method of conducting gaseous chemical reactions
US3108900A (en) * 1959-04-13 1963-10-29 Cornelius A Papp Apparatus and process for producing coatings on metals
US3246114A (en) * 1959-12-14 1966-04-12 Matvay Leo Process for plasma flame formation
NL128054C (en) * 1963-01-29

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941559A1 (en) * 1979-10-13 1981-04-23 Messerschmitt-Bölkow-Blohm GmbH, 8000 München METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS FROM AMORPHEMIC SILICON FOR CONVERTING LIGHT TO ELECTRICAL ENERGY AND DEVICE FOR CARRYING OUT THE METHOD
DE3442208A1 (en) * 1984-11-19 1986-05-28 Leybold-Heraeus GmbH, 5000 Köln Process and apparatus for producing hard carbon layers
DE3442208C3 (en) * 1984-11-19 1998-06-10 Leybold Ag Method and device for producing hard carbon layers

Also Published As

Publication number Publication date
SE322391B (en) 1970-04-06
BE663511A (en) 1965-11-08
GB1149052A (en) 1969-04-16
US3485666A (en) 1969-12-23
DE1521216A1 (en) 1969-07-24
BE691101A (en) 1967-06-13
GB1104935A (en) 1968-03-06
NL6505915A (en) 1965-11-09
NL6617540A (en) 1967-06-15
DE1521553A1 (en) 1969-07-24

Similar Documents

Publication Publication Date Title
DE1521553B2 (en) METHOD OF DEPOSITING LAYERS
DE3322680C2 (en)
DE2736514C2 (en) Method and device for coating surfaces with carbon
DE3411702C2 (en)
DE2940994C2 (en)
DE3916983C2 (en)
DE2826752A1 (en) PHOTOELEMENT
DE3124447A1 (en) METHOD FOR FORMING A DEPOSITION FILM
DE1931412A1 (en) Thin-film resistors and processes for their manufacture
DE2215151B2 (en) Process for producing thin layers of tantalum
DE3016022A1 (en) METHOD AND DEVICE FOR PRODUCING A THIN, FILM-LIKE COATING BY EVAPORATION USING A ENCLOSED PLASMA SOURCE
DE2904171C2 (en)
DE3220683A1 (en) METHOD AND DEVICE FOR PRODUCING AN AMORPHOUS SILICONE LAYER
DE2711365A1 (en) SEMI-CONDUCTOR ARRANGEMENT WITH SCHOTTKY BORDER LAYER
DE1950126A1 (en) Process for applying insulating films and electronic components
DE2203080A1 (en) Method for producing a layer with a certain thickness on a substrate
DE1048638B (en) Process for the production of semiconductor single crystals, in particular silicon, by thermal decomposition or reduction
EP0555518B1 (en) Method for treating an oxide layer
DE1640486B2 (en) Process for reactive sputtering of elemental silicon
DE2220086C3 (en) Device for applying a material
DE2211709B2 (en) Method for doping semiconductor material
DE1521605A1 (en) Process for producing oxide films on substrates
DE2251275A1 (en) PROCESS FOR DEPOSITING GLASS LAYERS
DE3718789A1 (en) TRANSPARENT GUIDING FILM AND METHOD FOR THE PRODUCTION THEREOF
DE19916403C1 (en) Process for the production of thin, poorly soluble coatings